85
Early Isotropization of the Quark Gluon Plasma Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 0 / 28

Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

Early Isotropization ofthe Quark Gluon Plasma

Santiago de Compostela, 29th October 2013Thomas EPELBAUM

IPhT

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 0 / 28

Page 2: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

OUTLINE

1 MOTIVATION

2 THEORETICAL FRAMEWORK

3 A PROOF OF CONCEPT: SCALAR FIELD THEORY

4 YANG-MILLS THEORY

5 CONCLUSION

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 0 / 28

Page 3: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

HEAVY ION COLLISIONS: THE GENERAL PICTURE

QGP

Hydrodynamics

viscousideal

Hadron gas

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 1 / 28

Page 4: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

HEAVY ION COLLISIONS: THE GENERAL PICTURE

0 100 200 300 400

NPart

0

0.02

0.04

0.06

0.08

0.1

v2

PHOBOS

CGC

η/s=10-4

η/s=0.08

η/s=0.16

η/s=0.24

[LUZUM, ROMATSCHKE (2008)]THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 1 / 28

Page 5: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

HEAVY ION COLLISIONS: THE GENERAL PICTURE

Viscous Hydrodynamics

I) Macroscopic theoryII) Few parameters: PL, PT , ε, ~uIII) Need input:

1) Equation of state f(PL, PT ) = ε2) Small anisotropy3) Initialization: ε(τ0), PL(τ0)? ...4) viscous coefficients: shear viscosity η,...5) Short isotropization time

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 1 / 28

Page 6: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

HEAVY ION COLLISIONS: THE GENERAL PICTURE

Viscous Hydrodynamics

I) Macroscopic theoryII) Few parameters: PL, PT , ε, ~uIII) Need input:

1) Equation of state f(PL, PT ) = ε2) Small anisotropy3) Initialization: ε(τ0), PL(τ0)? ...4) viscous coefficients: shear viscosity η,...5) Short isotropization timeNon

e ofthisiseasy

toget f

rom

QCD

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 1 / 28

Page 7: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

HEAVY ION COLLISIONS: THE GENERAL PICTURE

Early transition: the problem

CGC

Glasma Isotropization?Time scale?

Hydrodynamics

QGP

Huge anisotropy Small anisotropy(negative PL)

Long time puzzle: Does (fast) isotropization occur?

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 1 / 28

Page 8: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

2 THEORETICAL FRAMEWORKHow to deal with a Heavy Ion CollisionThe Color Glass CondensateThe Classical statistical approximation

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 1 / 28

Page 9: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

HOW TO STUDY THE TRANSITION?

Strongly coupled method: AdS/QCD?

SupersymmetricSU(N) gauge theory

Black hole

String theory

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 2 / 28

Page 10: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

HOW TO STUDY THE TRANSITION?

Weakly coupled method: QCD

SupersymmetricSU(N) gauge theory

Black hole

String theory

QCD

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 2 / 28

Page 11: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

HOW TO STUDY THE TRANSITION?

Weakly coupled QCD with only gluons

-310

-210

-110

1

10

-410

-310

-210

-110 1

-310

-210

-110

1

10

HERAPDF1.0

exp. uncert.

model uncert.

parametrization uncert.

x

xf

2 = 10 GeV2Q

vxu

vxd

xS

xg

H1 and ZEUS

-310

-210

-110

1

10

u

du

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 2 / 28

Page 12: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

HOW TO STUDY THE TRANSITION?

Weakly coupled method at dense regime:αs � 1 but fgluon ∼ 1

αs

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 2 / 28

Page 13: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 3 / 28

Page 14: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 3 / 28

Page 15: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 3 / 28

Page 16: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 3 / 28

Page 17: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 3 / 28

Page 18: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION

Gluon saturation when emission = recombination⇒ Saturation scale Qs

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 3 / 28

Page 19: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION

u

du

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 4 / 28

Page 20: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 4 / 28

Page 21: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 4 / 28

Page 22: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 4 / 28

Page 23: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 4 / 28

Page 24: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

2 THEORETICAL FRAMEWORKHow to deal with a Heavy Ion CollisionThe Color Glass CondensateThe Classical statistical approximation

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 4 / 28

Page 25: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

THE MAIN ASSUMPTIONS

• Fast gluons are "frozen" by time dilation.

