39
ISSN 07479239, Seismic Instruments, 2013, Vol. 49, No. 2, pp. 139–177. © Allerton Press, Inc., 2013. Original Russian Text © A.V. Andreev, O.V. Lunina, 2012, published in Voprosy Ingenernoy Seismologii, vol. 39, no. 2, pp. 37–68. 139 INTRODUCTION The study of secondary deformations in the geolog ical setting induced by earthquakes has always been an important task due to the fact that most of the tangible losses and loss of life are associated with these second ary effects. The effects of soil liquefaction induced by seismic processes are dangerous as well. These effects cause land subsidence manifesta tions, earth flows, and landslides even on stable slopes. Soil eruptions, which can occur separately or as a series along extended seismotectonic cracks, are clearly manifested on the surface (Figs. 1, 2). Evidence of these eruptions can be easily recog nized within a few days after an earthquake because of the occurrence of the specific cones in the relief or sedimentary volcanoes. In the sequence of a bedded formation the ways of movement (injection dikes) of the material through cracks in the earth’s surface are preserved for a much longer period. The liquefaction process is the solid to liquid phase transition of the sedimentary rock due to the water pressure in the pores caused by cyclic seismic effects with a magnitude of M 5 (Youd, 1977). It is believed that at a distance from an earthquake epicenter the liquefaction effects gradually attenuate. However, various abnormal events associated with specific conditions are possible (for example, the nearsurface water table, a small size of grains, and the poor packaging of the structural soil skeleton (Ober meier et al., 2005). In this respect, coastal silty sands and sandy loams are ideal for development of second ary coseismic effects. Anyway, the cases of liquefaction of sandygravel, moraine, and other similar soils dur ing strong seismic events were noted earlier (Seis micheskoe ..., 1977). At this, the areas, where the pro cesses of liquefaction effects have already happened, have a high potential for manifestation of repeated liq uefaction during an earthquake (Iwasaki, 1986). During paleoseismogeological studies the pro cesses of soil liquefaction are regarded as indicators of seismic events that happened in the past (Obermeier et al., 2005). In order to reveal the key parameters of these pro cesses it is necessary to get reliable relationships between all the parameters. This can be achieved by using the actualistic approach to the problem, based on studying the effects of modern earthquakes, whose parameters were instrumentally recorded. Previously, the attempts were made to establish the relations between the spatial characteristics of the coseismic effects of liquefaction effects and some parameters of seismic events for different regions of the world (Kuribayashi and Tatsuoka, 1975; Galli, 2000; Pap athanassiou et al., 2005; etc.). Such studies were not conducted in Southern Siberia (Russia) and Mongolia Earthquake Parameters and Spatial Distribution of Coseismic Effects in Southern Siberia and Mongolia A. V. Andreev and O. V. Lunina Institute of the Earth’s Crust, Siberian Branch, Russian Academy of Sciences, ul. Lermontova 128, Irkutsk, 664033 Russia email: andreev@[email protected] Abstract—In this work we review earthquakes that happened in Southern Siberia and Mongolia within the coordinates of 42°–62° N and 80°–124° E and first propose relationships between earthquake parameters (a surfacewave earthquake magnitude M s and an epicentral intensity(I 0 ) based on the MSK64 scale) and maxi mal distances from an earthquake epicenter (R e max ), hypocenter (R h max ), and a seismogenic fault (R f max ) to the localities of secondary coseismic effects. Special attention was paid to the study of these relationships for the effects of soil liquefaction. Hence, it was shown that secondary deformations from an earthquake were distrib uted in space away from an earthquake epicenter, than from an associating seismogenic fault. The effects of soil liquefaction are manifested by several times closer to a seismogenic fault, than all other effects, regardless of the type of tectonic movement in a seismic focus. Within the 40 km zone from an earthquake epicenter 44% of the known manifestations of liquefaction process occurred; within the 40 km zone from a seismogenic fault—90%. We propose the next relationship for effects of soil liquefaction: M s = 0.007 × R e max + 5.168 that increases the limits of the maximum epicentral distance at an earthquake magnitude of 5.2 M s 8.1 as compared to the corresponding relationships for different regions of the world. Keywords: earthquake magnitude, epicentral distance, secondary coseismic effects, liquefaction, statistical correlations DOI: 10.3103/S0747923913020011

Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

Embed Size (px)

Citation preview

Page 1: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

ISSN 0747�9239, Seismic Instruments, 2013, Vol. 49, No. 2, pp. 139–177. © Allerton Press, Inc., 2013.Original Russian Text © A.V. Andreev, O.V. Lunina, 2012, published in Voprosy Ingenernoy Seismologii, vol. 39, no. 2, pp. 37–68.

139

INTRODUCTION

The study of secondary deformations in the geolog�ical setting induced by earthquakes has always been animportant task due to the fact that most of the tangiblelosses and loss of life are associated with these second�ary effects. The effects of soil liquefaction induced byseismic processes are dangerous as well.

These effects cause land subsidence manifesta�tions, earth flows, and landslides even on stable slopes.

Soil eruptions, which can occur separately or as aseries along extended seismotectonic cracks, areclearly manifested on the surface (Figs. 1, 2).

Evidence of these eruptions can be easily recog�nized within a few days after an earthquake because ofthe occurrence of the specific cones in the relief orsedimentary volcanoes. In the sequence of a beddedformation the ways of movement (injection dikes) ofthe material through cracks in the earth’s surface arepreserved for a much longer period.

The liquefaction process is the solid to liquid phasetransition of the sedimentary rock due to the waterpressure in the pores caused by cyclic seismic effectswith a magnitude of M ≥ 5 (Youd, 1977).

It is believed that at a distance from an earthquakeepicenter the liquefaction effects gradually attenuate.However, various abnormal events associated withspecific conditions are possible (for example, the

near�surface water table, a small size of grains, and thepoor packaging of the structural soil skeleton (Ober�meier et al., 2005). In this respect, coastal silty sandsand sandy loams are ideal for development of second�ary coseismic effects. Anyway, the cases of liquefactionof sandy�gravel, moraine, and other similar soils dur�ing strong seismic events were noted earlier (Seis�micheskoe ..., 1977). At this, the areas, where the pro�cesses of liquefaction effects have already happened,have a high potential for manifestation of repeated liq�uefaction during an earthquake (Iwasaki, 1986).

During paleoseismogeological studies the pro�cesses of soil liquefaction are regarded as indicators ofseismic events that happened in the past (Obermeieret al., 2005).

In order to reveal the key parameters of these pro�cesses it is necessary to get reliable relationshipsbetween all the parameters. This can be achieved byusing the actualistic approach to the problem, basedon studying the effects of modern earthquakes, whoseparameters were instrumentally recorded. Previously,the attempts were made to establish the relationsbetween the spatial characteristics of the coseismiceffects of liquefaction effects and some parameters ofseismic events for different regions of the world(Kuribayashi and Tatsuoka, 1975; Galli, 2000; Pap�athanassiou et al., 2005; etc.). Such studies were notconducted in Southern Siberia (Russia) and Mongolia

Earthquake Parameters and Spatial Distribution of Coseismic Effects in Southern Siberia and Mongolia

A. V. Andreev and O. V. Lunina Institute of the Earth’s Crust, Siberian Branch, Russian Academy of Sciences, ul. Lermontova 128, Irkutsk, 664033 Russia

e�mail: andreev@[email protected]

Abstract—In this work we review earthquakes that happened in Southern Siberia and Mongolia within thecoordinates of 42°–62° N and 80°–124° E and first propose relationships between earthquake parameters (asurface�wave earthquake magnitude Ms and an epicentral intensity(I0) based on the MSK�64 scale) and maxi�mal distances from an earthquake epicenter (Re max), hypocenter (Rh max), and a seismogenic fault (Rf max) to thelocalities of secondary coseismic effects. Special attention was paid to the study of these relationships for theeffects of soil liquefaction. Hence, it was shown that secondary deformations from an earthquake were distrib�uted in space away from an earthquake epicenter, than from an associating seismogenic fault. The effects of soilliquefaction are manifested by several times closer to a seismogenic fault, than all other effects, regardless of thetype of tectonic movement in a seismic focus. Within the 40 km zone from an earthquake epicenter 44% of theknown manifestations of liquefaction process occurred; within the 40 km zone from a seismogenic fault—90%.We propose the next relationship for effects of soil liquefaction: Ms = 0.007 × Re max + 5.168 that increases thelimits of the maximum epicentral distance at an earthquake magnitude of 5.2 ≤ Ms ≤ 8.1 as compared to thecorresponding relationships for different regions of the world.

Keywords: earthquake magnitude, epicentral distance, secondary coseismic effects, liquefaction, statisticalcorrelations

DOI: 10.3103/S0747923913020011

Page 2: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

140

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

ANDREEV, LUNINA

at that time. Anyway, systematic instrumental seismo�logical observations within these regions began in the1950s. Since that time the detailed macroseismicresearches of earthquake effects have been carried out.Based on these research data our work is aimed at pre�senting regional relationships between the earthquakeparameters (a surface�wave earthquake magnitude(Ms) and an epicentral intensity (I0) after the MSK�64scale) and maximum distances from an epicenter(Re max), hypocenter (Rh max) and a seismogenic fault(Rf max) to areas of manifestation of the secondarycoseismic effects.

SOURCE DATA AND RESEARCH METHODS

For our purpose we have collected the data on sec�ondary coseismic effects in the geological settinginduced only by the instrumentally recorded earth�quakes over the period of 1950–2008. The seismicevents studied that occurred throughout the vast areawithin the coordinates of 42°–62° N and 80°–124° E(Northeast Kazakhstan, Mongolia, and throughoutthe entire territory of Southern Siberia in Russia) (Fig. 3).The regions studied are mainly confined to the Baikalrift system and the mountain structures of Altai andMongolia, large segments of the earth’s crust, devel�oped in different geodynamic settings.

The data obtained are included into the database(see the Appendix), which consists of three sections:the earthquake parameters, as well as the characteris�tics of both the points and a source. The last sectionpresents the main references to the published materi�

als and modern seismic catalogs. However, during ourstudy we compare archival and field data, interactiveresources (for example, resources, cited in (Luninaet al., 2010)), as well as out�of�date seismic bulletins.

The section of earthquake parameters includes aserial number of the coseismic effect, the earthquakename, established in the scientific literature and thekey parameters, such as the date (GMT) of the mainshock (in the format of yyyy.mm.dd), geographic lati�tude and longitude of the earthquake epicenter (indecimal degrees), the surface�wave earthquake mag�nitude, the epicentral intensity based on the MSK�64scale, the hypocenter depth of the main shock, thefocal mechanism of the earthquake, and the associatedseismogenic fault.

The characteristics of the point contains informa�tion on its geographic location, the manifestation of acoseismic effect, the epicentral distance, the distancefrom a seismogenic fault, as well as the type of second�ary coseismic effects, according to Table 1.

The coseismic effects (Table 1) were classifiedbased on the analysis of the published data aboutearthquakes, occurring in the area of study and otherregions of the world. Table 1 presents the well�knowntypes of coseismic effects in the geological setting,induced by seismic events, including seismic effects onman�made constructions, indirectly points to devel�opment of these effects.

All the effects are divided into five types based ontheir morphological and genetic features. They arecoded by the first letters of the Latin alphabet and aredivided into more fractional units: 20 sections and

0 30 60cm

Fig. 1. Double�headed mud volcano on the left side of the Chagan�Uzun River valley, formed during the Chuya earthquake(M = 7.5) on September 27, 2003.

Page 3: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

EARTHQUAKE PARAMETERS AND SPATIAL DISTRIBUTION 141

Fig. 2. Mud eruption craters, arranged linearly on the leftside of the Chagan�Uzun River valley induced by theearthquake (M = 7.5) on September 27, 2003. The conesvary from 0.25 to 1.7 m in diameter.

12 sub�sections, with the addition of digital signs tothe code letters.

Thus, each type of coseismic effect has its own per�sonal identity, which is useful when operating withlarge sets of information.

The database (see the Appendix) provides informa�tion about 276 points, where coseismic deformationswere described, and about 53 earthquakes (magni�tudes of 4.1 ≤ Ms ≤ 8.1 and epicentral intensities of5⎯6 ≤ I0 ≤ 11 points) that caused these deformations.As is seen in Figure 4, the samples on intensities (Ms)of seismic events and the types of effects are represen�tative relative to distribution within populations.

The cases of coseismic effects of soil liquefactioncorrespond uniquely to sections of A1 and A2 of typeA and the section B1 of type B, which is 16% of thetotal sample, or 45 points. The other effects were a pri�ori excluded because of difficulties in interpretingtheir origin. For example, formation of a seismogeniclandslide can be associated not only with the process ofliquefaction, but with the gravitational displacementof the material along the metastable fault plane.

Mechanisms of coseismic effects induced by seis�mic processes on technogenic constructions, such assoil subsidence and the damage to the basements ofconstructions in the area of study is of unclear nature.There are cases when such deformations occurredeven at weak seismic events due to design and con�struction flaws, a high level of wear, and some otherreasons (Demin and Tat’kov, 1996).

It should be noted that for our purpose we haveused parameters of earthquakes mainly from modernseismic catalogs and distances to the areas of mac�roseismic surveys (data given by different authors)were re�evaluated using mapping software (MapInfoand Google Earth). The Rf parameter was measured asthe nearest distance from the area of soil liquefactionmanifestation to a seismogenic fault plane on the sur�face.

RESULTS

The equations describing the boundary curveresults obtained during our work are summarized inTable 2.

In addition, formulas with the inverse correlationfor convenient calculation are given here.

Figures 5 and 6 present the plots of the spatial dis�tribution of secondary coseismic effects in depen�dence on an earthquake magnitude (Ms) and its inten�sity in the epicenter (I0 on the MSK�64 scale). As seenfrom the boundary relations obtained the liquefactionof soil can cause earthquakes with Ms ≥ 5.2. In addi�tion, the distance from an earthquake epicenter wheresuch effects are manifested is 1.8–2.3 times (2 timeson average) lower than this for all the effects in thegeological setting (Eqs. (2), (10)). The thresholdintensity (I0) for the process of seismogenic liquefac�

tion is 6–7 on the MSK�64 scale. The liquefactionstructures are located 7.1–14.2 (10 times on average)times closer to the seismogenic fault than all coseismiceffects in the geological setting (Eqs. (4), (12)). Thesame situation is seen in Fig. 7a; more than half (71%)of all the effects of soil liquefaction are located withina distance of about 20 km, and 90% are within 40 kmfrom a fault zone.

The distribution of liquefaction effects at a distancefrom an earthquake epicenter is somewhat different(Fig. 7b). Within a distance of 20 km, 15% of all caseshappened; within 40 km—44%, that is 2 times less onaverage, than the same data for cases of the liquefac�tion effects recorded in Italy (66 and 86%, respec�tively) (Galli, 2000). According to our field research,one should expect manifestations of liquefactionstructures in sedimentary sequences at nearly the samedistances from a seismic source (Obermeier et al.,2005).

Earthquake epicenters vary from 2 to 40 km in theirdepth, and the distribution within the sample indicatesits representativeness (Fig. 8a). In total, the database(see the Appendix) contains areas (16.3% from thissample are areas, where the effects of soil liquefactionwere manifested) with known depths of hypocenters,where manifestations of coseismic deformations wererecorded.

