47
EGU2012-12951 Updating of states in operational hydrological models Oddbjørn Bruland (Statkraft Energy) S. Kolberg, K. Engeland, L. Tøfte (SINTEF) A. S. Gragne and K. Alfredsen (Norwegian University of Technology and Science) G. Liston (University of Colorado)

EGU2012-12951 Updating of states in operational hydrological models

  • Upload
    cher

  • View
    37

  • Download
    0

Embed Size (px)

DESCRIPTION

EGU2012-12951 Updating of states in operational hydrological models. Oddbjørn Bruland ( Statkraft Energy) S. Kolberg, K. Engeland, L. Tøfte (SINTEF) A. S. Gragne and K. Alfredsen (Norwegian University of Technology and Science) G. Liston (University of Colorado). Statkraft…. - PowerPoint PPT Presentation

Citation preview

Page 1: EGU2012-12951 Updating of states  in  operational hydrological models

EGU2012-12951

Updating of states in operational hydrological models

Oddbjørn Bruland (Statkraft Energy)

S. Kolberg, K. Engeland, L. Tøfte (SINTEF) A. S. Gragne and K. Alfredsen (Norwegian University of Technology and Science) G. Liston (University of Colorado)

Page 2: EGU2012-12951 Updating of states  in  operational hydrological models

Statkraft….

side 2EGU 2012

… a European leader in renewable energy

Page 3: EGU2012-12951 Updating of states  in  operational hydrological models

Hydropower and Hydrology

How important is hydrology to a hydropower producer?

side 3

Page 4: EGU2012-12951 Updating of states  in  operational hydrological models

Importance….

NO1

64 HBV-models within the NO1 area

Page 5: EGU2012-12951 Updating of states  in  operational hydrological models

Precipitation data

98 Precipitation gaugeswithin the NO1 area- provide input to the HBV-models

Page 6: EGU2012-12951 Updating of states  in  operational hydrological models

Precipitation at Vågsli; summer 2008

• 130% of normal precipitation

• is input to 18 HBV-models• Surrounding gauges

showed 80-90% of normal

Page 7: EGU2012-12951 Updating of states  in  operational hydrological models

0

10000

20000

30000

40000

50000

60000

70000

80000

01.09

.07

21.10

.07

10.12

.07

29.01

.08

19.03

.08

08.05

.08

27.06

.08

16.08

.08

Ener

gy (G

Wh)

Snow Accumulation

Normal 1931-2006

Normal 1980-200014000 GWh

Snow surveys

Snow storage NO1Week 36/2007 – 16/2008 (as simulated by HBV models)

0

10000

20000

30000

40000

50000

60000

70000

80000

3000 GWh

Page 8: EGU2012-12951 Updating of states  in  operational hydrological models

How did we act?

Forecast:Very high risk of flooding

0 %

25 %

50 %

75 %

100 %

Byr

te

Lio

Hau

keli

Lang

ese

Bjo

rdal

svat

n

Mår

vatn

Kal

hovd

Mår

Stå

vatn

Kje

lava

tn

Førs

vatn

Bitd

alsv

atn

Son

ga

Vin

je

Tokk

e

Ban

dak

Prob

abili

ty o

f flo

odin

g

Page 9: EGU2012-12951 Updating of states  in  operational hydrological models

How did we act?

Forecast:Very high risk of flooding

Price forecasts indicated price=0

0 %

25 %

50 %

75 %

100 %

Byr

te

Lio

Hau

keli

Lang

ese

Bjo

rdal

svat

n

Mår

vatn

Kal

hovd

Mår

Stå

vatn

Kje

lava

tn

Førs

vatn

Bitd

alsv

atn

Son

ga

Vin

je

Tokk

e

Ban

dak

Prob

abili

ty o

f flo

odin

g

0

10

20

30

40

50

60

70

80

16 21 26 31 36 41 46 51

Week no. /2008

EUR/

MW

h

Mean 0% 10% 25% 75% 90% 100%

Page 10: EGU2012-12951 Updating of states  in  operational hydrological models

How did we act?

Forecast:Very high risk of flooding

Price forecasts indicated price=0

=> High production at low prices to reduce risk of flooding

0 %

25 %

50 %

75 %

100 %

Byr

te

Lio

Hau

keli

Lang

ese

Bjo

rdal

svat

n

Mår

vatn

Kal

hovd

Mår

Stå

vatn

Kje

lava

tn

Førs

vatn

Bitd

alsv

atn

Son

ga

Vin

je

Tokk

e

Ban

dak

Prob

abili

ty o

f flo

odin

g

0

10

20

30

40

50

60

70

80

16 21 26 31 36 41 46 51

Week no. /2008

EUR/

MW

h

Mean 0% 10% 25% 75% 90% 100%

Page 11: EGU2012-12951 Updating of states  in  operational hydrological models

-120,0

-100,0

-80,0

-60,0

-40,0

-20,0

0,0

Tokk

e

Sim

a

Sira

Kvi

na

Ulla

Før

re

Mår

Bjø

lvo

Leird

øla

Mill

Nok

Summary – economicalSpill from reservoir

Estimated loss of income: ≈ 270 mill NOK (i.e. 45 mUSD or 30 mEUR)