• Described as static color sources J located on the light cone axis

• Small x→ Gluon saturation→ J ∼ Q3s α

−1/2s .

• Slow gluons are the standard gauge field Aµ ∼ Qs α−1/2s .

• System boost-invariant→ Aµ rapidity independant.

Langrangian of theory reads

L = −14FµνF

µν + JµAµ

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 5 / 28

Page 26: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

Theoretical framework (Weakly coupled but strongly interacting)

x+x−

CGCJ− J+

E ,B

LO: ε =12

(~E

2+ ~B

2)

︸ ︷︷ ︸Classicalcolor fields

DµFµν = Jν︸︷︷︸

Color sourceson the light cone

[KRASNITZ, VENUGOPALAN (1998)]

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 6 / 28

Page 27: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

ε = E2⊥ +B2

⊥ + E2L +B2

L

PT = E2L +B2

L

PL = E2⊥ +B2

⊥ − E2L −B2

L

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 7 / 28

Page 28: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

0 0.5 1 1.5 2

g2µτ

0

0.2

0.4

0.6

0.8

[(g2µ

)4/g

2]

Bz

2

Ez

2

BT

2

ET

2

[LAPPI, MCLERRAN (2006)]

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 7 / 28

Page 29: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

ε = E2⊥︸︷︷︸0

+ B2⊥︸︷︷︸

0

+E2L +B2

L

PT = E2L +B2

L

PL = E2⊥︸︷︷︸0

+ B2⊥︸︷︷︸

0

−E2L −B2

L

Initial Tµν is (ε, ε, ε,−ε)!

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 7 / 28

Page 30: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

Strong anisotropy at early time

-0.05

0

0.05

0.1

0 0.5 1 1.5 2 2.5 3

g2τ P

L /

(g

)3,

g

2τ P

T /

(g

)3

g2µτ

τ PLτ PT

[GELIS, FUKUSHIMA (2012)]

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 7 / 28

Page 31: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

Strong anisotropy at early time

-0.05

0

0.05

0.1

0 0.5 1 1.5 2 2.5 3

g2τ P

L /

(g

)3,

g

2τ P

T /

(g

)3

g2µτ

τ PLτ PT

{∂τε+

ε+PLτ

= 0limτ→0+

ε = cst ⇒ PL = −ε

ε = 2PT + PL ⇒ PT = ε

[GELIS, FUKUSHIMA (2012)]

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 7 / 28

Page 32: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

THE COLOR GLASS CONDENSATE AT NLO

E2(x) = E2(x)︸ ︷︷ ︸LO

+12

∫~k

∣∣e~k(x)∣∣2︸ ︷︷ ︸NLO

+ · · ·

e~k(x) perturbation to E(x) created by a plane waveof momentum ~k in the remote past.

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 8 / 28

Page 33: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

THE COLOR GLASS CONDENSATE AT NLO

0 500 1000 1500 2000 2500 3000 3500

g2 µ τ

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

max

τ2 T

ηη /

g4

µ3 L

η

c0+c

1 Exp(0.427 Sqrt(g

2 µ τ))

c0+c

1 Exp(0.00544 g

2 µ τ)

[ROMATSCHKE, VENUGOPALAN (2006)]

Small Fluctuations grow exponentially (Weibel instability)

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 9 / 28

Page 34: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

THE COLOR GLASS CONDENSATE AT NLO

• Because of instabilities, the NLO correction eventually becomes as largeas the LO⇒ Important effect, should be included

• NLO alone will grow forever⇒ unphysical effect, should be taken care of

-40

-30

-20

-10

0

10

20

30

40

-20 0 20 40 60 80

time

PLO εLO

-40

-30

-20

-10

0

10

20

30

40

-20 0 20 40 60 80

time

PNLO εNLO

• Such growing contributions are present at all orders of the perturbativeexpansion

How to deal with them?

