18
Electron cryomicroscopy at Yale A discussion with the Basic Science Strategic Planning Commi<ee of the Yale Medical School D. M. Engelman, with help from colleagues 02/03/15

Electron)cryo+microscopy)atYale) - Yale University · 2019. 12. 16. · Electron)cryo+microscopy)atYale) A)discussion)with)the)Basic)Science)Strategic) Planning)Commi

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Electron)cryo+microscopy)atYale) - Yale University · 2019. 12. 16. · Electron)cryo+microscopy)atYale) A)discussion)with)the)Basic)Science)Strategic) Planning)Commi

Electron  cryo-­‐microscopy  at  Yale  

A  discussion  with  the  Basic  Science  Strategic  Planning  Commi<ee  of  the  Yale  Medical  School  D.  M.  Engelman,  with  help  from  colleagues  

02/03/15  

Page 2: Electron)cryo+microscopy)atYale) - Yale University · 2019. 12. 16. · Electron)cryo+microscopy)atYale) A)discussion)with)the)Basic)Science)Strategic) Planning)Commi

Some  highlights  of  EM  history  

•  EM  yields  images  vastly  superior  to  opIcal  microscopy  (1930’s-­‐’60s)  •  First  3D  reconstrucIon  of  a  virus  parIcle  (Derosier  and  Klug,  1969)  •  Transmembrane  alpha  helices  imaged  in  3D  (Unwin  and  Henderson,  1975)  •  Frozen  hydrated  samples  successfully  prepared  for  EM  (Dubochet,  1983)  •  First  3D  reconstrucIon  of  an  isolated  biomolecule:  the  ribosome    

(Frank,  1984)    •  It  is  predicted  that  EM  can  solve  biomolecular  structures  to  atomic  resoluIon    

(Henderson,  1995)  •  PracIcal  methods  for  cryo-­‐electron  tomography  developed    

(Baumeister,  mid-­‐90’s)  •  Maximum  likelihood  technique  introduced  for  EM  image  analysis    

(Sigworth,  1998)  •  The  first  atomic  chain  traces  from  EM  images  are  generated,  

 from  filamentous  biological  assemblies  (Namba,  Unwin;  2003)  

Page 3: Electron)cryo+microscopy)atYale) - Yale University · 2019. 12. 16. · Electron)cryo+microscopy)atYale) A)discussion)with)the)Basic)Science)Strategic) Planning)Commi

InformaIon  content  goes  as  the  inverse  cube  of  the  resoluIon,  so  a  3  A  structure  has    more  than  10x  the  informaIon  content  of  a  7A  structure,    

125x  that  of  a  15A  structure  from  negaIve  stain.  

Technical  improvements  enable  chemical  resoluIon  in  very  recent  work    (“near-­‐atomic”)  

Page 4: Electron)cryo+microscopy)atYale) - Yale University · 2019. 12. 16. · Electron)cryo+microscopy)atYale) A)discussion)with)the)Basic)Science)Strategic) Planning)Commi

New  detectors  are  advancing  the  art:  Given  that  radiaIon  damage  strictly  limits  the  number  of  electrons  that  can  be  used,    cryo-­‐EM  images  are  intrinsically  noisy  and  it  is  important  to  detect  the  available  electrons    as  efficiently  as  possible.    Consider  ribosomes:  

Perfect    image  

Perfect    Detector,  20  e-­‐/A2  

New    detectors  

Old  CCD  

Page 5: Electron)cryo+microscopy)atYale) - Yale University · 2019. 12. 16. · Electron)cryo+microscopy)atYale) A)discussion)with)the)Basic)Science)Strategic) Planning)Commi

One  of  the  great  leaps  is  the  realizaIon  that  specimen  moIon  is  a  major  limit  on  resoluIon,    new  camera  takes  short  exposures  to  “freeze”  the  moIon  

In  favorable  cases,  can  separate  classes  of  parIcles—  different  conformaIons,  for  example  

Page 6: Electron)cryo+microscopy)atYale) - Yale University · 2019. 12. 16. · Electron)cryo+microscopy)atYale) A)discussion)with)the)Basic)Science)Strategic) Planning)Commi

Some  examples  of  recent  work  using  new  advances:    First  de  novo  atomic  models  by  cryo-­‐EM  (very  recent)!    Examples:  

Using  the  K2  detector,  the  Cheng  group  at  UCSF  solved  the  structure  of  the  transient    receptor  potenIal  caIon  channel  subfamily  V  member  1  (TRPV1)  channel;    using  the  Falcon  detector,  the  Vonck    group  at  Max  Planck  solved  the  structure  of  the    F420-­‐reducing  [NiFe]  hydrogenase  (FRH);  and  at  the  MRC,  the  structure  of  the  large  subunit    of  the  mitochondrial  ribosome  from  yeast  was  solved.  In  all  three  cases,  resoluIons  beyond    3.5  Å  were  obtained,  at  which  most  of  the  amino  acid  side-­‐chains  are  clearly  visible,    and  near-­‐complete  atomic  models  could  be  built  de  novo    

Page 7: Electron)cryo+microscopy)atYale) - Yale University · 2019. 12. 16. · Electron)cryo+microscopy)atYale) A)discussion)with)the)Basic)Science)Strategic) Planning)Commi

No  need  for  crystals!    (but,  sIll  other  challenges  of  homogeneity,  purity,  etc.)  