Page 4: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

142

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

ANDREEV, LUNINA

62°

80°

42°

52°

90° 100° 110° 120°

1934

45 36

50

40

25

28

267

5

21

116 8

383

13

2

1044

52

2032

43

2418

31 48

1749

4212 33

23

47

41 29 30 51

15

46

14

27

39

9

11 37

622 35

4

RUSSIA

KAZAKHSTAN

CHINA

MONGOLIA

Baikal Lake

CHINA

W

N

E

S

0 250 500 km

4.0 ≤ M ≤ 5.0

6.1 ≤ M ≤ 7.05.1 ≤ M ≤ 6.0

M > 7.0

Fig. 3. Geographic location of the area of study and distribution of the earthquake epicenters (earthquake descriptions are givenin the Appendix).Earthquakes:1—Mondy earthquake (Ms = 7.0) on April 4, 1950; 2—Erdenekhan earthquake (Ms = 5.8) on January 1, 1951; 3—Buteliinskoeearthquake (Ms = 6.5) on February 6, 1957; 4—Muya earthquake (Ms = 7.6) on June 27, 1957; 5—Gobi�Altai earthquake (Ms =8.1) on December 4, 1957; 6—Nyukzha earthquake (Ms = 6.5) on January 5, 1958; 7—Bayan Tsagan earthquake (Ms = 6.9) onApril 7, 1958; 8—Saikhan earthquake (Ms = 6.2) on June 23, 1958; 9—Olekma earthquake (Ms = 6.5) on September 14, 1958;10—Kyren earthquake (Ms = 5.5) on October 22, 1958; 11—an earthquake (Ms = 4.8) on November 2, 1958; 12—Middle Baikalearthquake (Ms = 6.8) on August 29, 1959; 13—Buryn�Khyar earthquake (Ms = 6.7) on December 3, 1960; 14—Svyatoi Nosearthquake (Ms = 5.5) on October 28, 1961; 15—Muyakan earthquake (Ms = 6.0) on November 11, 1962; 16—an earthquake(Ms = 4.5) on January 8, 1963; 17—an earthquake (Ms = 5.5) on February 10, 1963; 18—an earthquake (Ms = 4.5) on October17, 1964; 19—Kamenskoe earthquake (Ms = 5.3) on February 15, 1965; 20—an earthquake (Ms = 5.5) on August 30, 1966; 21—Mogod earthquake (Ms = 7.8) on January 5, 1967; 22—Tas�Yuryakh (Ms = 7.0) on January 18, 1967; 23—Svyatoi Nos earth�quake (Ms = 4.8) on November 24, 1968; 24—an earthquake (Ms = 5.5) on March 28, 1970; 25—Ureg�Nur earthquake(Ms = 7.0) on May 15, 1970; 26—Tahiynshar earthquake (Ms = 6.9) on July 4, 1974; 27—Melichan earthquake (Ms = 5.2) onOctober 8, 1974; 28—Bulgan earthquake (Ms = 5.7) on March 31, 1975; 29—Uoyan�1 earthquake (Ms = 5.2) on November 2,1977; 30—Uoyan�2 earthquake (Ms = 4.7) on June 4, 1977; 31—Orongoi earthquake (Ms = 5.1) on October 2, 1980; 32—anearthquake (Ms = 5.6) on May 22, 1981; 33—an earthquake (Ms = 5.2) on May 27, 1981; 34—an earthquake (Ms = 4.2) onNovember 27, 1985; 35—Dyrynda earthquake (Ms = 4.9) on July 7, 1987; 36—Tashtagol earthquake (Ms = 4.1) on May 2, 1988;37—South Yakutsk earthquake (Ms = 6.6) on April 20, 1989; 38—an earthquake (Ms = 5.8) on May 13, 1989; 39—an earthquake(Ms = 5.4) on October 25, 1989; 40—Zaisan earthquake (Ms = 6.9) on June 14, 1990; 41—an earthquake (Ms = 5.1) on October26, 1990; 42—an earthquake (Ms = 4.2) on February 27, 1993; 43—an earthquake (Ms = 4.8) on July 13, 1993; 44—Elovskoeearthquake (Ms = 5.9) on June 29, 1995; 45—Prokop’evskoe earthquake (Ms = 4.7) on September 14, 1995; 46—South Baikalearthquake (Ms = 6.1) on February 25, 1999; 47—Kichera earthquake (Ms = 5.8) on March 21, 1999; 48—Ust’�Selenga earthquake(Ms = 4.3) on October 10, 2001; 49—Olkhon earthquake (Ms = 5.0) on July 28, 2002; 50—Chuya earthquake (Ms = 7.5) on Sep�tember 27, 2003; 51—an earthquake (Ms = 4.4) on July 6, 2004; 52—Kultuk earthquake (Ms = 6.1) on August 27, 2008; The Artykearthquake (on May 18, 1971; Ms = 7.1) is not shown. Coseismic effects were spread throughout the area of study.

Based on the known epicentral distances, the (Re)distances from a hypocenter Rh to the suites of mani�festation of these effects were estimated.

The relationship obtained (Eq. (31)) between theMs and Rh max for these points are shown in Fig. 8b. TheMs–Rh curve (Eq. (31)) is similar in its slope and con�figuration to the Ms–Re curve in Fig. 6a, and differ�ences in identical values of both these curves are notsignificant.

Previously, the relations between R for the effects ofliquefaction and Ms describing the upper and lowerboundary lines, respectively, were proposed for theearthquakes in Turkey (Aydan et al., 2000):

R = 36Ms – 160; (33)R = 36Ms – 240. (34)

In the work (Wang et al., 2006), which contains a largeset of the world’s seismic data, the following relation isgiven:

log(Rmax) = 2.05(±0.10) + 0.45M, (35)

where Rmax is the maximum distance from a hypo�center to the locality of effects of liquefaction (m);M is the main shock magnitude. In this equation,M > 4 is the necessary condition for most of the earth�quakes occurring at a depth of about 10 km. However,a series of underground explosions carried relativelymuch closer to the earth’s surface allowed us to recordthe effects of liquefaction for the equivalent seismicevent with a magnitude of M ~ 2.

The plot of comparison of our results with theabove�mentioned results (Fig. 8b) clearly demon�

Page 5: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

EARTHQUAKE PARAMETERS AND SPATIAL DISTRIBUTION 143

Table 1. Classification of secondary coseismic effects in the geological setting

Type Description of the type Section Description of Section Sub�section Description of Sub�section

A

Effects associated with the liquefaction and fluidization processes in soils and hydrogeo�logical anomalies

A1Blows of water�saturated sedimentary material through cracks in the ground

A1�1Sedimentary volcanoes (cones, gryphons), formed on the surface

A1�2 Injection dykes and/or sills in the sedimentary sequence

A1�3 Microdykes in the sedimentary sequence

A1�4 Fold deformations in the sedimentary sequence

A1�5 Boudine�like structures in the sedimentary sequence

A1�6

Other types of seismogenic structures and the effects of soil liquefaction manifested in the sedimentary sequence

A2 Water flow through cracks in the ground

A2�1 Formation of springs

A2�2 Disappearance of sources

A3 Water flowing (sloshing) in ice�holes and ice cracks

A4The water level change (flow rate) in ponds (wells, boreholes)

A4�1 Variations in water temperature

A4�2

Variations in the chemical composition of water (includ�ing contamination by sedimen�tary material, gas emission, etc.)

B Cone�shaped soil subsidence

B1

Cone�shaped soil subsidence structures formed on the spot previously occurred eruptions of water�saturated sedimen�tary material (calderas)

B2Cone�shaped subsidence structures, confined to the seismotectonic cracks

B3 Cone�shaped subsidence structures of unclear origin

C Secondary seismogenic rupture deformations

C1 Cracks in bedrocks

C2 Cracks in the ground

C2�1Contraction cracks (shafts / mounds) on the surface

C2�2 Neptunian dykes in the sedimentary sequence

C3 Ice cracks

C4 Cracks in technogenic deposits

Page 6: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

144

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

ANDREEV, LUNINA

strates that our data significantly increase the fieldbounded by the curves (Eqs, (33), (34)), proposed in(Aydan et al., 2000). In addition, the maximum hypo�central distance for the effects of liquefactionincreases in comparison with the curve (Eq. (35)) forthe range of 5.3 ≤ Ms ≤ 7.8. It should be noted that thisdifference is based on the data recorded at the samearea with the coordinates of Ms = 6.5 and Rh = 182 kmon the plot.

The area of study is characterized by an occurrenceof almost all known types of mechanisms of an earth�quake with a predominance of the shear componentalong a seismogenic fault (Fig. 9a). The total numberof points with manifested coseismic effects in thisdataset is 239 (see the Appendix). Among them 36% ofcases refer predominantly to the normal fault type ofmovement, 60%—to shear fault type, and only 4%—to thrust fault type. The effects of soil liquefaction aremanifested in 18% of the total sample. Most of theareas (93%) with such effects are characterized by apredominance of shear fault displacement in an epi�center. The boundary curves obtained of relationsbetween Ms and a distance from an earthquake epicen�ter (Re) and a seismogenic fault (Rf) to the areas ofcoseismic effects are shown in Fig. 9b; the corre�sponding equations are given in Table 2.

All the relationships declared were obtained for thepredominant shear fault type of tectonic movements.It is seen that the boundary curves of Ms–Re and Ms–

Rf (Eqs. (23), (25), respectively) for all the coseismiceffects coincide. Approximately from Ms = 7 thesecurves almost merge into a single curve.

At the same Ms value there is another pattern fortwo boundary curves (Ms–Re and Ms–Rf) for theeffects of liquefaction (Eqs. (27), (29), respectively).Here, there is a tendency of localization of liquefac�tion structures closer to a seismogenic fault zone thanto an earthquake epicenter, even for high magnitudeearthquakes. In general, when comparing the spatialdistribution of the effects of liquefaction and all othereffects in the geological setting for the specific mecha�nism of an earthquake, we have obtained the next results:the effects of liquefaction attenuate 2.1–5.6 times(3.7 times on average) quicker at a distance from anearthquake epicenter.

For the tectonic movements in a seismic focus withthe predominant shear component the relationships(Ms–Re and Ms–Rf) were obtained only for the coseis�mic effects, that is, respectively, the boundary curves 19and 21 in Figure 9b. It is difficult to evaluate the behaviorof the curves relative to each other due to the small sam�ple. In general, beginning from Ms = 5.5 coseismic defor�mations spread farther from an earthquake epicenterthan from a seismogenic fault. However, with anincrease in the earthquake magnitude by an order,such tendency is not noted. Such relationships for theeffects of soil liquefaction were not obtained becauseof the unrepresentative sample (only 3 areas). Alterna�

Table 1. (Contd.)

Type Description of the type Section Description of Section Sub�section Description of Sub�section

D Seismogravitational movement of the material

D1 Rock falls

D2 Rockslides

D3 Screes

D4 Landslides

D5 Avalanches

D6 Mudslides

E

Coseismic effects which indi�rectly point to development of deformations in the geological setting

E1

Undulations of the earth’s surface, the surface of an undulation in a pond on the earth’s surface and techno�genic surface

E2

Complete destruction, incli�nation, subsidence, crash sound, damage to the base�ments of buildings, poles, and trees

E3

Boom, thunder, smoke, and dust, clearly indicating the manifestation of coseismic deformations on the earth’s surface

Page 7: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

EARTHQUAKE PARAMETERS AND SPATIAL DISTRIBUTION 145

35

30

25

20

15

10

5

0

(a)4.

14.

34.

54.

74.

95.

15.

35.

55.

75.

96.

16.

36.

56.

76.

97.

17.

37.

57.

77.

98.

1

MS

14

12

10

8

6

4

2

0

(b)

A�1

A1�

1A

1�2

A1�

3A

1�4

A1�

5A

1�6

Type of a coseismic effect

Frequency of occurrence, %

A2

A2�

1A

2�2

A3

A4

A4�

1A

4�2

B1

B2

B3

C1

C2

C2�

1C

2�2

C3

C4

D1

D2

D3

D4

D5

D6

E1

E2

E3

Fig. 4. Frequency distributions of earthquake magnitudes in the studied points (a) and the earthquake�related secondary coseis�mic effects (%), according to the accepted classification (Table 1) (b).

tively, the relationship for cases of liquefaction mani�festation in the Aegean region was c

Ms = 0.021Re max + 5.3, (36)

provided that 5.5 ≤ Ms ≤ 7.1 and the focal mechanismis a normal fault.

Curve 36 corresponding to this equation is similarin its configuration to curve 19 (Fig. 9b). At the same

value of Ms these boundary curves differ 3.1–12.3 times(6.7 times on average).

The only Ms–Re relationship (Eq. (17); curve 17)was obtained for predominantly thrust faults in anearthquake epicenter. It is seen that all the effectsattenuate at a distance from an earthquake epicenter,increasing exponentially (for example, Ms = 6.7,Re max = 51 km). It is likely that if the processes ofcoseismic liquefaction are induced by earthquakes of

9

8

7

6

5

410008002000 400 600

(a) (b)MS

M S –

R e(n =

276)

M S –

R f(n =

122)

Secondary coseismic effe

cts

are absent in th

e geological

setting

12

10

9

7

6

510008002000 400 600

I0

I 0 –

R e(n =

275)

I 0 –

R f(n =

121)

Secondary coseismic effe

cts

are absent in th

e geological

setting

11

8

Rmax

Fig. 5. The comparison plots: (a)—earthquake magnitude (Ms) vs. epicentral maximum distance (Rmax). The plot shows evi�dence of secondary coseismic effects in the geological setting relative to an epicentral distance (Ms–Re curve) and seismogenicfault (Ms–Rf curve); (b)—earthquake intensity in an epicenter I0 after the MSK�64 scale vs. epicentral maximum distance(Rmax). The plot shows evidence of secondary coseismic effects in the geological setting relative to an epicentral distance (I0–Recurve) and the seismogenic fault (I0–Rf curve).Black circles are the spatial distribution of the coseismic effects in a distance from an earthquake epicenter; n—number of localities.

Page 8: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

146

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

ANDREEV, LUNINA Table 2. The equations of the boundary curves presented in this work

Relationship Equation No of equation

Ms/Re (for all effects, n = 276) Ms = 4.192log(Re max – 4.254) (1)

Re/Ms (for all effects, n = 276) Re max = 10.42 (2)

Ms/Rf (for all effects, n = 122) Ms = 0.004Rf max + 4.264 (3)

Rf/Ms (for all effects, n = 122) Rf max = 232.577Ms – 988.527 (4)

I0/Re (for all effects, n = 275) I0 = 5.362 (5)

Re/I0 (for all effects, n = 275) Re max = 2937.719log(I0) – 2141.737 (6)

I0/Rf (for all effectFs, n = 121) I0 = 0.006Rf max + 5.543 (7)

Rf/I0 (for all effects, n = 121) Rf max = 165.942I0 – 919.553 (8)

Ms/Re (for the effects of soil liquefaction, n = 45) Ms = 0.007Re max + 5.168 (9)

Re/Ms (for the effects of soil liquefaction, n = 45) Re max = 147.156Ms – 759.566 (10)

Ms/Rf (for the effects of soil liquefaction, n = 31) Ms = 0.013Rf max + 6.41 (11)

Rf/Ms (for the effects of soil liquefaction, n = 31) Rf max = 76.923Ms – 493.077 (12)

I0/Re (for the effects of soil liquefaction, n = 45) I0 = 4.282 (13)

Re/I0 (for the effects of soil liquefaction, n = 45) Re max = 8 × 10– 5 (14)

I0/Rf (for the effects of soil liquefaction, n = 31) I0 = 3.543log(Rf max) + 3.555 (15)

Rf/I0 (for the effects of soil liquefaction, n = 31) Rf max = 0.109 (16)

Ms/Re (for all effects, focal mechanism–thrust fault, n = 9) Ms = 3.131 (17)

Re/Ms (for all effects, focal mechanism–thrust fault, n = 9) Re max = 155.194log(Ms) – 75.912 (18)

Ms/Re (for all effects, focal mechanism–normal fault, n = 86) Ms = 3.753 (19)

Re/Ms (for all effects, focal mechanism–normal fault, n = 86) Re max = 739.274log(Ms) – 424.262 (20)

Ms/Rf (for all effects, focal mechanism–normal fault, n = 50) Ms = 5.12 (21)

Rf/Ms (for all effects, focal mechanism–normal fault, n = 50) Rf max = 1487.239log(Ms) – 1054.226 (22)

Ms/Re (for all effects, focal mechanism–strike�slip fault, n = 144) Ms = 2.307log(Re max) + 1.354 (23)

Re/Ms (for all effects, focal mechanism–strike�slip fault, n = 144) Re max = 0.275 (24)

Ms/Rf (for all effects, focal mechanism–strike�slip fault, n = 64) Ms = 1.837log(Rf max) + 2.658 (25)

Rf/Ms (for all effects, focal mechanism–strike�slip fault, n = 64) Rf max = 0.036 (26)

Ms/Re (for the effects of soil liquefaction, focal mechanism–strike�slip fault, n = 40)

Ms = 1.164log(Re max) + 5.022(27)

Re/Ms (for the effects of soil liquefaction, focal mechanism–strike�slip fault, n = 40) Re max = 5 × 10–5 (28)

Ms/Rf (for the effects of soil liquefaction, focal mechanism–strike�slip fault, n = 30)

Ms = 1.446log(Rf max) + 5.046(29)

Rf/Ms (for the effects of soil liquefaction, focal mechanism–strike�slip fault, n = 30) Rf max = 0.0003 (30)

Ms/Rh (for the effects of soil liquefaction, n = 39) Ms = 0.007Rh max + 5.147 (31)

Rh/Ms (for the effects of soil liquefaction, n = 39) Rh max = 146.114Ms – 751.017 (32)

Note: Ms—surface�wave earthquake magnitude ; Re—epicentral distance (km); Rf—distance from a seismogenic fault (km); Rh—hypocentral distance (km); n—number of points.

e0.548Ms

e0.001Re max

Re max0.15

I06.538

e0.64I0

e0.014Re max

e0.003Re max

e0.002Rf max

e0.989Ms

e1.253Ms

e1.978Ms

e1.589Ms

Page 9: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

EARTHQUAKE PARAMETERS AND SPATIAL DISTRIBUTION 147

9

8

7

6

55004001000 200 300

(a) (b)

MS

M S –

R e(n =

45)

MS –

Rf(n

= 3

1)

Effects

of soil l

iquefaction

are absent

12

10

9

7

65004001000 200 300

I0

I0 – Re(n

= 45)

I 0 –

Rf(n

= 3

1)

11

8

Rmax

Effects

of soil l

iquefaction

are absent

Fig. 6. The comparison plots: (a)—earthquake magnitude (Ms) vs. epicentral maximum distance (Rmax). The plot shows evi�dence of the effects of soil liquefaction relative to the epicentral distance (Ms–Re curve) and seismogenic fault (Ms–Rf curve);(b)—earthquake intensity in the epicenter I0 based on the MSK�64 scale vs. epicentral maximum distance (Rmax). The plotshows evidence of the effects of soil liquefaction in the geological setting relative to the epicentral distance (I0–Re curve) and theseismogenic fault (I0–Rf curve).Black circles (Figs. 6, 8) show the spatial distribution of the effects of soil liquefaction in a distance from the earthquake epicenter;n—number of points.

