49
DYNAMICS OF RAILWAY FREIGHT VEHICLES Iwnicki S.D. 1 , Stichel S. 2 , Orlova A. 3 , Hecht M. 4 1. Institute of Railway Research, University of Huddersfield, Huddersfield, UK 2. Division of Railway Vehicles, KTH Royal Institute of Technology, Stockholm, Sweden 3. Petersburg State Transport University, St. Petersburg, Russia 4. Fachgebiet Schienenfahrzeuge am Institut für Land‐ und Seeverkehr, Technische Universität Berlin, Belin, Germany Keywords: Freight wagon; Vehicle dynamics; Computer simulation; Rail Freight; Running Gear Design; Freight Bogies Abstract This paper summarises the historical development of railway freight vehicles and how vehicle designers have tackled the difficult challenges of producing running gear which can accommodate the very high tare to laden mass of typical freight wagons whilst maintaining stable running at the maximum required speed and good curving performance. The most common current freight bogies are described in detail and recent improvements in techniques used to simulate the dynamic behaviour of railway vehicles are summarised and examples of how these have been used to improve freight vehicle dynamic behaviour are included. A number of recent developments and innovative components and sub systems are outlined and finally two new developments are presented in more detail: the LEILA bogie and the SUSTRAIL bogie. 1 Introduction From their inception railways have been predominant in the carriage of bulk goods and railway wagons have been designed to allow this to be effected efficiently on different types of railway infrastructure. In more recent times with changes in industrial needs and competition from road and air transport railways have carried an ever declining share of freight. Although there is some evidence in some countries that this trend has started to change recently due to road congestion there is still not yet a widespread evidence of a major modal shift from road to rail which politicians have indicated is desirable. For example the European Transport White paper 2011 [1] sets a target for modal shift of 30% by 2030 and 50% by 2050 from road freight to other modes such as rail or waterborne transport for distances over 300 km. The barriers to this increased modal shift from road to rail seem to be largely due to the requirements from modern shippers for shorter end‐to‐end times but even more the demand is for high reliability of service and for additional features such as tracking and tracing of shipments, security and temperature control. As Hecht [2] points out the lower speeds for rail freight compared with passenger services are not mainly related to

DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

DYNAMICSOFRAILWAYFREIGHTVEHICLES

IwnickiS.D.1,StichelS.2,OrlovaA.3,HechtM.4

1. InstituteofRailwayResearch,UniversityofHuddersfield,Huddersfield,UK2. DivisionofRailwayVehicles,KTHRoyalInstituteofTechnology,Stockholm,

Sweden3. PetersburgStateTransportUniversity,St.Petersburg,Russia4. FachgebietSchienenfahrzeugeamInstitutfürLand‐undSeeverkehr,Technische

UniversitätBerlin,Belin,Germany

Keywords:Freightwagon;Vehicledynamics;Computersimulation;RailFreight;RunningGearDesign;FreightBogies

Abstract

Thispapersummarisesthehistoricaldevelopmentofrailwayfreightvehiclesandhowvehicledesignershavetackledthedifficultchallengesofproducingrunninggearwhichcanaccommodatetheveryhightaretoladenmassoftypicalfreightwagonswhilstmaintainingstablerunningatthemaximumrequiredspeedandgoodcurvingperformance.Themostcommoncurrentfreightbogiesaredescribedindetailandrecentimprovementsintechniquesusedtosimulatethedynamicbehaviourofrailwayvehiclesaresummarisedandexamplesofhowthesehavebeenusedtoimprovefreightvehicledynamicbehaviourareincluded.Anumberofrecentdevelopmentsandinnovativecomponentsandsubsystemsareoutlinedandfinallytwonewdevelopmentsarepresentedinmoredetail:theLEILAbogieandtheSUSTRAILbogie.

1 IntroductionFromtheirinceptionrailwayshavebeenpredominantinthecarriageofbulkgoodsandrailwaywagonshavebeendesignedtoallowthistobeeffectedefficientlyondifferenttypesofrailwayinfrastructure.Inmorerecenttimeswithchangesinindustrialneedsandcompetitionfromroadandairtransportrailwayshavecarriedaneverdecliningshareoffreight.Althoughthereissomeevidenceinsomecountriesthatthistrendhasstartedtochangerecentlyduetoroadcongestionthereisstillnotyetawidespreadevidenceofamajormodalshiftfromroadtorailwhichpoliticianshaveindicatedisdesirable.ForexampletheEuropeanTransportWhitepaper2011[1]setsatargetformodalshiftof30%by2030and50%by2050fromroadfreighttoothermodessuchasrailorwaterbornetransportfordistancesover300km.

Thebarrierstothisincreasedmodalshiftfromroadtorailseemtobelargelyduetotherequirementsfrommodernshippersforshorterend‐to‐endtimesbutevenmorethedemandisforhighreliabilityofserviceandforadditionalfeaturessuchastrackingandtracingofshipments,securityandtemperaturecontrol.AsHecht[2]pointsoutthelowerspeedsforrailfreightcomparedwithpassengerservicesarenotmainlyrelatedto

Page 2: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

lowervehiclespeedcapabilitybutaremoreduetothefactthatfreighttrainsoftentravelonlowerspeedlinesorareheldforpassengertraffictopassandduetocomplexandlengthyshuntingandhandlingoperationsandmotivepowerandcrewchanges.

Neverthelessiffreightvehiclespeedsandaccelerationandbrakingcapabilitiescouldallowthemtobefullyintegratedwithpassengertrafficthiswouldbringastepchangeinendtoendfreighttrainspeedsaswellasoverallsystemcapacity.Akeyfactorinobtainingthisincreasedspeedistoensurethatthedynamicperformanceoffreightvehiclescanallowsafeandreliableoperationontrackwithdifferentlevelsofirregularitiesandsupportconditions.Runninggearhasevolvedwiththeexperienceofoperationondifferentrailwaysandmorerecentlytheuseofcomputersimulationtoolsandseveralstandardiseddesignsarenowubiquitous.Severalresearchprojectsandteamshaverecentlybeentryingtoadvancefromthispositionusinginnovativedesignsadaptedfrompassengervehiclesorusingothernoveltechniques.Theuseofcomputersimulationsisnowestablishedfordesignofrunninggearandisalsobecomingacceptedaspartofthevehicleacceptanceprocessesinmanycountries.

2 Earlydevelopmentsoffreightwagons

2.1 BackgroundDesignersoffreightvehiclerunninggearfacemanychallengesbutnotleastoftheseisthefactthattheratiooftheladentotaremassofafreightvehiclecanbeasmuchas5:1comparedwithamoremanageable1.5:1fortypicalpassengervehicles.Thiseffectivelymeansthatthesuspensionsystemhastobedesignedfortwodifferentvehicles(andeverystageinbetween).Anumberofcleverdesignshaveevolvedovertheyearsandthemostsuccessfulofthesearenowsummarised.

2.2 UICdoublelinkFreightwagonswithlinktypesuspensionshaveexistedformorethan100years,ascanbeseeninfigure1,andthelinksuspensionisprobablystillthemostcommonsuspensiontypefortwoaxlefreightwagonsinEuropetoday.Asearlyas1890theprincipleofthelinksuspensionwasdefinedasastandard.Areviewoffreightwagonswithlinksuspensioncanbefoundin[3].

Page 3: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

Figure1:FreightwagonfromKockumsSweden,builtin1882[4].

