65
1 EENG 3810 Chapter 4 Amplitude Modulation (AM)

EENG 3810 Chapter 4

Embed Size (px)

DESCRIPTION

Amplitude modulation

Citation preview

Page 1: EENG 3810 Chapter 4

11

EENG 3810 Chapter 4

Amplitude Modulation

(AM)

Page 2: EENG 3810 Chapter 4

22

Chapter 4 Homework

1. For an AM DSBFC modulator with a carrier frequency

fc = 200KHz and a maximum modulating signal frequency fm(max) = 10 KHz, determine :

a. Frequency limits for the upper and lower sidebands.

b. Bandwidth.

b. Upper and lower side frequencies produced when the modulating signal is a single-frequency 6 KHz tone.

Page 3: EENG 3810 Chapter 4

33

Homework Continued

2. For the AM wave form above determine:

Page 4: EENG 3810 Chapter 4

44

Homework Continued

3. 400 2556

Page 5: EENG 3810 Chapter 4

55

Homework Continued

4. Repeat steps (a) through (d) in Example 4 in these lecture slides for a modulation coefficient of 0.5.

5. For an AM DSBFC wave with a peak unmodulated carrier voltage Vc = 20 Vp, a load resistance RL = 20 , and a modulation coefficient m = 0.8, determine the power of the modulated wave

Page 6: EENG 3810 Chapter 4

Homework Continued

6.Determine the noise improvement for a receiver with an RF bandwidth equal to 100 KHz and an IF bandwidth equal to 20 KHz.

6

Page 7: EENG 3810 Chapter 4

7

Amplitude Modulation Transmission

7

Page 8: EENG 3810 Chapter 4

88

AM Generation

Page 9: EENG 3810 Chapter 4

99

Frequency Spectrum of An AM Double Sideband Full Carrier (DSBFC) Wave

Page 10: EENG 3810 Chapter 4

1010

Example 1

For an AM DSBFC modulator with a carrier frequency

fc = 100KHz and a maximum modulating signal frequency fm(max) = 5 KHz, determine :

a. Frequency limits for the upper and lower sidebands.

b. Bandwidth.

c. Upper and lower side frequencies produced when the

modulating signal is a single-frequency 3 KHz tone.

Page 11: EENG 3810 Chapter 4

1111

Example 1 Solution

a.

b.

c.

Page 12: EENG 3810 Chapter 4

1212

Example 1 d. The Output Spectrum For An AM DSBFC Wave

Page 13: EENG 3810 Chapter 4

1313

Phasor addition in an AM DSBFC envelope

• For a single-frequency modulating signal, am AM envelop is produced from the vector addition of the carrier and upper and lower side frequencies. Phasors of the carrier,

• The upper and lower frequencies combine and produce a resultant component that combines with the carrier component.

• Phasors for the carrier, upper and lower frequencies all rotate in the counterclockwise direction.

• The upper sideband frequency rotates faster than the carrier. (usf > c)

• The lower sideband frequency rotes slower than the carrier. (usf < c)

Page 14: EENG 3810 Chapter 4

1414

Phasor addition in an AM DSBFC envelope

Page 15: EENG 3810 Chapter 4

1515

Modulation Coefficient

Page 16: EENG 3810 Chapter 4

1616

If the modulating signal is pure, single frequency sine wave and the modulation process is symmetrical, the % modulation can be derived as follows:

Page 17: EENG 3810 Chapter 4

1717

Peak Amplitudes of Upper and Lower Sidebands

The peak change in amplitude of the output wave (Em) is equal to the sum of the voltages from the

upper and lower sideband frequencies. Therefore,

Page 18: EENG 3810 Chapter 4

1818

Percent Modulation of An AM DSBFC Envelope (a) modulating signal; (b) unmodulated carrier; (c) 50% modulated wave;

(d) 100% modulated wave

Page 19: EENG 3810 Chapter 4

1919

Example 2

For the AM wave form above determine:

Page 20: EENG 3810 Chapter 4

2020

Example 2

Page 21: EENG 3810 Chapter 4

2121

Voltage Spectrum for an AM DSBFC Wave

Page 22: EENG 3810 Chapter 4

2222

Generation of an AM DSBFC Envelope Shown in The Time Domain

sin(225t)

–½ cos(230t)

+ ½ cos(220t)

summation of (a), (b), and (c)

Page 23: EENG 3810 Chapter 4

2323

Voltage of an AM DSBFC Envelope In The Time Domain

Page 24: EENG 3810 Chapter 4

2424

Example 3

Page 25: EENG 3810 Chapter 4

2525

Example 3 Continued

Page 26: EENG 3810 Chapter 4

2626

Output Spectrum for Example 3

Page 27: EENG 3810 Chapter 4

2727

AM envelope for Example 3

Page 28: EENG 3810 Chapter 4

2828

Power for Upper and Lower Sideband

Page 29: EENG 3810 Chapter 4

2929

Total Power for an AM DSBFC Envelop

Page 30: EENG 3810 Chapter 4

3030

Power Spectrum for an AM DSBFC Wave with a Single-frequency Modulating Signal

Page 31: EENG 3810 Chapter 4

3131

Example 4

Page 32: EENG 3810 Chapter 4

3232

Power Spectrum for Example 4

Page 33: EENG 3810 Chapter 4

3333

Single Transistor, Emitter Modulator

Page 34: EENG 3810 Chapter 4

3434

Single Transistor, Emitter Modulator (output waveforms )

