16
EEE 340 Lecture 04 1 2-4.3 Spherical Coordinates

EEE 340Lecture 041 2-4.3 Spherical Coordinates. EEE 340Lecture 042 A vector in spherical coordinates The local base vectors from a right –handed system

  • View
    224

  • Download
    1

Embed Size (px)

Citation preview

EEE 340 Lecture 04 1

2-4.3 Spherical Coordinates

EEE 340 Lecture 04 2

• A vector in spherical coordinates

• The local base vectors from a right –handed system

AaAaAaA RR

)652(

aaa

aaa

aaa

R

R

R

,

,

)642( c

)642( b

)642( a

EEE 340 Lecture 04 3

The differential length

The differential areas are

The differential volume

dRaRdadRald R sin

)662(

RdRdds

dRdRds

ddRdsR

sin

sin2

)672(

ddRdRdv sin2 )682(

EEE 340 Lecture 04 4

addRRds

addRRds

addRds RR

;sin

;sin2

On many occasions the differential

areas are vectors

EEE 340 Lecture 04 5

Table 2-1 Basic Orthogonal Coordinates

Cartesian Cylindrical Spherical

)682(

sin

)542()462(

)672()532()452(

)652(sinˆ

ˆˆ

)522(ˆ

ˆˆ

)442(ˆ

ˆˆ

)ˆ(

)ˆ(

)ˆ(

)ˆ(

)ˆ(

)ˆ,ˆ(

)ˆ(

)ˆ(

)ˆ()(

2

,

ddRdRdvdzrdrddvdxdydzdv

volume

aldifferenti

areas

aldifferenti

dR

RddRRld

dzz

rddrrld

dzz

dyydxxld

length

aldifferenti

ora

ora

Rora

zora

ora

raora

zora

yora

xora

vectors

baseunit R

z

r

z

y

x

EEE 340 Lecture 04 6

Cartesian coordinates

and are vectors.

is a scalar.

Differential displacement

Differential normal area

Differential volume

zyx adzadyadxd

z

y

x

adydx

adzdx

adzdydS

dzdydxdv

d dS

dv

EEE 340 Lecture 04 7

• The differential surface element may be defined as

• we need to remember only !

dS

d

nadSdS

zz adSadydxdS

EEE 340 Lecture 04 8

Cylindrical coordinates

dzrdrddzdddv Differential volume

zr adrdradzdradzdrdS ;;

Differential normal area

Differential displacement

zr adzadradrd

EEE 340 Lecture 04 9

Coordinate transforms

Example 2-11. Convert a vector in spherical coordinates (SPC)

into the Cartesian coordinates (CRT).

Solution. The general form of a vector in the CRT is

We need

In fact

AaAaAaA RR

zzyyxx AaAaAaA

xxxRRx

xx

aaAaaAaaAA

aAA

EEE 340 Lecture 04 10

The other eight dot-products can be worked out.

A faster and better way to represent the transformation is based on the del operator.

222

22222

22

cossin

zyx

x

yx

x

zyx

yx

aa xR

)722(

EEE 340 Lecture 04 11

Example 2-12

Sphare chell

ra=2 cm

rb=5 cm

The charge density

Find the total charge Q

2 cos103 24

8

mC

v R

EEE 340 Lecture 04 12

• Solution:

dvQ ρ θρθφππ

sinrdrdd2

0 0

r

r

2b

a

302103 8 π

C108.1 6 π

b

a

r

r

drr

ddQ2

0

2

0

28 1sincos103

EEE 340 Lecture 04 13

2-5 Integrals Containing Vector Functions

.

Scalar

Vector

integral Volume

integral Surface

integral Line

)812(

)802(

)792(

)782(

sdA

ldF

ldV

dvF

S

C

C

V

EEE 340 Lecture 04 14

The line integral around a close path C is denoted as

In the Cartesian coordinates (CRT)

Cz

C Cyx

C zyx

dzzyxVa

dyzyxVadxzyxVa

dzadyadxazyxVlVd

),,(

),,(),,(

),,(

C lVd

)822(

)832(

EEE 340 Lecture 04 15

• Example 2-13

• a) along the straight line OP, where P(1,1,0)

rdrP

O

2

P(1,1,0)y

x0

P1

P2

EEE 340 Lecture 04 16

b). Along path OP1P

Solution. Using (2-52) of cylindrical

a).

)(3

2

)45sin45cos(3

22

3

23

2 22

yx

yx

r

Or

P

O

aa

aa

a

drrardr