AfterWorldWarIItheUICdoublelinksuspensionwasdefinedasastandard[5].Inthebeginningofthe1980sanumberofimprovementsweremade.Theaxleloadwasincreasedto22.5tonnesandtheparabolicleafspringwasintroducedasstandardcomponent[6],[7].TheUICdoublelinksuspensioninfigure2mainlyconsistsofthreeparts:Leafsprings,linksandaxleguards.Thevehicleisconnectedtotheparabolicorleafspringbydoublelinks.Theleafspringrestsontheaxlebox.Thisarrangementallowstheaxleboxtomoveinboththelongitudinalandlateraldirectionrelativetothewagonbody.Theaxleguardrestrictsthehorizontalmotionoftheaxlebox.Theprincipleofthesuspensionisthatofapendulum.Inthelongitudinaldirectionthesuspensionlinksareinclined,whereasinthelateraldirectiontheyareinaverticalplanewhenthevehiclebodyisinnominalposition[1],[8],[9],[10].Thecharacteristicsofthedouble‐linksuspensionarequitecomplex.ThemaincomponentsareshowninFigure3.

Figure2:UICdoublelinksuspension.

Page 4: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

Figure3:Doublelinksuspension[8].Partsofdoublelink(a),assembleddoublelink(b)andmounteddoublelink(c).

Oneofthemainadvantagesofthelinkrunninggearisthatitissimple,robustandcheapandalsotakesuplittlespaceinbothlateralandverticaldirections.Bothstiffnessanddampingareprovidedbyonesystemandareloaddependent.Thequasistaticcurvingperformanceofthesingleaxlerunninggearwithlinksuspensionisgood.Foratypicaltwo‐axlefreightwagonwithawheelbaseof9mondryrailsgoodsteeringperformancedownto300mcurveradiuscanbeachieved[10].

Therunningbehaviouroftwo‐axlefreightwagonswithlinksuspensioncanberatherpoormainlyduetovehiclehunting.Theamountofdampingprovidedinthehorizontalplaneisoftennotsufficient.Additionallythecharacteristicsofthesuspensionchangeduringthelifeofthevehicle,duetosuspensionwear,andwiththerunningconditions[10].Thelinksuspensiontakesquitealotoflongitudinalspaceandisapoorisolatorforsoundandvibration.

2.3 LinksuspensionbogiesTheleafspringandlinksuspensionofthesingle‐axlerunninggearhasalsobeenusedonbogiessinceabout1925[1].Morerecentlyithasbeenstandardisedwithforexamplebogietype931(figure4),developedinthe1950sbyDeutscheBahnwithawheelbaseof2000mmandawheeldiameterof1000mm.Thisbogiewasdevelopedtorunat100km/hwithanaxleloadof20tandwasthefirstbogiestandardisedbyUIC[6],[7].

Page 5: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

Figure4:.DBbogieType931[7].

Inthebeginningofthe1980sDBbogietype665wasintroducedwithnewfeatureslikeparabolicleafsprings,22.5tpermissibleaxleloadandshorterlinksasshowninfigure5[7].

Figure5:DBbogieType665[7].

Thebogieframeisaweldedsteeldesignbutinsomeplacesforgedcomponentsareused.Theframeisconnectedtoparabolicortrapezoidalleafsprings,thatrestontheaxlebox,beingconnectedbyswinglinks.Nominallythesuspensionlinksarepositionedinalongitudinalverticalplaneandinclinedinthisplane.Duringvehicleoperationthelinksswinginthatplaneandalsolaterally[1],[6],[7],[11].Asphericalcentre‐pivotandtwosidebearersconnectthebogieframeandthewagonbody.Thesidebearerscanbeeitherrigidorverticallysuspendedandhavethreefunctions:

toactasstaticsupportforthecarbody. toactasrollstiffness. toprovidefrictiondampingbetweencarbodyandbogie

Thequasistaticcurvingperformanceofabogiewithlinksuspensionisgenerallyverygooddueto:

theshortwheelsetdistanceinthebogieof1.8m. thesoftlongitudinalprimarysuspension.

Page 6: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

Evenifshortlinks(higherstiffness)areusedinsteadofthelonglinksthecurvingperformanceisstillgood[11].Thesoftsuspensioneffectivelyisolatesthebogieframefromthemotionofthewheelsets.Adisadvantagethatcanbementionedisthattheweightofabogiewithlinksuspensionisabout100kghigherthantheweightofaY25bogie.Furthertherunningbehaviourontangenttrackcannotberegardedasgoodeventhoughexistinglimitsfortrackforcesandrideindexareingeneralnotexceeded.Thedynamiccurvingperformancecanbecritical.Thesuperpositionofquasistaticanddynamiclateralaccelerationscancauserepeatedbumpstopimpactswhenthevehicleishuntingincurveswithcantdeficiency,becauseofthesoftlateralprimarysuspension[11],[12].

2.4 TheY25StandardBogieMostrailwayvehicleshavebogiesortruckswhichallowlongervehiclessupportedontwobogieswhilestillkeepingattackanglesbetweenwheelsandrailincurvestoreasonablelevels.Thisarrangementalsoallowstwostagesofsuspensionwiththe‘primary’suspensionbetweenwheelsetandbogieandsecondarysuspensionbetweenbogieandcoachorwagonbody.Theprimarysuspensioncanisolatethebogiefromshortwavelengthirregularitieswhilethesecondarysuspensiondealswiththelongerwavelength,lowerfrequencyexcitations.

Aspreviouslymentioned,aspecificchallengefordesignersoffreightvehiclerunninggearisthelargedifferencebetweentareandladenvehiclemass.IntheY25bogieprogressivedampingwithverticalloadiseffectedbytheuseof‘Lenoirlinks’whichtakepartoftheverticalloadthroughanangledlinkandapusherontoaverticalfrictionsurface.Thisgivesalevelofdampingwhichisbroadlyproportionaltothevehiclemass.TheY25bogiedesignoriginatedinFrancein1948andwasstandardisedbytheOREsteeringcommitteein1967.Itisshowninfigure6.

Figure6:AY25typebogie

Page 7: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

ThedesignhasbeenhugelysuccessfulandY25typebogiesarethemostpredominantfreightbogieinEurope.

2.5 ‘three‐piece’FreightBogiesThethree‐piecebogieswerefirstdevelopedin1930sandseemedtooriginatesimultaneouslyintheUSA(Barberbogie)andtheSovietUnion(Haninbogie).Nowthethree‐piecebogieanditsmoresophisticateddescendentsarethemostcommonsuspensionforfreightwagonsacrossNorthandSouthAmericas,CIScountries,China,Africa,IndiaandAustralia.Maximumaxleloadsrangebetween7and36t.Themostcommonstandardsforthree‐piecebogiesareAAR[13]for1435mmgaugeandGOST[14]for1520mmgauge.Areviewofthree‐piecebogiescanbefoundin[15].

TheRussianmodel18‐100bogieshowninfigure7isagoodexampleofanearlytypeofthree‐piecebogie.Theterm‘three‐piece’referstothedesignofthebogieframewhichconsistsofthreeinterconnectedparts:twosideframesandonebolster.Theframepartsareusuallycast.

