98
Copyright © by Jose E. SchuttAine , All Rights Reserved ECE 598JS, Spring 2012 1 ECE 598 JS Lecture 09 Scattering Parameters Spring 2012 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected]

ECE 598 JS Lecture 09 Scattering Parametersjsa.ece.illinois.edu/ece598js/Lect_09.pdf · ECE 598‐JS, Spring 2012 Copyright © by Jose E. Schutt‐Aine , All Rights Reserved 21 Dissipated

Embed Size (px)

Citation preview

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 11

ECE 598 JS Lecture ‐09Scattering Parameters

Spring 2012

Jose E. Schutt-AineElectrical & Computer Engineering

University of [email protected]

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 2

Transfer Function Representation

Use a two-terminal representation of system for input and output

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 3

Y-parameter Representation

1 11 1 12 2

2 21 1 22 2

I y V y VI y V y V

= += +

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 4

Y Parameter Calculations

2 2

1 211 21

1 10 0V V

I Iy yV V

= =

= =

To make V2= 0, place a short at port 2

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 5

Z Parameters

1 11 1 12 2

2 21 1 22 2

V z I z IV z I z I

= += +

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 6

Z-parameter Calculations

2 2

1 211 21

1 10 0I I

V Vz zI I

= =

= =

To make I2= 0, place an open at port 2

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 7

H Parameters

1 11 1 12 2

2 21 1 22 2

V h I h VI h I h V

= += +

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 8

H Parameter Calculations

To make V2= 0, place a short at port 2

2 2

1 211 21

1 10 0V V

V Ih hI I

= =

= =

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 9

G Parameters

1 11 1 12 2

2 21 1 22 2

I g V g IV g V g I

= += +

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 10

G-Parameter Calculations

2 2

1 211 21

1 10 0I I

I Vg gV V

= =

= =

To make I2= 0, place an open at port 2

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 1111

TWO‐PORT NETWORK REPRESENTATION

- At microwave frequencies, it is more difficult to measure total voltagesand currents.

- Short and open circuits are difficult to achieve at high frequencies.

- Most active devices are not short- or open-circuit stable.

1 11 1 12 2V Z I Z I= +

2 21 1 22 2V Z I Z I= +1 11 1 12 2I Y V Y V= +

2 21 1 22 2I Y V Y V= +

Z Parameters Y Parameters

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 1212

1 11I = i r

o

E EZ− 2 2

2I = i r

o

E EZ−

- Total voltage and current are made up of sums of forward andbackward traveling waves.

- Traveling waves can be determined from standing-wave ratio.

Use a travelling wave approach

Wave Approach

1 1 1i rV E E= + 2 2 2i rV E E= +

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 1313

11a = i

o

EZ

22a = i

o

EZ

11b = r

o

EZ

22b = r

o

EZ

Zo is the reference impedance of the system

b1 = S11 a1 + S12 a2

b2 = S21 a1 + S22 a2

Wave Approach

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 1414

111 a2=0

1

S = | ba

221

1 | a2=0

S = ba

112 a1=0

2

S = | ba

222

2 | a1=0

S = ba

To make ai = 01) Provide no excitation at port i2) Match port i to the characteristic impedance of the reference lines.

CAUTION : ai and bi are the traveling waves in the reference lines.

Wave Approach

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 1515

2

2 2

1111 22( X )S = S =

Γ−−

2

2 2

1112 21( )XS = S =

Γ−−

c ref

c ref

Z ZZ Z

Γ−

=+

( )( )R j L G j Cγ ω ω= + +

cR j LZG j C

ωω

+=

+

S‐Parameters of TL

lX e γ−=

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 1616

2

2 2

1111 22( X )S = S =

Γ−−

2

2 2

1112 21( )XS = S =

Γ−−

c ref

c ref

Z ZZ Z

Γ−

=+

LCβ ω=

cLZC

=

S‐Parameters of Lossless TL

j lX e β−=

If Zc = Zref

011 22S = S = j l

12 21S = S = e β−

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 17

N-Port S Parameters

1 11 12 1

2 21 22 2

n nn n

b S S ab S S a

b S a

⋅ ⋅⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥=

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦

b = Sa

ii

oi

VaZ

+

=

If bi = 0, then no reflected wave on port i port is matched

ii

oi

VbZ

=

iV +

iV −

oiZ

: incident voltage wave in port i

: reflected voltage wave in port i

: impedance in port i

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 18

N-Port S Parameters

( ) ( )1o

o

ZZ

=a + b Z a - b

v = Zi( )1

oZ=i a - b

Substitute (1) and (2) into (3)