100

80

70

50

40

30

20

10

0

300

(a)(b)

200

100908070605040302010

Distance of a fault, km

90

60

Number of effects, %

100

80

70

50

40

30

20

10

0

300

200

100908070605040302010

Epicentral distance, km

90

6040

0

500

1000

1

2

Fig. 7. The spatial distribution of secondary coseismic effects (%) vs. the distance from a seismogenic fault (a) and an earthquakeepicenter (b). 1—all the effects; 2—effects of soil liquefaction.

this type, they will be manifested only within the firstfew kilometers from an earthquake epicenter and aseismogenic fault. It is possible that this propositioncan explain the fact that such liquefaction structuresare not still described in the literature.

DISCUSSION OF RESULTS

The problem of the relationship between earth�quake parameters and the spatial distribution ofcoseismic effects of soil liquefaction was previouslyconsidered by other researchers. Thus, in (Kuribayashi

Page 10: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

148

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

ANDREEV, LUNINA

and Tatsuoka, 1975) an equation based on the datafrom 32 historic seismic events is proposed:

log(Re) = 0.77Mj – 3.60, (37)

where Re is the maximum epicentral distance (km), Mj

is the earthquake magnitude used by the JapaneseMeteorological Agency (JMA).

In (Wakamatsu, 1993) the above�mentioneddataset (Kuribayashi and Tatsuoka, 1975) was added tothe information about 46 Japanese earthquakes and asomewhat different Re max(km)–Mj relation was pro�posed:

log(Re max) = 3.5log(1.4Mj – 6.0). (38)

(b)9

8

6

55004001000 200 300

MS

M S – R h

7

Hypocentral distance, km

Ýôôåêòû ðàçæèæåíèÿ

ãðóíòà îòñóòñòâóþò

50

40

30

20

10

021

(a)

19181716141311106–9

3–4

2

Focal depth, km

60

Number of localities

1

(33)(34)

(35)

(31)

5 12 15 20 22 23–

2425 26 27 28

–29

30 31–

3940

Effects o

f soil l

iquefaction are absent

Fig. 8. Plots of the frequency distribution of focal depths of earthquakes in the points studied (a) and the maximum hypocentraldistance vs. an earthquake magnitude Ms, demonstrating the manifestation of the effects of soil liquefaction Rh (b).The numbers in parentheses on plots (Figs. 8, 9) correspond to the equations of the boundary curves (see in the text).

70

60

50

40

30

20

10

0

Diag

onal sli

p fault

Strike�

slip

Strike�

slip fa

ult

Transp

ressi

onal fa

ult

Obliq

ue�sli

p thru

st

Thrust

fault

Norm

al fa

ult

Focal mechanism

(a) (b)

36%

60%

4%

1

Number of localities

9

8

6

410008002000 400 600

MS

7

Distance, km

(23)

(29)

(36)

(17)

Secondary coseismic effe

cts

are absent in th

e geological settin

g

(19)

(21)

(25)

(27)

5

Fig. 9. Plots of the frequency distribution of earthquake focal mechanisms in the points studied (a) and the maximum distancesfrom the earthquake epicenter and the seismogenic fault vs. earthquake magnitude Ms, demonstrating the manifestation of theeffects of soil liquefaction R (b), depending on the type of faults (b).1—effects of soil liquefaction.

MS – Rh

Page 11: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

EARTHQUAKE PARAMETERS AND SPATIAL DISTRIBUTION 149

The average relationship between the epicentraldistance R (km) and Richter’s magnitude ML for thecases of coseismic liquefaction in China was proposedin (Liu and Xie, 1984):

(39)In (Ambraseys, 1988) the world’s macroseismic

dataset of cases of coseismic liquefaction induced bysmall and medium earthquakes was used to evaluatethe relationship between a boundary epicentral dis�tance Re max (in cm) and a magnitude of the seismicmoment MW using the equation

MW =– 0.31 + 2.65 × 10–8Re max + 0.99log(Re max). (40)The data, collected in (Ambraseys, 1988) were

added by new data on 30 earthquakes in Greece, aswell as individual seismic events in the USA, New

R 0.82 100.862 ML 5–( )

.×=

Zealand, Venezuela, Iran, and the Philippines (Papa�dopoulos, Lefkopoulos, 1993). According to this workthe equation is as follows:

MW = –0.44 + 3 × 10–8Re max + 0.98log(Re max), (41)where Re max was measured in centimeters. In addition,the relations were calculated separately for the seismicevents in Greece:

Ms = 3.686 + 1.584log(Re max), (42)provided Ms > 5.9 and

Ms = 5.647 + 0.181log(Re max), (43)provided 5.8 ≤ Ms ≤ 5.9.

The Re max values in both equations were measuredin kilometers.The relationship of a somewhat different type, basedon the data for Greece earthquakes between the max�

Table 3. The plot displaying the relationship between the Re max (km) values obtained for the effects of coseismic soil lique�faction and Ms based on the plots proposed by different authors

Parameter Ms = 5.5 Ms = 6.0 Ms = 6.5 Ms = 7.0 Ms = 7.5 Ms = 8.0 Source

Re max, km

7 15 30 62 125 213 (Kuribayashi and Tatsuoka, 1975)

3 6 13 24 29 30 (Liu and Xie, 1984)

13 28 59 117 221 344 (Ambraseys, 1988)

18 35 71 142 255 375 (Papadopoulos and Lefkopoulos, 1993)

14 32 61 107 173 239 (Wakamatsu, 1993)

20 28 41 59 86 (Galli, 2000)

7 22 55 101 162 (Papathanassiou et al., 2005)

50 123 197 271 344 418 Our data

8

7

6

54001000 200 300

(a)MS

Effects o

f soil l

iquefaction are absent

MS – Re

MS – Rf

8

7

6

5Rmax, km 1000 200 300

(b)MS

1 2 3 4 5 6 7 8 9 10

Effects o

f soil l

iquefaction are absent

Fig. 10. The comparison plot of the Ms boundary curves and the maximum distances from the earthquake epicenter Re, km (a)and from a seismogenic fault Rf, km (b) (our data) vs. the data from earlier studies (Tables 3 and 4):1—(Kuribayashi and Tatsuoka, 1975), 2—(Youd and Perkins, 1978), 3—(Liu and Xie, 1984), 4—(Ambraseys, 1988), 5—(Pap�adopoulos and Lefkopoulos, 1993), 6—(Wakamatsu, 1993), 7—(Galli, 2000), 8—(Papathanassiou et al., 2005), 9—our data,10—effects of soil liquefaction.

Page 12: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

150

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

ANDREEV, LUNINA

imum epicentral distance from the area of manifesta�tion of the liquefaction effects Re max (km) and anearthquake magnitude Ms was obtained later and givenin (Papathanassiou et al., 2005):

(44)

provided 5.5 ≤ Ms ≤ 7.2. In (Papathanassiou et al.,2005) the relation was proposed for a wider areaincluding the Aegean Region:

Ms = 4.742 + 4.655Re max + 0.8907log(Re max), (45)provided that 5.5 ≤ Ms ≤ 7.6. In this work, authors usedthe dataset on areas of soil liquefaction for 88 earth�quakes in Greece, Turkey, Bulgaria, Albania, andMontenegro that happened over the period from 1509to 2003; most of these earthquakes (55) happened inGreece.

The empirical relationships between a surface�wave earthquake magnitude (MS = 4.2–7.5) and athreshold distance for the liquefaction effects (Re, km)for instrumentally recorded seismic events in Italy overthe period of 1900–1990 were overestimated in (Galli,2000):

Ms = 1.5 + 3.0log(Re). (46)We have compared our results (Table 3; Fig. 10a)

with relationships between the maximum distances,obtained using the above�mentioned relationshipsfrom an earthquake epicenter to the areas of liquefac�tion manifestations and the Ms values given in (Heatonet al., 1986).

The plot (Fig. 10a) shows that our data significantlyincrease the threshold for the possibility of manifesta�tions of the effects of soil liquefaction induced by seis�mic events with magnitudes varying from Ms = 5.2 toMs = 8.1.

Provided that Ms < 5.2, Eq. (46) described theboundary curve (Galli, 2000). This is probably causedby regional hydrogeological and climatic conditionsthroughout the territory of Southern Siberia andMongolia, where distribution of groundwater and sea�sonal permafrost in the geological setting can greatlyaffect the soil. In addition, a similar situation is shownin Fig. 8b. As in the previous case, such an increase inthe threshold of liquefaction is based on the data fromthe same area with the coordinates on Ms = 6.5 andRe max = 180 km on the plot. This area corresponds to

Ms 5.322 e0.046 Re max×

,×=

the Olekma earthquake that happened on September 14,1958 (no. 88, see the Appendix). Then, in the north�eastern part of the Chara River basin, 180 km from theepicenter a gryphon of up to 25 m high formed, therewere pulses of mud eruptions, and the water flow rateincreased in general (Solonenko et al., 1966). Sincethere is no reason not to trust this source of macroseis�mic information it seems necessary to increase thethreshold epicentral distance for the effects of soil liq�uefaction at 5.2 ≤ Ms ≤ 8.1.

The idea of measuring the distances from a seis�mogenic fault to the areas of soil liquefaction manifes�tation, but not from an epicenter of earthquakes in theUSA was presented in graphical form in (Youd andPerkins, 1978). Later, other authors proposed similarrelationships for the rest of the world (Ambraseys,1988; Papadopoulos and Lefkopoulos, 1993; Papatha�nassiou et al., 2005). All the relationships previouslyobtained using the Ms magnitude values from (Heatonet al., 1986) and our results are shown in Fig. 10b; theresults of comparison of the Rf max values are shown inTable 4.

It is evident that several curves bound the maxi�mum area of manifestation of liquefaction effects(shaded in gray in Fig. 10b) at a distance from a fault.Therefore, a further review of all the data available isnecessary to obtain the general threshold relationship.The curve, obtained during our work is not a boundary,since it is located inside the area shaded.

In general, it is necessary to state the fact thatcoseismic liquefaction effects extend further from anearthquake epicenter than from an associated fault(Fig. 10). This fact is confirmed by an analysis of allthe data available. This can be caused by the fact thatan earthquake epicenter on the earth’s surface is onlythe point of the hypocenter projected on the surfaceand a disjunctive structure is the line of an extendedfault plane. It is obvious that there exists a close rela�tionship between the liquefaction structures and aseismogenic fault with fairly wide dynamic range(Sherman et al., 1983), which is more disturbed thanthe surrounding setting.

Table 4. The comparison of the Rf max (km) values obtained for the effects of coseismic soil liquefaction and Ms based on theplots proposed by different authors

Parameter Ms = 5.5 Ms = 6.0 Ms = 6.5 Ms = 7.0 Ms = 7.5 Ms = 8.0 Source

Rf max, km

3 7 19 47 120 160 (Youd and Perkins, 1978)

13 24 42 71 115 162 (Ambraseys, 1988)

17 30 50 83 139 175 (Papadopoulos and Lefkopoulos, 1993)

1 20 59 114 (Papathanassiou et al., 2005)

45 84 122 Our data

Page 13: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

EARTHQUAKE PARAMETERS AND SPATIAL DISTRIBUTION 151

CONCLUSIONS

The review of the instrumentally recorded seismicevents over the period of observations within the coor�dinates of 42°–62° N and 80°–124° E allowed us toestablish at least 276 points with manifestations of thesecondary coseismic effects in the geological setting,which were induced by 53 earthquakes over the periodof 1950–2008. In 45 cases the soil liquefactioninduced by an earthquake with a magnitude of Ms ≥ 5.2and an epicentral intensity of I0 ≥ 6–7 points (MSK�64scale).

As a result of our study, all the data obtained weresummarized in the database (the Appendix). Thecoseismic effects were encoded in accordance with ourclassification that is a practical approach when pro�cessing large amounts of information. Compared tothe known analogical variants, our classification ismore complete.

Based on this database, 32 relationships betweenthe parameters of earthquakes (a surface�wave earth�quake magnitude (Ms) and an epicentral intensity (I0)after the MSK�64 scale) and a maximum distancefrom an earthquake epicenter (Re max), a hypocenter(Rh max) and a seismogenic fault (Rf max) for all thecoseismic effects and, separately, for effects of soil liq�uefaction were revealed.

It was established that in all cases the secondarydeformations induced by an earthquake spread inspace further from an earthquake epicenter than froma seismogenic fault. The effects of soil liquefaction arelocalized a few times closer to a seismogenic sourcethan all other effects. Liquefaction processes occurredwithin a distance of 40 km of an earthquake epicenterin 44% of the known manifestations of; 90%—withina distance of 40 km from a seismogenic fault.

These conclusions follow from an analysis of therelationships for the predominant types of tectonicmovements in an earthquake epicenter. In addition, itwas established that shear faults in an earthquake epi�center over the studied time interval induced morethan half (60%) of all the coseismic effects, and 93% ofliquefaction cases, normal faults—36 and 7%, respec�tively, and thrust faults—only 4% of all the effects andnot one case of soil liquefaction.

Compared to the corresponding relationships fordifferent regions, including the world dataset, the pro�posed Ms–Re relationship for the effects of soil lique�faction (Eq. (9)) increases the threshold epicentraldistance for 5.2 ≤ Ms ≤ 8.1. It is recommended to takeinto account this result when evaluating the potentialof the areas of manifestations of soil liquefactioninduced by seismic events.

During our work, we first studied manifestations ofsoil liquefaction within the territory, including Mon�golia, Northeastern Kazakhstan, and most of South�ern Siberia in the Russian Federation. The problem ofthe area of study is that the dataset of seismic events,

especially historic ones, is incomplete. The relation�ships proposed in this work can serve as an importanttool in the paleoseismic and geological studies to esti�mate the parameters of seismic events that happenedin the past. In addition, they will be useful for practicalpurposes during engineering�geological surveys (forexample, during the designing of different objects con�structed specific distances (Re) from the known seis�mogenic sources).

ACKNOWLEDGMENTS

We are grateful to the Candidate of Geological–Mineralogical Sciences Ya.B. Radziminovich andA.S. Gladkov, who have provided valuable advices andactively helped us to find the macroseismic data.

This work was supported by the Russian Founda�tion for Basic Research (project no. 10�05�00072_a).

REFERENCES

Agafonov, B.P., Slope Denudation under Moderate SeismicImpact: the 1995 Tunka Earthquake Case Study), Geomor�fologiya, 1999, no. 4, pp. 50–55.Agafonov, B.P., Tectonically Fractured Slopes in the Zonesof Active Faults as Sensitive Indicators of Moderate SeismicEffects, Vulkanol. Seismol., 2002, no. 1, pp. 61–71.Agatova, A.R., Novikov, I.S., Vysotskii, E.M., and Gibsher, A.S.,Geomorphological Effects of the Earthquakes in MountainAltai of September 27 and October 1, 2003, Geomorfologiya,2004, no. 3, pp. 3–12.Ambraseys, N.N., Engineering Seismology, EarthquakeEng. Struct. Dyn., 1988, vol. 17, pp. 1–105.Aydan, O., Ulusay, R., Kumsar, H., and Tuncay, E., SiteInvestigation and Engineering Evaluation of the Duzce�BoluEarthquake of November 12, 1999 (Tech. Rep. no. TDV/DR09�51), Istanbul: Turk. Earth. Found., 2000.Baikalian Division of the Geophysical Survey, RussianAcademy of Sciences. http://www.seis�bykl.ru/modules.php?name=Seismo_vzBaryshnikov, G.Ya., Luzgin, B.N., Imaev, V.S., andOs’mushkin, V.S., Geomorphological Effects of the Earth�quake of September 27, 2003, in Mountain Altai, Geomor�fologiya, 2004, no. 3, pp. 13–22.Belyi, V.F., Valpeter, A.P., and Merzlyakov, V.M., StrongEarthquake in the Northeast USSR, Priroda, 1971, no. 12,pp. 64–67.Berzhinskii, Yu.A., Ordynskaya, A.P., Gladkov, A.S., Lun�ina, O.V., Berzhinskaya, L.P., Radziminovich, N.A., Radz�iminovich, Ya.B., Imaev, V.S., Chipizubov, A.V., andSmekalin, O.P., Application of the ESI�2007 Scale for Esti�mating the Intensity of the Kultuk Earthquake, August 27,2008 (South Baikal), Seism. Instrum., 2010, vol. 46, no. 4,pp. 307–324.Bobrov, V.A., Baldan, S., and Marinov, N.A., The Gobi�Altai Earthquake of December 4, 1957, Ulaanbaatar, 1959.Byulleten’ soveta po seismologii (Bulleting of the Council forSeismology), Moscow: Akad. Nauk SSSR, 1960, no. 10.Chichagov, V.P., On the Effects of the Earthquake of Janu�ary 5, 1967, Occurred in the Vicinity of Mogod Settlement,Mongolia, Vestn. Nauchn. Inf. Zabaikal’skogo Fil. Geogr.Ob�va SSSR, 1968, no. 9, pp. 10–11.