Thebogieisequippedwithcentralsuspensionbetweenthesideframesandthebolsterthatconsistsofasetofspringsandwedgefrictiondampersworkinginverticalandlateraldirectionandkeepingtheframesquare.Thesideframeswiththeirflatsurfacesrestontheaxle‐boxes(orbearingadapters).Thesizeoftheopeninginthesideframeprovidesclearancesinlongitudinalandlateraldirectionwithinwhichtheaxle‐boxmovesresistedbydryfrictionforces.Thecarbodyrestsontheflatcenterbowl,itsrollmotionrelativetothebolsterislimitedbysidebearerswhichareusuallystiffverticalstopsincludingclearancewhenthewagonbodyisinthecentralposition.

Page 8: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

a) b)

c)

Figure7:Model18‐100bogie:a–generalview,b–centralsuspensionscheme,c‐primary‘suspension’scheme(1–wheelset;2–sideframe;3–bolster;4–brakingleverage;5–centralpivot;6–rigidsidebearings;7–suspensionsprings;8–frictionwedge;9–axle‐box)

Thethree‐piecebogieisaveryrobustdesignwiththeadvantageofbeinglowcostinproduction,operationandrepair.Thefollowingitemsareconsideredasdisadvantagesoftraditionalthree‐piecebogieandattemptshavebeenmadetoaddresstheseinitsfurtherdevelopments[15],[16],[17]:

Limitedcriticalspeedoftheemptywagon)withswayoscillationofcarbodybeingthemajorlossofstabilitymode);

Wheelflangecontactincurvesproducedbywarpingbetweensideframesandbolster;

Sideframesaddingtotheunsprungmassandthusincreasingtrackimpactonshortwavelengthirregularities;

Deteriorationofrideperformancewithwearoffrictionwedgesandotherfrictionsurfaces.

3 ComputersimulationComputersimulationoffreightvehiclesisnotatallascommonasforpassengervehicles.SincemanyoftheEuropeanfreightvehiclesarestandardizedverylittlenewdevelopmenthasbeencarriedoutandthemanufacturersdoingeneralnotperformasimulationanalysisoftherunningbehaviouroffreightwagon.However,inseveralresearchgroupsatuniversitiesandresearchinstitutesandatsomeconsultingcompaniescomputersimulationoffreightvehiclesisnowperformed.

Sincemanufacturersdonotusuallybuildsimulationmodelsoffreightvehiclesthemselvesoneofthemainchallengesinmodellingafreightwagonistoobtainallthe

7

2

3

8

29

1

3

4

5

6

72 8

9

Page 9: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

inputparametersrequired.Anotheraspectisthatmostsuspensionelementsarestronglynon‐linearandinmanycasesevenmathematicallynon‐smooth.Thismakesitverydifficulttobuildupsimulationmodelsthatprovidegoodresultscomparedtomeasurementresults.Someofthephenomenaobservedduringsimulationoffreightvehicleswillbediscussedbelow.

Further,asdescribedinSection3.1,thecharacteristicsofthesuspensionelementscanvaryduringoperationduetowearorenvironmentaleffectssuchasforexamplesurfacecontaminationchangingthefrictioncoefficientinslidingsurfaces.

Themainpurposeofsimulationstudiesoffreightvehiclesisveryoftenastabilityanalysis(seeSection3.2)oraninvestigationofthecurvingbehaviourofthefreightwagon(seeSection3.3).Sincetheaxleloadsoffreightwagonsareusuallyhigh,theinvestigationofwheelorrailwearandrollingcontactfatigueisoftentheprimaryreasonforasimulationstudyincurves.

3.1 SuspensioncomponentsThesuspensioninmostfreightvehiclesreliesonfrictiondamping.Frictionelementsarelowcost,requirelittlemaintenanceandareusuallyloaddependent.Thismeansthattheleveloffrictiondampingchangeswithaxleload,animportantfeatureinfreightwagonsduetothehightaretoladenratioalreadymentioned.Surveysofmodellingoffrictioncomponentsinfreightwagoncanbefoundforexamplein[18]‐[22].Papers[18]and[19]aregeneralreviewsofrailvehiclesuspensioncomponents,while[20]isfocusedonfreightvehiclesandalsodiscussesissuessuchasstabilityandcurvingoffreightvehicles.Papers[21]and[22]arefocussedonmodellingfrictionwedgesofthree‐piecebogies.AlsointheproceedingsfromtheEuromech500colloquium[23]manyvaluablecontributionsonthetopicofnon‐smoothsuspensionelementscanbefound.Variousarrangementsofsuspensionelementstosimulatevehiclesuspensionsaredocumentedin[24],[25].

3.1.1 FrictiondampingInmostfreightvehiclesimulationmodelsfrictionismodelledasdryCoulombfriction,wherethefrictionforceisproportionaltothenormalload.Thefrictioncoefficientisassumedtobeconstant,seeforce‐deflectioncurveinfigure8,left.ThedisadvantageoftheCoulombmodelisthatitisnon‐smooth,i.e.multi‐valuedandnon‐differentiable.Anotherwaytomodelfrictioniswithalinearspringinserieswithafrictionsliderasinfigure9withtheresultingforce‐displacementcharacteristicinfigure8,right.Sincemostfrictiondamperarrangementshaveafiniteflexibility,suchmodelscouldalsoberegardedasmorerealistic.Note,howeverthatthemodelwithaspringinseriesisstillnon‐smooth.Toavoidthedifficultiesmentionedaboveregularizationmethodsareoftenapplied,seeforexample[26],[27]and[28].

Page 10: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

Figure8:Force‐displacementcurveofCoulombfrictionmodel(left)andCoulombmodelwithspringinseriesasin[29](right).

Figure9:Frictionelementwithspringinseries.

Piotrowskidevelopedanon‐smoothrheologicalmodel[29],[30],whichemploysthenotionofthedifferentialsuccessioninvolvingacontingentderivativeofthenon‐smooth,multi‐valuedcharacteristicsofCoulombfriction.TanandRogers[31]proposedequivalentviscousdampingmodelstoavoidthenumericalproblemsofCoulombfriction.Theyclaimthatthissubstitutionworksverywellforcaseswhereslidingmotionspredominate.

Inmanyrunninggeararrangementstwo‐dimensionalfrictionelementsareneeded,e.g.intheY25andinthethree‐piecebogie.Inthesedesignsmotionsintwodirectionstangentialtothefrictionsurfacesarepossible.Two‐dimensionalCoulombfrictionmodelscanbefounde.g.in[32],[33].

Anotherphenomenonthatisimportanttotakeintoaccountisstochasticexcitationsthatsmooththedryfrictiondamping.Alsomidfrequencyexcitationgeneratedinthewheelrailcontact–oftencalleddither–cansmoothendryfrictionandthereforehaveasignificantinfluenceonthesimulationresults,seeforexample[30],[33].

TrueandAsmund[33]investigatedtheeffectsofdryfrictioninthesuspensionofasimplefreightvehicle.Theyusedarelativelysimplemodelofdryfrictionandfoundthatthestablebehaviourforthesystemwithfrictionexhibitedalaterallyoscillatingmotionwhichmakesthesystemsensitivetoexternalperiodicforcing.

x

F

x

F

Page 11: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

3.1.2 Wagonswithlinksuspension

3.1.2.1 Basicmodelofleafspringandlinksuspension

Leafspringsareoftenusedasverticalsuspension.Inmultibodysimulationmodelstheyareusuallyregardedasrigidinboththelongitudinalandlateraldirections.Fordynamicdisplacementsaroundastaticequilibriumpositionleafspringsarecharacterizedbyarelativelyhighstiffnessforsmalldisplacementsandasignificantlylowerstiffnessforlargerdisplacement,(figure10).LeafspringsaredescribedintheOREreports[34],[35].