Page 12: EGU2012-12951 Updating of states  in  operational hydrological models

… in Statkraft alone..

side 12

Observations and Met ForecastsEstablished models for hydrological state and forecasting

Page 13: EGU2012-12951 Updating of states  in  operational hydrological models

Hydropower and Hydrology

How do the Hydropower companies apply hydrological information?

For short term production planningOptimizing use of water at the horizon of 5 to 10 daysDaily updating and replanning

side 13

Page 14: EGU2012-12951 Updating of states  in  operational hydrological models

How do the Hydropower companies apply hydrological information?

For short term production planningOptimizing use of water at the horizon of 5 to 10 daysDaily updating and replanning

For Long term planning of water disposalOptimizing the use of water at a seasonal horizonWeekly updating and replanning

Hydropower and Hydrology

side 14

Page 15: EGU2012-12951 Updating of states  in  operational hydrological models

Short vs Long Term planning

Short termProfile and timing is more important than volume

side 15

Page 16: EGU2012-12951 Updating of states  in  operational hydrological models

Short vs Long Term planning

Long termVolume is more important than profile and timing

side 16

Page 17: EGU2012-12951 Updating of states  in  operational hydrological models

Short vs Long Term planning

Short termProfile and timing is more important than volume

Long termVolume is more important than profile and timing

Different Updating approach

side 17

Page 18: EGU2012-12951 Updating of states  in  operational hydrological models

Updating for Short term forecast

Timing, level and tendency in focusShort time storages must be right

side 18

Page 19: EGU2012-12951 Updating of states  in  operational hydrological models

Updating for Long term forecast

Volume and duration in focusSnowstorage is important, relative to normalClimate adjusted climatology

side 24

Page 20: EGU2012-12951 Updating of states  in  operational hydrological models

How do we approach these issues

The project was established in 2009 as a cooperation between all larger hydropower producers in Norway, SINTEF, NTNU, Powel and Liston and the Norwegian Research Council.

With the goal to develop, improve and implement model updating methods and techniques in operational models

side 27side 27 Fordelt hydrologiskmodell

Page 21: EGU2012-12951 Updating of states  in  operational hydrological models

side 28

Project Outline

Developing and implementing updating methods based on available sources of information

Runoff, snow cover, snow measurements

Combined withObservation uncertaintyModel uncertaintyAnd a combination of these

”An open source distributed model system”

Page 22: EGU2012-12951 Updating of states  in  operational hydrological models

What is done…

Using snow distribution model combined with snowobservations – Liston

Using Bayesian statistics weighing model state against satelite observation - Sintef

Using particle filtering to benefit from recent information – Sintef

Using errordetection to detect and explain and correct the model in spesific situations - NTNU

side 29EGU 2012

Page 23: EGU2012-12951 Updating of states  in  operational hydrological models

Snow storage updating 1

Liston’s SnowTran3D snow distribution model is implemented in the model system

Using information from snowcourses to update snowdistribution in simulated snowdistribution from Listons model

side 30

Data averaged over the snow

observation mask.Precipitation

correction factor ~ 0.75.

614 mm SWE on 21 April 2008

Page 24: EGU2012-12951 Updating of states  in  operational hydrological models

Snow storage updating 2

Based on modeled snowdistribution, an predefined (apriori) snowdepletion curve, modelled snow melt progress and snow cover information from satelite images

Methodology based on Bayesian statistics by Sjur Kolberg, SINTEF, has shown promising results and is a candidate for implementation in the model system.

side 31

Page 25: EGU2012-12951 Updating of states  in  operational hydrological models

0 200 400

0 0.5 1 1.50 250 500

E[m]

SD[m]

E[cv]

SD[cv]

E[y0]

SD[y0]

E[λ]

SD[λ]

1

0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000

m,cv,y0,λ]E [

PriorPosterior

0 0.2 0.4

Snow storage updating 2

Bayesian updating of the Snow Depletion Curve

(Sjur Kolberg, 2010)

Page 26: EGU2012-12951 Updating of states  in  operational hydrological models

More images improves the estimate of (m, cv, y0, {λ(t)})

ie uncertainty decreases as snowcover depletes

Calibration based on previous years also improves estimates

R2 from 0.63 - 0.68 (average for 22 catchments using same parametersets)