Page 14: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

152

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

ANDREEV, LUNINA

Delouis, B., Deverchere, J., Melnikova, V., Radzimino�vitch, N., Loncke, L., Larroque, C., Ritz, J.F., and San’kov, V.,Reappraisal of the 1950 (Mw = 6.9) Mondy Earthquake,Siberia, and Its Relationship to the Strain Pattern at theSouth�Western End of the Baikal Rift Zone, Terra Nova,2002, vol. 14, pp. 491–500.Demin, E.V. and Tat’kov, G.I., Posledstviya zemletryaseniina territorii Respubliki Buryatiya (1957–1995 gg.) (After�maths of the Earthquakes Occurred in the Territory ofBuryatia in 1957–1995), Ulan�Ude, 1996.Galli, P., New Empirical Relationships Between Magnitudeand Distance for Liquefaction, Tectonophysics, 2000,vol. 324, pp. 169–187.Geodakov, A.R., Ovsyuchenko, A.N., Platonova, S.G., andRogozhin, E.A., Preliminary Study of the Strong Earth�quake of 2003 in Mountain Altai, Vestn. Otd. Nauk ZemleRoss. Akad. Nauk, 2003, no. 1.Gobi�Altaiskoe zemletryasenie (Gobi�Altai Earthquake),Florensov, N.A. and Solonenko, V.P., Eds., Moscow: Akad.Nauk SSSR, 1963.Golenetskii, S.I. and Yas’ko, V.G., Uoyan Earthquakes of1976⎯1977 and the Results of Regular Observations at TwoHydrothermal Springs in Northern Cis�Baikalia, Vulkanol.Seismol., 1979, no. 4, pp. 93–101.Golenetskii, S.I., Dem’yanovich, M.G., Semenov, R.M.,Yas’ko, V.G., Avdeev, V.A., Kashkin, V.F., Misharina, L.A.,and Serebrennikov, S.P., Seismicity in the Area of the Oron�goi Depressions and the Earthquake of October 2, 1980, inWestern Cis�Baikalia, Geol. Geofiz., 1982, no. 9, pp. 45–54.Golenetskii, S.I., Ruzhich, V.V., Drennova, G.F., andEmel’yanova, I.A., Perceptible and Strong Earthquakes inthe Area of Selenga River Delta and the Earthquake of July 13,1993, Vulkanol. Seismol., 1995, no. 4�5, pp. 215–261.Golenetskii, S.I., Zemletryaseniya v Irkutske (Earthquakesin Irkutsk), Irkutsk: Imya, 1997.Heaton, T.H., Tajima. F., and Mori, A.W. EstimatingGround Motions Using Recorded Accelerograms, Surv.Geophys., 1986, vol. 8, pp. 25–83.Imaev, V.S., Imaeva, L.P., and Koz’min, B.M., Seismotek�tonika Yakutii (Seismotectonics of Yakutia), Moscow:GEOS, 2000.Issledovaniya po sozdaniyu nauchnykh osnov prognoza zem�letryasenii v Sibiri: Operat. inf (Development of ScientificFundamentals of Earthquake Prediction in Siberia: Opera�tive Information), Irkutsk: Inst. zemnoi kory Sibirskoe Otd.Akad. Nauk SSSR, 1989.Iwasaki, T., Soil Liquefaction Studies in Japan: State�Of�The�Art, Soil Dyn. Earthq. Eng., 1986, vol. 5, no. 1, pp. 1–71.Khil’ko, S.D., Kurushin, R.A., Kochetkov, V.M., Misha�rina, L.A., Mel’nikova, V.I., Gileva, N.A., Lastochkin, S.V.,Balzhinnyam, I., and Monkhoo, D., Zemletryaseniya iosnovy seismicheskogo raionirovaniya Mongolii (Earth�quakes and Fundamentals of Seismic Zoning of Mongolia),Moscow: Nauka, 1985.Khromovskikh, V.S., Strong Earthquakes in Southern Cis�Baikalia in 1963, in Geol. Geofiz., 1964, no. 8, pp. 66–77.Kochetkov, V.M., Seismichnost’ Yakutii (Seismicity of Yaku�tia), Moscow: Nauka, 1966.Kochetkov, V.M., Khil’ko, S.D., Nikolaev, V.V., andKoz’min, B.M., Tas�Yuryakh Earthquake of January 18,1967, in Seismotektonika, glubinnoe stroenie i seismichnost'severo�vostoka Baikal’skoi riftovoi zony (Seismotectonics,Deep Structure and Seismicity of the Northeast Baikal RiftZone), Novosibirsk: Nauka, 1974, pp. 71–94.

Kuribayashi, E. and Tatsuoka, F., Brief Review of Liquefac�tion During Earthquakes in Japan, Soils Found., 1975,vol. 15, pp. 81–92.Kurushin, R.A., Kochetkov, V.M., Nikolaev, V.V.,Dem’yanovich, M.G., and Koz’min, B.M., Strong Earth�quakes in Yakutia in 1971, in Seismologiya i seismogeologiya(Seismology and Seismogeology), Irkutsk, 1972, pp. 43–46.Kurushin, R.A. and Mel’nikova, V.I., Destruction of theEarth’s Crust During the Muya Earthquakes in 1957 (MLH =7.6), Dokl. Earth Sci., 2008, vol. 421, no. 6, pp. 974–977.Liu, Y. and Xie, J.F., Seismic Liquefaction of Sand, Earth�quake Press, China, 1984.Lomonosov, I.S., Formation of the Modern HytrothermalWaters of the Baikal Rift Zone, in Podzemnye vody Sibiri iDal’nego Vostoka (Ground Waters of Siberia and RussianFar East), Moscow: Nauka, 1971, pp. 76–87.Lunina, O.V., Gladkov, A.S., Novikov, I.S., Agatova, A.R.,Vysotsky, E.M., and Emanov, A.A., Seismotectonic Defor�mations and Stress Fields in the Fault Zone of the 2003Chuya Earthquake, Ms = 7.5, Gorny Altai, Geotectonics,2006, vol. 40, no. 3, pp. 208–224.Lunina, O.V., Radziminovich, Ya.B., and Gladkov, A.S.,Influence of Fault Zones on Gravity Phenomena whenModerate Earthquakes, Geol. Geofiz., 2007, vol. 48, no. 7,pp. 610–613.Lunina, O.V., Gladkov, A.S., and Sherstyankin, P.P., A NewElectronic Map of Active Faults for Southeastern Siberia,Dokl. Earth Sci., 2010, vol. 433, pp. 1016–1021.Mel’nikova, V.I. and Radziminovich, N.A., Focal Mecha�nisms of Earthquakes in the Baikalian Region for 1991–1996, Geol. Geofiz., 1998, vol. 39, no. 11, pp. 1598–1607.Nagats�Yum, L., Balzhinnyam, I., and Monkho, D.,Earthquakes of Mongolia, in Seismicheskoe raionirovanieUlan�Batora (Seismic Zoning of Ulaanbaatar), Moscow:Nauka, 1971, pp. 54–82.New Catalog of Strong Earthquakes in the USSR from AncientTimes through 1975, Kondorskaya, N.V. and She�balin, N.V., Eds., Boulder, Colorado: World Data Center�A for Solid Earth Geophysics, 1982.Novikov, I.S., Vysotsky, E.M., Agatova, A.R., and Gib�sher, A.S., Earthquakes in Mountain Altai and Seismoge�ology of Greater Altai, Priroda, 2004, no. 3, pp. 19–26.Obermeier, S.F., Olson, S.M., and Green, R.A., FieldOccurrences of Liquefaction�Induced Features: a Primerfor Engineering Geologic Analysis of Paleoseismic Shak�ing, Eng. Geol., 2005, vol. 76, pp. 209–234.Papadopoulos, A.G. and Lefkopoulos, G., Magnitude–Distance Relation for Liquefaction in Soil from Earth�quakes, Bull. Seismol. Soc. Am., 1993, vol. 83, no. 3, pp. 925–938.Papathanassiou, G., Pavlides, S., and Christaras, B., Lique�faction Case Histories and Empirical Relations of Earth�quake Magnitude Versus Distance from the Boarder AegeanRegion, J. Geodyn., 2005, vol. 40, pp. 257–278.Radziminovich, Ya.B., Imaev, V.S., Radziminovich, N.A.,Ruzhich, V.V., Smekalin, O.P., and Chipizubov, A.V., TheAugust 27, 2008, MW = 6.3, Kultuk Earthquake Effects inthe Nearepicenter Zone: Macroseismic Survey Results,Seism. Instrum., 2010, vol. 46, no. 2, pp. 107–120.Rogozhin, E.A. and Leont’ev, A.N., The 1990 ZaisanEarthquake: Surface Deformations and Tectonic Setting ofthe Source, Fiz. Zemli, 1992, no. 9, pp. 3–14.Rubtsov, N.F., Mel’nikov, S.V., and Shchegolikhin, Yu.I.,Results of Expedition to the Area of the Baikalian Earth�

Page 15: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

EARTHQUAKE PARAMETERS AND SPATIAL DISTRIBUTION 153

quake, in Materialy po geologii i poleznym iskopaemym Bury�atskoi ASSR (Proc. on Geology and Mineral resources ofBuryat ASSR), Ulan�Ude, 1960.

Rustanovich, D.N., Investigation of Devastative Aftermathof the Baikal Earthquake of August 29, 1959, Vopr. Inzh.Seismol., 1961, no. 5, pp. 42–69.

Ruzhich, V.V., Semenov, R.M., Mel’nikova, V.I., Smeka�lin, O.P., Alakshin, A.M., Chipizubov, A.V., Arzhannikov,S.G., and Emel’yanova, I.A., Dem’yanovich, M.G., andRadziminovich, N.A., Geodynamic Setting in the Area ofthe South Baikal Earthquake of February 25, 1999, and theEarthquake Characteristics, Geol. Geofiz., 2002, vol. 43,no. 5, pp. 470–483.

Seismicheskoe raionirovanie Vostochnoi Sibiri i ego geologo�geofizicheskie osnovy (Seismic Zoning of East Siberia and ItsGeological�Geophysical Fundamentals), Solonenko, V.P.,Ed., Novosibirsk: Nauka, 1977.

Seismicheskoe raionirovanie Yakutii i sopredel’nykh territorii(Seismic Zoning of Yakutia and Adjacent Territories),Yakutsk: Yakutsk. kn. izd., 1975.

Seismogeologiya i detal’noe seismicheskoe raionirovaniePribaikal’ya (Seismogeology and Detailed Seismic Zoningof Cis�Baikalia), Solonenko, V.P., Ed., Novosibirsk:Nauka, 1981.

Sherman, S.I., Bornyakov, S.A., and Buddo, V.Yu., Oblastidinamicheskogo vliyaniya razlomov (rezul’taty modeliro�vaniya) (Zones of Dynamic Influence of Faults: SimulationResults), Novosibirsk: Nauka, 1983.

Solonenko, V.P., Treskov, A.A., Florensov, N.A., and Puch�kov, S.V., The Muya Earthquake of June 27, 1957, Vopr.Inzh. Seismol., 1958, no. 1, pp. 29–43.

Solonenko, V.P. and Treskov, A.A., Srednebaikal’skoe zem�letryasenie 29 avgusta 1959 goda (Middle Baikal Earthquakeof August 29, 1959), Irkutsk: Irkutsk. kn. izd., 1960.

Solonenko, V.P., Determining the Epicentral Zones ofEarthquakes Based on Geological Features, Izv. Akad.Nauk SSSR, Ser. Geol., 1962, no. 11, pp. 58–74.

Solonenko, V.P., Living Tectonics in the Pleistoseist Zoneof the Muya Earthquake, Izv. Akad. Nauk SSSR, Ser. Geol.,1965, no. 4, pp. 58–70.

Solonenko, V.P., Treskov, A.A., Kurushin, R.A., Misharina, L.A.,Pavlov, O.V., Pshennikov, K.V., Solonenko, M.A., Fomina, E.V.,and Khil’ko, S.D., Zhivaya tektonika, vulkany i seismich�nost' Stanovogo nagor’ya (Living Tectonics, Volcanoes, andSeismicity of the Stanovoy Range), Moscow: Nauka, 1966.

Solonenko, V.P., Seismologiya i seismicheskoe raionirovanietrassy BAM i zony ee ekonomicheskogo vliyaniya (Seismol�ogy and Seismic Zoning of the Baikal�Amur MainlineRoute and Zone of Its Economical Influence), Novosibirsk:Nauka, 1979.

Solonenko, A.V., Solonenko, N.V., Mel’nikova, V.I.,Koz’min, B.M., Kuchai, O.A., and Sukhanova, S.S.,Stresses and Slips in the Sources of Earthquakes in Siberiaand Mongolia, Seismichnost’ i Seismicheskoe RaionirovanieSevernoi Evrazii (Seismicity and Seismic Zoning of North�ern Eurasia), 1993, vol. 1, pp. 113–122.

Treskov, A.A. and Florensov, N.A., Mondy Earthquake ofApril 4 (5), 1950: Preliminary Study Results, in Andrei Ale�kseevich Treskov (Andrei Alekseevich Treskov), Irkutsk:Inst. zemnoi kory Sib. Otd. Ross. Akad. Nauk, 2006,pp. 166–187.

Vysotskii, E.M., Novikov, I.S., Agatova, A.R., and Gib�sher, A.S., The Pleistoseist Zone and Tectonic Position ofthe Chuya Earthquake Center in 2003, Dokl. Earth Sci.,2004, vol. 395A, no. 3, pp. 328–330.Wakamatsu, K., History of Soil Liquefaction in Japan andAssessment of Liquefaction Potential Based on Geomor�phology, Doctoral (Engineegring) Dissertation, Tokyo:Waseda Univ., 1993.Wang, C.�Y., Wong, A., Dreger, D.S., and Manga, M., Liq�uefaction Limit During Earthquakes and UndergroundExplosions: Implications on Ground�Motion Attenuation,Bull. Seismol. Soc. Am., 2006, vol. 96, pp. 355–363.Youd, T.L., Discussion of “Brief Review of LiquefactionDuring Earthquakes in Japan” by E. Kuribayashi andT. Tatsuoka, Soils Found., 1977, vol. 17, no. 1, pp. 82–85.Youd, T.L. and Perkins, D.M., Mapping of LiquefactionInduced Ground Failure Potential, J. Geotech. Eng. Div.,1978, vol. 104, no. 4, pp. 433–446.Zemletryaseniya Severnoi Evrazii v 1993 godu (Earthquakesin Northern Eurasia in 1993), Moscow: GS RAN, 1999.Zemletryaseniya Severnoi Evrazii v 1995 godu (Earthquakesin Northern Eurasia in 1995), Moscow: GS RAN, 2001.Zemletryaseniya Severnoi Evrazii v 1999 godu (Earthquakesin Northern Eurasia in 1999), Obninsk: FOP, 2005.Zemletryaseniya Severnoi Evrazii v 2001 godu (Earthquakesin Northern Eurasia in 2001), Obninsk: GS RAN, 2007.Zemletryaseniya Severnoi Evrazii (Earthquakes in NorthernEurasia), Obninsk: GS RAN, 2008.Zemletryaseniya v SSSR v 1963 godu (Earthquakes in USSRin 1963), Moscow: Nauka, 1966.Zemletryaseniya v SSSR v 1964 godu (Earthquakes in USSRin 1964), Moscow: Nauka, 1967a.Zemletryaseniya v SSSR v 1965 godu (Earthquakes in USSRin 1965), Moscow: Nauka, 1967b.Zemletryaseniya v SSSR v 1966 godu (Earthquakes in USSRin 1966), Moscow: Nauka, 1970a.Zemletryaseniya v SSSR v 1967 godu (Earthquakes in USSRin 1967), Moscow: Nauka, 1970b.Zemletryaseniya v SSSR v 1968 godu (Earthquakes in USSRin 1968), Moscow: Nauka, 1972.Zemletryaseniya v SSSR v 1970 godu (Earthquakes in USSRin 1970), Moscow: Nauka, 1973.Zemletryaseniya v SSSR v 1971 godu (Earthquakes in USSRin 1971), Moscow: Nauka, 1975.Zemletryaseniya v SSSR v 1980 godu (Earthquakes in USSRin 1980), Moscow: Nauka, 1983.Zemletryaseniya v SSSR v 1981 godu (Earthquakes in USSRin 1981), Moscow: Nauka, 1984.Zemletryaseniya v SSSR v 1985 godu (Earthquakes in USSRin 1985), Moscow: Nauka, 1988.Zemletryaseniya v SSSR v 1987 godu (Earthquakes in USSRin 1987), Moscow: Nauka, 1990.Zemletryaseniya v SSSR v 1988 godu (Earthquakes in USSRin 1988), Moscow: Nauka, 1991.Zemletryaseniya v SSSR v 1989 godu (Earthquakes in USSRin 1989), Moscow: Nauka, 1993.Zemletryaseniya v SSSR v 1990 godu (Earthquakes in USSRin 1990), Moscow: OIFZ RAN, 1996.Zhalkovskii, N.D., Tsibul’chik, G.M., and Tsibul’chik, I.D.,Kamenskoe Earthquake of February 15, 1965, Geol. Geofiz.,1965, no. 12, pp. 116–125.

Page 16: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

154

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

ANDREEV, LUNINA

AP

PE

ND

IXT

he

dat

abas

e of

ear

thqu

akes

an

d th

e se

con

dary

cos

eism

ic e

ffec

ts in

th

e ge

olog

ical

set

tin

g ov

er t

he

inst

rum

enta

l obs

erva

tion

per

iod

wit

hin

th

e co

ordi

nat

es o

f 42°

–62° N

and

80°–

124°

E (

deta

iled

exp

lan

atio

ns

are

give

n in

the

text

)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sou

rce

Name

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h), km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from the fault (Rf), km

Type of seismic effect

12

34

56

78

910

1112

1314

15

1M

ondy

1950

.04.

0451

.77

101.

007.