Defining S such that b = Sa and substituting for b( ) ( )

o oZ Z=U + S a U - S a

( )( ) 1oZ −=Z U + S U - S ( ) ( )o oZ Z= −-1S Z + U Z U

S Z Z S

(3)(2)(1)( )oZ=v a + b

U : unit matrix

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 19

N-Port S Parameters

( )-1i = k a - b

If the port reference impedances are different, we define k as

v = k(a + b)

1

2

o

o

on

Z

Z

Z

⎡ ⎤⎢ ⎥⎢ ⎥= ⎢ ⎥⋅⎢ ⎥⎢ ⎥⎣ ⎦

k

( )= -1k(a + b) Zk a - b

( )( )-1Z = k U + S U - S k( )( )-1 -1S = Zk + k Zk - k

S ZZ S

and and

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 20

NormalizationAssume original S parameters as S1 with system k1. Then the representation S2 on system k2 is given by 

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦-1-1 -1

2 1 1 1 1 2 2 1 1 1 1 2 2S = k (U + S )(U - S ) k k + k k (U + S )(U - S ) k k - k

Transformation Equation

If Z is symmetric, S is also symmetric

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 21

Dissipated Power( )1

2dP = T T * *a U - S S a

The dissipation matrix D is given by:T *D = U - S S

Passivity insures that the system will always be stable provided that it is connected to another passive network

For passivity‐ (1) the determinant of D must be‐ (2) the determinant of the principal minors must be 

0≥0≥

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 22

Dissipated Power

=T *S S U

When the dissipation matrix is 0, we have a lossless network

The S matrix is unitary.

2 211 21 1S S+ =

2 222 12 1S S+ =

For a lossless two‐port:

If in addition the network is reciprocal, then2

12 21 11 22 12and 1S S S S S= = = −

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 23

Lossy and Dispersive Line

( )2

11 22 2 2

11

S S−

= =−

α ρ

ρ α( )2

21 12 2 2

11

S S−

= =−

ρ α

ρ α

le−= γα( )( )

c o

c o

Z ZZ Z

−=

ρω

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 24

Frequency-Domain Formulation*

* J. E. Schutt-Aine and R. Mittra, "Scattering Parameter Transient analysis of transmission lines loaded with nonlinear terminations," IEEE Trans. Microwave Theory Tech., vol. MTT-36, pp. 529-536, March 1988.

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 25

( ) ( )1 11 1 12 2( ) ( ) ( )B S A S A= +ω ω ω ω ω

( ) ( )2 21 1 22 2( ) ( ) ( )B S A S A= +ω ω ω ω ω

Frequency-Domain

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 26

Time-Domain Formulation

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 27

Time-Domain Formulation

1 11 1 12 2( ) ( )* ( ) ( )* ( )b t s t a t s t a t= +

2 21 1 22 2( ) ( )* ( ) ( )* ( )b t s t a t s t a t= +

1 1 1 1 1( ) ( ) ( ) ( ) ( )a t t b t T t g t= Γ +

2 2 2 2 2( ) ( ) ( ) ( ) ( )a t t b t T t g t= Γ +

( )( )

oi

i o

ZT tZ t Z

=+

( )( )( )

i oi

i o

Z t ZtZ t Z

−Γ =

+

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 28

Time-Domain Solutions

[ ]'2 22 1 1 1 1

1

1 ( ) (0) ( ) ( ) ( ) ( )( )

( )t s T t g t t M t

a tt

⎡ ⎤− Γ + Γ⎣ ⎦=Δ

[ ]'1 12 2 2 2 2( ) (0) ( ) ( ) ( ) ( )

( )t s T t g t t M t

t

⎡ ⎤Γ + Γ⎣ ⎦+Δ

[ ]'1 11 2 2 2 2

2

1 ( ) (0) ( ) ( ) ( ) ( )( )

( )t s T t g t t M t

a tt

⎡ ⎤− Γ + Γ⎣ ⎦=Δ

[ ]'2 21 1 1 1 1( ) (0) ( ) ( ) ( ) ( )

( )t s T t g t t M t

t

⎡ ⎤Γ + Γ⎣ ⎦+Δ

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 29

Time-Domain Solutions

' ' ' '1 11 2 22 1 12 2 21( ) 1 ( ) (0) 1 ( ) (0) ( ) (0) ( ) (0)t t s t s t s t s⎡ ⎤ ⎡ ⎤Δ = − Γ − Γ − Γ Γ⎣ ⎦ ⎣ ⎦