 Access  to  larger  complexes  and  uses  of  tomography  move  

structural  biology  toward  cell  biology    

By  broadening  the  scope  of  structures  we  are    finding  unsuspected  homologies,  and  hence  new  generalizaIons  

 Determining  the  structural  variaIons    that  correspond  to  geneIc  diversity    

could  be  a  key  tool  in  personalized  medicine.    

Views  of  complexes  are  proving  useful  in  drug  development      

Page 8: Electron)cryo+microscopy)atYale) - Yale University · 2019. 12. 16. · Electron)cryo+microscopy)atYale) A)discussion)with)the)Basic)Science)Strategic) Planning)Commi

What  are  the  benefits?  Seeing  the  chemistry  is  informaIve  and  enabling:  ligand  interacIons  

Page 9: Electron)cryo+microscopy)atYale) - Yale University · 2019. 12. 16. · Electron)cryo+microscopy)atYale) A)discussion)with)the)Basic)Science)Strategic) Planning)Commi

The  other  main  applicaIon:  electron  tomography  

The  morphome  has  been  suggested  as  a  term  for  the  distribuIon  of  ma<er  in  a  3D  object,  Such  as  an  organelle,  cell,  or  organism.    Morphomics  methods  characterize  or  quanIfy  3D  data,  each  with  a  characterisIc    window  of  informaIon:  high  resoluIon  light  mic.,  cryo-­‐em,  x-­‐ray,  and  electron  tomography.    UnificaIon  of  these  views  will  give  the  best  understanding  of  life  in  different  states  and    levels  of  organizaIon,  basically  using  stereo  views  and  tying  the  data  sets  together.    An  important  bridge  from  the  chemistry  levels  (x-­‐ray,  cryo  em)  to  the  light  microscopy    is  the  use  of  electron  tomography.    Tomography  can  be  done  with  the  same  equipment  as  cryo-­‐em:    use  thin  secIons  (either  fixed,  embedded  or  frozen),  Ilt  series  to  get  3D  via  reconstrucIon,    combinaIon  of  secIons.          

Page 10: Electron)cryo+microscopy)atYale) - Yale University · 2019. 12. 16. · Electron)cryo+microscopy)atYale) A)discussion)with)the)Basic)Science)Strategic) Planning)Commi

Examples  of  tomography:  one  of  the  first  studies  (Baumeister)  

Upper  row:  first  electron  tomographic  invesIgaIon  of  a  eukaryoIc  cell;  the  slime  mould  Dictyostelium  discoideum  embedded  in  vitrified  ice.  Cyan:  Ribosomes,  orange-­‐red:  the  acIn  filament  network,  and  blue:  the  cell  membrane.  (Medalia  et  al.  Science  298,  2002).    

Page 11: Electron)cryo+microscopy)atYale) - Yale University · 2019. 12. 16. · Electron)cryo+microscopy)atYale) A)discussion)with)the)Basic)Science)Strategic) Planning)Commi

Arrows:  side  views  of  nuclear  pore  complexes    Arrowheads:  Ribosomes  connected  to  the  outer  nuclear  membrane      Right:  Structure  of  the  Dictyostelium  nuclear  pore  complex  aqer  classificaIon  and  averaging  of  subtomograms    (Beck  et  al.;  Science,  306,  2004;  Nature  449,  2007).  

Combining  data—tomography    plus  single  parIcle  averaging  

Page 12: Electron)cryo+microscopy)atYale) - Yale University · 2019. 12. 16. · Electron)cryo+microscopy)atYale) A)discussion)with)the)Basic)Science)Strategic) Planning)Commi

Cryo-­‐electron  tomography  is  invading  the  realm    of  single-­‐parIcle  cryo-­‐EM  

ApplicaIon  of  cryo-­‐electron  tomography  and  sub-­‐tomogram  averaging  methods  resolves  the  structure  of  the  capsid  larce  within  intact  immature  HIV-­‐1  parIcles  at  8.8A  resoluIon,  allowing  unambiguous  posiIoning  of  all  α-­‐helices.  The  resulIng  model  reveals  terIary  and  quaternary  structural  interacIons  that  mediate  HIV-­‐1  assembly.  (Briggs,  2015)  

Page 13: Electron)cryo+microscopy)atYale) - Yale University · 2019. 12. 16. · Electron)cryo+microscopy)atYale) A)discussion)with)the)Basic)Science)Strategic) Planning)Commi

Concept  of  integrated  approach:  organizaIon  of  macromolecules  in  a  cell  

Page 14: Electron)cryo+microscopy)atYale) - Yale University · 2019. 12. 16. · Electron)cryo+microscopy)atYale) A)discussion)with)the)Basic)Science)Strategic) Planning)Commi

ComputaIon  is  deeply  integrated  as  a  part  of  the  science  

•  ComputaIonal  image  processing,  for  example,  analysis  takes  longer  than  data  collecIon  in  cryo,  tomography  of  cells,  crystallography  

•  Macromolecular  modeling  at  different  scales—how  to  incorporate  chemistry  in  structural  images?  