Figure10:Typicalforce‐displacementdiagramofleafspring/linksuspension.Exampleofcurveforsmalldisplacementsaroundstaticequilibrium.

Sincelinksuspensionsshowverysimilarcharacteristicstheyareoftenmodelledinasimilarwaytoleafsprings,atleastforthelaterallinkbehaviour.Theinitialhigherstiffnessk1inleafspringsiscausedbyfriction,i.e.theleavesofaleafspringsticktogetherforsmalldisplacementsandstarttoslideoneachotherforlargerdisplacements.Inthesamewaythelinkrollsintheendbearingaslongasthereisnoslidinginthecontactarea.Thelowerstiffnessk2isthevalueforslidingintheleafspringorthesocalledpendulumstiffnessofalink.TheforceFddeterminestheamountofdampinginthehysteresis.Acommonlyusedmodeltorepresentthetwodifferentstiffnessvalueswiththehysteresisistousealinearspringandafrictionelementinseries,inparallelwithanotherlinearspring,asshowninfigure11.Itshouldbetakenintoaccountthatthecharacteristicsofleafspringsvaryduetowearinrunningordeteriorationorlubricationstate.

Thethreeparametersinthemodeldescribedabovecanbederivedfrommeasurements.Thismodel,however,issimplifiedsincetheshapeofthehysteresiscurveisusuallyroundedasshowninfigure10.Measurementresultsandmoredetaileddescriptionsoflinksuspensionscanbefoundin[34]‐[48].

Page 12: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

Figure11:ModelforleafspringorlinksuspensionasusedforexamplebyKTH[40].Seefigure10fordefinitionofk1andk2.

3.1.2.2 AdvancedsimulationmodelsForlateraldisplacementsofadouble‐linkallfourjointsareassumedtostarttoslideatthesametime;thereforethemodelinfigure11issufficient.Inthelongitudinaldirection,however,itismorelikelythatthejointsstarttoslideatdifferentdisplacementsasshowne.g.byPiotrowski[29].Heusesasetoffourslidersandspringelementswithdifferentbreakoutforcesinparalleltodescribethesecharacteristics.AlsoinamodelusedbyStiepelseveralelementsinparallelareused[44].

Togiveabetterrepresentationoftheroundedshapeofthehysteresiscurves,Fancherdevelopedamodelfortruckleafsprings[45],[46]usingexponentialexpressions.Jönsson[42]usedasimilarapproach,wherethetotalforceoverthesuspensioncomponentisseparatedintopiece‐wiseelasticandfrictionforces.Themodelisusedforbothleafspringsanddouble‐links.

Anotherpossibilitytodescribehysteresiswithroundedshapeforlinksuspensionsistouserollingcontacttheory,whichhasbeenproposedbyPiotrowski[33].Basedontheslipvelocitythecreepageinthecontactiscalculated.

3.1.3 Modellingthethree‐piecebogie

3.1.3.1 ModelsofthecentralsuspensionMostoftheresearchinmodellingthree‐piecebogies,suchas[21],[22],isfocussedonthecentralsuspensionelementofthethree‐piecetruckthatprovidesdampingwithfrictionwedges.Earlymodelsoffrictionwedgesuspensionsrecognizedonlyverticalload‐dependentfrictionforce,latermodelsincludedtwo‐dimensionalfrictionintheverticalandlateraldirections[46],[50].

Thefirstapproachtoaccountforpossibleangularandlongitudinaldisplacementsofbolsterrelativetothesideframesistointroducewarpingandlongitudinalnonlinear

Page 13: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

resistancecharacteristicsintothemodel,asitisdonein[15],[17].Insuchcasethewedgesarenotmodelledasseparatebodies,buttheequivalentforceagainstdisplacementcharacteristicsareintroducedaccountingforwedgeparameters,suchasinclinationangle,widthoftheverticalsurface,widthoftheinclinedsurface,frictioncoefficientsoninclinedandverticalsurfaces,etc.

Thesecondapproachtoaccountforallpossibledegreesoffreedombetweensideframeandbolsteristointroducemultiplecontactpointsmappedalongtheedgesofthewedgewithtwo‐dimensionalfrictionforceelementsineachofthem.SuchanapproachwasusedbyBallewetal[46],itisimplementedinsimulationtoolssuchasVAMPIRE[52],andtheUniversalMechanismsoftware[52].Numerouscontactelementsrequireanefficientnumericalsimulationalgorithmtobeimplementedintothesoftwarethatprovidesfastsolutiontoresultingstiffsystemofequations,suchastheonedevelopedbyPogorelov[57].Thewedgesaretreatedasmassless.Contacttypemodelsallowthestudyofsuchcomplicatedphenomenonasunevendistributionofcontactforcesoverthewedgesurfaces,implementationofresilientpadsonwedgesurfaces,jammingandwedging[54].Inpaper[56]theauthorsincludedthemassofthewedgeintoconsiderationtostudyitsdynamicproperties.

3.1.3.2 ModelsoftheaxletosideframeinteractionInthefirstapproachsimilartofrictionwedgestheaxletosideframeinteractioncanbedescribedbynonlinearequivalentcharacteristicsasin[15],[17].Thedryfrictioninteractionbetweentheaxleboxcrownandthesideframepedestalismodelledbytwodimensionaldryfrictionelementinparallelwithanothernonlinearelementthatdescribesbumpstopsinlongitudinalandlateraldimension.Atypicalcharacteristicofthebumpstopelementispresentedinfigure12.Toimprovenumericalintegrationthetransitionfromclearancetobumpstopisoftensmoothed.

Iftheinteractionbetweenthecrownandpedestalisaflatsurface,thenitswidthcanresultinrollstiffnessthatisproducedbygravity.Suchstiffnesscanbeintroducedintothemodeldependingontheaxleload.

Figure12Modelforbumpstopelement(∆‐clearance, –stiffnessofthebumpstop)

Page 14: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

Thesecondapproachistointroducemultiplecontactpointsontheedgesofthecrownwithtwo‐dimensionalfrictionelementsinthem.Thebumpstopsarethenalsothecontactelementsbetweentheaxleboxoradapterandthestopsinthesideframejaws.Suchapproachisusedin[57]aswellasinUniversalMechanismsoftware[52].

3.1.3.3 ModelsofthecentrebowlandsidebearersThesameapproachescanbeappliedtomodelsofthecentrebowltocentreplateinteractionandatthesidebearers.

Inthefirstapproach,see[15],[17],centreplatetocentrebowlinteractionworkssimultaneouslyasonedimensionalyawfrictionandnonlinearrollandpitchtorquewithsoftcharacteristicsasshowninfigure13.Knowingtheclearanceinthesidebearersthenonlinearrollcharacteristiccanbelinearized.

Figure13Modelforcenterplateelement(∆‐distancebetweencenterplateedgeandcarbodycenterofgravity, –rollangle, –weightofthecarbodyperonecenterplate, –rolltorque, –equivalentrollstiffness)

Thesecondapproachistointroducemultiplecontactpointsontheedgesofthecentreplatewithtwo‐dimensionalfrictionelementsinthem.Theinteractionwiththecentrebowlrimisthenalsothecontactelements.Suchanapproachisusedin[57]aswellasinUniversalMechanismsoftware[52].

