e8 edited lab 3122

Embed Size (px)

Citation preview

  • 7/29/2019 e8 edited lab 3122

    1/16

    ME3122-2 FORCED CONVECTION HEAT TRANSFER

    BENJAMIN ANG ZI WEI

    A0072215R

    GROUP: 3L2 DATE: 7/9/2012

    Department of Mechanical Engineering

    National University of Singapore

  • 7/29/2019 e8 edited lab 3122

    2/16

  • 7/29/2019 e8 edited lab 3122

    3/16

    180 1.21E+01 9.35E+01 2.22E+01 3.66E+02 7.13E+01 1.34E+02 -0.63307 11.23574

    210 1.22E+01 8.62E+01 2.21E+01 3.59E+02 6.41E+01 1.34E+02 -0.73979 13.10837

    240 1.32E+01 8.00E+01 2.23E+01 3.53E+02 5.78E+01 1.34E+02 -0.84295 14.98099

    270 1.26E+01 7.43E+01 2.21E+01 3.47E+02 5.21E+01 1.34E+02 -0.94644 16.85362

    300 1.24E+01 6.66E+01 2.23E+01 3.40E+02 4.43E+01 1.34E+02 -1.10771 18.72624

    330 1.26E+01 6.20E+01 2.24E+01 3.35E+02 3.96E+01 1.34E+02 -1.21968 20.59886360 1.24E+01 5.79E+01 2.24E+01 3.31E+02 3.55E+01 1.34E+02 -1.32935 22.47149

    390 1.24E+01 5.42E+01 2.23E+01 3.27E+02 3.19E+01 1.34E+02 -1.43581 24.34411

    420 1.27E+01 5.10E+01 2.25E+01 3.24E+02 2.85E+01 1.34E+02 -1.54842 26.21674

    450 1.26E+01 4.79E+01 2.24E+01 3.21E+02 2.55E+01 1.34E+02 -1.65834 28.08936

    480 1.24E+01 4.53E+01 2.24E+01 3.18E+02 2.29E+01 1.34E+02 -1.76799 29.96198

    510 1.19E+01 4.29E+01 2.24E+01 3.16E+02 2.05E+01 1.34E+02 -1.87907 31.83461

    540 1.14E+01 4.09E+01 2.26E+01 3.14E+02 1.83E+01 1.34E+02 -1.98814 33.70723

    570 1.21E+01 3.91E+01 2.25E+01 3.12E+02 1.67E+01 1.34E+02 -2.0842 35.57986

    600 1.22E+01 3.72E+01 2.22E+01 3.10E+02 1.50E+01 1.34E+02 -2.19273 37.45248

    630 1.22E+01 3.57E+01 2.24E+01 3.09E+02 1.34E+01 1.34E+02 -2.30444 39.3251

    660 1.21E+01 3.41E+01 2.23E+01 3.07E+02 1.19E+01 1.34E+02 -2.42527 41.19773690 1.20E+01 3.30E+01 2.23E+01 3.06E+02 1.07E+01 1.34E+02 -2.52878 43.07035

    720 1.26E+01 3.17E+01 2.22E+01 3.05E+02 9.50E+00 1.34E+02 -2.64842 44.94298

    750 1.21E+01 3.07E+01 2.23E+01 3.04E+02 8.46E+00 1.34E+02 -2.76348 46.8156

    780 1.27E+01 2.99E+01 2.22E+01 3.03E+02 7.66E+00 1.34E+02 -2.86338 48.68822

    810 1.28E+01 2.90E+01 2.21E+01 3.02E+02 6.97E+00 1.34E+02 -2.95942 50.56085

    840 1.24E+01 2.85E+01 2.23E+01 3.01E+02 6.20E+00 1.34E+02 -3.07422 52.43347

    870 1.23E+01 2.75E+01 2.21E+01 3.01E+02 5.45E+00 1.34E+02 -3.20546 54.3061

    900 1.23E+01 2.69E+01 2.22E+01 3.00E+02 4.75E+00 1.34E+02 -3.34117 56.17872

    Table 3: Teflon

    tDiff

    PressureTsphere Tair Tsphere T-Tair Tini-Tair

    Ln[(T-Tair)/(

    Tini-Tair)]at/(r^2)