' (0) (0)ij ijs s= Δτ

1 11 12( ) ( ) ( )M t H t H t= +

2 21 22( ) ( ) ( )M t H t H t= +

1

1

( ) ( ) ( )t

ij ij jH t s t a−

=

= − Δ∑τ

τ τ τ

' '1 11 1 12 2 1( ) (0) ( ) (0) ( ) ( )b t s a t s a t M t= + +

' '2 21 1 22 2 2( ) (0) ( ) (0) ( ) ( )b t s a t s a t M t= + +

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 30

Special Case – Lossless Line

11 22( ) ( ) 0s t s t= = 12 21( ) ( ) ls t s t tv

⎛ ⎞= = −⎜ ⎟⎝ ⎠

δ

1 2( ) lM t a tv

⎛ ⎞= −⎜ ⎟⎝ ⎠

2 1( ) lM t a tv

⎛ ⎞= −⎜ ⎟⎝ ⎠

( )1 1 1 1 2( ) ( ) ( ) la t T t g t t a tv

⎛ ⎞= + Γ −⎜ ⎟⎝ ⎠

( )2 2 2 2 1( ) ( ) ( ) la t T t g t t a tv

⎛ ⎞= + Γ −⎜ ⎟⎝ ⎠

1 2( ) lb t a tv

⎛ ⎞= −⎜ ⎟⎝ ⎠

2 1( ) lb t a tv

⎛ ⎞= −⎜ ⎟⎝ ⎠

Wave Shifting Solution

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 31

Time-Domain Solutions

1 1 1( ) ( ) ( )v t a t b t= +

2 2 2( ) ( ) ( )v t a t b t= +

1 11

( ) ( )( )o o

a t b ti tZ Z

= −

2 22

( ) ( )( )o o

a t b ti tZ Z

= −

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 32

SimulationsLine length = 1.27mZo = 73 Ω

v = 0.142 m/ns

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 33

0 100 2000

1

2

3

4

5

6

Near End

Time (ns)

Volts

0 100 200-2

0

2

4

6

Far End

Time (ns)

Volts

Simulations

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 34

0 10 20 30 40 50-1

0

1

2

3

4

5

lossylossless

Near End

Time (ns)

Volts

0 10 20 30 40 50-2

0

2

4

6

lossylossless

Far End

Time (ns)

Volts

Simulations

Line length = 25 in

L = 539 nH/m

C = 39 pF/m

Ro = 1 kΩ (GHz)1/2

Pulse magnitude = 4V

Pulse width = 20 ns

Rise and fall times = 1ns

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 35

N-Line S-Parameters*

B1 = S11 A1 + S12 A2 B2 = S21 A1 + S22 A2

* J. E. Schutt-Aine and R. Mittra, "Transient analysis of coupled lossy transmission lines with nonlinear terminations," IEEE Trans. Circuit Syst., vol. CAS-36, pp. 959-967, July 1989.

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 36

Scattering Parameters for N-Line

[ ][ ]-1-111 22S = S = T Γ -ΨΓΨ 1-ΓΨΓΨ T

[ ] [ ]2 -1-121 12 oS = S = E E 1-Γ Ψ 1-ΓΨΓΨ T

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦-1-1 -1 -1 -1 -1 -1

o o o m o o o mΓ = 1+ EE Z H H Z 1- EE Z H H Z

⎡ ⎤⎣ ⎦-1-1 -1 -1 -1

o o o m oT = 1+ EE Z H H Z EE ( )-lΨ = W

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 37

Scattering Parameter MatricesEo : Reference system voltage eigenvector matrix

E : Test system voltage eigenvector matrix

Ho : Reference system current eigenvector matrix

H : Test system current eigenvector matrix

Zo : Reference system modal impedance matrix

Zm : Test system modal impedance matrix

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 38

Eigen Analysis

* Diagonalize ZY and YZ and find eigenvalues.* Eigenvalues are complex: λi = αi + jβi

W(u) =

eα1u+ jβ1u

eα2u+ jβ2u

•eαn u+ jβnu

⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 39

Solution

mV = EV

mI = HI

[ ]( ) ( ) ( )x x x− + ΒmV = W A W

[ ]( ) ( ) ( )x x x− + Β-1m mI = Z W A W

-1 -1m mZ = Λ EZH

-1 -1 -1c m mZ = E Z H = E Λ EZ

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 40

Solutions

a1(t) = Δ1−1 1 − Γ1 (t)s'11 (0)[ ]−1 T1 (t)g1 (t) + Γ1 (t)M1(t)[ ]