3.2 StabilityFreightvehiclesinmostcasesoperateatmuchlowerspeedsthanpassengervehicles.Typicalrunningspeedsareataround100km/h.Thissuggeststhatstabilityinvestigationsarenotasimportantasforfasterpassengervehicles.Ontheotherhandfreightvehiclesoftenaremuchlessdampedthanpassengervehiclesandstabilityinvestigationsarethereforenecessary.Severalofthewagontypesintroducedabovecan–inunfavourablerunningconditions‐showsignificanthuntingbehaviouratspeedsaslowas70km/h.

Inabogievehiclebasicallythreetypesofhuntingmotioncanarise:

Wheelsethuntingwhereonewheelsetperformsthehuntingmotion.

M

0M

c

Mg

Page 15: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

Bogiehuntingwhereawholebogieistakingoverthehuntingmotion. Carbodyhuntingwherethecarbodyperformsayawmotionandthetwobogies

mainlyfollowthecarbodywithlateralmotions,i.e.thewholevehicletakesoverthehuntingmotion.

Carbodyhuntingisoftenatypeofresonancephenomenon,wheretheKlingelhuntingfrequencygivenmainlybyvehiclespeedandconicityinthecontactcoincideswiththeyaweigenfrequencyofthecarbody.

Huntingmotionwithanon‐zerolimitcycledependsonthewheel‐railgeometry,thesuspensionandthemassesandinertiasofthevehicle.Sincethemassandinertia,andinmostcasesthesuspensionstiffnessanddampingofthefreightwagonwillsignificantlychangewithload,thetypeofhuntingmotionobservedusuallydiffersbetweenanemptyandaloadedwagon.Sincethestiffnessvaluesbetweenaxleboxandbogieframe(inabogievehicle)arelowerinanunloadedvehicle,theriskforwheelsetorbogiehuntingishigher.Inloadedvehicles,vehiclehuntingcanoftenbeobserved.Sincethefrequencyofwheelsethuntingisusuallylow(typicallybetween1and2Hz)thewheelrailforcesinducedarerelativelylowandinmostcasesbelowthelimitvaluesstipulatedinstandards.Therefore,thevehicledesigninrealityallowsforthecarbodyinstabilitytohappeninsomeconditions.Otherwisethesuspensionneedstobesostiffthatthecurvingperformancewouldsuffer,andtheamountofwearandRCFwouldincreasesignificantly.Theriskofcarbodyhuntingcanvarywiththetypeofloadsincethiscaninfluencetheyaweigenfrequencyofthecarbody.

Duetothesignificantinherentnon‐linearityandnon‐smoothnessofthesuspensionelementslinearizationofthemodelsisusuallynotrealistic.Itisthereforenecessarytoperformtimesteppigintegrationwiththefullnon‐linearmodel.Thetaskisingeneraltofindthenon‐linearcriticalspeedvBofthewagonascanbeseeninthegenericbifurcationdiagraminfigure14.

Figure14:Genericbifurcationdiagram

Page 16: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

Incomplexmodelsitisverydifficulttofindtheexactcriticalspeed,forexamplewithapathfollowingmethod[58].Thereforeotherengineeringmethodsareused.Onepossibilitythathasbeensuggestede.g.byPolach[59]istoexcitethevehiclewithaninitialdisturbancethatcaneitherbedeterministicorstochastic.Aftertheinitialdisturbancethevehicleisrunonidealsmoothtrack.Iftheoscillationvanishesthevehicleisregardedasstable.Thesimulationshavetoberepeatedwithincreasingspeeduntiltheoscillationsdonotdisappear.Inthatcasethenon‐linearcriticalspeedvb(figure15)isreached.Ariskwiththismethodisthattheinitialdisturbanceisnothighenoughtoinitiatealimitcycleoscillationandthatthecriticalspeeddetectedishigherthantherealnon‐linearcriticalspeed.

Anothermethodtodetectthenon‐linearcriticalspeedisstartthesimulationsataveryhighspeedtobesurethatthevehiclehasreachedthenon‐zeroattractor(limitcycle).Thenthespeediscontinuouslyreduceduntilthelimitcyclebehaviourdisappears.Polachalsodescribesthismethod.IthasbeenusedforexamplebyBoronenkoetal[15]totunethesuspensionofthree‐piecebogies.

Asimilarmethod,showninfigure15,issuggestedin[60]todeterminetheso‐callednon‐linearcriticalspeed.ThedifferencetothemethodintroducedaboveisthatthespeedisnotreducedcontinuouslybutindiscretestepsassuggestedbyTrue[98].

Figure15:Proceduretofindthenon‐linearcriticalspeed[60].

Figure16showsthebifurcationdiagramforaloadedtwo‐axlevehiclecalculatedwiththismethod.Itcanbeobservedthatonlythestablebranchesofthebifurcationdiagramcanbedetermined,nottheunstablepart.Thezerosolutionisalsopossibleatleastuptoaspeedof120km/h(boldsolidline).Thiswassimulatedusingtheprocedureabove,startingfromlowspeedandincreasingthespeedstepwise.

Page 17: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

Figure16:Bifurcationdiagramforaloadedtwo‐axlevehiclewithlinksuspension(21taxleload)Wheel:somewhatwornS1002.Rail:NominalUIC60[42].

Hoffmanalsoinvestigatedthestabilityofatwo‐axlewagonwithlinksuspension[43],[61].HeusesthelinkmodeldevelopedbyPiotrowski[29].TheleafspringsmodelisbasedonFancheretal[46].Figure17.showsattractorsfortwodifferenttypesoffreightwagons.Theresultsareinprinciplequitesimilartothoseinfigure16.

Figure17:AttractorsfortheHbbills311andtheG69freightwagons.ThemodelwiththemeasuredcharacteristicsoftheUIClinksisdampinglessthanthemodelwiththecylindricalcharacteristics.Thehuntingattractorexistsevenforlowspeeds[61].

Gialleonardoetal[62]extendedthistypeofstabilityanalysisforatwo‐axlewagonwithlinksuspensiononcurvedtrack.Ascanbeseeninfigure18.theleadingwheelset(ylw)

Page 18: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

showsmuchsmalleroscillationamplitudesthanthetrailingwheelset(ytw)andthecarbody.Thisisbecausetheouterwheeloftheleadingwheelsetexperiencesflangecontact.Ingeneraltheresultsshowthepresenceoflargeperiodicoscillationsinnarrowcurvesatcommercialoperatingspeeds.Itisalsoshowninthepaperthatthecouplingforcesbetweenwagonassembliessignificantlyreducetheoscillationamplitudes.

Figure18Mapoflateraloscillationamplitudeinsinglewagonasfunctionofcurveradius[62].

Zhaietal[63]extendedthestabilityanalysisforafreightwagonwiththree‐piecebogiestoalsoincludeavisoelastictrackstructure.ThestabilityanalysisisperformedaccordingtothemethodologysuggestedbyPolach,whichisexplainedabove.Theauthorsfoundthatalowercriticalhuntingspeedisobtainedonelastictrackcomparedwiththerigidtrackcase.Thedifferenceinthecriticalhuntingspeedsbetweentheelastictrackbaseandtherigidtrackbaseis4.4%fortheloadedfreightcar.

3.3 CurvingAsindicatedabovesimulationsoftherunningbehaviouroffreightwagonsincurvesareoftenperformedtoinvestigatetheriskofwheelwearandRollingContactFatigue(RCF).