    sec mm water C C K

    0 1.30E+01 1.19E+02 1.77E+01 392.1062 1.01E+02 1.01E+02 0 0

    30 1.22E+01 1.15E+02 2.23E+01 388.3853 9.31E+01 9.68E+01 -0.03918 0.007301

    60 1.20E+01 1.07E+02 2.22E+01 380.4773 8.53E+01 9.69E+01 -0.12781 0.014601

    90 1.24E+01 1.03E+02 2.23E+01 376.0849 8.08E+01 9.69E+01 -0.18082 0.021902

    120 1.23E+01 1.01E+02 2.23E+01 373.7415 7.84E+01 9.68E+01 -0.21043 0.029202

    150 1.19E+01 9.86E+01 2.21E+01 371.6418 7.66E+01 9.70E+01 -0.2369 0.036503

    180 1.25E+01 9.67E+01 2.24E+01 369.7353 7.43E+01 9.67E+01 -0.26316 0.043803

    210 1.20E+01 9.52E+01 2.21E+01 368.2374 7.31E+01 9.70E+01 -0.28248 0.051104

    240 1.23E+01 9.38E+01 2.21E+01 366.7908 7.16E+01 9.70E+01 -0.30258 0.058404

    270 1.19E+01 9.22E+01 2.21E+01 365.1528 7.00E+01 9.70E+01 -0.32572 0.065705

    300 1.19E+01 9.08E+01 2.20E+01 363.7608 6.88E+01 9.71E+01 -0.34505 0.073005

    330 1.22E+01 8.92E+01 2.22E+01 362.1702 6.70E+01 9.70E+01 -0.36927 0.080306

    360 1.24E+01 8.75E+01 2.21E+01 360.4656 6.54E+01 9.70E+01 -0.39473 0.087606

    390 1.21E+01 8.60E+01 2.22E+01 358.9594 6.38E+01 9.69E+01 -0.41867 0.094907

    420 1.20E+01 8.39E+01 2.22E+01 356.9286 6.18E+01 9.69E+01 -0.45075 0.102207

    450 1.21E+01 8.22E+01 2.22E+01 355.1749 6.00E+01 9.69E+01 -0.4798 0.109508

    480 1.21E+01 8.05E+01 2.20E+01 353.4882 5.85E+01 9.71E+01 -0.50724 0.116808

    510 1.15E+01 7.88E+01 2.21E+01 351.8232 5.67E+01 9.70E+01 -0.53668 0.124109

    540 1.19E+01 7.72E+01 2.22E+01 350.1521 5.50E+01 9.69E+01 -0.5673 0.131409

    570 1.20E+01 7.51E+01 2.22E+01 348.126 5.30E+01 9.69E+01 -0.60464 0.13871

  • 7/29/2019 e8 edited lab 3122

    4/16

    600 1.24E+01 7.34E+01 2.21E+01 346.3952 5.13E+01 9.70E+01 -0.63757 0.14601

    630 1.24E+01 7.06E+01 2.25E+01 343.6349 4.81E+01 9.66E+01 -0.69681 0.153311

    660 1.22E+01 6.84E+01 2.20E+01 341.4237 4.64E+01 9.71E+01 -0.73813 0.160611

    690 1.26E+01 6.51E+01 2.24E+01 338.1386 4.28E+01 9.67E+01 -0.81617 0.167912

    720 1.24E+01 6.38E+01 2.20E+01 336.8212 4.18E+01 9.71E+01 -0.84223 0.175212

    750 1.22E+01 6.23E+01 2.19E+01 335.2616 4.03E+01 9.72E+01 -0.87943 0.182513780 1.21E+01 6.03E+01 2.19E+01 333.3302 3.84E+01 9.72E+01 -0.92791 0.189813