0

0.2

0.4

0.6

0.8

1

0 400 800 1200

0

0.2

0.4

0.6

0.8

1

0 400 800 1200

Snow storage updating 2

Page 27: EGU2012-12951 Updating of states  in  operational hydrological models

y = 0.69x + 184.50R2 = 0.82

0

500

1000

1500

0 500 1000 1500Obs

Sim

y = 1.04x + 19.21R2 = 0.92

0

500

1000

1500

0 500 1000 1500Obs

Sim

More images improves the estimate of (m, cv, y0, {λ(t)})

ie uncertainty decreases as snowcover depletes

Calibration based on previous years also improves estimates

R2 from 0.63 - 0.68 (average for 22 catchments using same parametersets)

Snow storage updating 2

Page 28: EGU2012-12951 Updating of states  in  operational hydrological models

Snow storage updating 3

Early snowfalls are sensitive to threshold temperatures for snow – rain, and melt – freeze.

Wrong values gives simulated ≠ observed twice as both the accumulation and timing of melting get wrong

side 35

Page 29: EGU2012-12951 Updating of states  in  operational hydrological models

Snow storage updating 3

Develop methodology for classification of hydrographs error

Develope methodology for model updating based on these events.

Defined as a main subject in PhD

side 36

Page 30: EGU2012-12951 Updating of states  in  operational hydrological models

Figure 2: Definition of types of error between measured (—) and simulated (---) hydrographs [Source: adopted from Serban and Askew (1991)]

(a) amplitude errors (b) phase errors (c) shape errors

Description of simulation errors

Page 31: EGU2012-12951 Updating of states  in  operational hydrological models

Algorithm for categorization of errors

Error type Subclass Condition

Amplitude (A)

A-p precipitation; m≠1; q≈0; T<<0Oc or T>>0OcA-t precipitation; m≠1; q≈0; T≠0OcA-pt precipitation; m≠1; q≈0; T≈0OcA-m m≠1; q≈0

Phase (P)

P-p precipitation; m≈1; q≠0; T<<0Oc or T>>0Oc

P-t precipitation; m≈1; q≠0; T≠0OcP-pt precipitation; m≈1; q≠0; T≈0OcP-m m≈1; q≠0

Shape    Observed data (O) O No explanation

Combination (AP)AP-p precipitation; m≠1; q≠0; T≠0OcAP-t precipitation; m≠1; q≠0; T<<0Oc or T>>0OcAP-pt precipitation; m≠1; q≠0; T≈0Oc

Qsim=m*Qobs+q

Page 32: EGU2012-12951 Updating of states  in  operational hydrological models

• Data: hourly simulation of Votna hydropower plant; hydrologic year 1999.• Mismatches totally compounded to 195 local errors; 51 significant.

Error groups identified (overestimation, exact and underestimated).

Preliminary results

Page 33: EGU2012-12951 Updating of states  in  operational hydrological models

Error type Subclass Number Condition

Amplitude (A)

A-p 5 precipitation; m≠1; q≈0; T<<0Oc or T>>0OcA-t 10 precipitation; m≠1; q≈0; T≠0OcA-pt 1 precipitation; m≠1; q≈0; T≈0OcA-m - m≠1; q≈0

Phase (P)

P-p - precipitation; m≈1; q≠0; T<<0Oc or T>>0OcP-t 2 precipitation; m≈1; q≠0; T≠0OcP-pt - precipitation; m≈1; q≠0; T≈0OcP-m - m≈1; q≠0

Shape      Observed data (O) 0 10 No explanation

Combination (AP)AP-p - precipitation; m≠1; q≠0; T≠0OcAP-t - precipitation; m≠1; q≠0; T<<0Oc or T>>0Oc

AP-pt 23 precipitation; m≠1; q≠0; T≈0Oc

Preliminary results

Page 34: EGU2012-12951 Updating of states  in  operational hydrological models

Parameter uncertainty

Parameter uncertainty used in model updating approaches

Autocalibration gives a huge number of parameter sets that objectively are equally good (R2 and waterbalance)But behave significantly different for the same event

For forecasting purpose the model best adapted to the actual situation is assumed to give the best forecast

DYNIA and DREAM are calibration routines relevant for this purpose

side 43

Page 35: EGU2012-12951 Updating of states  in  operational hydrological models

DYNIA

Dynamic Identifiability Analysis (Wagener et. al. 2003)

Applied to a catchment in soutwest norwayTX (snow/rain threshold)

– high sensitivity except from July-Oct, two preferred value rangesK0 , K1 and K2 had all two preferred value ranges

side 45

Saurdal

Stølsdal

Lauvastøl

OsaliSaurdal

Stølsdal

Lauvastøl

Osali

k0

k1

k2

Q=f(k0,k1,k2,h)

k0

Page 36: EGU2012-12951 Updating of states  in  operational hydrological models

Osali

Page 37: EGU2012-12951 Updating of states  in  operational hydrological models

DREAM

Dream (Vrugt et al, 2008) is a Markov Chain Monte Carlo (MCMC) optimizing algorithm that suits the purpose of detecting the model sensitivity to each parameters value-range

Gives parameters uncertainty/influenceThus also which parameters to test in an updating sequence

Gives apriori distribution of parameters for a calibrated region

Ensemble of models used for weighted updating

side 47

Page 38: EGU2012-12951 Updating of states  in  operational hydrological models

DREAM

side 48

f ieldcapD

ensi

ty

100 200 300

0.00

00.