Page 35: EENG 3810 Chapter 4

35

Medium-power Transistor AM DSBFC Modulator

35

Page 36: EENG 3810 Chapter 4

36

High-power AM DSBFC Transistor Modulator

36

Page 37: EENG 3810 Chapter 4

37

Linear Integrated-circuit AM Modulator

37

Page 38: EENG 3810 Chapter 4

38

Block Diagram of a Low-level AM DSBFC Transmitter

38

Page 39: EENG 3810 Chapter 4

39

Block Diagram of a High-level AM DSBFC Transmitter

39

Page 40: EENG 3810 Chapter 4

40

Single-Sideband

Page 41: EENG 3810 Chapter 4

41

Conventional DSFC-AM

Page 42: EENG 3810 Chapter 4

42

Single-side Band Full Carrier (SSBFC)

The carrier is transmitted at full power and only one sideband is

transmitted.

Page 43: EENG 3810 Chapter 4

43

SSBFC waveform, 100% modulation

Page 44: EENG 3810 Chapter 4

44

Single-Sideband Suppressed Carrier (SSBSC)

The carrier is suppressed 100% and one sideband is removed. Only one

sideband is transmitted.

Page 45: EENG 3810 Chapter 4

45

SSBSC waveform

Page 46: EENG 3810 Chapter 4

46

Single-Sideband Reduced Carrier(SSBRC)

One sideband is removed and the carrier voltage is reduced to 10%

of its un-modulated amplitude.

Page 47: EENG 3810 Chapter 4

47

Independent Sideband(ISB)

A single carrier is independently modulated by two different modulating signals.

Page 48: EENG 3810 Chapter 4

48

ISB waveform

Page 49: EENG 3810 Chapter 4

49

Vestigial Sideband(VSB)

The carrier and one complete sideband are transmitted, but only part of the

other sideband is transmitted.

Page 50: EENG 3810 Chapter 4

50

Page 51: EENG 3810 Chapter 4

51

Single-Sideband Generation

Page 52: EENG 3810 Chapter 4

52

Balanced modulator waveforms

Page 53: EENG 3810 Chapter 4

53

FET Balanced Modulator

Page 54: EENG 3810 Chapter 4

54

AM DSBSC modulator using the LM1496/1596 linear integrated circuit

Page 55: EENG 3810 Chapter 4

55

Amplitude Modulation Reception

55

Page 56: EENG 3810 Chapter 4

56

Simplified Block Diagram of an AM Receiver

56

Page 57: EENG 3810 Chapter 4

57

Simplified Block Diagram of an AM Receiver

• Receiver front end = RF section– Detecting the signal– Band-limiting the signal

– Amplifying the Band-limited signal• Mixer/converter

– Down converts the RF signal to an IF signal

• Intermediate frequency (IF) signal– Amplification– Selectivity

• Ability of a receiver to accept assigned frequency

• Ability of a receiver to reject other frequencies

• AM detector demodulates the IF signal to the original signal

• Audio section amplifies the recovered signal.

57

Page 58: EENG 3810 Chapter 4

58

Noncoherent Tuned Radio Frequency Receiver Block Diagram

58

Page 59: EENG 3810 Chapter 4

59

AM Superheterodyne Receiver Block Diagram

59

Page 60: EENG 3810 Chapter 4

60

Bandwidth Improvement (BI)

• Noise reduction ratio

• BI = BRF / BIF

• Noise figure improvement

• NFIMP = 10 log BI

• Determine the noise improvement for a receiver with an RF bandwidth equal to 200 KHz and an IF bandwidth equal to 10 KHz.– BI = 200 KHz / 10 KHZ = 20

– NFImp = 10 log 20 = 13 dB

60

Page 61: EENG 3810 Chapter 4

61

Sensitivity

• Sensitivity: minimum RF signal level that the receiver can detect at the RF input.

• AM broadcast receivers– 10 dB signal to noise ratio– ½ watt (27 dBm) of power at the audio output– 50 uV Sensitivity

• Microwave receivers– 40 dB signal to noise ratio– 5 mw (7 dBm) of power at the output

• Aa61

Page 62: EENG 3810 Chapter 4

62

Dynamic Range

• Dynamic Range– Difference in dB between the minimum input level and

the level that will over drive the receiver (produce distortion).

– Input power range that the receiver is useful.– 100 dB is about the highest posible.

• Low Dynamic Range– Causes desensitizing of the RF amplifiers– Results in sever inter-modulation distortion of weaker

signals

62

Page 63: EENG 3810 Chapter 4

63

Fidelity

• Ability to produce an exact replica of the original signal.• Forms of distortion

– Amplitude• Results from non-uniform gain in amplifiers and filters.• Output signal differs from the original signal

– Frequency: frequencies are in the output that were not in the orginal signal

– Phase• Not important for voice transmission

• Devastating for digital transmission

63

Page 64: EENG 3810 Chapter 4

64

SSBRC Receiver

Page 65: EENG 3810 Chapter 4

65

SSBFC Receiver