23
EE105 Fall 2011 Lecture 2, Slide 1 Prof. Salahuddin, UC Berkel Lecture 2 OUTLINE • Semiconductor Basics Reading: Chapter 2

EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

EE105 Fall 2011 Lecture 2, Slide 1 Prof. Salahuddin, UC Berkeley

Lecture 2

OUTLINE• Semiconductor Basics

Reading: Chapter 2

Page 2: EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

EE105 Fall 2011 Lecture 2, Slide 2 Prof. Salahuddin, UC Berkeley

Announcement

• Office Hours for tomorrow is cancelled(ONLY for this week)

There will be office hours on Friday (2P-3P)(ONLY for this week)

Thursday’s class will start at 4P(ONLY for this week)

Page 3: EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

EE105 Fall 2011 Lecture 2, Slide 3 Prof. Salahuddin, UC Berkeley

What is a Semiconductor?• Low resistivity => “conductor”• High resistivity => “insulator”• Intermediate resistivity => “semiconductor”

– conductivity lies between that of conductors and insulators– generally crystalline in structure for IC devices

• In recent years, however, non-crystalline semiconductors have become commercially very important

polycrystalline amorphous crystalline

Page 4: EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

EE105 Fall 2011 Lecture 2, Slide 4 Prof. Salahuddin, UC Berkeley

Semiconductor Materials

Gallium(Ga)

Phosphorus(P)

Page 5: EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

EE105 Fall 2011 Lecture 2, Slide 5 Prof. Salahuddin, UC Berkeley

Energy Band Description

•For current flow, one needs to have electrons in the conduction band or holes in the valence band

•Completely full or completely empty bands cannot carry current

Page 6: EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

EE105 Fall 2011 Lecture 2, Slide 6 Prof. Salahuddin, UC Berkeley

Energy Band Description

Current due to electron flow and hole flow will add up

Page 7: EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

EE105 Fall 2011 Lecture 2, Slide 7 Prof. Salahuddin, UC Berkeley

Silicon• Atomic density: 5 x 1022 atoms/cm3

• Si has four valence electrons. Therefore, it can form covalent bonds with four of its nearest neighbors.

• When temperature goes up, electrons can become free to move about the Si lattice.

Page 8: EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

EE105 Fall 2011 Lecture 2, Slide 8 Prof. Salahuddin, UC Berkeley

Electronic Properties of Si Silicon is a semiconductor material.

– Pure Si has a relatively high electrical resistivity at room temperature.

There are 2 types of mobile charge-carriers in Si:– Conduction electrons are negatively charged;– Holes are positively charged.

The concentration (#/cm3) of conduction electrons & holes in a semiconductor can be modulated in several ways:

• by adding special impurity atoms ( dopants )• by applying an electric field• by changing the temperature• by irradiation

Page 9: EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

EE105 Fall 2011 Lecture 2, Slide 9 Prof. Salahuddin, UC Berkeley

Electron-Hole Pair Generation• When a conduction electron is thermally generated,

a “hole” is also generated.• A hole is associated with a positive charge, and is

free to move about the Si lattice as well.

Page 10: EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

EE105 Fall 2011 Lecture 2, Slide 10 Prof. Salahuddin, UC Berkeley

Carrier Concentrations in Intrinsic Si• The “band-gap energy” Eg is the amount of energy

needed to remove an electron from a covalent bond. • The concentration of conduction electrons in intrinsic

silicon, ni, depends exponentially on Eg and the absolute temperature (T):

600Kat /101

300Kat /101

/2

exp102.5

315

310

32/315

cmelectronsn

cmelectronsn

cmelectronskT

ETn

i

i

gi

Page 11: EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

EE105 Fall 2011 Lecture 2, Slide 11 Prof. Salahuddin, UC Berkeley

Doping (N type)• Si can be “doped” with other elements to change its

electrical properties.• For example, if Si is doped with phosphorus (P), each

P atom can donate a conduction electron, so that the Si lattice has more electrons than holes, i.e. it becomes “N type”:

Notation:n = conduction electron concentration

Page 12: EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

EE105 Fall 2011 Lecture 2, Slide 12 Prof. Salahuddin, UC Berkeley

Doping (P type)• If Si is doped with Boron (B), each B atom can accept

an electron (creating a hole), so that the Si lattice has more holes than conduction electrons, i.e. it becomes “P type”:

