54
EENG 420 Digital Signal Processing Lecture 2

EENG 420

Embed Size (px)

DESCRIPTION

EENG 420. Digital Signal Processing Lecture 2. Difference Equations. An important subclass of LTI systems are defined by an N th-order linear constant-coefficient difference equation:. Often the leading coefficient a 0 = 1. Then the output y [ n ] can be computed recursively from. - PowerPoint PPT Presentation

Citation preview

Page 1: EENG 420

EENG 420

Digital Signal Processing

Lecture 2

Page 2: EENG 420
Page 3: EENG 420
Page 4: EENG 420
Page 5: EENG 420
Page 6: EENG 420
Page 7: EENG 420
Page 8: EENG 420
Page 9: EENG 420

Difference Equations

N M

mk mnxbknya0 0

][][

An important subclass of LTI systems are defined by an Nth-order linear constant-coefficient difference equation:

Often the leading coefficient a0 = 1. Then the output y[n] can be computed recursively from

N

k

M

mmk mnxbknyany

1 0

][][][

A causal LTI system of this form can be simulated in MATLAB using the function filter

y = filter(a,b,x);

Page 10: EENG 420

Total Solution Calculation

N

k

M

mmk mnxbknya

0 0

][][

N

khk knya

0

0][

The output sequence y[n] consists of a homogeneous solution yh[n] and a

particular solution yp[n]. ][][][ nynyny ph

where the homogenous solution yh[n] is obtained from the homogeneous equation:

Some textbooks use the term complementary solution instead of homogeneous solution

Page 11: EENG 420

Homogeneous Solution

0][ 110

0

NNNNn

N

k

knkh aaaany

The general solution is then a sequence yh[n]

Assume that the homogeneous solution is of the form

nh ny ][

then

N

nmmh Any

1

][

N

khk knya

0

0][Given the homogeneous equation:

defines an Nth order characteristic polynomial with roots 1, 2 … N

(if the roots are all distinct) The coefficients Am may be found from the initial conditions.

Page 12: EENG 420

Particular Solution

N

k

M

mmk mnxbknya

0 0

][][

][][][ nynyny ph

The particular solution is required to satisfy the difference equation for a specific input signal x[n], n ≥ 0.

To find the particular solution we assume for the solution yp[n] a form that depends on the form of the specific input signal x[n].

Page 13: EENG 420

General Form of Particular Solution

Input Signalx[n]

Particular Solutionyp[n]

A (constant) K

AMn KMn

AnM K0nM+K1nM-1+…+KM

AnnM An(K0nM+K1nM-1+…+KM)

)sin(

)cos(

nA

nA

o

o

)sin()cos( 21 nKnK oo

Page 14: EENG 420

Example

nh ny ][

0]2[6]1[][ nynyny

Determine the homogeneous solution for

066 2221 nnnn

Substitute

nnnnh AAAAny 23][ 212211

0232 n

Homogeneous solution is then

Page 15: EENG 420

Example

][8][ nunx

][]2[6]1[][ nxnynyny

Determine the particular solution for

][ny p

86

The particular solution has the form

with and y[-1] = 1 and y[-2] = -1

which is satisfied by = -2

Page 16: EENG 420

Example

][8][ nunx

][]2[6]1[][ nxnynyny

Determine the total solution for

8.4

8.1

2

1

A

A

124

1

9

1]3[

122

1

3

1]1[

21

21

AAy

AAy

The total solution has the form

with and y[-1] = 1 and y[-2] = -1

then

223][][][ 21 nnph AAnynyny

228.438.1][ nnny

Page 17: EENG 420

Initial-Rest Conditions

The output for a given input is not uniquely specified. Auxiliary information or conditions are required.

Linearity, time invariance, and causality of the system will depend on the auxiliary conditions. If an additional condition is that the system is initially at rest (called initial-rest conditions), then the system will be linear, time invariant, and causal.

Page 18: EENG 420

Zero-input, Zero-state Response

An alternate approach for determining the total solution y[n] of a difference equation is by computing its zero-input response yzi[n], and zero-state response yzs[n]. Then the total solution is given by y[n] = yzi[n] + yzs[n].

The zero-input response is obtained by setting the input x[n] = 0 and satisfying the initial conditions. The zero-state response is obtained by applying the specified input with all initial conditions set to zero.

Page 19: EENG 420

Example

Zero-input response:

0]2[6]1[][ nynyny

nnnnh AAAAny 23][ 212211

1367]1[6]0[)2()3(]1[

761]2[6]1[]0[

21

21

yyAAy

yyAAy

zi

zi

6.15

8

4.55

27

2

1

A

A

1]2[

1]1[

y

y

Zero-state response:

][8][ nunx

][]2[6]1[][ nxnynyny

with

088]0[]1[2)2()3(]1[

8]0[2]0[

21

21

yxAAy

xAAy

zs

zs

4.65

32

6.35

18

2

1

A

A

Page 20: EENG 420

ExampleZero-input response:

][][][ nynyny zszi

Zero-state response:

nnzi ny )2(6.1)3(4.5][

2)2(4.6)3(6.3][ nnzs ny

2)2(8.4)3(8.1][ nnny

Total solution is

This is the same as before

Page 21: EENG 420

Impulse Response

The impulse response h[n] of a causal system is the output observed with input x[n] = [n].

For such a system, x[n] = 0 for n >0, so the particular solution is zero, yp[n]=0. Thus the impulse response can be generated from the homogeneous solution by determining the coefficients Am to satisfy the zero initial conditions (for a causal system).

Page 22: EENG 420

Example

][]2[6]1[][ nxnynyny

Determine the impulse response for

nn AAnh 23][ 21

The impulse response is obtained from the homogenous solution:

For n=0]0[]2[6]1[]0[ xyyy

1]0δ[]0[ h

For n=1]1[]1[6]0[]1[ xyyy

0]1δ[]0[]1[ hh

121 AA

023 2121 AAAA

5

2,

5

321 AA

nnnh 25

23

5

3][ 0n

Page 23: EENG 420
Page 24: EENG 420
Page 25: EENG 420
Page 26: EENG 420
Page 27: EENG 420
Page 28: EENG 420
Page 29: EENG 420
Page 30: EENG 420
Page 31: EENG 420
Page 32: EENG 420
Page 33: EENG 420
Page 34: EENG 420
Page 35: EENG 420
Page 36: EENG 420
Page 37: EENG 420
Page 38: EENG 420
Page 39: EENG 420
Page 40: EENG 420
Page 41: EENG 420
Page 42: EENG 420
Page 43: EENG 420
Page 44: EENG 420
Page 45: EENG 420
Page 46: EENG 420
Page 47: EENG 420
Page 48: EENG 420
Page 49: EENG 420
Page 50: EENG 420
Page 51: EENG 420
Page 52: EENG 420
Page 53: EENG 420
Page 54: EENG 420