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 10 / 28

Page 35: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

2 THEORETICAL FRAMEWORKHow to deal with a Heavy Ion CollisionThe Color Glass CondensateThe Classical statistical approximation

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 10 / 28

Page 36: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

THE CLASSICAL-STATISTICAL METHOD

• At the initial time τ = τ0, take:

~E0(τ0,~x) = ~E0(τ0,~x) +∫~k

c~k~e~k(τ0,~x)

where c~k are random coefficients:⟨c~kc~k ′

⟩∼ δ~k~k ′

• Solve the Classical equation of motion DµFµν = Jν

• Compute⟨~E

2(τ,~x)

⟩, where 〈〉 is the average on the c~k (Monte-Carlo)

• One can show that this resums all the fastest growing terms at eachorder, leading to a result that remain bounded when τ→∞[GELIS, LAPPI, VENUGOPALAN (2008)]

This gives: LO+NLO+Subset of higer orders

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 11 / 28

Page 37: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

LO: Classical solution

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 12 / 28

Page 38: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

LO: Classical solution

NLO:Parabolic

approximationaround LO

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 12 / 28

Page 39: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

NLO:Parabolic

approximationaround LO

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 12 / 28

Page 40: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

Resummed:keep thecompletepotential

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 12 / 28

Page 41: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

Resummed:keep thecompletepotential

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 12 / 28

Page 42: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

Resummed:keep thecompletepotential

-200

-150

-100

-50

0

50

100

150

200

0 50 100 150 200 250

time

g=0.5 g=1 g=2 g=4 g=8 ε/3

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 12 / 28

Page 43: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

3 A PROOF OF CONCEPT: SCALAR FIELD THEORYThe TheoryNumerical results

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 12 / 28

Page 44: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

SCALAR FIELD THEORY

Adapted coordinate system to describe a Heavy Ion Collision?

x⊥

z

System boost invariant in z direction

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 13 / 28

Page 45: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

SCALAR FIELD THEORY

Proper time/rapidity coordinate system

η = cstτ = cst

τ0

x+x−

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 13 / 28

Page 46: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

SCALAR FIELD THEORY

The model

Initial conditions: classical statistical method

φ(τ0, x⊥,η) = ϕ0(τ0, x⊥) +∑k⊥,ν

cνk⊥eiνη aν,k⊥(τ0, x⊥)

Time evolution: Klein Gordon equation

[∂2

∂τ2 +1τ

∂τ−∇2

⊥ −1τ2

∂2

∂η2

]︸ ︷︷ ︸

φ+g2

6φ3 = 0

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 13 / 28

Page 47: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

HOW INTERACTIONS COMPETE WITH EXPANSION?

Initial anisotropy

PT

PL

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 14 / 28

Page 48: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

HOW INTERACTIONS COMPETE WITH EXPANSION?

Interactions isotropize the system

PT

PL

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 14 / 28

Page 49: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

HOW INTERACTIONS COMPETE WITH EXPANSION?

Expansion dilutes the system

PT

PL

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 14 / 28

Page 50: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

HOW INTERACTIONS COMPETE WITH EXPANSION?

Expansion ≶ Interactions for realistic αs?

PT

PL

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 14 / 28

Page 51: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

3 A PROOF OF CONCEPT: SCALAR FIELD THEORYThe TheoryNumerical results

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 14 / 28

Page 52: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

TµνRESUM [DUSLING, TE, GELIS, VENUGOPALAN (2012]

×10-1

×100

×101

×102

×103

×104

×10-2 ×10-1 ×100 ×101

τ

PT(τ0=0.01)

ε(τ0=0.01)

PT(τ0=0.1)

ε(τ0=0.1)

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 15 / 28

Page 53: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

TµνRESUM [DUSLING, TE, GELIS, VENUGOPALAN (2012]

×10-3

×10-2

×10-1

×100

×101

0 50 100 150 200 250 300

τ

2PT + P

L

ε

PT

PL

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 15 / 28

Page 54: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

ε BEHAVIOUR

10-2

10-1

100

101

10 100

τ

τ-4/3

τ-1

2PT + P

L

ε

Bjorken Law: ∂τε+ ε+PLτ

= 0THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 15 / 28

Page 55: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

HYDRODYNAMICS: IDEAL AND VISCOUS

Equation of state: ε = 2PL + PT

IDEAL HYDRO

Isotropic system

Tµνideal = εuµuν − P(gµν − uµuν)

VISCOUS HYDRO

Anisotropic system

Tµν = Tµνideal + ηπµν

In our case

PT =ε

3+

2η3τ

PL =ε

3−

4η3τ

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 16 / 28

Page 56: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

HYDRODYNAMICS: IDEAL AND VISCOUS

Equation of state: ε = 2PL + PT

IDEAL HYDRO

Isotropic system

Tµνideal = εuµuν − P(gµν − uµuν)

