23
Eigenvector continuation in nuclear physics

Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

SK, A. Ekström, K. Hebeler, A. Sarkar, D. Lee, A. Schwenk, arXiv:1909.08446

P. Demol, T. Duguet, A. Ekström, M. Frosini, K. Hebeler, SK, D. Lee, A. Schwenk, V. Somà, A. Tichai, arXiv:1911.12578

Eigenvector continuation in nuclear physicsSebastian König, NC State University

TRIUMF Nuclear Theory Workshop, Vancouver, BC

March 4, 2020

 

p. 1

Page 2: Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

Previously on Eigenvector Continuation

p. 2

Page 3: Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

Perturbation theoryspan space by the wavefunction corrections ,

evaluate Hamiltonian between these states

interpretation: , EC-extrapolate to

same input as PT, but now things converge (to the correct result!)

| ⟩ →ψ

(n)

1

x

(n)

j

n= 0, ⋅ ⋅ order

H = + cH

diag

H

off-diag

c = 1

p. 3

Page 4: Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

P. Demol, T. Duguet, A. Ekström, M. Frosini, K. Hebeler, SK, D. Lee, A. Schwenk, V. Somà, A. Tichai, arXiv:1911.12578

New episodeMany-body perturbation theory

see talk and poster by M. Frosini!

consider

18

O in BMBPT

EM500 interaction

full CI as reference

compare EC to simple PT and Padé

 

direct perturbation theory clearly diverges

EC is accurate and reliable, Padé becomes erratic at high orders

PT under constraint

here: limited space

realistic:

P ≤ 3

SRG evolved to

λ = 2.0fm

−1

p. 4

Page 5: Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

This talk

EC as efficient emulator

p. 5

Page 6: Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

Wesolowski et al., JPG 46 045102 (2019)

statistical fitting gives posteriors for LECs

LEC posteriors propagate to observables

need to sample a large number of calculations

see Dick's colloquium talk!

Need for emulators1. Fitting of LECs to few- and many-body observables

common practice now to use to constrain nuclear forces, e.g.:

fitting needs many calculations with different parameters

Kostas' talk this morning!  

2. Propagation of uncertainties

A> 3

Shirokov et al., PLB 644 33 (2007); Ekström et al., PRC 91 051301 (2015); Elhatisari et al., PRL 117 132501 (2016)

JISP16, NNLO

sat

, - scattering

α α

p. 6

Page 7: Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

Ekström et al., arXiv:1902.00941

Emulators

Exact calculations can be prohibitively expensive!

Options

multi-dimensional polynomial interpolation

Gaussian process

simplest possible choice

typically too simple, no way to assess uncertainty

statistical modeling, iteratively improvable

interpolation with inherent uncertainty estimate

p. 7

Page 8: Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

Recall

Eigenvector continuation can interpolate and extrapolate!

p. 8

Page 9: Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

Frame et al., PRL 121 032501 (2018)

Hamiltonian parameter spacesoriginal EC: single parameter,

consider a Hamiltonian depending on several parameters:

in particular, can be a chiral potential with LECs

Hamiltonian is element of -dimensional parameter space

typical for calculation: 14 two-body LECs + 2 three-body LECs

convenient notation:

H =H(c)

H = + V = +H

0

H

0

k=1

d

c

k

V

k

(1)

V c

k

d

O( )Q

3

= {c

 

c

k

}

d

k=1

p. 9

Page 10: Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

Frame et al., PRL 121 032501 (2018)

Hamiltonian parameter spacesoriginal EC: single parameter,

consider a Hamiltonian depending on several parameters:

in particular, can be a chiral potential with LECs

Hamiltonian is element of -dimensional parameter space

typical for calculation: 14 two-body LECs + 2 three-body LECs

convenient notation:

Generalized EC

EC construction is straightforward to generalize to this case:

simply replace in construction

Note: sum in Eq. (1) can be carried out in small (dimension = ) space!

H =H(c)

H = + V = +H

0

H

0

k=1

d

c

k

V

k

(1)

V c

k

d

O( )Q

3

= {c

 

c

k

}

d

k=1

→c

i

c

 

i

for

| ⟩ = |ψ( )⟩ψ

i

c

 

i

i = 1, ⋅ ⋅N

EC

,

= ⟨ |H( )| ⟩H

ij

ψ

i

c

 

target

ψ

j

= ⟨ | ⟩N

ij

ψ

i

ψ

j

N

EC

p. 9

Page 11: Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

Interpolation and extrapolationHypercubic sampling

want to cover parameter space efficiently with training set

Latin Hypercube Sampling can generate near random sample

for examples that follow:

S = { }c

 

i

sample each component

∈ [−2, 2]c

k

Ekström et al., PRC 91 051301 (2015)

vary LECs, fix the rest at NNLO

sat

point

d

p. 10

Page 12: Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

Pbroks13, Wikimedia Commons                    

Interpolation and extrapolationHypercubic sampling

want to cover parameter space efficiently with training set

Latin Hypercube Sampling can generate near random sample

for examples that follow:

Convex combinations

distinguish interpolation and extrapolation target points

interpolation region is convex hull of the

extrapolation for

EC can handle both!