Forpassengervehiclescurvingsimulationsareoftenperformedonidealtrack,i.e.thestochastictrackirregularitiesareneglected.Authorsareinthiscaseinterestedinthequasistaticbehaviourofthevehicle,i.e.themeanwheelsetattackanglesorthemeanenergydissipationinthecontactpoints.Forfreightvehicleswithnon‐linearandnon‐smoothsuspensionthiscanleadtosignificantmistakesasshownintheexamplefromJönsson[42].Onidealtrackthefrictionsurfacesmightsticktogetherandforcethewheelsetintoamoreunfavourableposition.Trackirregularitieshelptogetrelativemotioninthefrictionsurfaces,whichusuallyleadstobetter–andmorerealistic–steeringbehaviourofthevehicle.Asseeninfigure19,theenergydissipationasa

Page 19: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

measurefortheamountofwearorRCF,ismuchlowerwhensimulatingrunningwithtrackirregularities.

Figure19:Energydissipation.Comparativesimulationwithandwithouttrackirregularities.Two‐axlevehiclewithlinksuspension.22.5taxleload[42].

Inoneoftheirnumerousstudiesonthree‐piecebogiesBoronenkoetal[15]investigatethereasonforexcessiveflangewearinsomeoftheRussianwagons.Oneconclusionisthatthemainreasonforflangewearistheunstablebehaviourofthebogiesincurves(ruttingmode)[16],whenthebogieisflangingwithatwo‐pointcontactsituationinsteadofnegotiatingthecurveusingthewheelconicity.Theflangingistheresultofbogiewarping,whichincreasestheangleofattackcomparedtoaradialposition.Inthearticleanumberofdifferentdesignsarediscussed.Amongothersitisconcludedthatabogiedesignwithradialarmssignificantlyreducestheangleofattackandthewearnumberincurves,seefigure20.

Page 20: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

Figure20:Angleofattack(a)andwearnumber(b)forwagonsinacurveof200mradiusat60km/hwith18‐100bogiesrespectivelybogieswithradialarmupgrade[15].

Berghuvud[64]investigatedthecurvingbehaviourofdifferenttypesofthree‐piecebogiewithandwithoutbraking.Heconcludedthattheinfluenceofbrakingonthecurvingbehaviouriscomplex.Brakingcanhaveapositiveeffectontheangleofattackofthewheelsetsinacurvesinceithelpstoovercomethestaticfrictionintheprimarysuspension.Itcanalsoincreasetheangleofattackiflargelongitudinalforcespushthewheelsetlongitudinallytowardsthelimitoftheplayandthuslockthewheelsetinanunfavourableposition.

3.3.1 VehicleResistanceRadiallysteeringbogiesdonotonlyreduceflangewearincurvesbutalsoreducetherequiredtractionenergy.

Figure21:Y25bogierunningina300mcurve

Wheelsliplateralandlongitudinalatallwheelrailcontactpoints,90ttankcarwithaY25‐Bogieina300mcurve,speed80km/h,lateralaccelerationaq=0,67m/s²,s1002Wheelprofile,UIC60E1,1:40railinclination

Page 21: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

Figure22:Radiallysteeredbogierunningina300mcurve

Wheelsliplateralandlongitudinalatallwheel‐railcontactpoints,90ttankcarwithaLeila‐Bogieina300mcurve,speed80km/h,lateralaccelerationaq=0,67m/s²,s1002Wheelprofile,UIC60E1,1:40railinclination

Figure21showsaconventionalY25bogie(runningtotheright).Theouterwheeloftheleadingaxlehastwopointcontactwithratherhighlateralandlongitudinalcreepages.Theinnerleadingwheelislessaffectedandthetrailingwheelsethasmuchsmallervalues.Withradialsteering,(figure22)theleadingaxlealsohasverysmallcreepages.Thisresultsinlowerwearandrunningresistance.Asaresultontrackwithtightcurvesmorethan20%oftheoverallrunningresistancecanbereducedwithsimilarlevelsofenergysaving[66].

Ofcourseradialsteeringmayaffectrunningstabilityonstraighttrack.ThereforebogiedesignswithcrossanchorssuchastheTVP2007ortheLeilabogiehaveanadvantageoverindividualradialsteeringaxlesasintheswinghangerbogie.

3.3.2 InfluenceofcurvingonwheelandraildamagephenomenaAsmentionedintheintroductiontothissectionthecurvingperformanceofafreightwagonisveryimportantforthelevelofwheelandraildamage.Thismeansinturnthatthevehicletrackinteractionincurvesdeterminestoalargeextentthemaintenancecostforthewholesystem.In[66]Fröhlingdiscussestheinfluenceof,amongothers,bogiedesign,bogiemaintenanceandthewheel/railinterfaceinheavyhauloperationondifferentdamagephenomenaonwheelsandrails.InalaterpublicationFergussonetal[67]presentananalysisofwheelwearasafunctionoftherelationshipbetweenthelateralandlongitudinalprimarysuspensionstiffnessandthecoefficientoffrictionatthecentreplatebetweenthewagonbodyandthebolstertominimisethewheelwearrate

Page 22: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

ofaself‐steeringthree‐piecebogiewithoutcompromisingvehiclestability.Simulationresultsindicatethatwheelwearistheoreticallythelowestforlowlateralandlongitudinalprimarysuspensionstiffnessandnofrictionatthecentreplate.Casanuevaetal[68]extendthewearpredictionmethodologyforfreightwagonstoalsoincludeswitchesandcrossings.Itisconcludedthatwearonsomepartsofthewheelprofilecanonlybeexplainedwithrunningthroughswitches.

TunnaandUrban[69]carriedoutaparametricstudytoquantifytheeffectsofvariousfreightvehicleparametersonthegenerationofRCF.Threedifferentfreightsuspensionswerconsidered:anenhancedthree‐piecebogie,arigid‐framebogiewithprimarysuspension,andatwo‐axlevehiclewithleafsprings.Simulationswereperformedfortrackcurvaturerangingfrom400to10000m.TojudgethegenerationofRCFtheTgammamodelfromBurstow[70]wasused.Itisstatedthatparametersthatclearlyneedtobeconsideredwhenevaluatingrailsurfacedamagearecurvedistribution,trackquality,conicity,vehicletypeandloadingstateofthewagon.Sinceseveralparametersarelinedependentitisconcludedthataroutebasedanalysisisnecessary.

In[71]asimulationmodelofanironorewagonwiththree‐piecebogieisdevelopedtoinvestigatetheriskofRCFontheSwedishandNorwegianironoreline.43loadcaseswithvariousconditionswereusedasinputs.TheriskforRCFwasestimatedwiththeso‐calledshakedownmap.Thewearnumber,whichistheproductofcreepagesandcreepforces,wascalculatedtoestimatewhereinitiatedcracksdeveloporarewornaway.Infigure23areasonthewheelprofilewithhighriskofRCFcanbeseen.TheareaonthewheeltreadcoincidesverywellwithfieldobservationsofRCFbuttheareasintheflangerootandontheflangedidnotshowRCFdamage.Itcanbeconcludedthattheenergydissipationishighenoughtowearawayinitiatedcracks.Itseemsthatsimulationofthecurvingbehaviouroffreightwagonscanprovidevaluableinformationabouttheriskofwheeldamageforspecificoperatingconditions.

In[71]asimulationbyDukkipatiandDongexaminetheeffectsofafreightwagonrunningoveradippedjoint.InaveryrecentpaperWangandGaoinvestigatethewheelwearofafreightvehiclewiththree‐piecebogieincurves[99].Itisshownthatwearismostsevereontheouterleadingwheelinthebogie.