09

20S

hea

r fa

ult

Mon

dyL

ake

Kh

ubsu

gul

3521

A4

(Sei

smog

eolo

gy…

, 19

81; N

ew c

atal

og…

, 19

82; K

hil’k

o et

al.,

19

85; D

elou

is e

t al.,

20

02; T

resk

ov e

t al.,

20

06; L

unin

a et

al.,

20

10)

2M

ondy

1950

.04.

0451

.77

101.

007.

09

20S

hea

r fa

ult

Mon

dyM

ondy

Set

tle�

men

t11

4E

2

3M

ondy

1950

.04.

0451

.77

101.

007.

09

20S

hea

r fa

ult

Mon

dyL

eft b

ank

of th

e Ir

kut R

iver

1017

D2

4M

ondy

1950

.04.

0451

.77

101.

007.

09

20S

hea

r fa

ult

Mon

dyIl

chir

Vill

age

3038

E2

5M

ondy

1950

.04.

0451

.77

101.

007.

09

20S

hea

r fa

ult

Mon

dyn

ear

the

Buk

son

R

iver

6460

D2

6M

ondy

1950

.04.

0451

.77

101.

007.

09

20S

hea

r fa

ult

Mon

dyM

ondy

Set

tle�

men

t11

3C

2

7M

ondy

1950

.04.

0451

.77

101.

007.

09

20S

hea

r fa

ult

Mon

dyK

har

daba

n16

1C

2

8M

ondy

1950

.04.

0451

.77

101.

007.

09

20S

hea

r fa

ult

Mon

dyIn

en

viro

ns

of th

e M

ondy

Set

tlem

ent

102

D1

9M

ondy

1950

.04.

0451

.77

101.

007.

09

20S

hea

r fa

ult

Mon

dyA

lake

in e

nvi

ron

s of

the

Mon

dy

Set

tlem

ent

412

C3

10M

ondy

1950

.04.

0451

.77

101.

007.

09

20S

hea

r fa

ult

Mon

dyA

rakh

ta U

lus

(Set

tlem

ent)

124

A2;

A

2�1;

C

2

11M

ondy

1950

.04.

0451

.77

101.

007.

09

20S

hea

r fa

ult

Mon

dyK

yren

Vill

age

7958

E2

12M

ondy

1950

.04.

0451

.77

101.

007.

09

20S

hea

r fa

ult

Mon

dyTo

the

nor

th

of th

e M

ondy

S

ettl

emen

t 10

2B

2; C

2;

F2

13M

on

dy

1950

.04.

0451

.77

101.

007.

09

20S

hea

r fa

ult

Mo

nd

yB

ulu

khta

R

iver

val

ley

91

C2;

F2

Page 17: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

EARTHQUAKE PARAMETERS AND SPATIAL DISTRIBUTION 155

Tabl

e.(C

ontd

.)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sou

rce

Name

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h), km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from the fault (Rf), km

Type of seismic effect

12

34

56

78

910

1112

1314

15

14E

rden

e�K

han

(U

pper

Ker

�ul

en)

1951

.01.

0147

.70

109.

805.

88

15–

–A

rea

of M

t.

Erd

ene�

Kh

an10

–D

1;

D2;

C2

(New

cat

alog

…, 1

982;

K

hil’

ko e

t al.,

198

5)15

Erd

ene�

Kh

an

(Upp

er K

er�

ulen

)19

51.0

1.01

47.7

010

9.80

5.8

815

––

Zot

okh

mas

sif

25–

D2

16B

utel

iinsk

oe

(Kya

khta

)19

57.0

2.06

50.0

010

5.50

6.5

820

–N

orth

Mon

�go

lian

Are

a of

the

Tore

i Lak

es77

–C

2

Bul

lete

n…, 1

960;

N

ew c

atal

og…

, 198

2;

Khi

l’ko

et a

l., 1

985;

S

olon

enko

et a

l., 1

993)

17B

utel

iinsk

oe

(Kya

khta

)19

57.0

2.06

50.0

010

5.50

6.5

820

–N

orth

Mon

�go

lian

Pet

ropa

vlov

ka

Vill

age

70–

C2

18B

utel

iinsk

oe

(Kya

khta

)19

57.0

2.06

50.0

010

5.50

6.5

820

–N

orth

Mon

�go

lian

Tsa

gan

�Nur

yn

Som

on

(set

tele

men

t)13

–E

1; E

2

19B

utel

iinsk

oe

(Kya

khta

)19

57.0

2.06

50.0

010

5.50

6.5

820

–N

orth

Mon

�go

lian

Tow

n

of S

ukh

e�B

ator

56–

E2

20M

uya

1957

.06.

2756

.20

116.

407.

610

22O

bliq

ue�

slip

faul

t–

Tow

n o

f Bod

aibo

227

–E

2

(So

lon

enko

et

al.,

19

58;

So

lon

enko

, 19

65;

Sol

onen

ko

etal

., 1

966;

Sei

s�m

ic…

, 19

77;

So

lo�

nen

ko,

1979

; S

olo

�n

enko

et

al.,

199

3;

Ku

rush

in a

nd

M

el’n

ikov

a, 2

008)

21M

uya

1957

.06.

2756

.20

116.

407.

610

22O

bliq

ue�

slip

faul

t–

In a

rea

of th

e P

ron

ikh

a S

ettl

emen

t20

2–

D2;

D

4

22M

uya

1957

.06.

2756

.20

116.

407.

610

22O

bliq

ue�

slip

faul

t–

In a

rea

of th

e S

inyu

ga

Set

tlem

ent

185

–D

2

23M

uya

1957

.06.

2756

.20

116.

407.

610

22O

bliq

ue�

slip

faul

t–

In a

rea

of th

e N

erpo

S

ettl

emen

t15

6–

D1

24M

uya

1957

.06.

2756

.20

116.

407.

610

22O

bliq

ue�

slip

faul

t–

In a

rea

of th

e A

mal

yk

Set

tlem

ent

146

–D

2

Page 18: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

156

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

ANDREEV, LUNINA

Tabl

e.(C

ontd

.)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sou

rce

Name

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h), km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from the fault (Rf), km

Type of seismic effect

12

34

56

78

910

1112

1314

15

25M

uya

1957

.06.

2756

.20

116.

407.

610

22O

bliq

ue�

slip

faul

t–

Dow

n th

e Te

nt’

eva

stre

am14

3–

C1;

D

2

(So

lon

enko

et

al.,

19

58;

So

lon

enko

, 19

65;

So

lon

enko

et

al.,

196

6; S

eism

ic…

, 19

77;

So

lon

enko

, 19

79;

So

lon

enko

et

al.,

199

3; K

uru

shin

an

d M

el’n

ikov

a,

2008

)

26M

uya

1957

.06.

2756

.20

116.

407.

610

22O

bliq

ue�

slip

faul

t–

Oro

n L

ake

107

–A

4�2;

D

1

27M

uya

1957

.06.

2756

.20

116.

407.

610

22O

bliq

ue�

slip

faul

t–

abov

e th

e O

ron

S

ettl

emen

t11

4–

D4

28M

uya

1957

.06.

2756

.20

116.

407.

610

22O

bliq

ue�

slip

fau

lt–

Div

idin

g ri

dge

be

twee

n C

hel

ole

k an

d V

itim

Riv

ers

92–

D2

29M

uya

1957

.06.

2756

.20

116.

407.

610

22O

bliq

ue�

slip

fau

lt–

Kar

olo

n R

iver

va

lley

93–

D2

30M

uya

1957

.06.

2756

.20

116.

407.

610

22O

bliq

ue�

slip

fau

lt–

Up

th

e Y

angu

da

Riv

er10

4–

D2

31M

uya

1957

.06.

2756

.20

116.

407.

610

22O

bliq

ue�

slip

fau

lt–

Tal

lai R

iver

val

ley

75–

D2

32M

uya

1957

.06.

2756

.20

116.

407.

610

22O

bliq

ue�

slip

fau

lt–

Nea

r th

e K

amen

nu

i w

inte

r h

ut

77–

D2

33M

uya

1957

.06.

2756

.20

116.

407.

610

22O

bliq

ue�

slip

fau

lt–

Are

a o

f th

e U

st’�

Par

amsk

ii

Set

tlem

ent

79–

D2;

E

2

34M

uya

1957

.06.

2756

.20

116.

407.

610

22O

bliq

ue�

slip

fau

lt–

Mn

ogo

obe

sch

ay�

usc

hay

a (P

rom

isin

g) s

pit

43–

Dl

35M

uya

1957

.06.

2756

.20

116.

407.

610

22O

bliq

ue�

slip

fau

lt–

Are

a o

f go

ld p

lac�

ers

of B

ezym

ayan

�n

yi a

nd

Ked

rovy

i54

–D

2

36M

uya

1957

.06.

2756

.20

116.

407.

610

22O

bliq

ue�

slip

fau

lt–

Are

a o

f L

epri

nd

o

Lak

e78

–D

2

37M

uya

1957

.06.

2756

.20

116.

407.

610

22O

bliq

ue�

slip

fau

lt–

Go

ryac

hii

K

lyu

ch S

pri

ng

194

–A

4;

A4�

1

Page 19: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

EARTHQUAKE PARAMETERS AND SPATIAL DISTRIBUTION 157

Tabl

e.(C

ontd

.)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sou

rce

Name

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h), km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from the fault (Rf), km

Type of seismic effect

12

34

56

78

910

1112

1314

15

38M

uya

1957

.06.

2756

.20

116.

407.

610

22O

bliq

ue�

slip

fau

lt–

Th

e ci

ty o

f C

hit

a49

8–

A4

(So

lon

enko

et

al.,

19

58;

So

lon

enko

, 19

65;

So

lon

enko

et

al.,

196

6; S

eis�

mic

…,

1977

; S

olo

�n

enko

, 19

79;

So

lo�

nen

ko e

t al

., 1

993;

K

uru

shin

an

d

Mel

’nik

ova,

200

8)

39M

uya

1957

.06.

2756

.20

116.

407.

610

22O

bliq

ue�

slip

fau

lt–

Ikab

’ya

Riv

er v

alle

y15

0–

C2

40M

uya

1957

.06.

2756

.20

116.

407.

610

22O

bliq

ue�

slip

fau

lt–

Th

e sl

op

e o

f th

e U

do

kan

R

idge

30–

B2

41M

uya

1957

.06.

2756

.20

116.

407.

610

22O

bliq

ue�

slip

fau

lt–

Lak

e sh

ore

s42

–C

2

42G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oA

rea

of

the

Bay

an�

Bo

r R

idge

308

100

A1;

A

1�1;

A

2; A

4;

D2

(Bo

brov

et

al.,

195

9;

Gob

i�A

ltai

…,

1963

; K

hil

ko e

t al

., 1

985;

S

olo

nen

ko e

t al

.,

1993

; G

ole

net

skii

, 19

97)

43G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oT

he

city

o

f Ir

kuts

k90

890

8E

2

44G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oB

on

�Nu

r L

ake

7979

C3

45G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oB

on

�Nu

r L

ake

170

20A

2�1;

A

3; C

2;

C3

46G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oT

uin

�Go

l R

iver

val

ley

188

13A

l; A

2;

A3;

C3

47G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oB

ayan

�Tsa

gan

S

omo

n

(Set

tlem

ent)

5522

A2;

A

2�2;

C

2; E

2

48G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oB

ayan

�Go

bi

Som

on

(s

ette

lem

ent)

7720

A2;

A4;

C

2; E

2

Page 20: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

158

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

ANDREEV, LUNINA

Tabl

e.(C

ontd

.)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sou

rce

Name

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h), km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from the fault (Rf), km

Type of seismic effect

12

34

56

78

910

1112

1314

15

49G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oD

zun

�Bo

gdo

S

omo

n

(Set

tlem

ent)

176

10E

2

(Bo

brov

et

al.,

195

9;

Gob

i�A

ltai

…,

1963

; K

hil

ko e

t al

., 1

985;

S

olo

nen

ko e

t al

.,

1993

; G

ole

net

skii

, 19

97)

50G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oH

ovd

Som

on

(s

ette

lem

ent)

240

5A

2;

C2;

E

2

51G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oB

ayan

Leg

S

omo

n

(set

tele

men

t)13

240

A2�

1;

A2�

2;

A4;

E

2

52G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oA

rea

of

Mt.

Tse

tser

leg

354

295

E2

53G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oT

he

city

o

f U

lan

�Bat

or

710

550

E2

54G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oS

olo

nch

aki

4025

E2

55G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oA

rea

of

the

Bay

an�

Tsa

gan

Rid

ge

5020

A2�

1

56G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oT

ehom

�Go

l S

trea

m v

alle

y40

10A

2;

C2

57G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oA

rea

of

Mt.

Bag

a�B

ogd

o

244

3A

4

58G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oB

etw

een

M

ts. B

akh

ar

and

Bay

an�T

saga

n58

4A

2�2;

A

4

59G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oW

este

rn e

nd

o

f th

e B

okh

or

Rid

ge62

2A

2�1

60G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oT

he

sou

thw

este

rn

slo

pe

of

the

Ikh

e�B

ogd

o R

idge

140

12A

2�1

Page 21: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

EARTHQUAKE PARAMETERS AND SPATIAL DISTRIBUTION 159

Tabl

e.(C

ontd

.)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sou

rce

Name

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h), km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from the fault (Rf), km

Type of seismic effect

12

34

56

78

910

1112

1314

15

61G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oS

ou

ther

n e

nd

o

f th

e U

ldzi

t R

idge

136

16A

4

(Bo

brov

et

al.,

195

9;

Gob

i�A

ltai

…,

1963

; K

hil

ko e

t al

., 1

985;

S

olo

nen

ko e

t al

.,

1993

; G

ole

net

skii

, 19

97)

62G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oT

saga

n�G

ol

Str

eam

val

ley

8322

Al;

A2;

A

2�1

63G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oS

ou

ther

n e

nd

o

f th

e Ik

he�

Bo

gdo

Rid

ge18

020

A2;

A

2�1;

C

1; C

2;

A4

64G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oA

rea

of

Mt.

Tev

sh22

46

A1

65G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

o

Are

a o

f th

e N

ort

her

n s

lop

e o

f th

e B

aga�

Bo

gdo

Rid

ge

240

2A

2�1;

A

2�2

66G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

o

Are

a o

f th

e S

ou

ther

n s

lop

e o

f th

e B

aga�

Bo

gdo

Rid

ge

280

8A

2�1;

A4

67G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oA

rea

of

Kh

obd

o

Som

on

(S

ettl

emen

t)31

815

A2;

A2�

1

68G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oA

rea

of

the

Art

s�B

ogd

o R

idge

29

520

A2�

1;

A4;

A4�

2

69G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

o

Are

a o

f th

e B

ulg

an

Som

on

(S

ettl

emen

t)

440

130

A2

Page 22: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

160

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

ANDREEV, LUNINA

Tabl

e.(C

ontd

.)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sou

rce

Name

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h), km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from the fault (Rf), km

Type of seismic effect

12

34

56

78

910

1112

1314

15

70G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

o

Are

a o

f B

aru

n�

Bay

an�U

lan

S

omo

n

(Set

tlem

ent)

236

30A

2;

C2

(Bo

brov

et

al.,

195

9;

Gob

i�A

ltai

…,

1963

; K

hil

ko e

t al

., 1

985;

S

olo

nen

ko e

t al

.,

1993

; G

ole

net

skii

, 19

97)

71G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oC

entr

al G

obi

440

130

A1

72G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oU

lyas

uta

i Rav

ine

158

2D

2

73G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oA

lon

g K

hu

styn

�K

hu

nd

ii S

air

251

4D

2

74G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oN

ort

hw

este

rn p

art

of

the

Bu

lukh

ta

Dep

ress

ion

135

8A

2;

D4

75G

obi

�Alt

ai19

57.1

2.04

45.1

099

.40

8.1

1118

Tra

nsp

res�

sio

nal

fau

ltB

ogd

oA

ma

Bit

ut

150

5A

l;

A1�

1;

B1

76N

yukz

ha

1958

.01.

0556

.60

121.

106.

59

25D

iago

nal

sl

ip f

ault

–T

he

Ust

’�N

yukz

ha

Set

tlem

ent

32–

A4;

E

2

(Ko

chet

kov,

196

6;

So

lon

enko

et

al.,

19

66;

So

lon

enko

et

al.,

199

3)

77N

yukz

ha

1958

.01.

0556

.60

121.

106.

59

25D

iago

nal

sl

ip f

ault

–O

lekm

a R

iver

val

�le

y 16

–C

3

78N

yukz

ha

1958

.01.

0556

.60

121.

106.

59

25D

iago

nal

sl

ip f

ault

–K

urum

Riv

er v

al�

ley

85

A3;

C

3;

D1;

D

2

79N

yukz

ha

1958

.01.

0556

.60

121.

106.

59

25D

iago

nal

sl

ip f

ault

–C

har

a S

ettl

emen

t 17

7–

E1

80N

yukz

ha

1958

.01.

0556

.60

121.

106.