    810 1.20E+01 5.88E+01 2.16E+01 331.762 3.72E+01 9.75E+01 -0.96475 0.197114

    840 1.19E+01 5.76E+01 2.19E+01 330.5574 3.57E+01 9.72E+01 -1.00224 0.204414

    870 1.28E+01 5.62E+01 2.19E+01 329.1586 3.43E+01 9.72E+01 -1.04223 0.211715

    900 1.19E+01 5.45E+01 2.17E+01 327.4553 3.27E+01 9.74E+01 -1.09067 0.219015

    930 1.24E+01 5.34E+01 2.20E+01 326.426 3.14E+01 9.71E+01 -1.12904 0.226316

    960 1.26E+01 5.19E+01 2.18E+01 324.8922 3.01E+01 9.73E+01 -1.1739 0.233616

    990 1.24E+01 5.08E+01 2.23E+01 323.8453 2.86E+01 9.68E+01 -1.22021 0.240917

    1020 1.29E+01 4.93E+01 2.19E+01 322.3028 2.74E+01 9.72E+01 -1.26701 0.248217

    1050 1.20E+01 4.83E+01 2.22E+01 321.2921 2.61E+01 9.69E+01 -1.31162 0.255518

    1080 1.26E+01 4.72E+01 2.23E+01 320.1827 2.49E+01 9.68E+01 -1.35872 0.2628181110 1.19E+01 4.61E+01 2.21E+01 319.1301 2.40E+01 9.70E+01 -1.39647 0.270119

    1140 1.27E+01 4.51E+01 2.23E+01 318.1289 2.29E+01 9.69E+01 -1.44305 0.277419

    1170 1.22E+01 4.41E+01 2.22E+01 317.0509 2.19E+01 9.69E+01 -1.48896 0.28472

    1200 1.19E+01 4.33E+01 2.23E+01 316.3185 2.10E+01 9.68E+01 -1.52724 0.29202

    1230 1.19E+01 4.24E+01 2.22E+01 315.3566 2.01E+01 9.69E+01 -1.57092 0.299321

    1260 1.18E+01 4.13E+01 2.23E+01 314.2904 1.90E+01 9.69E+01 -1.62682 0.306622

    1290 1.21E+01 4.06E+01 2.22E+01 313.5718 1.83E+01 9.69E+01 -1.66439 0.313922

    1320 1.24E+01 3.96E+01 2.23E+01 312.5936 1.73E+01 9.68E+01 -1.7233 0.321223

    1350 1.22E+01 3.88E+01 2.22E+01 311.7523 1.65E+01 9.69E+01 -1.76925 0.328523

    1380 1.33E+01 3.84E+01 2.24E+01 311.3776 1.60E+01 9.67E+01 -1.79904 0.335824

    1410 1.22E+01 3.74E+01 2.23E+01 310.3765 1.51E+01 9.68E+01 -1.85809 0.3431241440 1.23E+01 3.67E+01 2.21E+01 309.6899 1.46E+01 9.70E+01 -1.89421 0.350425

    1470 1.22E+01 3.62E+01 2.22E+01 309.246 1.40E+01 9.69E+01 -1.93117 0.357725

    1500 1.22E+01 3.57E+01 2.22E+01 308.7008 1.35E+01 9.69E+01 -1.97202 0.365026

    1530 1.23E+01 3.48E+01 2.21E+01 307.771 1.26E+01 9.70E+01 -2.03741 0.372326

    1560 1.26E+01 3.46E+01 2.23E+01 307.6372 1.23E+01 9.68E+01 -2.06308 0.379627

    1590 1.16E+01 3.37E+01 2.20E+01 306.6661 1.16E+01 9.71E+01 -2.12034 0.386927

    1620 1.21E+01 3.35E+01 2.24E+01 306.4594 1.11E+01 9.67E+01 -2.16648 0.394228

    1650 1.18E+01 3.26E+01 2.23E+01 305.6443 1.04E+01 9.68E+01 -2.23425 0.401528

    1680 1.20E+01 3.25E+01 2.23E+01 305.4535 1.01E+01 9.68E+01 -2.25566 0.408829

  • 7/29/2019 e8 edited lab 3122

    5/16

    Graph 1: Aluminium method 1

    Graph 2: Aluminium method 2

    y = -0.0403x + 0.1554

    -3.5

    -3

    -2.5

    -2

    -1.5

    -1

    -0.5

    0

    0.5

    0 20 40 60 80 100

    ln[(T-Ta

    )/(Ti-

    Ta

    )]