Notation:p = hole concentration

Page 13: EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

EE105 Fall 2011 Lecture 2, Slide 13 Prof. Salahuddin, UC Berkeley

Terminologydonor: impurity atom that increases n

acceptor: impurity atom that increases p

N-type material: contains more electrons than holes

P-type material: contains more holes than electrons

majority carrier: the most abundant carrier

minority carrier: the least abundant carrier

intrinsic semiconductor: n = p = ni

extrinsic semiconductor: doped semiconductor

Page 14: EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

EE105 Fall 2011 Lecture 2, Slide 14 Prof. Salahuddin, UC Berkeley

Intrinsic vs. Extrinsic Semiconductor

Page 15: EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

EE105 Fall 2011 Lecture 2, Slide 15 Prof. Salahuddin, UC Berkeley

Electron and Hole Concentrations• Under thermal equilibrium conditions, the product

of the conduction-electron density and the hole density is ALWAYS equal to the square of ni:

2

innp

P-type material

A

i

A

N

nn

Np2

D

i

D

N

np

Nn2

N-type material

Page 16: EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

EE105 Fall 2011 Lecture 2, Slide 16 Prof. Salahuddin, UC Berkeley

Dopant Compensation• An N-type semiconductor can be converted into P-

type material by counter-doping it with acceptors such that NA > ND.

• A compensated semiconductor material has both acceptors and donors.

P-type material(NA > ND)

DA

i

DA

NN

nn

NNp

2

AD

i

AD

NN

np

NNn

2

N-type material (ND > NA)

Page 17: EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

EE105 Fall 2011 Lecture 2, Slide 17 Prof. Salahuddin, UC Berkeley

Doping

What is the electron and hole density if you dope Si with Boron to 1018 /cm3 ?

Page 18: EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

EE105 Fall 2011 Lecture 2, Slide 18 Prof. Salahuddin, UC Berkeley

Charges in a Semiconductor• Negative charges:

– Conduction electrons (density = n)– Ionized acceptor atoms (density = NA)

• Positive charges:– Holes (density = p)– Ionized donor atoms (density = ND)

• The net charge density (C/cm3) in a semiconductor is AD NNnpq

Page 19: EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

EE105 Fall 2010 Lecture 2, Slide 19 Prof. Salahuddin, UC Berkeley

Carrier Drift• The process in which charged particles move because

of an electric field is called drift. • Charged particles within a semiconductor move with

an average velocity proportional to the electric field.– The proportionality constant is the carrier mobility.

Ev

Ev

ne

ph

Notation:p hole mobility (cm2/V·s)n electron mobility (cm2/V·s)

Hole velocity

Electron velocity

Page 20: EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

EE105 Fall 2010 Lecture 2, Slide 20 Prof. Salahuddin, UC Berkeley

Velocity Saturation• In reality, carrier velocities saturate at an upper limit,

called the saturation velocity (vsat).

E

vE

v

bv

bE

sat

sat

0

0

0

0

1

1

Page 21: EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

EE105 Fall 2010 Lecture 2, Slide 21 Prof. Salahuddin, UC Berkeley

Drift Current• Drift current is proportional to the carrier velocity

and carrier concentration:

Hole current per unit area (i.e. current density) Jp,drift = q p vh

Total current Jp,drift= Q/t

Q= total charge contained in the volume shown to the rightt= time taken by Q to cross the volume

Q=qp(in cm3)X Volume=qpAL=qpAvht

Page 22: EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

EE105 Fall 2010 Lecture 2, Slide 22 Prof. Salahuddin, UC Berkeley

Conductivity and Resistivity• In a semiconductor, both electrons and holes

conduct current:

• The conductivity of a semiconductor is– Unit: mho/cm

• The resistivity of a semiconductor is– Unit: ohm-cm

EEnpqJ

EqnEqpJJJ

EqnJEqpJ

npdrifttot

npdriftndriftpdrifttot

ndriftnpdriftp

)(

)(

,

,,,

,,

np qnqp

1

Page 23: EE105 Fall 2011Lecture 2, Slide 1Prof. Salahuddin, UC Berkeley Lecture 2 OUTLINE Semiconductor Basics Reading: Chapter 2

EE105 Fall 2010 Lecture 2, Slide 23 Prof. Salahuddin, UC Berkeley

• Estimate the resistivity of a Si sample doped with phosphorus to a concentration of 1015 cm-3 and boron to a concentration of 6x1017 cm-3.

Resistivity Example