5

Click here to load reader

Ecuaciones básicas en un intercambiador de calor.docx

Embed Size (px)

Citation preview

Page 1: Ecuaciones básicas en un intercambiador de calor.docx

Ecuaciones básicas en un intercambiador de calor

Coeficiente de transferencia de calor total

Consideremos la situación en la que el calor se transfiere del lado interior de un

fluido, a través de un film sucio, a través de la pared del tubo, a través de otro film

de fouling al fluido exterior a una To. Ai y Ao son respectivamente las áreas de

superficie interior o exterior para transferencia de calor para una longitud dada de

tubería. Para un tubo cilíndrico desnudo o plano:

La tasa de transferencia de calor entre el fluido en el interior del tubo y la superficie

del interior del film de suciedad viene dado por una ecuación en la forma:

Donde el área es Ai y similarmente para el proceso convectivo exterior donde el

área es Ao. Los valores de hi y ho tienen que ser calculados con las correlaciones

apropiadas.

En la mayoría de las superficies de intercambiador de calor real en servicio actual,

se desarrollará antes o después un film o depósito de sedimento, escala,

crecimiento orgánico, etc. Algunos fluidos tales como el aire o gas natural licuado

Page 2: Ecuaciones básicas en un intercambiador de calor.docx

están usualmente lo bastante limpios  como para que el fouling esté ausente. La

transferencia de calor a través de estos films es preferentemente por conducción,

pero el diseñador raramente sabe lo bastante sobre espesor o conductividad

térmica del film para tratar la resistencia de transferencia de calor como un

problema de conducción. El diseñador estimará de tablas estandarizadas o a partir

de la experiencia un factor de fouling Rf. Rfse define en términos de flujo de calor

Q/A y la diferencia de temperatura a través del fouling ∆Tf por la ecuación:

De la ecuación anterior está claro que Rf es equivalente a un coeficiente de

transferencia de calor para el fouling, hf.

y en muchos, el fouling es considerado por un “coeficiente de transferencia de

calor de fouling”, que es todavía una cantidad estimada. El efecto de incluir esta

resistencia adicional es proporcionar un intercambiador de calor algo más grande

que lo requerido cuando está limpio, así que el intercambiador proporcionará el

servicio deseado después de que haya estado prestando servicio durante un

tiempo y se haya acumulado fouling.

La tasa de flujo de calor por unidad de longitud del tubo debe ser la misma a través

del film del fluido interior, el film sucio del interior, la pared, el film sucio del exterior,

y el film del fluido exterior. Si requerimos que las diferencias de temperaturas a

través de cada una de estas resistencias para transferencia de calor añadan

diferencia de calor, (Ti – To), la obtendremos a partir de la siguiente ecuación:

En la ecuación anterior, el fouling se asume tiene un espesor despreciable, así que

los valores de ri, ro, Ai y Ao son de tubos limpios y son independientes de la

acumulación de fouling. No solamente es conveniente.

Ahora definimos un coeficiente U* basado en cualquier área de referencia

conveniente A*

Page 3: Ecuaciones básicas en un intercambiador de calor.docx

Comparando las últimas dos ecuaciones damos:

Frecuentemente, pero no siempre, A* se elige como igual a Ao, en cuyo caso U* =

Uo, y la ecuación anterior queda:

Si el área de referencia A* es elegido como Ai, el coeficiente de transferencia de

calor total, viene dado por:

La resistencia de la pared es ordinariamente relativamente pequeña, y a un grado

suficiente de precisión por tubos desnudos, usualmente escribimos:

La inspección de las magnitudes de los términos en el denominador de las

ecuaciones de Uo y Uipara cualquier caso de diseño particular rápidamente revela

qué términos o términos (y por lo tanto que resistencia de transferencia de calor)

predominan. Este término (o términos) controlan el tamaño del intercambiador de

calor y es en el que el diseñador concentraría su atención. Quizás el coeficiente de

transferencia de calor puede ser significativamente mejorado por un cambio en el

diseño o condiciones de operación del intercambiador de calor. En cualquier caso,

el diseñador debe dar atención particular al cálculo o estimación del valor de la

resistencia más grande, debido a cualquier error o incertidumbre en los datos, la

correlación, o cálculo de este término tiene un efecto desproporcionadamente

grande en el intercambiador y/o fiabilidad.

Diseño integral

En los apartados anteriores, hemos obtenido una ecuación que relaciona la tasa

de transferencia de calor respecto a la diferencia de temperatura del local (T – t) y

el área de transferencia de calor A, mediante el uso de un coeficiente de

Page 4: Ecuaciones básicas en un intercambiador de calor.docx

transferencia de calor A, a través del uso de un coeficiente de transferencia de

calor total U. En la mayoría de las aplicaciones del intercambiador de calor, sin

embargo, una o ambas temperaturas de la corriente, cambian de punto a punto a

través de las trayectorias del flujo de las corrientes respectivos. El cambio en la

temperatura de cada corriente se calcula del balance de calor (entalpía) en la

corriente y es un problema en termodinámica.

La siguiente preocupación es desarrollar un método para aplicar las ecuaciones

obtenidas al caso en el que la diferencia de temperatura entre dos corrientes no es

constante.

Lo primero es escribir la ecuación del coeficiente de transferencia de calor total en

forma diferencial:

Y luego formalmente integramos esta ecuación respecto a las necesidades

térmicas totales del intercambiador, Qt:

Esta es la ecuación de diseño del intercambiador de calor básico, o el diseño

integral.

U* y A* puede estar en una base consistente, pero generalmente usaremos Uo y

Ao. U* puede ser, y en la práctica a veces es, una función de la cantidad de calor

intercambiada. Si 1/U* (T –t) puede calcularse como una función de Q.

El procedimiento anterior puede siempre usarse, pero también es muy tedioso y

consume tiempo. Podemos preguntarnos si no hay un procedimiento

aceptablemente exacto que podamos usar. Haciendo ciertas asunciones, podemos

integrar analíticamente la siguiente ecuación:

Donde U* es el valor (asumido constante) del coeficiente de transferencia de calor

total y MTD es la “Diferencia de Temperatura Media”.