    (t)/r

    ALUMINIUM - Graph of ln[(T-Ta)/(Ti-Ta)] against

    (t)/r

    METHOD 1

    Linear (METHOD 1)

    y = -0.172x + 384.822.90E+02

    3.10E+02

    3.30E+02

    3.50E+02

    3.70E+02

    3.90E+02

    4.10E+02

    0 100 200 300 400 500 600

    Tsphere

    t

    ALUMINIUM - Graph of Temperature of

    Sphere(Tsphere)/K against time(t)/s

    ALUMINIUM - METHOD 2

    Linear (ALUMINIUM - METHOD

    2)

  • 7/29/2019 e8 edited lab 3122

    6/16

    Graph 3: Brass method 1

    Graph 4: Brass method 2

    y = -0.0595x + 0.0247

    -4

    -3.5

    -3

    -2.5

    -2

    -1.5

    -1

    -0.5

    0

    0.5

    0 10 20 30 40 50 60

    ln[(T-Ta

    )/(Ti-

    Ta

    )]

    (t)/r

    BRASS - Graph of ln[(T-Ta)/(Ti-Ta)] against (t)/r

    METHOD 1

    Linear (METHOD 1)

    y = -0.1279x + 393.642.90E+02

    3.10E+02

    3.30E+02

    3.50E+02

    3.70E+02

    3.90E+02

    4.10E+02

    4.30E+02

    0 200 400 600 800

    Tspher

    e

    t

    BRASS - Graph of Temperature of Sphere(Tsphere)/K

    against time(t)/s

    BRASS - METHOD 2

    Linear (BRASS - METHOD 2)

  • 7/29/2019 e8 edited lab 3122

    7/16

    Graph 5: Teflon method 1

    Graph 6: Teflon method 2

    y = -5.5035x + 0.0674

    -2.5

    -2

    -1.5

    -1

    -0.5

    0

    0.5

    0 0.1 0.2 0.3 0.4 0.5

    ln[(T-Ta

    )/(Ti-

    Ta

    )]

    (t)/r

    TEFLON - Graph of ln[(T-Ta)/(Ti-Ta)] against

    (t)/r

    Linear (METHOD 1)

    y = -0.0487x + 377.313.00E+02

    3.10E+02

    3.20E+02

    3.30E+02

    3.40E+02

    3.50E+02

    3.60E+02

    3.70E+02

    3.80E+02

    3.90E+02

    4.00E+02

    0 500 1000 1500

    Tsph

    ere

    t

    TEFLON - Graph of Temperature of Sphere(Tsphere)/K

    against time(t)/s

    METHOD 2

    Linear (METHOD 2)

  • 7/29/2019 e8 edited lab 3122

    8/16

    CALCULATION

    Validity of lumped-heat-capacity method

    From equations (2) and (6),

    )(3

    20

    k

    rh

    r

    t

    TT

    TT

    oai

    aLn

    Bi

    h V A

    k

    hr

    k

    o

    / 1

    3

    Bi < 0.1

    FOR ALUMINIUM:

    Gradient ofGraph 1 = -3(hro/k) = -0.0403

    Bi = gradient of graph / -9

    = -0.0403 / -9

    = 0.00448< 0.1 hence lumped heat capacity method is valid

    COMPARING WITH HEISLER TEMPERATURE CHART,

    At time = 240s,

    (T-Tair)/(Ti-Tair) = 34.2/108 = 0.32

    (t)/r = 32.6

    From chart,

    k/(hro) = 75 (approximately)

    From Graph 1,

    k/(hro) = 3/0.0403 = 74.4

    The two values are close and hence it indicates a reasonable approximation using lumped-heat-capacity method.