59

25D

iago

nal

sl

ip f

ault

–C

heb

arka

s R

iver

va

lley

21–

D1;

D

2

81B

ayan

�T

saga

n19

58.0

4.07

45.1

198

.42

6.9

9–

––

Bay

an�T

saga

n

Rid

ge

30–

C2;

D

2;

D3

(Kh

ilko

et

al.,

198

5)

Page 23: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

EARTHQUAKE PARAMETERS AND SPATIAL DISTRIBUTION 161

Tabl

e.(C

ontd

.)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sou

rce

Name

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h), km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from the fault (Rf), km

Type of seismic effect

12

34

56

78

910

1112

1314

15

82S

aikh

an19

58.0

6.23

48.7

010

2.90

6.2

8–9

15T

ran

spre

s�si

on

al f

ault

–S

aikh

an S

omon

(S

ettl

emen

t)

15–

C2;

E

2

(New

cat

alog

…,

1982

; K

hil

ko e

t al

., 1

985;

S

olo

nen

ko e

t al

.,

1993

)

83S

aikh

an19

58.0

6.23

48.7

010

2.90

6.2

8–9

15T

ran

spre

s�si

on

al f

ault

–T

sugr

eg

Riv

er v

alle

y 7

–C

2

84S

aikh

an19

58.0

6.23

48.7

010

2.90

6.2

8–9

15T

ran

spre

s�si

on

al f

ault

–U

rkh

tei A

rea

22–

D2

85S

aikh

an19

58.0

6.23

48.7

010

2.90

6.2

8–9

15T

ran

spre

s�si

on

al f

ault

–A

rea

of

Mt.

Kuk

�Asg

at

28–

D1

86O

lekm

a19

58.0

9.14

56.7

012

1.00

6.5

925

No

rmal

fa

ult

–U

st’�

Nyu

kzh

a S

ettl

emen

t 40

–E

1

(Ko

chet

kov,

196

6;

So

lon

enko

et

al.,

19

66;

So

lon

enko

et

al.,

199

3)

87O

lekm

a19

58.0

9.14

56.7

012

1.00

6.5

925

No

rmal

fa

ult

–O

lekm

a R

iver

bas

in

15–

D1;

D

3

88O

lekm

a19

58.0

9.14

56.7

012

1.00

6.5

925

No

rmal

fa

ult

–G

orya

chii

K

lyuc

h S

prin

g18

0–

Al;

A

4;

A4�

2

89O

lekm

a19

58.0

9.14

56.7

012

1.00

6.5

925

No

rmal

fa

ult

–Im

angr

kan

R

iver

bas

in

25–

D2

90O

lekm

a19

58.0

9.14

56.7

012

1.00

6.5

925

No

rmal

fa

ult

–C

onfl

uen

ce

of I

man

gra

and

Ilin

�Sal

aa R

iver

s24

–C

1;

C2

91O

lekm

a19

58.0

9.14

56.7

012

1.00

6.5

925

No

rmal

fa

ult

–Im

angr

a R

iver

va

lley

4–

B3;

D

6

92K

yren

1958

.10.

2251

.73

102.

135.

56–

714

––

Nu

gan

Vil

lage

7–

E2

(Byu

llete

n’…

, 19

60)

93K

yren

1958

.10.

2251

.73

102.

135.

56–

714

––

Sh

imki

Vil

lage

11–

E2

94K

yren

1958

.10.

2251

.73

102.

135.

56–

714

––

Nea

r th

e T

un

ka

Set

tlem

ent

29–

E1

95–

1958

.11.

0257

.00

121.

004.

8–

––

Kh

anya

Kh

anya

Riv

er

vall

ey5

1C

1;

D2

(Ko

chet

kov,

196

6)

Page 24: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

162

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

ANDREEV, LUNINA

Tabl

e.(C

ontd

.)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sou

rce

Name

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h), km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from the fault (Rf), km

Type of seismic effect

12

34

56

78

910

1112

1314

15

96M

idd

le B

aika

l19

59.0

8.29

52.6

810

6.98

6.8

920

No

rmal

fa

ult

Are

a of

Oim

ur

Set

tlem

ent

3930

Al;

A

1�1;

A

1�2;

B

1; C

2

(New

cat

alog

…,

1982

; S

olo

nen

ko

etal

., 1

993;

Lu

nin

a et

al.

, 20

10)

97M

idd

le B

aika

l19

59.0

8.29

52.6

810

6.98

6.8

920

No

rmal

fa

ult

Are

a of

Kh

alza

nov

o S

ettl

emen

t 69

59C

2

98M

idd

le B

aika

l19

59.0

8.29

52.6

810

6.98

6.8

920

No

rmal

fa

ult

Kud

ara

Set

tlem

ent

5546

C2

99M

idd

le B

aika

l19

59.0

8.29

52.6

810

6.98

6.8

920

No

rmal

fa

ult

Ela

nts

y S

ettl

emen

t42

43C

2; D

1;

D3

100

Mid

dle

Bai

kal

1959

.08.

2952

.68

106.

986.

89

20N

orm

al

fau

ltN

orth

wes

t of

Olk

hon

Isl

and

5051

D1;

D3

101

Mid

dle

Bai

kal

1959

.08.

2952

.68

106.

986.

89

20N

orm

al

fau

ltA

ya B

ay28

31D

1; D

3

102

Mid

dle

Bai

kal

1959

.08.

2952

.68

106.

986.

89

20N

orm

al

fau

ltK

arym

aska

ya

Sta

tion

68

60D

1; D

3

103

Mid

dle

Bai

kal

1959

.08.

2952

.68

106.

986.

89

20N

orm

al

fau

ltT

atau

rovo

S

ettl

emen

t 68

60D

1

104

Mid

dle

Bai

kal

1959

.08.

2952

.68

106.

986.

89

20N

orm

al

fau

ltP

esch

anay

a B

ay

9892

D1;

D3

105

Mid

dle

Bai

kal

1959

.08.

2952

.68

106.

986.

89

20N

orm

al

fau

ltN

ear

the

Mal

yi

Dul

an V

illa

ge35

25A

4

106

Mid

dle

Bai

kal

1959

.08.

2952

.68

106.

986.

89

20N

orm

al

fau

ltO

imur

Vil

lage

40

30E

l

107

Mid

dle

Bai

kal

1959

.08.

2952

.68

106.

986.

89

20N

orm

al

fau

ltS

elen

ga

Riv

er m

outh

91

81A

4

108

Mid

dle

Bai

kal

1959

.08.

2952

.68

106.

986.

89

20N

orm

al

fau

ltS

elen

ga R

iver

va

lley

81

71D

3

Page 25: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

EARTHQUAKE PARAMETERS AND SPATIAL DISTRIBUTION 163

Tabl

e.(C

ontd

.)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sou

rce

Name

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h), km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from the fault (Rf), km

Type of seismic effect

12

34

56

78

910

1112

1314

15

109

Mid

dle

Bai

kal

1959

.08.

2952

.68

106.

986.

89

20N

orm

al f

ault

Sak

hyu

rte

Bay

3943

El

110

Mid

dle

Bai

kal

1959

.08.

2952

.68

106.

986.

89

20N

orm

al f

ault

Th

e C

ity

of I

rkut

sk

187

182

E2

111

Bu

ryn

�Kh

yar

1960

.12.

0343

.20

104.

406.

79

Th

rust

fau

ltB

ury

n�K

hya

r R

idge

406

D1;

D

3(K

hil

ko e

t al

., 1

985;

S

olo

nen

ko e

t al

., 1

993)

112

Bu

ryn

�Kh

yar

1960

.12.

0343

.20

104.

406.

79

Th

rust

fau

ltM

t T

akh

ilgy

n�

Ula

n51

5C

2;

D3

113

Bu

ryn

�Kh

yar

1960

.12.

0343

.20

104.

406.

79

Th

rust

fau

ltK

han

trag

a�G

ol

Riv

er v

alle

y39

4A

4;

C2

114

Svy

ato

i No

s19

61.1

0.28

53.6

010

8.80

5.5

720

Th

rust

fau

ltS

ou

th

Svy

ato

i No

sU

st’�

Bar

guzi

n

Set

tlem

ent

2626

E2

(Zem

letr

yase

niya

…,

1972

; N

ew c

atal

og…

, 19

82;

So

lon

enko

et

al.,

19

93;

Lu

nin

a et

al.

, 20

10)

115

Mu

yaka

n19

62.1

1.11

55.9

011

3.12

6.0

820

Sh

ear

fau

ltA

ldem

akit

�M

uya

Yan

chu

i Riv

er

mo

uth

�An

gar�

skii

6269

C3

(So

lon

enko

et

al.,

196

6;

So

lon

enko

et

al.,

197

9;

New

cat

alo

g…,

1982

; L

un

ina

et a

l.,

2010

)

116

–19

63.0

1.08

51.3

410

1.93

4.5

7–

––

Kyr

en V

illa

ge40

–E

1;

E2

(Kh

rom

ovsk

ii,

1964

; Z

emle

trya

seni

ya…

, 19

66)

117

–19

63.0

1.08

51.3

410

1.93

4.5

7–

––

Bug

o�G

orkh

on

Vil

lage

60–

E1;

E

2

118

–19

63.0

2.10

52.6

010

6.90

5.5

715

No

rmal

fau

lt–

Op

po

site

to

Oim

ur

Vil

lage

29–

A3;

C

3(K

hro

mov

skii

, 19

64;

So

lon

enko

et

al.,

199

3)11

9–

1963

.02.

1052

.60

106.

905.

57

15N

orm

al f

ault

–K

ud

ara

Vil

lage

44–

E1;

E

212

0–

1964

.10.

1752

.28

106.

504.

56–

712

––

Kab

ansk

Vil

lage

27–

E1

(Zem

letr

yase

niya

…,

1967

a)12

1–

1964

.10.

1752

.28

106.

504.

56–

712

––

Sel

engi

nsk

S

ettl

emen

t38

–E

1

122

–19

64.1

0.17

52.2

810

6.50

4.5

6–7

12–

–K

udar

a V

illa

ge

12–

E1

123

–19

64.1

0.17

52.2

810

6.50

4.5

6–7

12–

–S

ukh

aya

Vil

lage

51

–E

1

Page 26: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

164

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

ANDREEV, LUNINA

Tabl

e.(C

ontd

.)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sou

rce

Name

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h), km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from the fault (Rf), km

Type of seismic effect

12

34

56

78

910

1112

1314

15

124

Kam

ensk

oe

1965

.02.

1553

.70

81.5

05.

37

20–

–To

wn

of K

amen

�on

�Ob’

15–

E2

(Zh

alko

vski

i et

al.,

19

65;

Zem

letr

yas�

eniy

a…,

1967

b)

125

Kam

ensk

oe

1965

.02.

1553

.70

81.5

05.

37

20–

–M

olod

ezh

nyi

Set

�tl

emen

t 11

–A

4�2;

E

2

126

Kam

ensk

oe

1965

.02.

1553

.70

81.5

05.

37

20–

–M

yski

Vil

lage

3

–A

4;

E2

127

Kam

ensk

oe

1965

.02.

1553

.70

81.5

05.

37

20–

–N

ovo�

Uva

l’sk

ii

Set

tlem

ent

24–

E2

128

Kam

ensk

oe

1965

.02.

1553

.70

81.5

05.

37

20–

–O

bsko

e V

illa

ge

14–

E2

129

Kam

ensk

oe

1965

.02.

1553

.70

81.5

05.

37

20–

–P

lotn

ikov

o V

illa

ge

18–

C2

130

–19

66.0

8.30

51.7

610

4.61

5.5

730

Dia

gon

al

slip

fau

ltO

bru

chev

�sk

iiM

ysov

ays

Sta

tion

87

34E

1

(Zem

letr

yase

niya

…,

1970

a; S

olo

nen

ko e

t al

., 1

993;

Lu

nin

a et

al

., 2

010)

131

–19

66.0

8.30

51.7

610

4.61

5.5

730

Dia

gon

al

slip

fau

ltO

bru

chev

�sk

ii

Are

a of

Lis

tvya

nka

S

ettl

emen

t 22

4E

1

132

–19

66.0

8.30

51.7

610

4.61

5.5

730

Dia

gon

al

slip

fau

ltO

bru

chev

�sk

iiP

atro

ny

Set

tlem

ent

4643

E1;

E

2

133

Mo

god

1967

.01.

0548

.10

102.

907.

810

–S

hea

r fa

ult

–To

wn

of

Zak

amen

sk

250

–D

1;

E2

(Ch

ich

agov

, 19

68;

Zem

letr

yase

niya

…,

1970

b; L

omo

no

sov,

19

71;

Nag

ats�

Yu

m e

t al

., 1

971;

So

lon

enko

et

al.

, 19

93)

134

Mo

god

1967

.01.

0548

.10

102.

907.

810

–S

hea

r fa

ult

–T

saki

r V

illa

ge

265

–E

2

135

Mo

god

1967

.01.

0548

.10

102.

907.

810

–S

hea

r fa

ult

–K

ham

nei

Riv

er

vall

ey

315

–C

3;

D2

136

Mo

god

1967

.01.

0548

.10

102.

907.

810

–S

hea

r fa

ult

–To

wn

of B

aika

lsk

390

–E

1;

E2

137

Mo

god

1967

.01.

0548

.10

102.

907.

810

–S

hea

r fa

ult

–N

ear

the

Sol

zan

S

ettl

emen

t 39

1–

A3;

C

3

138

Mo

god

1967

.01.

0548

.10

102.

907.

810

–S

hea

r fa

ult

–M

ondy

S

ettl

emen

t 42

0–

A3;

E

2

Page 27: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

EARTHQUAKE PARAMETERS AND SPATIAL DISTRIBUTION 165

Tabl

e.(C

ontd

.)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sou

rce

Name

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h),, km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from the fault (Rf), km

Type of seismic effect

12

34

56

78

910

1112

1314

15

139

Mo

god

1967

.01.

0548

.10

102.

907.

810

–S

hea

r fa

ult

–Ir

kut

Riv

er

vall

ey b

otto

m

403

–A

3;

C3

(Ch

ich

agov

, 19

68;

Zem

letr

yase

niya

…,

1970

b; L

omo

no

sov,

19

71;

Nag

ats�

Yu

m e

t al

., 1

971;

So

lon

enko

et

al.

, 19

93)

140

Mo

god

1967

.01.

0548

.10

102.

907.

810

–S

hea

r fa

ult

–T

he

righ

t ba

nk

of t

he

Mog

od

Riv

er

19–

A1;

A

2�1;

C

2

141

Mo

god

1967

.01.

0548

.10

102.

907.

810

–S

hea

r fa

ult

–A

bove

th

e M

ogod

S

omon

(S

ettl

emen

t)

22–

A2�

1

142

Mo

god

1967

.01.

0548

.10

102.

907.

810

–S

hea

r fa

ult

–N

ear

the

city

of

Ula

n�U

de

535

–A

4;

A4�

1

143

Mo

god

1967

.01.

0548

.10

102.

907.

810

–S

hea

r fa

ult

–T

he

Kh

unzh

R

iver

val

ley

30–

A1;

C

2

144

Mo

god

1967

.01.

0548

.10

102.

907.

810

–S

hea

r fa

ult

–M

ogod

Som

on

(Set

tlem

ent)

20

–C

2;

E2

145

Mo

god

1967

.01.

0548

.10

102.

907.

810

–S

hea

r fa

ult

Th

e ce

ntr

al p

art

of t

he

Ulz

iit

Som

on (

Set

tle�

men

t)

25–

C3

146

Mo

god

1967

.01.

0548

.10

102.

907.

810

–S

hea

r fa

ult

–U

gei�

Nuu

r L

ake

37–

C3

147

Tas

�Ury

akh

1967

.01.

1856

.48

121.

007.

010

13S

hea

r fa

ult

–T

as�U

ryak

h R

iver

ba

sin

14–

D1;

D

3;

D5

(Zem

letr

yase

niya

…,

1970

b; K

och

etko

v et

al

., 1

974;

So

lon

enko

et

al.

, 19

93)

148

Tas

�Ury

akh

1967

.01.

1856

.48

121.

007.

010

13S

hea

r fa

ult

–O

lekm

a R

iver

30

–C

3;

D1;

D

2

149

Tas

�Ury

akh

1967

.01.

1856

.48

121.

007.

010

13S

hea

r fa

ult

–D

own

th

e D

aryn

�m

akit

Riv

er

mou

th11

–D

4;

D6

Page 28: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

166

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

ANDREEV, LUNINA

Tabl

e.(C

ontd

.)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sou

rce

Name

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h), km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from the fault (Rf), km

Type of seismic effect

12

34

56

78

910

1112

1314

15

150

Tas

�Ury

akh

1967

.01.

1856

.48

121.

007.

010

13S

hea

r fa

ult

Wat

ersh

eds

of

Iman

gra

and

Iman

grak

an R

iv�

ers

35–

D6

(Zem

letr

yase

niya

…,

1970

b; K

och

etko

v et

al

., 1

974;

So

lon

enko

et

al.

, 19

93)

151

Tas

�Ury

akh

1967

.01.

1856

.48

121.

007.

010

13S

hea

r fa

ult

–T

he

left

ban

k of

T

as�U

ryak

h R

iver

27–

D4

152

Tas

�Ury

akh

1967

.01.

1856

.48

121.

007.

010

13S

hea

r fa

ult

–O

lekm

a R

iver

ba

sin

40–

C1;

D

1;

D2

153

Svy

ato

i No

s19

68.1

1.24

53.6

010

9.00

4.8

6–7

12–

–A

rea

of

Mo

na�

khov

o S

ettl

emen

t9

–A

4;

D3;

D

5

(Zem

letr

yase

niya

…,

1972

; N

ew c

atal

og…

, 19

82)

154

–19

70.0

3.28

52.2

310

6.01

5.5

7–8

25S

hea

r fa

ult

Nea

r th

e S

redn

ii C

ape

223

A3;

C

3(Z

emle

trya

seni

ya…

, 19

73;

New

cat

alog

…,

1982

; S

olo

nen

ko e

t al

., 1

993;

Lu

nin

a et

al

., 2

010)

155

–19

70.0

3.28

52.2

310

6.01

5.5

7–8

25S

hea

r fa

ult

Are

a of

Bug

ul�

deik

a S

ettl

emen

t35

21A

3;

D1

156

–19

70.0

3.28

52.2

310

6.01

5.5

7–8

25S

hea

r fa

ult

Nea

r th

e K

rest

ovsk

ii

Set

tlem

ent

5734

A3

157

Ure

g�N

ur

1970

.05.