− Δ1−1 1 − Γ1(t)s'11 (0)[ ]−1 1 − Γ2 (t)s'22 (0)[ ]−1 ×

Γ1(t)s'21 (0)[ ]T2 (t)g2(t) + Γ2 (t)M2(t)[ ]

a2(t) = Δ2−1 1 − Γ2 (t)s'22 (0)[ ]−1 T2(t)g2 (t) + Γ2 (t)M2 (t)[ ]

− Δ2−1 1 − Γ2 (t)s'22 (0)[ ]−1 1 − Γ1 (t)s'11 (0)[ ]−1 ×

Γ1 (t)s'12 (0)[ ] T1(t)g1 (t) + Γ1 (t)M1(t)[ ]

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 41

Solutions

[ ]⎡ ⎤⎣ ⎦-1 -1' ' '

1 1 11 2 22 1 21 2 12Δ (t) = 1- 1-Γ (t)s (0) 1-Γ (t)s' (0) Γ (t)s (0)Γ (t)s (0)

[ ] ⎡ ⎤⎣ ⎦-1-1 ' ' '

2 2 22 1 11 2 12 1 21Δ (t) = 1 - 1 -Γ (t)s' (0) 1 -Γ (t)s (0) Γ (t)s (0)Γ (t)s (0)

' '2 21 1 22 2 2b (t) = s (0)a (t) + s (0)a (t) + M (t)

' '1 11 1 12 2 1b (t) = s (0)a (t) + s (0)a (t) + M (t)

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 42

Lossless Case – Wave Shifting

21 12 ms (t) = s (t) = δ(t - τ )

1 2 mM (t) = a (t - τ )

2 1 mM (t) = a (t - τ )

1 1 1 1 2 ma (t) = T (t)g (t) +Γ (t)a (t - τ )

2 2 3 3 1 ma (t) = T (t)g (t) +Γ (t)a (t - τ )

1 2 mb (t) = a (t - τ )

2 2 mb (t) = a (t - τ )

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 43

δ(t − τm ) =

δ(t − τm1)δ(t − τm2 )

•δ(t − τmn )

⎜ ⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ ⎟

ai (t − τm ) =

a1(t − τm1)a2 (t − τm2 )

•an (t − τmn )

⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥

Solution for Lossless Lines

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 44

2111 2(1 )

leY lZ ec

γγ

−+=−−

Zc : microstrip characteristic impedanceγ : complex propagation constantl : length of microstrip

Y11 can be unstable

2111 221

l( e )S le

γ ΓγΓ

−−=

−−

Z Zc oZ Zc o

Γ−

=+

S11 is always stable

Y-Parameter S-Parameter

Test line: Zc, γ

shortZoZo

ReferenceLine

ReferenceLine

Test line: Zc, γ

TestLine

Why Use S Parameters?

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 45

c ref

c ref

Z ZZ Z

−Γ =

+ cR j LZG j C

ωω

+=

+

Zref is arbitraryWhat is the best choice for Zref ?

refLZC

=

cLZC

11 0S →12j LCd

oS e Xω−→ =

At high frequencies

Thus, if we choose

Choice of Reference

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 46

50.0 0.0 0.0 0.00.0 50.0 0.0 0.00.0 0.0 50.0 0.00.0 0.0 0.0 50.0

S-Parameter measurements (or simulations) aremade using a 50-ohm system. For a 4-port, the reference impedance is given by:

Zo =

11 1o oS ZZ I ZZ I

−− −⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦

[ ][ ] 1oZ I S I S Z−= + −

Z: Impedance matrix (of blackbox)S: S-parameter matrixZo: Reference impedanceI: Unit matrix

Choice of Reference

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 47

328.0 69.6 328.9 69.669.6 328.8 69.6 328.9328.9 69.6 328.8 69.669.6 328.9 69.6 328.8

50.0 0.0 0.0 0.00.0 50.0 0.0 0.00.0 0.0 50.0 0.00.0 0.0 0.0 50.0

Method: Change reference impedance from uncoupled to coupled system to get new S-parameter representation

Zo =

Zo =

Uncoupled system

Coupled system

as an example…

Reference Transformation

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 48

0

0.5

1

1.5

0 2 4 6 8 10

S11 - Linear Magnitude

S11 - 50 Ohm

S11 - Zref

S11

Frequency (GHz)