VISCOUS HYDRO

Anisotropic system

Tµν = Tµνideal + ηπµν

In our case

PT =ε

3+

2η3τ

PL =ε

3−

4η3τ

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 16 / 28

Page 57: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

FIRST ORDER VISCOUS HYDRODYNAMICS

BJORKEN’s Law (coming from ∂µTµν = 0):

∂τε+ε+ PL

τ= 0 → ∂τε+

43ε

τ=

43η

τ2

assuming η = η0τ

and STEFAN-BOLTZMANN entropy s ≈ ε 34

∂τε+43ε

τ=

43η

s︸︷︷︸cte

ε34

τ2

At a given time, knowing ε, PT , PL and assuming• an EOS• STEFAN-BOLTZMANN entropy• η = η0

τ

• ηs = cte

gives a very simple hydro model.

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 17 / 28

Page 58: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

FIRST ORDER VISCOUS HYDRODYNAMICS

BJORKEN’s Law (coming from ∂µTµν = 0):

∂τε+ε+ PL

τ= 0 → ∂τε+

43ε

τ=

43η

τ2

assuming η = η0τ

and STEFAN-BOLTZMANN entropy s ≈ ε 34

∂τε+43ε

τ=

43η

s︸︷︷︸cte

ε34

τ2

At a given time, knowing ε, PT , PL and assuming• an EOS• STEFAN-BOLTZMANN entropy• η = η0

τ

• ηs = cte

gives a very simple hydro model.

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 17 / 28

Page 59: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

FIRST ORDER VISCOUS HYDRODYNAMICS

BJORKEN’s Law (coming from ∂µTµν = 0):

∂τε+ε+ PL

τ= 0 → ∂τε+

43ε

τ=

43η

τ2

assuming η = η0τ

and STEFAN-BOLTZMANN entropy s ≈ ε 34

∂τε+43ε

τ=

43η

s︸︷︷︸cte

ε34

τ2

At a given time, knowing ε, PT , PL and assuming• an EOS• STEFAN-BOLTZMANN entropy• η = η0

τ

• ηs = cte

gives a very simple hydro model.

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 17 / 28

Page 60: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

COMPARISON WITH HYDRO: ISOTROPIZATION

×10-3

×10-2

×10-1

×100

×101

0 50 100 150 200 250 300

τ

2PT + P

L

ε

PT

PL

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 18 / 28

Page 61: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

COMPARISON WITH HYDRO: ISOTROPIZATION

×10-3

×10-2

×10-1

50 100 150 200 250 300

τ

τ0=70 Field theory

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 18 / 28

Page 62: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

COMPARISON WITH HYDRO: ISOTROPIZATION

×10-3

×10-2

×10-1

50 100 150 200 250 300

τ

τ0=150 Field theory

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 18 / 28

Page 63: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

COMPARISON WITH HYDRO: ISOTROPIZATION

×10-3

×10-2

×10-1

50 100 150 200 250 300

τ

τ0=200 Field theory

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 18 / 28

Page 64: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

COMPARISON WITH HYDRO: VISCOSITY

PT − PL =2ητ

0.1

1

10

100

0 50 100 150 200 250 300

η /

s

τ

effective η / s

perturbation theory

AdS/CFT bound1

∼ 104

g4

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 19 / 28

Page 65: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

COMPARISON WITH HYDRO: VISCOSITY

see also [ASAKAWA, BASS, MULLER (2006-07)]

0.1

1

10

100

0 50 100 150 200 250 300

η /

s

τ

effective η / s

perturbation theory

AdS/CFT bound1

∼ 104

g4

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 19 / 28

Page 66: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

4 YANG-MILLS THEORYThe theoryNumerical results

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 19 / 28

Page 67: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

THE NLO SPECTRUM

• Need to know ~e~k(τ0,~x) at the time τ0 we start the numerical simulation

• For practical reasons, we must start in the forward light cone (τ0 > 0)

x− x+

?