    FOR BRASS:

    Gradient ofGraph 3 = -3(hro/k) = -0.0595

    Bi = gradient of graph / -9= -0.0595 / -9

    = 0.00661< 0.1 hence lumped heat capacity method is valid

    COMPARING WITH HEISLER TEMPERATURE CHART,

    At time = 240s,

    (T-Tair)/(Ti-Tair) = 57.8/134 = 0.431

    (t)/r = 14.98

    From chart,

    k/(hro) = 50 (approximately)

    From Graph 3,

    k/(hro) = 3/0.0595 = 50.4

    The two values are close and hence it indicates a reasonable approximation using lumped-heat-capacity method.

  • 7/29/2019 e8 edited lab 3122

    9/16

    FOR TEFLON:

    Gradient ofGraph 5 = -3(hro/k) = -5.5035

    Bi = gradient of graph / -9

    = -5.5035 / -9

    = 0.6115

    > 0.1 hence lumped heat capacity method is not valid

    COMPARING WITH HEISLER TEMPERATURE CHART,At time = 840s, (for time = 240s, the values are out of range, hence another reading is required)

    (T-Tair)/(Ti-Tair) = 35.7/97.2 = 0.367

    (t)/r = 0.24

    From chart,

    k/(hro) = 0.05 (approximately)

    From Graph 5,

    k/(hro) = 3/5.5035 = 0.545

    The two values are completely different and hence it is not possible to approximate using lumped-heat-capacitymethod.

    Calculation of convective heat transfer coefficient

    METHOD 1

    FOR ALUMINIUM:

    Graph 1-3 (hro/k) = -0.0403

    h = 0.0403(k/3ro)

    = 0.0403(206/(30.025))

    = 110.7 W/(m2.K)

    FOR BRASS:

    Graph 3-3 (hro/k) = -0.0595

    h = 0.0595(k/3ro)= 0.0595(128/(30.025))= 101.5 W/(m

    2.K)

    FOR ALUMINIUM: (NOT APPLICABLE)

    Graph 5-3 (hro/k) = -5.5035

    h = 5.5035(k/3ro)

    = 5.5035(0.35/(30.025))

    = 25.7 W/(m2.K)

  • 7/29/2019 e8 edited lab 3122

    10/16

    METHOD 2

    FOR ALUMINIUM:

    Ts = Ts,ave = 333K

    Ta = Tambient,ave = 295K

    Graph 2Gradient of graph, dT/dt = -0.172

    Qt = CsVdT/dt

    = 2707 896 (4 0.0253/ 3) 0.172

    = 27.3 W

    Qr = ..A.(Ts4-Ta

    4)

    = 0.8 5.67 10-8

    (4 0.025) (3334295

    4)

    = 1.68 W

    Qc = Qt - Qr= h.As.(Ts-Ta)

    Qc = 27.31.68

    = 25.62 W

    = h (4 0.025) (333295)

    h = 85.8 W/m2.

    K

    FOR BRASS:

    Ts = Ts,ave = 336K

    Ta = Tambient,ave = 295K

    Graph 4Gradient of graph, dT/dt = -0.1279

    Qt = CsVdT/dt= 8522 385 (4 0.025

    3/ 3) 0.1279

    = 27.5 W

    Qr = ..A.(Ts4-Ta

    4)

    = 0.8 5.67 10-8 (4 0.025) (33642954)= 1.84 W

    Qc = Qt - Qr

    = h.As.(Ts-Ta)

    Qc = 27.51.84= 25.66 W

    = h (4 0.025) (336295)

    h = 79.7 W/m2.

    K

  • 7/29/2019 e8 edited lab 3122

    11/16

    FOR TEFLON:

    Ts = Ts,ave = 336K

    Ta = Tambient,ave = 295K

    Graph 4Gradient of graph, dT/dt = -0.0487

    Qt = CsVdT/dt

    = 2200 1046 (4 0.0253/ 3) 0.0487

    = 7.33 W

    Qr = ..A.(Ts4-Ta

    4)

    = 0.8 5.67 10-8

    (4 0.025) (3364295

    4)

    = 1.84 W

    Qc = Qt - Qr= h.As.(Ts-Ta)

    Qc = 7.331.84

    = 5.49 W

    = h (4 0.025) (336 295)

    h = 17.0 W/m2.