002

0.00

4

BETA

Den

sity

1.0 2.0 3.0

0.0

0.2

0.4

tvsum

Den

sity

150 300 450

0.00

000.

0015

0.00

30

TX

Den

sity

-2.5 -1.0 0.0

0.0

0.4

0.8

Rtreshold

Den

sity

0 10 30 50

0.00

0.02

0.04

FastDecayRate

Den

sity

2 3 4 5 6 7 8

0.00

0.10

k0

Den

sity

0.002 0.006 0.010

050

100

150

k1

Den

sity

0.02 0.06 0.10

05

1015

k2

Den

sity

0.2 0.4 0.6

02

46

Windscale

Den

sity

1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

Slow DecayRate

Den

sity

10 14 18

0.00

0.04

0.08

prercD

ensi

ty

0.20 0.30 0.40

01

23

45

6

Page 39: EGU2012-12951 Updating of states  in  operational hydrological models

From Dream to ParticleFiltering

Dream gives a ensemble of models with equal likelihood

But also heavily autocorrolated (results)And thus a challange to extract significant information

A likelihood function was used to extract those giving significant information and thus reduce the number of observations.

50

Page 40: EGU2012-12951 Updating of states  in  operational hydrological models

Likelihood function

side 51

Page 41: EGU2012-12951 Updating of states  in  operational hydrological models

Likelihood function

side 52

Page 42: EGU2012-12951 Updating of states  in  operational hydrological models

Particle Filtering

side 53

ParticlesFilter(Runoff, windowsize, weigth)

Re-weigthed particles

Apriori for parameters

fieldcap

Den

sity

100 200 300

0.00

00.

002

0.00

4

BETA

Den

sity

1.0 2.0 3.0

0.0

0.2

0.4

tvsum

Den

sity

150 300 450

0.00

000.

0015

0.00

30

TX

Den

sity

-2.5 -1.0 0.0

0.0

0.4

0.8

Rtreshold

Den

sity

0 10 30 50

0.00

0.02

0.04

FastDecayRate

Den

sity

2 3 4 5 6 7 8

0.00

0.10

k0

Den

sity

0.002 0.006 0.010

050

100

150

k1

Den

sity

0.02 0.06 0.10

05

1015

k2

Den

sity

0.2 0.4 0.6

02

46

Windscale

Den

sity

1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

Slow DecayRate

Den

sity

10 14 18

0.00

0.04

0.08

prerc

Den

sity

0.20 0.30 0.40

01

23

45

6

Uncertain input(P,T)

0 5 10 15 20 25 30

02

46

8

Dag

Q(m

3/s)

Page 43: EGU2012-12951 Updating of states  in  operational hydrological models

Particle Filtering

side 54

Osali original

Date

Stre

amflo

w(m

3/s)

2007.0 2007.2 2007.4 2007.6 2007.8 2008.0

05

1015

20

Filtered runoff – 95% confidence interval

Page 44: EGU2012-12951 Updating of states  in  operational hydrological models

Particle Filtering

side 55

Resultats – filtering on snow

Osali original

Date

Sw

e (m

m)

2007.0 2007.2 2007.4 2007.6 2007.8 2008.0

050

010

0015

00

Osali resampled

Date

Sw

e (m

m)

2007.0 2007.2 2007.4 2007.6 2007.8 2008.0

050

010

0015

00

Page 45: EGU2012-12951 Updating of states  in  operational hydrological models

Particle Filtering

side 56

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Lauvastøl

Reff

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Osali

Reff

0.5

0.55

0.6

0.65

0.7

0.75

0.8

SaurdalRe

ff

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Stølsdal

Reff

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

Lauvastøl

CRPS

Beste partikkel

Aprio fordeling

Filtrert

Filtrert + usikker temp

Filtrert + usikker temp. og nedb.

Page 46: EGU2012-12951 Updating of states  in  operational hydrological models

Further Work

Improve local optimization by allowing parameters to vary over the domain

And still ensure consistent behaviorDevelop methodology to find and use the criteria for the variability

A new response routine is developed/tested in order to both simplify calibrationto reduce model complexityto get more significant correlation parameters/topographyimprove updating

side 57