Page 23: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

Figure23:CalculatedRCFpositionsofthewheelwithcorrespondingaveragewearnumber.Thefar‐leftlineisalsoreportedastheobservedapproximatelocationforRCFinitiation.

3.4 ParameteridentificationTheestablishmentofthecorrectparametersforuseincomputermodelsisclearlyofgreatimportance.Someparameterscaneasilybemeasuredorprovidedbythemanufacturersbutothersareverydifficulttoestablish.Renetel[74]demonstratetheuseofatestrigwithaslidingplateunderneathonewheelsettoestablishkeyparameters.Theslidingplateismovedwithactuatorsandforcesmeasuredtoallowthelateral,shearandwarpstiffnesstobeestablishedaswellasthefrictioncharacteristicsofthebogie.

4 ModernDevelopments

4.1 TheBritishRailHSFBogiesWickensandcolleaguesatBritishRailResearchcarriedouttheoreticalandpracticalworkaimedatunderstandingthedynamicperformanceoftwoaxlefreightvehicles[75],[76].Theaimwastoincreasetheoperatingspeedoffreightvehiclesandreducetherateofderailments.Aseriesofexperimentaltwoaxlevehicleswereconstructedtoconfirmtheresultsoftheanalysis.Theyincludedcoilspringsandviscousdampersandlongitudinalrodstocontrolyawmotionandwereinitiallytestedonafullsizerollerrig.Computersimulationsofcurvingandstabilitywerecarriedoutwithvariousdamperconfigurationsandon‐tracktestsofseveralprototypeswereundertaken

Theresultofthisworkwastheprototype‘HSFV.4’highspeedfreightvehiclewithviscousdamping(figure24)whichwastestedatspeedsofupto120km/handprovedtorunwithouthuntingforawiderangeofeffectiveconicityvalues.

Figure24:TheHSFV.1experimentalfreightwagon

Page 24: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

4.2 TheUnitruckrunninggearTheUnitrucksingle‐axlerunninggearwithlateral“swinghangers”wasfirstdevelopedfortheAmericanmarketandinthe1990’sadjustedtosuitEuropeanconditions.VehicleswithUnitruckrunninggear[76]aretodayusedbothinNorthAmericaandEurope.Theyhaveonlyonestagesuspension,whichalsoincludesfrictiondamping.AsintheY25bogie,theverticalforceintheprimarysuspensionisusedtopreloadthedifferentfrictioncomponentsviaaninclinedsurface.Figure25leftshowsthewedgeelement,whichisinserieswithoneofthecoilspringsandincontactwiththecarbodyviaaninclinedfrictionsurface;theverticalsurfaceincontactwiththesaddleisalsoafrictionsurface.Newerdesignshavesubstitutedtheinclinedfrictionsurfacebyaroller(figure25left)[77],thusenablingthedisplacementinthelongitudinaldirection,butreducinglongitudinaldamping.Also,addingacouplingplateinthecentreofthecoilspringsincreaseslongitudinalstiffness(Figure25right),whichimprovescriticalspeedcomparedtotherunninggearwithrollersandclassiccoilsprings.

Figure25:Unitruckrunninggear(left)andmodificationsforimprovingcurvingbehaviour(right).

4.3 The‘SwingMotion’Bogie

Figure26:The‘Swingmotion’bogie

Page 25: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

The‘SwingMotion’bogie(figure26)isavariantofthethree‐piecefreightbogieandwasoriginallydevelopedforheavyhauloperationsinNorthAmerica.IntheSwingMotiondesignanadditionalcrossmemberortransomisincludedwhichconnectsthetwosideframestogetherviapivotsatthebaseofthesecondaryspringpack.Thebolsterstillsitsonthetopofthespringpacksandisdampedthroughfrictionwedges.Apivotbetweentheaxleboxesandthesideframesisalsoincludedsothatthesideframescanpivotorswingtoaccommodatelateralmotionofthebolster.Theswingmotiongivesincreasedlateralstabilityatspeedsupto176km/handisclaimedtoreducewheelandrailwear,reducerollingresistanceandforcesontrackandvehiclebodycomparedwithstandardthree‐piecebogies.

4.4 The‘LTF’bogieInthe1980sBritishRailResearchintheUKdevelopedanovel,trackfriendlybogieusingpassengervehicletechnology.TheLTF25bogieisshowninfigure27andisdescribedin[79].

Figure27:The‘LTF25’bogie

TheLTF25bogiewasspecificallydesignedtoreducedynamictrackforcesandaspartofthiseffortwasmadetoreducetheunsprungmass.Smallwheels(813mmdiameter)wereusedandinsideaxleboxesgivinga30%reductioninwheelsetmassalthoughthisnecessitatedtheuseofon‐boardhotboxdetectors.

Primarysuspensionisthroughsteelcoilspringsandsecondarysuspensionisthroughrubberspringelementsandhydraulicdampers.

ThehighcostoftheLTF25bogieandconcernsaboutaxlefatiguewithinboardaxleboxesmilitatedagainstitsadoptionbutPowellDuffrynproducedamodifiedversionofthebogiesknownastheTF25bogie(showninfigure28)whichhasachieved

Page 26: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

considerableproductionsuccess.

Figure28:TheTF25bogie

4.5 The‘Gigabox’bogieThe‘Gigabox’bogieusespedestalunitscontainingprogressiverubberspringswithintegralhydraulicdampingasshowninfigures29and30).ThesystemwasdevelopedbyContiTecandSKFandisclaimednottorequiremaintenanceforupto1millionkmandtoprovidegoodnoiseandvibrationisolation.Areductionofupto20%inlateralforcesisclaimedaswellasa2dBreductioninnoise.

Figure29:TheGigaboxbogie

Page 27: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

Figure30:Pedestalunitandcrosssection

4.6 TheDoubleRubberRingSpring(DRRS)bogieOriginallydesignedbyTalbottheDRRSbogieusesdoublerubbertorroidalringspringswithloadproportionalfrictiondampingasshowninfigure31.Containerwagons with DRRS bogies entered service with the DB ‘Inter Cargo Express‐System’.Maximumaxle‐loadrangesfrom22.5tat100km/hto18.375tat160km/h.

Figure31:TheDRRSbogieandcrosssection

Page 28: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

4.7 Advancesinthree‐piecebogiesThemajordriversforadvancesofAARthree‐piecebogiesweretighteningrideperformanceandtrackimpactstandards,suchasM‐1001[79]andM‐976[80],since2000.

Anoverviewofimprovementsinthesuspensionsisgivenin[81].Suspensionspringstendtoincreasethedeflection.Usinghighercontrolspringsunderthewedgesincreasesfrictionundertheemptywagonthusprovidingitsbetterstability,andmakesdampinglessdependentonthewearofwedgesthemselves.Differentheightoftheinnerandouterspringsallowshavinglowerlateralstiffnessofthesuspensionundertheemptywagon,thusimprovingitsrunningperformance.Usingthesetof9doublespringspereachsideofthebogieincreaseswarpingresistance.

Theinnovativedesignsofthewedgesareshowninfigure32.Bothdesignsaimtoincreasingthewarpingresistanceofthebogie.Thesplitwedgeconsistsoftwosymmetricpartsinclinedtowardseachotherandinteractswiththespatialinsertinthebolsterpocket.Inthespatialwedgethesurfacesareinclinedintheotherdirectionandtheyarewiderthantheverticalsurface,whichgivesthesameeffect.