    K

    METHOD 3

    FOR ALUMINIUM:

    Ta = 295K 300 K

    Ti = 403K 400 K

    Viscosity of air at Ti,

    400K = 2.286 10-5

    kg/(m.s)

    Density of air at ambient temperature,

    a = 300K

    = 1.1774 kg/m3

    Viscosity of air at ambient temperature,

    amb 300K= 1.846 x 10

    -5kg/(m.s)

    2

    2UgH w

    Velocity of flow at ambient temperature, (zero error of -0.1x10-3

    m/s initially)

    U = ((13.3 + 0.1) 10-3

    x 1000 x 9.81 x 2 / 1.1774)0.5

    = 14.94 m/s

  • 7/29/2019 e8 edited lab 3122

    12/16

    02RerU

    = 1.1774 x 14.94 x 2 x 0.025 / (1.846 x 10-5

    )

    = 47645

    Prambient = 0.708 0.71

    kambient = 0.02624 W/(m.K)

    Conditions:

    35000 < Re=47645 < 76000

    Pr = 0.708 , 0.71 Pr < 380

    < 1 (Condition not met)

    Nui

    2 0 4 0 060 5 2 3 0 4 0 25( . Re . Re ) Pr ( ). / . .

    = 2 + (0.4 476450.5

    + 0.06 476452/3

    ) 0.7080.4

    [(1.846 10-5

    ) /( 2.286 10-5

    )]0.25

    = 139.2

    krhNu o /2.

    h = 139.2 x 0.02624 / (0.025 2)= 81.9 W/(m

    2.K)

    FOR BRASS:

    Ta = 295K 300 K

    Ti = 429K

    Viscosity of air at Ti,

    429K =

    400450

    400450400

    KKK

    ( 429400 )

    = 2.401 10-5

    kg/(m.s)

    Density of air at ambient temperature,a = 300K

    = 1.1774 kg/m3

    Viscosity of air at ambient temperature,

    amb 300K= 1.846 x 10

    -5kg/(m.s)

    2

    2UgH w

    Velocity of flow at ambient temperature, (zero error of -0.1x10-3

    m/s initially)

    U = ((13.3 + 0.1) 10-3

    x 1000 x 9.81 x 2 / 1.1774)0.5

    = 14.94 m/s

  • 7/29/2019 e8 edited lab 3122

    13/16

    02RerU

    = 1.1774 x 14.94 x 2 x 0.025 / (1.846 x 10-5

    )

    = 47645

    Prambient = 0.708 0.71

    kambient = 0.02624 W/(m.K)

    Conditions:

    35000 < Re=47645 < 76000

    Pr = 0.708 , 0.71 Pr < 380

    < 1 (Condition not met)

    Nui

    2 0 4 0 060 5 2 3 0 4 0 25( . Re . Re ) Pr ( ). / . .

    = 2 + (0.4 476450.5

    + 0.06 476452/3

    ) 0.7080.4

    [(1.846 10-5

    ) /( 2.401 10-5

    )]0.25

    = 137.5

    krhNu o /2.

    h = 137.5 x 0.02624 / (0.025 2)= 72.16 W/(m

    2.K)

    FOR TEFLON:

    Ta = 290.7K 300 K

    Ti = 392K

    Viscosity of air at Ti,

    392K =

    350400

    350400350

    KKK

    ( 392350 )

    = 2.252 10-5

    kg/(m.s)

    Density of air at ambient temperature,

    a = 300K

    = 1.1774 kg/m3

    Viscosity of air at ambient temperature,

    amb 300K

    = 1.846 x 10-5

    kg/(m.s)

    2

    2UgH w

    Velocity of flow at ambient temperature, (zero error of -0.1x10-3

    m/s initially)

    U = ((13.0 + 0.1) 10-3

    x 1000 x 9.81 x 2 / 1.1774)0.5

    = 14.77 m/s

  • 7/29/2019 e8 edited lab 3122

    14/16

    02RerU

    = 1.1774 x 14.77 x 2 x 0.025 / (1.846 x 10-5

    )

    = 47102

    Prambient = 0.708 0.71

    kambient = 0.02624 W/(m.K)

    Conditions:

    35000 < Re=47102 < 76000

    Pr = 0.708 , 0.71 Pr < 380

    < 1 (Condition not met)

    Nui

    2 0 4 0 060 5 2 3 0 4 0 25( . Re . Re ) Pr ( ). / . .