1550

.18

91.2

77.

09

10T

ran

spre

s�si

on

al f

ault

–N

eat t

he

San

gin

ot

Pad

’ (cr

eek

vall

ey)

3–

B3

(Zem

letr

yase

niya

…,

1973

; K

hil

’ko

et

al.,

19

85;

So

lon

enko

et

al.,

199

3)

158

Ure

g�N

ur

1970

.05.

1550

.18

91.2

77.

09

10T

ran

spre

s�si

on

al f

ault

–S

angn

ot P

ad’

(cre

ek v

alle

y)

7–

C2

159

Ure

g�N

ur

1970

.05.

1550

.18

91.2

77.

09

10T

ran

spre

s�si

on

al f

ault

–A

rea

of M

t.

Tsa

gdul

3

–D

1;

D3

160

Ure

g�N

ur

1970

.05.

1550

.18

91.2

77.

09

10T

ran

spre

s�si

on

al f

ault

–K

hag

Cam

p 5

–E

1;

E3

161

Ure

g�N

ur

1970

.05.

1550

.18

91.2

77.

09

10T

ran

spre

s�si

on

al f

ault

–D

ol a

nd

Hol

t R

avin

es

7–

Dl

162

Ure

g�N

ur

1970

.05.

1550

.18

91.2

77.

09

10T

ran

spre

s�si

on

al f

ault

–T

urge

n

40–

E1;

E

2

Page 29: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

EARTHQUAKE PARAMETERS AND SPATIAL DISTRIBUTION 167

Tabl

e.(C

ontd

.)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sou

rce

Name

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h), km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from the fault (Rf), km

Type of seismic effect

12

34

56

78

910

1112

1314

15

163

Art

yk

(Oim

yako

n)

1971

.05.

1864

.03

145.

987.

19

–S

hea

r fa

ult

Ch

ai�

Yu

r’in

skii

Kun

tuk

Set

tlem

ent

110

130

E1

(Bel

yi e

t al

., 1

971;

K

uru

shin

et

al.,

197

2;

Zem

letr

yase

niya

…,

1975

; S

eis�

mic

hesk

oe…

, 19

75)

164

Art

yk

(Oim

yako

n)

1971

.05.

1864

.03

145.

987.

19

–S

hea

r fa

ult

Ch

ai�

Yu

r’in

skii

Nea

r th

e O

zern

ui

Set

tlem

ent

4520

E1

165

Art

yk

(Oim

yako

n)

1971

.05.

1864

.03

145.

987.

19

–S

hea

r fa

ult

Ch

ai�

Yu

r’in

skii

Art

yk

Riv

er v

alle

y 2

25

A1;

D

4;

D5;

D

6

166

Art

yk

(Oim

yako

n)

1971

.05.

1864

.03

145.

987.

19

–S

hea

r fa

ult

Ch

ai�

Yu

r’in

skii

In m

oun

tain

s 75

30D

1

167

Tah

iyn

shar

1974

.07.

0445

.00

94.1

86.

99

––

–A

rea

of M

t. E

rden

e�C

hul

ut

25–

D1;

D

3

(Kh

il’k

o e

t al

., 1

985;

S

olo

nen

ko e

t al

.,

1993

)

168

Tah

iyn

shar

1974

.07.

0445

.00

94.1

86.

99

––

–N

ear

the

Tuk

hem

in s

prin

g30

–A

2;

C2

169

Tah

iyn

shar

1974

.07.

0445

.00

94.1

86.

99

––

–B

or�B

ulak

an

d Y

aman

�Us

spri

ngs

20–

A2�

2

170

Tah

iyn

shar

1974

.07.

0445

.00

94.1

86.

99

––

–T

saga

n�G

ol45

–E

2

171

Tah

iyn

shar

1974

.07.

0445

.00

94.1

86.

99

––

–T

sarg

in

70–

E2

172

Mel

ich

an19

74.1

0.08

60.6

011

8.50

5.2

7–

––

Nea

r th

e D

aban

S

ettl

emen

t75

–C

2( S

eism

iche

skoe

…,

1977

; S

olo

nen

ko e

t al

., 1

993)

173

Bu

lgan

(M

un

kh�

khai

r�K

han

)19

75.0

3.31

46.8

191

.47

5.7

8–

Tra

nsp

res�

sio

nal

fau

ltT

ure

ngo

lB

ulg

an

Riv

er v

alle

y16

12D

1;

D3

(Kh

il’k

o e

t al

., 1

985;

S

olo

nen

ko e

t al

.,

1993

)

Page 30: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

168

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

ANDREEV, LUNINA

Tabl

e.(C

ontd

.)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sou

rce

Name

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h), km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from the fault (Rf), km

Type of seismic effect

12

34

56

78

910

1112

1314

15

174

Uo

yan

�119

76.1

1.02

56.1

911

1.59

5.2

6–7

10D

iago

nal

sl

ip f

ault

–N

ear

the

Nov

yi

Uoy

an S

ettl

emen

t 10

–A

4�1

(Go

len

etsk

ii a

nd

Y

as’k

o,

1979

; S

olo

�n

enko

et

al.,

199

3)

175

Uo

yan

�119

76.1

1.02

56.1

911

1.59

5.2

6–7

10D

iago

nal

sl

ip f

ault

–A

rea

of t

he

Gon

kuls

kii

spri

ng

15–

A2�

1;

A4;

C

3

176

Uo

yan

�119

76.1

1.02

56.1

911

1.59

5.2

6–7

10D

iago

nal

sl

ip f

ault

–A

rea

of t

he

Kur

koka

n s

prin

g15

–A

4

177

Uo

yan

�119

76.1

1.02

56.1

911

1.59

5.2

6–7

10D

iago

nal

sl

ip f

ault

–N

ear

the

An

goi

Set

tlem

ent

50–

A4

178

Uo

yan

�119

76.1

1.02

56.1

911

1.59

5.2

6–7

10D

iago

nal

sl

ip f

ault

–O

kusi

kan

R

iver

bas

in

140

–A

4

179

Uo

yan

�119

76.1

1.02

56.1

911

1.59

5.2

6–7

10D

iago

nal

sl

ip f

ault

–A

rea

of I

rkan

L

ake

45–

A4

180

Uo

yan

�219

77.0

6.04

56.2

011

1.82

4.7

610

Dia

gon

al

slip

fau

lt–

Oku

sika

n R

iver

ba

sin

140

–A

4;

A4�

1

(Go

len

etsk

ii a

nd

Y

as’k

o,

1979

; S

olo

�n

enko

et

al.,

199

3)

181

Oro

ngo

i19

80.1

0.02

51.6

210

7.04

5.1

715

Tra

nsp

res�

sio

nal

fau

lt–

Nea

r th

e O

mu�

levk

a S

tati

on

21

–D

1;

C4

(Go

len

etsk

ii e

t al

.,

1982

; Z

emle

trya

s�en

iya…

, 19

83;

So

lo�

nen

ko e

t al

., 1

993)

182

Oro

ngo

i19

80.1

0.02

51.6

210

7.04

5.1

715

Tra

nsp

res�

sio

nal

fau

lt–

Are

a of

th

e S

hal

uty

Set

tle�

men

t 25

–D

3;

E1

183

Oro

ngo

i19

80.1

0.02

51.6

210

7.04

5.1

715

Tra

nsp

res�

sio

nal

fau

lt–

Nea

r th

e Iv

olgi

nsk

Vil

lage

25

–A

4

184

Oro

ngo

i19

80.1

0.02

51.6

210

7.04

5.1

715

Tra

nsp

res�

sio

nal

fau

lt–

Tow

n

of G

usin

ooze

rsk

50–

A4

Page 31: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

EARTHQUAKE PARAMETERS AND SPATIAL DISTRIBUTION 169

Tabl

e.(C

ontd

.)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sou

rce

Name

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h), km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from the fault (Rf), km

Type of seismic effect

12

34

56

78

910

1112

1314

15

185

–19

81.0

5.22

51.9

610

5.52

5.6

6–7

10N

orm

al

fau

lt

Bai

kal�

Bu

guld

eika

A

rea

Bo

l’sh

oe

Go

lou

stn

oe

Set

�tl

emen

t12

15D

3(Z

emle

trya

seni

ya…

, 19

84;

So

lon

enko

et

al.,

199

3; L

un

ina

et

al.,

201

0)18

6–

1981

.05.

2251

.96

105.

525.

66–

710

No

rmal

fa

ult

Bai

kal�

Bu

guld

eika

Nea

r th

e P

esch

anay

a B

ay30

16D

1;

D2

187

–19

81.0

5.22

51.9

610

5.52

5.6

6–7

10N

orm

al

fau

ltB

aika

l�B

ugu

ldei

kaM

ish

ikh

a V

illa

ge36

32E

l

188

–19

81.0

5.27

53.9

410

8.92

5.2

6–7

10N

orm

al

fau

lt–

Sai

nt

Nos

P

enin

sula

13

–C

1;

D2

(Zem

letr

yase

niya

…,

1984

; S

olo

nen

ko e

t al

., 1

993)

189

–19

81.0

5.27

53.9

410

8.92

5.2

6–7

10N

orm

al

fau

lt–

To t

he

sout

h

of t

he

Muz

hin

ai

Cap

e10

2–

C2;

D

2

190

–19

81.0

5.27

53.9

410

8.92

5.2

6–7

10N

orm

al

fau

lt–

Are

a of

th

e M

alay

a K

osa

Bay

84

–D

l

191

–19

81.0

5.27

53.9

410

8.92

5.2

6–7

10N

orm

al

fau

lt–

Are

a of

th

e S

olon

tsov

aya

Bay

48

–D

2;

E1;

E

3

192

–19

81.0

5.27

53.9

410

8.92

5.2

6–7

10N

orm

al

fau

lt–

Are

a of

Olk

hon

Is

lan

d 10

8–

D1;

D

3

193

–19

81.0

5.27

53.9

410

8.92

5.2

6–7

10N

orm

al

fau

lt–

Kur

buli

k S

ettl

emen

t 27

–E

2

194

–19

81.0

5.27

53.9

410

8.92

5.2

6–7

10N

orm

al

fau

lt–

Dav

sha

Vil

lage

60

–A

4�1;

E

1

195

–19

81.0

5.27

53.9

410

8.92

5.2

6–7

10N

orm

al

fau

lt–

Ust

’�B

argu

zin

S

ettl

emen

t 59

–E

l

196

–19

85.1

1.27

51.3

886

.21

4.2

7–

––

Ep

icen

ter

area

2–

Dl

(Ear

thqu

akes

…,

1988

)19

7–

1985

.11.

2751

.38

86.2

14.

27

––

–C

hem

al V

illa

ge

14–

E2

198

–19

85.1

1.27

51.3

886

.21

4.2

7–

––

To

wn

o

f G

orn

o�A

ltai

sk66

–E

2

Page 32: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

170

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

ANDREEV, LUNINA

Tabl

e.(C

ontd

.)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sou

rce

Name

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h), km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from the fault (Rf), km

Type of seismic effect

12

34

56

78

910

1112

1314

15

199

Dyr

ynd

a19

87.0

7.07

56.5

512

1.10

4.9

616

Sh

ear

fau

ltT

as�Y

ury

akh

R

iver

val

ley

10–

D4

( Zem

letr

yase

niya

…,

1990

; S

olo

nen

ko e

t al

., 1

993)

200

Tas

hta

gol

1988

.02.

0552

.71

87.8

84.

15–

62

Ove

rth

rust

fa

ult

Sh

elgi

no

�K

on

dom

aE

pic

ente

r ar

ea3

3A

4( I

ssle

dova

niya

…,

1989

; Z

emle

trya

s�en

iya…

, 19

91)

201

So

uth

Y

aku

tsk

1989

.04.

2057

.17

122.

316.

67

27O

vert

hru

st

fau

lt–

Tun

gurc

ha

Riv

er

vall

ey

25–

C1;

C

3;

D1;

D

3

(Iss

ledo

vani

ya…

, 19

89;

Zem

letr

yas�

eniy

a…,

1993

; S

olo

�n

enko

et

al.,

199

3;

Imae

v et

al.

, 20

00)

202

So

uth

Y

aku

tsk

1989

.04.

2057

.17

122.

316.

67

27O

vert

hru

st

fau

lt–

Riv

er v

alle

ys

of O

lekm

a,

Kh

anya

, an

d T

ungu

rch

a

60–

Dl

203

So

uth

Y

aku

tsk

1989

.04.

2057

.17

122.

316.

67

27O

vert

hru

st

fau

lt–

Are

a of

th

e K

han

ya S

tati

on

150

–C

2

204

So

uth

Y

aku

tsk

1989

.04.

2057

.17

122.

316.

67

27O

vert

hru

st

fau

lt–

Are

a of

Ber

kaki

t S

ettl

emen

t16

5–

D1

205

So

uth

Y

aku

tsk

1989

.04.

2057

.17

122.

316.

67

27O

vert

hru

st

fau

lt–

Nea

r th

e A

baga

V

illa

ge

370

–C

3

206

–19

89.0

5.13

50.1

710

5.34

5.8

720

Sh

ear

fau

lt–

Nea

r th

e T

saga

n�

Nu

r S

ettl

emen

t18

–D

1;

D3

( Iss

ledo

vani

ya…

, 19

89;

Zem

letr

yas�

eniy

a…,

1993

; S

olo

�n

enko

et

al.,

199

3)

207

–19

89.1

0.25

57.4

511

8.84

5.4

6–

–K

od

arN

ort

hea

st o

f th

e K

od

ar R

idge

105

D5

(Zem

letr

yase

niya

…,

1993

)

Page 33: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

EARTHQUAKE PARAMETERS AND SPATIAL DISTRIBUTION 171

Tabl

e.(C

ontd

.)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sou

rce

Name

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h), km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from the fault (Rf), km

Type of seismic effect

12

34

56

78

910

1112

1314

15

208

Zai

san

1990

.06.

1447

.95

85.0

06.

98

40T

ran

spre

s�si

on

al f

ault

Ule

ngu

r�Z

aisa

nB

akas

u 43

30E

2

(Ro

gozh

in a

nd

L

eon

t’ev

, 19

92;

So

lo�

nen

ko e

t al

., 1

993;

Z

emle

trya

seni

ya…

, 19

96)

209

Zai

san

1990

.06.

1447

.95

85.0

06.

98

40T

ran

spre

s�si

on

al f

ault

Ule

ngu

r�Z

aisa

n

Mou

nta

in

nea

r th

e A

kzh

an

outp

ost

416

A1�

1;

C2;

C

4

210

Zai

san

1990

.06.

1447

.95

85.0

06.

98

40T

ran

spre

s�si

on

al f

ault

Ule

ngu

r�Z

aisa

n

Are

a of

th

e A

k�A

ral

Set

tlem

ent

2610

C2

211

Zai

san

1990

.06.

1447

.95

85.0

06.

98

40T

ran

spre

s�si

on

al f

ault

Ule

ngu

r�Z

aisa

n

Nea

r th

e ea

ster

n

ban

k of

Zai

san

L

ake

3520

A1;

C

2

212

Zai

san

1990

.06.

1447

.95

85.0

06.

98

40T

ran

spre

s�si

on

al f

ault

Ule

ngu

r�Z

aisa

nA

rea

of t

he

Bok

o�ta

i col

lect

ive

farm

19

10C

2;

C4

213

Zai

san

1990

.06.

1447

.95

85.0

06.

98

40T

ran

spre

s�si

on

al f

ault

Ule

ngu

r�Z

aisa

n

To t

he

sout

h o

f R

ozh

kovo

Set

tle�

men

t 26

16A

1;

C2

214

Zai

san

1990

.06.

1447

.95

85.0

06.

98

40T

ran

spre

s�si

on

al f

ault

Ule

ngu

r�Z

aisa

nA

rea

of t

he

Bla

ck

Irty

sh R

iver

del

ta

336

A1�

1

215

Zai

san

1990

.06.

1447

.95

85.0

06.

98

40T

ran

spre

s�si

on

al f

ault

Ule

ngu

r�Z

aisa

nA

rea

of t

he

Ak�

Tobe

hil

ly r

ange

3235

D2

216

–19

90.1

0.26

55.9

511

0.25

5.1

6–7

20O

bliq

ue�

slip

th

rust

Bai

kal L

ake

shor

e 37

26C

3(S

olo

nen

ko e

t al

.,

1993

; Z

emle

trya

s�en

iya…

, 199

6; L

un

ina

et a

l.,

2010

)21

7–

1990

.10.

2655

.95

110.

255.