50.0 0.0 0.0 0.00.0 50.0 0.0 0.00.0 0.0 50.0 0.00.0 0.0 0.0 50.0

using

Zo =

as reference…

328.0 69.6 328.9 69.669.6 328.8 69.6 328.9328.9 69.6 328.8 69.669.6 328.9 69.6 328.8

using

as reference…

Zo =

Harder toapproximate

Easier to approximate (up to 6 GHz)

Choice of Reference

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 49

0

0.5

1

1.5

0 2 4 6 8 10

S11 - Linear Magnitude

S11 - 50 Ohm

S11 - Zref

S11

Frequency (GHz)

50.0 0.0 0.0 0.00.0 50.0 0.0 0.00.0 0.0 50.0 0.00.0 0.0 0.0 50.0

using

Zo =

as reference…

328.0 69.6 328.9 69.669.6 328.8 69.6 328.9328.9 69.6 328.8 69.669.6 328.9 69.6 328.8

using

as reference…

Zo =

Harder toapproximate

Easier to approximate (up to 6 GHz)

Choice of Reference

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 50

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10

S12 - Linear Magnitude

S12 - 50 Ohm

S12 - Zref

S12

Frequency (GHz)

50.0 0.0 0.0 0.00.0 50.0 0.0 0.00.0 0.0 50.0 0.00.0 0.0 0.0 50.0

using

Zo =

as reference…

328.0 69.6 328.9 69.669.6 328.8 69.6 328.9328.9 69.6 328.8 69.669.6 328.9 69.6 328.8

using

as reference…

Zo =

Easier to approximate (up to 6 GHz)

Harder toapproximate

Choice of Reference

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 51

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

S31 - Linear Magnitude

S31 - 50 Ohm

S31 - ZrefS3

1

Frequency (GHz)

50.0 0.0 0.0 0.00.0 50.0 0.0 0.00.0 0.0 50.0 0.00.0 0.0 0.0 50.0

using

Zo =

as reference…

328.0 69.6 328.9 69.669.6 328.8 69.6 328.9328.9 69.6 328.8 69.669.6 328.9 69.6 328.8

using

as reference…

Zo =

Harder toapproximate

Easier to approximate

Choice of Reference

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 52

.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5 2 2.5 3

S11 Magnitude

Zref=ZoZref=80 ohmsZref=100 ohms

Frequency (GHz)

S11

Choice of Reference

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 53

.

0.7

0.75

0.8

0.85

0 0.5 1 1.5 2 2.5 3

S21 Magnitude

Zref=ZoZref=80 ohmsZref=100 ohms

Frequency (GHz)

S21

Choice of Reference

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 54

Modeling of Discontinuities

1. Tapered Lines

2. Capacitive Discontinuities

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 55

General topology of tapered microstrip with dw :width at wide end,dn: width at narrow end, lw: length of wide section, ln : length ofnarrow section, lt: length of tapered section.

Tapered Microstrip

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 56

( ) ( )21 1 22( ) ( )* ( ) ( )* ( )j j

j j ju t s t u t s t w t−= +

( 1) ( 1)11 12 1( ) ( )* ( ) ( )* ( )j j

j j jw t s t u t s t w t+ ++= +

* J. E. Schutt-Aine, IEEE Trans. Circuit Syst., vol. CAS-39, pp. 378-385, May 1992.

Tapered Line Analysis Using S Parameters*

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 57

-1

0

1

2

3

4

5

0 1 2 3 4 5 6

Vol

ts

Time (ns)

Small EndExcitation at small end

-1

0

1

2

3

4

5

0 1 2 3 4 5 6

Vol

ts

Time (ns)

Wide EndExcitation at small end

-1

0

1

2

3

4

5

0 1 2 3 4 5 6

Vol

ts

Time (ns)

Small EndExcitation at wide end

-1

0

1

2

3

4

5

0 1 2 3 4 5 6

Vol

ts

Time (ns)

Wide EndExcitation at wide end

Tapered Transmission Line

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 58

-1

0

1

2

3

4

5

0 1 2 3 4 5Time (ns)

Near End

.0564 mils/in

.1128 mils/in

.2257 mils/in

6 7 8

volts

-1

0

1

2

3

4

5

0 1 2 3 4 5Time (ns)

Far End

.0564 mils/in

.1128 mils/in

.2257 mils/in

6 7 8

volts

Varying tapering rate

Tapered Transmission Line

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 59

Zo

Zo

ZoC

-1

-0.5

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50

Near End -- C=4 pF

Vol

ts

Time (ns)