    = 2 + (0.4 471020.5

    + 0.06 471022/3

    ) 0.7080.4

    [(1.846 10-5

    ) /( 2.252 10-5

    )]0.25

    = 138.8

    krhNu o /2.

    h = 138.8 x 0.02624 / (0.025 2)= 72.84 W/(m

    2.K)

    METHOD 4

    With reference to Heisler Temperature Chart

    FOR ALUMINIUM:

    At time = 240s,

    (T-Tair)/(Ti-Tair) = 34.2/108 = 0.32

    (t)/r = 32.6

    From chart,

    k/(hro) = 75 (approximately)

    h = k / (75 x ro)

    = 206 / ( 75 x 0.025 )

    = 109.9W/(m2.K)

  • 7/29/2019 e8 edited lab 3122

    15/16

    FOR BRASS:

    At time = 240s,

    (T-Tair)/(Ti-Tair) = 57.8/134 = 0.431

    (t)/r = 14.98

    From chart,k/(hro) = 50 (approximately)

    h = k / (50 x ro)

    = 128 / ( 50 x 0.025 )

    = 102.4W/(m2.K)

    FOR TEFLON: (NOT APPLICABLE)

    At time = 840s, (for time = 240s, the values are out of range, hence another reading is required)

    (T-Tair)/(Ti-Tair) = 35.7/97.2 = 0.367

    (t)/r = 0.24

    From chart,k/(hro) = 0.05 (approximately)

    h = k / (0.05 x ro)

    = 0.35 / ( 0.05 x 0.025 )

    = 280W/(m2.K)

    Table 4: Experimentally determined convective heat transfer coefficients

    Spheres Reynolds Number Convective Heat Transfer Coefficient, W/m2

    K

    Method 1 Method 2 Method 3 Method 4

    Aluminium 47645 110.7 85.8 81.9 109.9

    Brass 47645 101.5 79.7 72.16 102.4

    Teflon 47102 25.7

    (N.A.)

    17.0 72.84 280

    (N.A.)

  • 7/29/2019 e8 edited lab 3122

    16/16

    DISUSSION

    1. Compare the convective heat transfer coefficients of the methods 1, 2 and 4 with that

    obtained from the method 3. Give a brief account on possible causes of the

    discrepancy in the values of the heat transfer coefficient obtained from method #3

    The differences in heat transfer coefficients may be due to the following reasons:

    1. The lumped-heat-capacity method assumes that the temperature in the sphere is uniform. However, inthe actual experiment, the temperature may not be completely uniform. Hence the data obtained from

    the experiment will be inaccurate and the plots may not reflect the actual values correctly.

    2. The values obtained for all three materials from method 2 are not likely to be very accurate. Averagedvalues are used in calculations. This will generate errors in the calculated heat transfer coefficients.

    3.

    The flow past the sphere is assumed to be smooth. But in the experiment, there is a wake present at theend of the sphere as the flow not laminar and smooth. Thus, there will be heat losses at the flow at the

    end of the sphere due to this wake and this will affect the values of the heat transfer coefficients,

    causing discrepancies.

    2. Comment on the values of heat transfer coefficients obtained from method 1, 2, 3 and

    4.

    Method 1

    The most reliable assumption and method of calculation as Bi is far from the critical value of 0.1, with the

    exception of Teflon. There is minimal error in this method of analysis. Hence the h value calculated is relativelyaccurate.

    Method 2A best fit linear line is used to approximate the values plotted. This is not very accurate as the plot is supposed

    to be a curve. The linear plot averaged out the spread of values in the calculations and hence the heat coefficient

    obtained will be less accurate than that of Method 1.

    Method 3

    The least reliable analysis method as all 3 materials do not satisfy the initial conditions to utilize the empirical

    relation (Whitaker). All 3 materials violate the initial condition of 1