•  Data  integraIon—for  the  morphome,  combining  informaIon  at  different  scales  and  of  different  kinds  

•  Database  management  and  visualizaIon—handling  very  large  databases,  for  example  in  em  images  

•  Macromolecular  simulaIons  at  long  and  large  scales  

Page 15: Electron)cryo+microscopy)atYale) - Yale University · 2019. 12. 16. · Electron)cryo+microscopy)atYale) A)discussion)with)the)Basic)Science)Strategic) Planning)Commi

Example:  computaIon  as  a  component  of  genomics—expect  similariIes  for  cryo,  tomo,  morphome  (  image  from  M.  Gerstein)  

Page 16: Electron)cryo+microscopy)atYale) - Yale University · 2019. 12. 16. · Electron)cryo+microscopy)atYale) A)discussion)with)the)Basic)Science)Strategic) Planning)Commi

Electrons  interact  with  molecules  ~106  Imes  more  strongly  than  X-­‐rays  do,  and  so  can  produce  diffracIon  data  from  extremely  small  crystals  (up  to  6  orders  of  magnitude  smaller  in  volume  than  those  typically  used  for  X-­‐ray  crystallography).  

And,  another  use:  electron  crystallography  from  microcrystals  

Three-­‐dimensional  electron  crystallography  of  protein  microcrystals.  Shi  et  al.  eLife  2013;2:e01345.  Nannenga  et  al.  eLife  2014;3:e03600.  

Circles:  crystals  used  for  X-­‐ray  diffracIon.    Arrows:  Crystals  used  for  electron  diffracIon.  

Page 17: Electron)cryo+microscopy)atYale) - Yale University · 2019. 12. 16. · Electron)cryo+microscopy)atYale) A)discussion)with)the)Basic)Science)Strategic) Planning)Commi

                                                                             What  are  others  doing?    As  the  home  of  one  of  the  founders  of  the  electron  microscopy  of  the  cell,  George  Palade,    And  as  a  leader  in  structural  biology,  and  where  a  key  enabling  technical  advance  in  cryoEM    was  made,  Yale  needs  to  remain  at  the  technological  curng  edge  of  electron  microscopy  

Among  other  efforts,  new  faciliIes  are  commi<ed,  and  most  are  operaIonal  at:    MRC-­‐LMB  MPI    Biochemistry  Munich,  MPI-­‐CBG  Dresden  Monash  University  (Melbourne)  MPI  Frankfurt,  Görngen  NaIonal  University  Singapore  U.  Stockholm  Univ.  Munich  Netherlands  Centre  for  Electron  Microscopy  (2x),  Str.  Biol.  Centre  Strasbourg  ETH  Zürich  Univ  Zürich    And,  we  must  realize,  others,  for  example  in  China.              

Florida  State  University  McGill  University  Purdue  Rockefeller  U.  Sanford-­‐Burnham  (La  Jolla)  UC  Berkeley  UCSF  U.  Virginia  U.  Michigan  UCLA,    NY  consorIum  (Manha<an)  Janelia  Farm  HHMI  (2x)    

Page 18: Electron)cryo+microscopy)atYale) - Yale University · 2019. 12. 16. · Electron)cryo+microscopy)atYale) A)discussion)with)the)Basic)Science)Strategic) Planning)Commi

What  is  the  need  at  Yale?  

•  New  camera  on  exisIng  scope  is  a  good  step,  but  not  state  of  the  art  

•  New  Krios  would  be  the  choice,  both  for  opIcs  and  for  sample  changer  

•  A  suitable  locaIon  now  exists  in  Bass.  

•  Cost  is  steep-­‐-­‐~$10MM  purchase  plus  ~~$  0.5-­‐1.0MM/year  to  staff  and  run.  

•  Users  now  go  elsewhere—  advantages  are  help,  limited  cost,  lack  of  commitment  long  term    •  But,  limited  scheduling  availability,  uncertain  future,  need  to  screen  condiIons,    not  much  capacity    for  new  problems,  missed  opportuniIes    •  What  do  we  see  as  potenIal  demand  at  Yale?    Survey  now  under  way.  

•  And,  we  need  to  think  clearly  about  computaIon