-1

-0.5

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50

Far end -- C=4 pF

Vol

ts

Time (ns)

Capacitive Load

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 60

Zo

Zo

ZoC

-1

-0.5

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50

Near end -- C=40 pF

Vol

ts

Time (ns)

-0.5

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50

Far end -- C=40 pF

Vol

ts

Time (ns)

Capacitive Load

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 61

Zo

Zstub

ZsL

- Stubs of TL with nonlinear loads- Reduce speed and bandwidth - Limit driving capabilities

Multidrop Buses

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 62

Transmission Lines with Capacitive Discontinuities

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 63

i r tV V V+ = i r i r t

o o

V V V V VEZ R R Z− −

+ − =

r c c iV T E V= + Γ

Capacitive Discontinuity

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 64

( ) ' ( )21 1 22( ) ( )* ( ) ( )* ( )j j

j j ju t s t u t s t w t−= +

' "( ) ( ) ( )j j ju t u t u t= +

' "( ) ( ) ( )j j jw t w t u t= +

Scattering Parameter Analysis

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 65

- 1

0

1

2

3

4

0 11.25 22.5 33.75 45

V o l ts

Ti me ( ns)

Near End

- 1

0

1

2

3

4

0 11.25 22.5 33.75 45

V o l ts

Ti me ( ns)

Far End

Capacitive Loading

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 66

-1

0

1

2

3

4

5

0 1 2 3 4 5Time (ns)

loading period 600 mils300 mils150 mils

6 7 8

volts

-1

0

1

2

3

4

0 1 2 3 4 5Time (ns)

capacitive loading1 pF2 pF4 pF

6 7 8

volts

Computer-simulated near end responses for capacitively loaded transmission line with l = 3.6 in, w = 8 mils, h = 5 mils. Pulse parameters are Vmax = 4 V, tr = tf = 0.5 ns, tw = 4 ns. Left: Varying P with C = 2 pF. Right: Varying C with P = 300 mils.

Capacitive Loading

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 67

Linear N-Portwith MeasuredS-Parameters

NonlinearNetwork

1

NonlinearNetwork

2

NonlinearNetwork

3

NonlinearNetwork

4Objective: Perform time‐domain simulation of composite network to determine timing waveforms, noise response or eye diagrams

Blackbox Macromodeling

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 68

Output

Frequency-DomainData

IFFT MOR

DiscreteConvolution

RecursiveConvolution

STAMP

Circuit Simulator

Macromodel Implementation

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 69

TL Simulation

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012

• Only measurement data is available • Actual circuit model is too complex

Motivations

• Inverse-Transform & Convolution• IFFT from frequency domain data• Convolution in time domain

• Macromodel Approach• Curve fitting• Recursive convolution

Methods

Blackbox Synthesis

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012

Blackbox Synthesis

Terminations are described by a source vector G(ω)and an impedance matrix ZBlackbox is described by its scattering parameter matrix S

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 72

Blackbox - Method 1

Scattering Parameters ( ) ( ) ( )B S Aω ω ω=

Terminal conditions ( ) ( ) ( )A B TGω ω ω= Γ +

where11 1

o oU ZZ U ZZ−− −⎡ ⎤ ⎡ ⎤Γ = − + −⎣ ⎦ ⎣ ⎦

and11

oT U ZZ−−⎡ ⎤= +⎣ ⎦

(1)

(2)

U is the unit matrix, Z is the termination impedance matrix and Zo is the reference impedance matrix

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 73

Blackbox - Method 1

Combining (1) and (2) [ ] 1( ) ( ) ( )A U S TGω ω ω−= − Γ

and [ ] 1( ) ( ) ( ) ( ) ( ) ( )B S A S U S TGω ω ω ω ω ω−= = − Γ

[ ][ ] 1( ) ( ) ( ) ( ) ( ) ( )V A B U S U S TGω ω ω ω ω ω−= + = + − Γ

[ ] [ ][ ] 11 1( ) ( ) ( ) ( ) ( ) ( )o oI Z A B Z U S U S TGω ω ω ω ω ω−− −= − = − − Γ

{ }( ) ( )v t IFFT V ω=

{ }( ) ( )i t IFFT I ω=

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 74

• No Frequency Dependence for TerminationsReactive terminations cannot be simulated

• Only Linear TerminationsTransistors and active nonlinear terminations cannot be described

• StandaloneThis approach cannot be implemented in a simulator

Method 1 - Limitations

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 75

B=SA

b(t) = s(t)*a(t)

s( t )* a( t ) s( t )a( )dτ τ τ∞

−∞

= −∫

In frequency domain

In time domain

Convolution:

Blackbox - Method 2

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 76

Since a(τ) is known for τ < t, we have:

Isolating a(t)

t 1

1s( t )* a( t ) s( 0 )a( t ) s( t )a( )

τΔτ τ τ Δτ

== + −∑

t 1

1H( t ) s( t )a( ) : History

ττ τ Δτ

== −∑

t

1s( t )* a ( t ) s( t )a( )

ττ τ Δτ

== −∑

When time is discretized the convolution becomes

Discrete Convolution

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 77

Defining s'(0) =s(0)Δτ, we finally obtain

a(t) = Γ(t)b(t) + T(t)g(t)

b(t) = s'(0)a (t) + H (t)

By combining these equations, the stamp can be derived

Terminal Conditions

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 78

[ ] [ ]1a(t) 1 (t)s'(0) T(t)g(t) (t)H(t)Γ Γ−= − +

b(t) = s'(0)a (t) + H (t)

[ ]o1a( t ) v( t ) Z i( t )2

= +

[ ]o1b( t ) v( t ) Z i( t )2

= −

The solutions for the incident and reflected wave vectors are given by:

Stamp Equation Derivation

The voltage wave vectors can be related to the voltage and current vectors at the terminals

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 79

[ ] [ ]o o1 s'( 0 )v( t ) Z i( t ) v( t ) Z i( t ) H( t )2 2

− = + +

[ ]o oZ i( t ) s'(0 )Z i( t ) 2H( t ) 1 s'(0 ) v( t )+ + = −

[ ] [ ]o1 s'(0 ) Z i( t ) 1 s'(0 ) v( t ) 2H( t )+ = − −

[ ] [ ] [ ]1 11 1o oi( t ) Z 1 s'( 0 ) 1 s'( 0 ) v( t ) 2Z 1 s'( 0 ) H( t )− −− −= + − − +

From which we get

Stamp Equation Derivation

or

or

which leads to

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 80

[ ] [ ]11stamp oY Z 1 s'( 0 ) 1 s'( 0 )−−= + −

[ ] 11stamp oI 2Z 1 s'( 0 ) H( t )−−= +

stamp stampi( t ) Y v( t ) I= −

i(t) can be written to take the form

Stamp Equation Derivation

in which

and

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 81

[ ] [ ]11stamp oY Z 1 s'( 0 ) 1 s'( 0 )−−= + −

[ ] 11stamp oI 2Z 1 s'(0 ) H( t )−−= +

( ) ( )g stamp g stampY Y v t I I+ = +

stamp stampi( t ) Y v( t ) I= −Stamp Equations

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 82

No DC Data Point With DC Data Point

If low‐frequency data points are not available, extrapolation must be performed down to DC.

Effects of DC Data

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 83

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Port 1

Port 1 - No DC ExtrapolationPort 1 - With DC Extrapolation

volts

Time (ns)-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16

Port 2

Port 2 - No DC ExtrapolationPort 2 - With DC Extrapolation

Vol

ts

Time (ns)

Effect of Low-Frequency Data

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 84

-2

-1.5

-1

-0.5

0

0 20 40 60 80 100 120

No DC component(lowest freq: 10 MHz)

Vol

ts

Time (ns)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

With DC component

Volts

Time (ns)

Left: IFFT of a sinc pulse sampled from 10 MHz to 10 GHz. Right: IFFT of the same sinc pulse with frequency data ranging from 0-10 GHz. In both cases 1000 points are used

( )2sin 2( )

2ft

V fftπ

π=Calculating inverse Fourier Transform of:

Effect of Low-Frequency Data

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 85

=ω ω ωY( ) H( )X ( )

=y( t ) h( t )* x( t )

Frequency-Domain Formulation

= = −∫ τ τ τt

0

y( t ) h( t )* y( t ) h( t )y( )d

== −∑

ττ τ Δτ

t

1h( t )* x( t ) h( t )x( )

== −∑

ττ τ Δτ

t 1

1H( t ) h( t )x( ) : History

Time-Domain Formulation

Convolution

Discrete Convolution

Computing History is computationally expensive Use FD rational approximation and TD recursive convolution

Convolution Limitations

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 86

Large Network (>1,000 nodes)

Reduced Order Model

(< 30 poles)

SPICE Y(t) v(t) = i(t) Y(ω) V(ω) = I(ω)