~e~k(x) ∼t 7→−∞

eik.x

This can be done analytically [TE,GELIS 1307:1765]

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 20 / 28

Page 68: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

THE NLO SPECTRUM

Result of [TE,GELIS 1307:1765]

eiν~k⊥

= iν(Fi,− − Fi,+) eη

ν~k⊥(x) = Di (Fi,− − Fi,+)

with

Fi,+k (x) ∼ eiνη U

†1(~x⊥)

∫~p⊥

ei~p⊥·~x⊥ U1(~p⊥ +~k⊥)(

p2⊥τ

2k⊥

)iν[δij −

2pi⊥pj⊥

p2⊥

jkλ .

• U†1 depends on the color source J+ of the first nucleus

• Analogous formula for Fi,−.

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 21 / 28

Page 69: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

4 YANG-MILLS THEORYThe theoryNumerical results

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 21 / 28

Page 70: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

YM ON A LATTICE

Gauge potential Aµ → link variables (exact gauge invariance on the lattice)

aL aT

N

L

x

y

Numerical parameters• Transverse lattice size L = 64, transverse lattice spacing QsaT = 1• Longitudinal lattice size N = 128, longitudinal lattice spacing aL = 0.016• Number of configurations for the Monte-Carlo Nconf = 200 to 2000• Initial time Qsτ0 = 0.01

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 22 / 28

Page 71: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

EOM ON A LATTICE

Writing

Eµ(x) =xµ

Uµ(x) = x µ U†µ(x) =x + µµ

and

Uµν(x) =x µ

ν U†µν(x) = x

µ

ν

Uµ−ν(x) =

x µ

ν U†µ−ν(x) =

x

µ

ν .

We can therefore rewrite the EOM as

∂τxI=

−i2gaIa2

J

∑J

x I

J−

x

I

J+

x I

J−

x

I

J

∂τ

x I = − i g aIxI

I

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 23 / 28

Page 72: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

NUMERICAL RESULTS [TE,GELIS 1307:2214]

αs = 8 10−4 (g = 0.1)

+ 10-3

+ 10-2

+ 10-1

+ 100

+ 101

1

Tµν /

Qs4

τ [fm/c]

0.01 0.1 2 3 4

- 10-3

- 10-2

- 10-1

- 100

- 101

0.1 1.0

Qs τ

10 20 30 40

ε

PT

PL

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 24 / 28

Page 73: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

NUMERICAL RESULTS [TE,GELIS 1307:2214]

αs = 8 10−4 (g = 0.1)

-1

0

1/3

1/2

+1

0.1 1.0 10.0

1

Qs τ

τ [fm/c]

0.01 0.1

10.0 20.0 30.0 40.0

2 3 4

PT / ε

PL / ε

LO

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 24 / 28

Page 74: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

RENORMALIZATION PROCEDURE

⟨E2

L,div⟩

∼ Q2sk

2⊥,max + k4

⊥,max + k4⊥,max ln2 νmax

τ+ ...

x

+

x

︸ ︷︷ ︸Q2sk2

⊥,max

+

x

︸ ︷︷ ︸k4

⊥,max

+

x

+

x

︸ ︷︷ ︸k4

⊥,max ln2 νmaxτ

+...

3 last diagrams can be substracted with a simulation where

Aaµ(x) = 0 + aa

µ(x)

E2L "fine" (B2

L too)

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 25 / 28

Page 75: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

RENORMALIZATION PROCEDURE

⟨E2

T,div⟩

∼ Q2s

ν2maxτ2 + k2

⊥,maxν2

maxτ2 + k4

⊥,max ln2 νmax

τ+ ...

x

+

x

︸ ︷︷ ︸Q2s

ν2maxτ2

+

x

︸ ︷︷ ︸k2

⊥,maxν2

maxτ2

+

x

+

x

︸ ︷︷ ︸k4

⊥,max ln2 νmaxτ

+...

3 last diagrams can be substracted with a simulation where

Aaµ(x) = 0 + aa

µ(x)

How to deal with the first 2? → ad-hoc fit for the time being.

Otherwise E2L and B2

L behaves as τ−2 at early time.

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 25 / 28

Page 76: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

RENORMALIZATION PROCEDURE

ε = E2T + B2

T + E2L︸︷︷︸

fine

+ B2L︸︷︷︸

fine

PT = E2L︸︷︷︸

fine

+ B2L︸︷︷︸

fine

PL = E2T + B2

T − E2L︸︷︷︸

fine

− B2L︸︷︷︸

fine

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 25 / 28

Page 77: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

RENORMALIZATION PROCEDURE

〈PT〉phys. = 〈PT〉 backgd.+ fluct.