 

 

S = { }c

 

i

sample each component

∈ [−2, 2]c

k

Ekström et al., PRC 91 051301 (2015)

vary LECs, fix the rest at NNLO

sat

point

d

{ }c

 

i

with and

conv(S) =∑

i

α

i

c

 

i

≥ 0α

i

= 1∑

i

α

i

∉ conv(S)c

 

target

p. 10

Page 13: Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

Ekström implementation of Navratil et al., PRC 61 044001 (2000)

Performance comparison: energyCross validation

compare emulation prediction agains exact result for set

underlying calculation: Jacobi NCSM

observable:

4

He ground-state energy

transparent symbols indicate extrapolation targets

{c

 

target,j

}

N

j=1

p. 11

Page 14: Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

Ekström implementation of Navratil et al., PRC 61 044001 (2000)

Performance comparison: energyCross validation

compare emulation prediction agains exact result for set

underlying calculation: Jacobi NCSM

observable:

4

He ground-state energy

transparent symbols indicate extrapolation targets

{c

 

target,j

}

N

j=1

p. 12

Page 15: Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

Ekström implementation of Navratil et al., PRC 61 044001 (2000)

Performance comparison: energyCross validation

compare emulation prediction agains exact result for set

underlying calculation: Jacobi NCSM

observable:

4

He ground-state energy

transparent symbols indicate extrapolation targets

{c

 

target,j

}

N

j=1

p. 13

Page 16: Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

Ekström implementation of Navratil et al., PRC 61 044001 (2000)

Performance comparison: energyCross validation

compare emulation prediction agains exact result for set

underlying calculation: Jacobi NCSM

observable:

4

He ground-state energy

transparent symbols indicate extrapolation targets

{c

 

target,j

}

N

j=1

p. 14

Page 17: Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

Performance comparison: radiusOperator evaluation

generalized eigenvalue problem

EC gives not only energy, but also a continued wavefunction

straightforward (and inexpensive) to evaluate arbitrary operators

p. 15

Page 18: Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

EC uncertainty estimateEC is a variational method

Bootstrap approach

leave out sets of basis vectors, take mean and standard deviation

projection of Hamiltonian onto a subspace

dimension of this subspace determines the accuracy

D. Lee + A. Sarkar, work in progress

rate of convergence currently being analyzed

p. 16

Page 19: Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

Application: correlation analysisconsider LEC samples 10% around point

known energy-radius correlation well reflected

2

H radius only gives lower bound for

4

He radius

this analysis would already be very expensive without EC!

see talk by Andreas for

16

O application!

10

4

NNLO

sat

p. 17

Page 20: Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

Computational costsetup of EC subspace basis

calculation of norm matrix: flops

reduction of Hamiltonian parts: flops

cost per emulated sample point

: model-space dim., : training data, : samples, : matrix-vector prod. (Lanczos)

example for , ,

combination of Hamiltonian for given , Lanczos diagonalization

c

 

i

total cost = flops

× (2n+ )M

2

N

mv

2 Mn

2

(d+ 1)× (2n + 2 M)M

2

n

2

combination of Hamiltonian parts in small space: flops

2dn

2

orthogonalization + diagonalization: flops

26 /3+O( )n

3

n

2

M =M( )N

max

n N N

mv

= 16N

max

d = 16 = 64N

EC

p. 18

Page 21: Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

Summary and outlookEigenvector continuation as efficient emulator

straightforward setup, reduction to small vector space

highly competitive, accurate and efficient

can both interpolate and extrapolate from training set

provides access to multiple observables

variational method, upper bound for energies

provides uncertainty estimates via bootstrap approach

p. 19

Page 22: Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

Summary and outlookEigenvector continuation as efficient emulator

straightforward setup, reduction to small vector space

highly competitive, accurate and efficient

can both interpolate and extrapolate from training set

provides access to multiple observables

variational method, upper bound for energies

provides uncertainty estimates via bootstrap approach

Future directions

extrapolate spectra, not just single states

larger systems, other methods

application for large-scale uncertainty quantification

see following talk by A. Ekström

p. 20

Page 23: Eigenvector continuation in nuclear physicsPerturbation theory bT MgbT +2g#vgi?2gr p27mM+iBQMg+Q``2+iBQMbg -g 2p Hm i2g> KBHiQMB Mg#2ir22Mgi?2b2gbi i2b BMi2`T`2i iBQM,g -g1*@2ti` TQH

Thanks......to my collaborators:

A. Schwenk, K. Hebeler, A. Tichai (TU Darmstadt)

A. Ekström (Chalmers U.)

D. Lee, A. Sarkar (Michigan State U.)

T. Duguet, V. Somà, M. Frosini (CEA Saclay)

P. Demol (KU Leuven)

...for funding and support:

...and to you, for your attention!

p. 21