Order Reduction

Y(ω) = Y(ω)~ ~

Recursive Convolution

Y(t) v(t) = i(t) ~

11

1 1

( )1 /

Li

i c i

aY Aj

ωω ω=

⎡ ⎤= +⎢ ⎥+⎣ ⎦

Model Order Reduction

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 87

• AWE – Pade• Pade via Lanczos (Krylov methods)• Rational Function• Chebyshev-Rational function• Vector Fitting Method

11

1 1

( )1 /

Li

i c i

aH Aj

ωω ω=

⎡ ⎤= +⎢ ⎥+⎣ ⎦

Objective: Approximate frequency-domain transfer function to take the form:

Methods

Model Order Reduction

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 88

Model Order Reduction (MOR)

Question: Why use a rational function approximation?

Lk

k 1 ck

cY( ) H( )X ( ) d X ( )1 j /=

⎡ ⎤= = +⎢ ⎥+⎣ ⎦

∑ω ω ω ωω ω

1

( ) ( ) ( )=

= − + ∑L

pkk

y t dx t T y t

( )( ) ( ) 1 ( )− −= − − + −ω ωck ckT Tpk k pky t a x t T e e y t T

Answer: because the frequency‐domain relation 

will lead to a time‐domain recursive convolution:

which is very fast!

where

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 89

=

= ++∑ω

ω ω

Lk

k 1 ck

cH( ) d1 j /

Transfer function is approximated as

In order to convert data into rational function form, we need a curve fitting scheme Use Vector Fitting

Model Order Reduction

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012

• 1998 - Original VF formulated by Bjorn Gustavsen and Adam Semlyen*

• 2003 - Time-domain VF (TDVF) by S. Grivet-Talocia.

• 2005 - Orthonormal VF (OVF) by Dirk Deschrijver, Tom Dhaene, et al.

• 2006 - Relaxed VF by Bjorn Gustavsen.

• 2006 - VF re-formulated as Sanathanan-Koerner (SK) iteration by W. Hendrickx, Dirk Deschrijver and Tom Dhaene, et al.

History of Vector Fitting (VF)

* B. Gustavsen and A. Semlyen, “Rational approximation of frequency responses by vector fitting,” IEEE Trans. Power Del., vol. 14, no. 3, pp 1052–1061, Jul. 1999

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 91

Measurement Data

Approximation function

Frequency

S-pa

ram

ete r

FrequencyS-

para

met

e r

Approximation function

Measurement Data S-pa

ram

e ter

Frequency

Measurement Data

Approximation function

Low order Medium order Higher order

LT

CT

LT

CT

LT LT

CT

Orders of Approximation

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012

∗ ∗

=

+ ≥ >*

( ) ( ),[ ( ) ( )] , [ ]0 0T T

H s H sz H s H s z s

− ≥ >*( ) ( ) , [ ]0 0TI H s H s s ,for S-parameters.

,for Y or Z-parameters.

= + ⇔ = +[ ] [ ] [ ] ( ) ( ) ( )ω ω ωe o R Ih n h n h n H j H j jH j

•Accurate:- over wide frequency range.

•Stable:- All poles must be in the left-hand side in s-plane or inside in the unit-circle in z-plane.

•Causal:- Hilbert transform needs to be satisfied.

•Passive:- H(s) is analytic

MOR Attributes

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 93

• Bandwidth Low-frequency data must be added

• PassivityPassivity enforcement

• High Order of ApproximationOrders > 800 for some serial linksDelay need to be extracted

MOR Problems

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 94

Length = 7 inches

1.- DISC: Transmission line with discontinuities

2.- COUP: Coupled transmission line2

dx = 51/2 inches

Frequency sweep: 300 KHz – 6 GHz

dxx y

u

z

v

w

Line A

Line B

Examples

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 95

DISC: Approximation order 90

DISC: Approximation Results

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 96

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

30 32 34 36 38 40

Exact

B

A

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

30 32 34 36 38 40

Exact

B

A

1 2Microstrip line with discontinuitiesData from 300 KHz to 6 GHz

Observation: Good agreement

DISC: Simulations

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 97

COUP: Approximation order 75 – Before Passivity Enforcement

COUP: Approximation Results

Copyright © by Jose E. Schutt‐Aine , All Rights ReservedECE 598‐JS, Spring 2012 98

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

30 35 40 45 50

Exact

B

A

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

30 35 40 45 50

Convolution

B

A

Port 1: a – Port 2: dData from 300 KHz to 6 GHz

dxx y

a

b

c

d

Observation: Good agreement

COUP: Simulations