− 〈PT〉 fluct.only

〈ε, PL〉phys. = 〈ε, PL〉 backgd.+ fluct.︸ ︷︷ ︸

computed

− 〈ε, PL〉 fluct.only︸ ︷︷ ︸

computed

+ A τ−2︸ ︷︷ ︸fitted

.

Ad-hoc term only one to satisfy Bjorken law and EOS:

∂ττ−α + 2τ−α−1 = 0

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 25 / 28

Page 78: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

RENORMALIZATION PROCEDURE

How come that problematic divergent diagrams behaves as mass terms?

In the continuum limit, they don’t exist local gauge invariant operators ofdimension two.

On the lattice though, they coud be terms like

g2 ν2max

k2⊥,maxτ

2 TrF2,

where

Fµν(x) ∼x µ

ν−

x

µ

ν

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 25 / 28

Page 79: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

NUMERICAL RESULTS [TE,GELIS 1307:2214]

αs = 2 10−2 (g = 0.5)

+ 10-3

+ 10-2

+ 10-1

+ 100

1

Tµν /

Qs4

τ [fm/c]

0.01 0.1 2 3 4

- 10-3

- 10-2

- 10-1

- 100

0.1 1.0

Qs τ

10 20 30 40

ε

PT

PL

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 26 / 28

Page 80: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

NUMERICAL RESULTS [TE,GELIS 1307:2214]

αs = 2 10−2 (g = 0.5)

+ 10-3

+ 10-2

+ 10-1

+ 100

1

Tµν /

Qs4

τ [fm/c]

0.01 0.1 2 3 4

- 10-3

- 10-2

- 10-1

- 100

0.1 1.0

Qs τ

10 20 30 40

ε

PT

PL

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 26 / 28

Page 81: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

NUMERICAL RESULTS [TE,GELIS 1307:2214]

αs = 2 10−2 (g = 0.5)

-1

0

1/3

1/2

+1

0.1 1.0 10.0

1

Qs τ

τ [fm/c]

0.01 0.1

10.0 20.0 30.0 40.0

2 3 4

PT / ε

PL / ε

LO

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 26 / 28

Page 82: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

NUMERICAL RESULTS [TE,GELIS 1307:2214]

αs = 2 10−2 (g = 0.5)

-1

0

1/3

1/2

+1

0.1 1.0 10.0

1

Qs τ

τ [fm/c]

0.01 0.1

10.0 20.0 30.0 40.0

2 3 4

PT / ε

PL / ε

LO

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 26 / 28

Page 83: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

ANOMALOUSLY SMALL VISCOSITY

Assuming simple first order viscous hydrodynamics

ε ≈ ε0τ− 4

3︸ ︷︷ ︸Ideal hydro

− 2η0τ−2︸ ︷︷ ︸

first order correction

we can compute the dimensionless ratio (η = η0τ−1)

ηε−34 . 1

In contrast, perturbation theory at LO gives ηε−34 ∼ 300.

If the system is closed from being thermal

ε−34 ∼ s =⇒ η

sNot far from

14π

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 27 / 28

Page 84: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

CONCLUSION

• Correct NLO spectrum from first principles

• Fixed anisotropy for g = 0.5 at τ ∼ 1fm/c

• No need for strong coupling to get isotropization

• Compatible with viscous hydrodynamical expansion

• Assuming simple first order viscous hydrodynamics

ηε−34 . 1

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 28 / 28

Page 85: Early Isotropization of the Quark Gluon Plasmaepelbaum/Santiago_29_10.pdf · Santiago de Compostela, 29th October 2013 Thomas EPELBAUM IPhT THOMAS EPELBAUM Early Isotropization of

CONCLUSION

Viscous Hydrodynamics

I) Macroscopic theoryII) Few parameters: PL, PT , ε, ~uIII) Need input:

1) Equation of state f(PL, PT ) = ε2) Small anisotropy3) Initialization: ε(τ0), PL(τ0)? ...4) viscous coefficients: shear viscosity η,...5) Short isotropization time

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 28 / 28