16–

720

Obl

iqu

e�sl

ip t

hru

stU

l’ka

n S

ettl

e�m

ent

150

147

A4

218

–19

93.0

2.27

52.8

410

7.05

4.2

4–5

10O

bliq

ue�

slip

th

rust

–N

ear

the

Mal

oe

Mo

re

(Sm

all S

ea)

Str

ait

19–

E1

(Mel

nik

ova

and

Rad

�zi

min

ovic

h,

1998

; Z

emle

trya

seni

ya…

, 19

99)

Page 34: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

172

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

ANDREEV, LUNINA

Tabl

e.(C

ontd

.)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sou

rce

Name

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h), km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from the fault (Rf), km

Type of seismic effect

12

34

56

78

910

1112

1314

15

219

–19

93.0

7.13

52.2

510

6.44

4.8

710

Th

rust

fau

lt–

Nea

r th

e C

her

tovo

Lak

e10

–E

1(M

eln

ikov

a an

d R

ad�

zim

inov

ich

, 19

98;

Go

len

etsk

ii e

t al

.,

1995

; Z

emle

trya

s�en

iya…

, 19

99)

220

–19

93.0

7.13

52.2

510

6.44

4.8

710

Th

rust

fau

lt–

Are

a of

th

e S

hi�

gaev

o S

ettl

emen

t7

–E

2

221

Elo

vsko

e (T

un

ka)

1995

.06.

2951

.71

102.

705.

97

10T

hru

st f

ault

Gu

zhir

Kh

alba

ny

Are

a 20

19D

2

(Zem

letr

yase

niya

…,

2001

; D

emin

an

d

Tat

’kov

, 19

96;

Go

len

etsk

ii,

1997

; M

eln

ikov

a an

d R

adz�

imin

ovic

h,

1998

; A

gafo

nov

, 19

99;

Aga

fon

ov,

2002

; L

un

un

a et

al.

, 20

10)

222

Elo

vsko

e (T

un

ka)

1995

.06.

2951

.71

102.

705.

97

10T

hru

st f

ault

Gu

zhir

Nik

olsk

oe

97

E1

223

Elo

vsko

e (T

un

ka)

1995

.06.

2951

.71

102.

705.

97

10T

hru

st f

ault

Gu

zhir

Kh

urai

�Kh

obok

V

illa

ge

2322

E1;

E

3

224

Elo

vsko

e (T

un

ka)

1995

.06.

2951

.71

102.

705.

97

10T

hru

st f

ault

Gu

zhir

Ars

han

S

ettl

emen

t 30

29A

4�2

225

Elo

vsko

e (T

un

ka)

1995

.06.

2951

.71

102.

705.

97

10T

hru

st f

ault

Gu

zhir

Kyr

en V

illa

ge

3937

E2

226

Elo

vsko

e (T

un

ka)

1995

.06.

2951

.71

102.

705.

97

10T

hru

st f

ault

Gu

zhir

Are

a of

th

e S

agan

�S

air

Vil

lage

100

98E

3

227

Elo

vsko

e (T

un

ka)

1995

.06.

2951

.71

102.

705.

97

10T

hru

st f

ault

Gu

zhir

Kyn

garg

a R

iver

val

ley

3534

D2

228

Elo

vsko

e (T

un

ka)

1995

.06.

2951

.71

102.

705.

97

10T

hru

st f

ault

Gu

zhir

Tolt

a R

iver

val

ley

3331

D1;

D

3

229

Elo

vsko

e (T

un

ka)

1995

.06.

2951

.71

102.

705.

97

10T

hru

st f

ault

Gu

zhir

Bur

un�K

han

da�

gai P

ad’

(cre

ek

vall

ey)

4038

E3

230

Pro

kop’

evsk

oe19

95.0

9.14

53.7

686

.63

4.7

5–6

17–

–K

ara�

Ch

umys

h

Set

tlem

ent

7–

E1

(Zem

letr

yase

niya

…,

2001

)23

1P

roko

p’ev

skoe

1995

.09.

1453

.76

86.6

34.

75–

617

––

10 k

m fr

om t

he

Kar

a�C

hum

ysh

S

ettl

emen

t18

–E

1

Page 35: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

EARTHQUAKE PARAMETERS AND SPATIAL DISTRIBUTION 173

Tabl

e.(C

ontd

.)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sou

rce

Name

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h), km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from the fault (Rf), km

Type of seismic effect

12

34

56

78

910

1112

1314

15

232

So

uth

Bai

kal

1999

.02.

2551

.64

104.

825.

68

17N

orm

al

fau

lt

Nea

r th

e en

try

into

Lis

tvya

nka

S

ettl

emen

t 25

23A

3;

C3;

C

4

(Ru

zhic

h e

t al

., 2

002;

Z

emle

trya

seni

ya…

, 20

05;

Lu

nin

a et

al.

, 20

10)

233

So

uth

Bai

kal

1999

.02.

2551

.64

104.

825.

68

17N

orm

al

fau

lt

Are

a of

th

e T

ankh

oi

Set

tlem

ent

2213

A3;

A

4;

C3

234

So

uth

Bai

kal

1999

.02.

2551

.64

104.

825.

68

17N

orm

al

fau

lt

Are

a of

th

e K

ham

ar�D

aban

R

idge

27

21E

3

235

So

uth

Bai

kal

1999

.02.

2551

.64

104.

825.

68

17N

orm

al

fau

ltP

erem

nay

a S

tati

on

2515

A3;

C

3;

E1;

E

2

236

So

uth

Bai

kal

1999

.02.

2551

.64

104.

825.

68

17N

orm

al

fau

ltV

ydri

no

Set

tlem

ent

2314

A3;

C

3

237

So

uth

Bai

kal

1999

.02.

2551

.64

104.

825.

68

17N

orm

al

fau

ltK

edro

vaya

S

tati

on

1613

E1

238

So

uth

Bai

kal

1999

.02.

2551

.64

104.

825.

68

17N

orm

al

fau

ltTo

wn

of

Bai

kals

k 51

30E

2

239

Kic

her

a19

99.0

3.21

55.8

311

0.34

5.8

85

Dia

gon

al

slip

fau

lt–

Verk

hn

yaya

Z

aim

ka V

illa

ge12

A4;

A

4�2;

E

1;

E2;

E

3

(Zem

letr

yase

niya

…,

2005

; L

un

ina

et a

l.,

2010

)24

0K

ich

era

1999

.03.

2155

.83

110.

345.

88

5D

iago

nal

sl

ip f

ault

20 k

m t

o th

e so

uth

east

from

th

e Ve

rkh

nya

ya

Zai

mka

Vil

lage

10–

E3

241

Kic

her

a19

99.0

3.21

55.8

311

0.34

5.8

85

Dia

gon

al

slip

fau

lt–

Kic

her

a V

illa

ge

19–

E1;

E

2

242

Kic

her

a19

99.0

3.21

55.8

311

0.34

5.8

85

Dia

gon

al

slip

fau

lt–

Niz

hn

ean

gars

k S

ettl

emen

t 47

–E

2

Page 36: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

174

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

ANDREEV, LUNINA

Tabl

e.(C

ontd

.)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sour

ceName

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h), km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from the fault (Rf), km

Type of seismic effect

12

34

56

78

910

1112

1314

15

243

Ust

’�S

elen

ga20

01.1

0.10

52.4

310

6.66

4.3

621

Dia

gon

al

slip

fau

lt–

An

arm

of

Sel

enga

Riv

er

6–

A4�

2;

E1

(Zem

letr

yase

niya

…,

2007

)24

4U

st’�

Sel

enga

2001

.10.

1052

.43

106.

664.

36

21D

iago

nal

sl

ip f

ault

–A

rea

of t

he

En

khel

uk V

illa

ge

23–

E1

245

Ust

’�S

elen

ga20

01.1

0.10

52.4

310

6.66

4.3

621

Dia

gon

al

slip

fau

lt–

Bug

ulde

ika

Set

tlem

ent

42–

A4�

2;

D4

246

Olk

ho

n20

02.0

7.28

52.9

910

7.71

5.0

620

No

rmal

fa

ult

–G

rem

yach

insk

V

illa

ge27

–E

2(Z

emle

trya

seni

ya…

, 20

08)

247

Ch

uya

(A

ltai

)20

03.0

9.27

50.0

987

.98

7.5

1018

Sh

ear

fau

lt–

Bel

yi B

om

Vil

lage

74

–D

1

(Geo

dak

ov e

t al

.,

2003

; A

gato

va e

t al

.,

2004

; B

arys

hn

ikov

et

al.,

200

4; V

yso

tski

i et

al.,

200

4; N

ovik

ov e

t al

., 2

004;

Lu

nin

a et

al

., 2

006)

248

Ch

uya

(A

ltai

)20

03.0

9.27

50.0

987

.98

7.5

1018

Sh

ear

fau

lt–

Are

a of

th

e A

ktas

h V

illa

ge

36–

C4;

D1

249

Ch

uya

(A

ltai

)20

03.0

9.27

50.0

987

.98

7.5

1018

Sh

ear

fau

lt–

Esh

tykk

el’

Vall

ey

20–

A1�

1;

C2

250

Ch

uya

(A

ltai

)20

03.0

9.27

50.0

987

.98

7.5

1018

Sh

ear

fau

lt–

Are

a of

the

Bel

’tir

S

ettl

emen

t 22

A1;

A

2;

B1;

C

2;

D2;

E2

251

Ch

uya

(A

ltai

)20

03.0

9.27

50.0

987

.98

7.5

1018

Sh

ear

fau

lt–

Riv

er v

alle

ys o

f Ch

agan

an

d T

altu

ra21

A1;

A

2;

B1;

C

2;

D2;

D

3; F

2

Page 37: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

EARTHQUAKE PARAMETERS AND SPATIAL DISTRIBUTION 175

Tabl

e.(C

ontd

.)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sour

ceName

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h), km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from the fault (Rf), km

Type of seismic effect

12

34

56

78

910

1112

1314

15

252

Ch

uya

(A

ltai

)20

03.0

9.27

50.0

987

.98

7.5

1018

Sh

ear

fau

lt–

Th

e ri

ght

ban

k o

f Tal

tura

Riv

er

vall

ey

16–

D2

(Geo

dak

ov e

t al

.,

2003

; A

gato

va e

t al

.,

2004

; B

arys

hn

ikov

et

al.,

200

4; V

yso

tski

i et

al.

, 20

04;

Nov

ikov

et

al.

, 20

04;

Lu

nin

a et

al.,

200

6)

253

Ch

uya

(A

ltai

)20

03.0

9.27

50.0

987

.98

7.5

1018

Sh

ear

fau

lt–

Nea

r th

e B

el’t

ir

Set

tlem

ent

17–

D4

254

Ch

uya

(A

ltai

)20

03.0

9.27

50.0

987

.98

7.5

1018

Sh

ear

fau

lt–

Tal

tura

Riv

er

vall

ey b

otto

m

14–

C2;

B

2; F

2

255

Ch

uya

(A

ltai

)20

03.0

9.27

50.0

987

.98

7.5

1018

Sh

ear

fau

lt–

Nea

r th

e C

hag

an�U

zun

S

ettl

emen

t

28–

Al;

A

1�1;

C

2;

C4;

D4

256

Ch

uya

(A

ltai

)20

03.0

9.27

50.0

987

.98

7.5

1018

Sh

ear

fau

lt–

Nea

r th

e O

rtol

yk

Set

tlem

ent

38–

Al;

A

1�1;

B

1; C

2

257

Ch

uya

(A

ltai

)20

03.0

9.27

50.0

987

.98

7.5

1018

Sh

ear

fau

lt–

Kyz

ylch

in

Riv

er v

alle

y

24–

A2�

1;

A4;

C

1; C

2

258

Ch

uya

(A

ltai

)20

03.0

9.27

50.0

987

.98

7.5

1018

Sh

ear

fau

lt–

Up

the

Esh

tykk

el’

Vall

ey17

–C

2

259

Ch

uya

(A

ltai

)20

03.0

9.27

50.0

987

.98

7.5

1018

Sh

ear

fau

lt–

Nea

r th

e B

arat

al

ravi

ne

23–

C4;

D2

260

Ch

uya

(A

ltai

)20

03.0

9.27

50.0

987

.98

7.5

1018

Sh

ear

fau

lt–

Akt

ru

Riv

er v

alle

y 15

–C

2; E

2

261

Ch

uya

(A

ltai

)20

03.0

9.27

50.0

987

.98

7.5

1018

Sh

ear

fau

lt–

Roa

d to

war

ds

Tyu

te R

iver

5

–C

2

262

Ch

uya

(A

ltai

)20

03.0

9.27

50.0

987

.98

7.5

1018

Sh

ear

fau

lt–

Tyu

te R

iver

va

lley

14–

C2;

D

1;

D2;

D

3

Page 38: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

176

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

ANDREEV, LUNINA

Tabl

e.(C

ontd

.)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sou

rce

Name

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h), km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from the fault (Rf), km

Type of seismic effect

12

34

56

78

910

1112

1314

15

263

Ch

uya

(A

ltai

)20

03.0

9.27

50.0

987

.98

7.5

1018

Sh

ear

fau

lt–

Kus

kun

nur

R

iver

val

ley

10–

A1;

C

2;

C2�

1;

D2;

D

3

264

–20

04.0

7.06

56.3

811

3.39

4.4

615

––

Lef

t ba

nk

of

Up

per

A

nga

ra R

iver

28–

D2

(Lu

nin

a et

al.

, 20

07)

265

Ku

ltu

k20

08.0

8.27

51.6

210

4.06

6.3

7–8

16D

iago

nal

sl

ip f

ault

So

uth

B

aika

lZ

un

�Mu

rin

o

Set

tlem

ent

8359

A4�

2;

El

(Ber

zhin

skii

et

al.,

20

09;

Rad

zim

inov

ich

et

al.

, 20

09;

Lu

nin

a et

al.,

201

0; B

aika

l D

epar

tmen

t…: E

lec�

tro

nic

res

ou

rce)

266

Ku

ltu

k20

08.0

8.27

51.6

210

4.06

6.3

7–8

16D

iago

nal

sl

ip f

ault

So

uth

B

aika

lK

ult

uk

Set

tlem

ent

272

A4;

A

4�2;

D

3;

D4

267

Ku

ltu

k20

08.0

8.27

51.6

210

4.06

6.3

7–8

16D

iago

nal

sl

ip f

ault

So

uth

B

aika

l

To

th

e w

est

of

the

Utu

lik

Set

tlem

ent

113

C2;

D

3

268

Ku

ltu

k20

08.0

8.27

51.6

210

4.06

6.3

7–8

16D

iago

nal

sl

ip f

ault

So

uth

B

aika

l

To

th

e w

est

of

the

Ku

ltu

k S

ettl

emen

t 34

8C

2;

D3

Page 39: Earthquake parameters and spatial distribution of coseismic effects in Southern Siberia and Mongolia

SEISMIC INSTRUMENTS Vol. 49 No. 2 2013

EARTHQUAKE PARAMETERS AND SPATIAL DISTRIBUTION 177

Tabl

e.(C

ontd

.)

No.

The

par

amet

ers o

f an

eart

hqua

keT

he c

hara

cter

istic

s of

an a

rea

Sour

ceName

Date (GMT)

Latitude, ° N

Longitude, ° E

Magnitude Ms

Intensity (I0), points

Focal depth (h), km

Type of movement in a seismic focus

Seismogenic fault

Location

Epicentral distance (Re), km

Distance from

Type of seismic effect

12

34

56

78

910

1112

1314

15

269

Ku

ltu

k20

08.0

8.27

51.6

210

4.06

6.3

7–8

16D

iago

nal

sl

ip fa

ult

Sou

th B

aika

lK

ynga

rga

Riv

er

vall

ey

117

92D

1;

D2

(Ber

zhin

skii

et

al.,

200

9; R

adz�

imin

ovic

h e

t al

.,

2009

; L

un

ina

etal

., 2

010;

B

aika

l Dep

art�

men

t…: E

lec�

tro

nic

res

ou

rce)

270

Ku

ltu

k20

08.0

8.27

51.6

210

4.06

6.3

7–8

16D

iago

nal

sl

ip fa

ult

Sou

th B

aika

lN

ear

Elo

vka

Vil

lage

93

69C

1;

D1

271

Ku

ltu

k20

08.0

8.27

51.6

210

4.06

6.3

7–8

16D

iago

nal

sl

ip fa

ult

Sou

th B

aika

lN

ear

the

Kul

tuk

Set

tlem

ent

347

C2;

C

4;

D3

272

Ku

ltu

k20

08.0

8.27

51.6

210

4.06

6.3

7–8

16D

iago

nal

sl

ip fa

ult

Sou

th B

aika

lU

tuli

k V

illa

ge

85

C2;

C

4

273

Ku

ltu

k20

08.0

8.27

51.6

210

4.06

6.3

7–8

16D

iago

nal

sl

ip fa

ult

Sou

th B

aika

lN

ear

the

tow

n

of S

lyud

yan

ka

286

C1;

C

2;

C4;

D

l

274

Ku

ltu

k20

08.0

8.27

51.6

210

4.06

6.3

7–8

16D

iago

nal

sl

ip fa

ult

Sou

th B

aika

lT

he

tow

n

of S

lyud

yan

ka

257

D2

275

Ku

ltu

k20

08.0

8.27

51.6

210

4.06

6.3

7–8

16D

iago

nal

sl

ip fa

ult

Sou

th B

aika

lTo

th

e n

orth

east

fr

om M

angu

tai

Vil

lage

83

C1;

C

2;

D2

276

Ku

ltu

k20

08.0

8.27

51.6

210

4.06

6.3

7–8

16D

iago

nal

sl

ip fa

ult

Sou

th B

aika

lF

ragm

ent

of M

�53

Hig

hw

ay9

2C

2;

C4;

D

l