Figure32:Splitwedge(left)andspatialwedge(right).

Intheinteractionbetweenthesideframeandthewheelsetaxlevariouselasticcomponentsareintroducedtoreduceunsprungmassaswellastoreduceresistancetowheelsetdisplacementinplane,thusreducingthelateraltrackforces.Someofthedesignsofelasticshearpadsareshowninfigure33.

Split wedge 

Insert 

Inclined surfaces 

Visual wear indicators 

Page 29: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

Figure33:AdapterPlus®byAmsted(left)andlayeredshearpadinRussian18‐9800bogie(right).

Therigidsidebearingswithclearanceshavetransformedinmodernthree‐piecebogiesintoconstantcontactsidebearings,incorporatingtheelasticelementcompressedbytheweightofthecarbody,[82].Examplesofthedesignareshowninfigure34.Constantcontactsidebearingsprovideyawdampingforthebogiesonstraighttrack,aswellasadditionalcarbodyrollresistanceforbettercurvingperformance.Therollerspositionedwithaclearanceproviderigidbumpstopthatlimitstheelasticelementdeflectionwithoutincreasingtheyawresistance.

Figure34:Constantcontactsidebearingwithsprings(left)andwithnon‐metalelementandroller(right).

Thereareseveraldevicesusedtoincreasewarpingstiffnessofthree‐piecebogies,themostcommonofwhichisusingcross‐bracesbetweenthesideframesshowninfigure35.

    Cap 

Elastic element 

 Cage

Wear resistant element 

Insert 

Roller 

    Cap 

Elastic element 

  Cage 

Page 30: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

1–topbrace;2–bottombrace;3‐bolt;4–washer;5‐nut;6–fasteningunit;7–rings;8–lockingplate;9–washer;10‐bolt;11–elasticpad;12–safetywire;13,14‐bracket;15,16,17‐plate;18–key

Figure35Cross‐bracesbetweensideframes.

UsingtheconceptofshearandbendingstiffnessofthebogieScheffel[83],developedseveralnoveldesignsofthree‐piecebogies(figure36).Atfirstthehorizontalmotionoftheframeisdecoupledfromthewheelsetsbyhorizontallysoftprimarysuspension.Thentheaxleboxesareinterconnectedthroughsub‐framesorarmsbyelasticelementsthatsupporttheirradialpositionincurves,butresistin‐phaseyaw[84].Scheffelbogieshavingtheaxleloadof32tprovidemileagebetweenwheelturningofupto1.5millionkilometresthusprovingthehighefficiencyofthedesigntoreducetrackforces.

Page 31: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

1‐sideframe;2‐bolster;3‐wheelset;4–primarysuspension;5–elasticconnectionbetweensub‐frames

Figure36:ScheffelHSbogie(left)andbogieretrofittedwithRadialArmdesign(right).

4.8 TheLenoirpusherspringVariousalternativestothedoubleLenoirlinkagehavebeenexploredwiththeaimofprovidingreducedlongitudinalstiffnessatlowcost.Oneexampleisthe‘Lenoirpusherspring’whichconsistsofaplungerandwasherspringsmountedoppositetheLenoirpusher(figure37).Thisallowsmorelongitudinalmotionthantheconventional

Figure37:TheLenoirpusherspring

Piotrowski[86]reportshowthisarrangementhasbeenshowntogivegoodperformanceinaprototypevehiclewithsignificantreductionsinwheelwear.

4.9 TheRC25NTBogie

EisenbahnLaufwerkeHalle(Germany)hasdevelopedtheRC25NTself‐steeringthree‐piecebogiewithdirectinter‐axlelinkageswhichwaspresentedattheInnotransexhibitionin2010)[87](figure38).Thebogiehashorizontallysoftrubberbushesintheprimarysuspensionandflexicoildualratespringswithfrictiondampinginthesecondarysuspension.Thebogieisequippedwithdiskbrakes.Theaimofthedevelopmentwastobuildabogiecapableofstablerunningupto120km/h,keepinglownoisecriteriaandnegotiatingcurveswithminimumofwear.ThebogieisdesignedtoreplacetheY25typebogiewithoutchangestothewagonbody.

Page 32: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

SimulationshaveshownthattheRC25NTprovidesbetterstabilityonstraighttrackthantheY25(figure39)andlesswheelandrailwearincurves(figure40).ThebogiewastestedaccordingtotheUIC518standardinSwedenin2010forspeedsupto160km/h.TheRC25NTdemonstratesthatdirectinter‐axlelinkagescanallowfreightcarbogiestorunat120km/hwithpropersteeringandlowwearincurves.

Figure38:RC25NTbogiewithdirectinter‐axlelinkages

Page 33: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

Figure39:SimulationstabilityresultsforRC25NTbogievs.Y25bogie(upperfigure=highconicity,lowerfigure=lowconicity)

Figure40:SimulatedwearnumberforRC25NTbogievs.Y25bogie

Page 34: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

4.10 The‘LEILA’BogieTheLEILAbogie(‘LEIchtesundLärmArmesGüterwagenDrehGestell’withthemeaningoflightandlownoisefreightbogie)isapassiveradialsteeringbogiewithamaximumaxleloadof22.5tandwasdevelopedbetween2000and2005duringaGermanandSwissresearchproject[88].TheInstituteofRailVehiclesoftheTechnischeUniversitätBerlinwasoneoftheinvolvedpartner.Theaimtodevelopthisbogiewas:

toreducethenoiseemissionsoffreightwagons; toreducethemassofabogietobeunder4tand toreducesignificantlywearandrunningresistance.

Inaddition:

thereliabilityandavailabilityoffreightwagons; transparencyinthetransportchain; theactiveandpassivesafetyofthefreighttrafficand; thetransportvelocityshouldbesimilarlyincreased[89].

Figure41and42showthemaincomponentsofthisbogie.ComparedtothestandardbogiessuchasY25,theLEILAbogiehasinnerbearings.Theresultingbetterforceflowleadtoaweightreductionofthebogieframeandwheelsetresultinginanoverallweightreductionof750kgperbogiecomparedtoY25bogie.Atthewebofthewheels(diameter:920mm),discbrakesaremounted.Theprimarylayerconsistsofrubberspringsandtheloaddependentstiffnesscharacteristicsareseparatedinverticalandhorizontalworkingcomponents.Thebogiehaspassiveradialsteeringtechnologyofthewheelsets.Wheelsetsareabletorotateabouttheverticalaxiswithoutanyexternalenergybutonlybytherollradiusdifferencebetweentheinnerandouterwheel.Bothwheelsetsareconnectedwithcrossanchors;mountedonoppositeaxleboxes.ThesecondarylayerisdefinedUICcentreofpivotandsidebearer(latterguaranteestheexchangeabilitytoY25bogies).Inaddition,thecentreofpivothasanelasticallybearingusingasecondaryrubberspring.TheLEILAbogieprototypewasexaminedduringvariousfieldtestswhereitdemonstrateditsadvantagescomparedtoaY25bogie.Thenoiseemissionswerereducedupto18dB(A)comparedtoaY25bogiewithcastironbrakeblocksandupto8dB(A)comparedtoaY25bogiewithcompositeblocks(k‐blocks).Butthebogiefailedatthattimetoenterthemarket.Duringtheverygoodongoinghomologationprocesstheproducerofthebogiedecidedtostoptheproductionofnewfreightwagonsandbogies.Thereforethehomologationwasstoppedandnotfinishedjustforcommercialreasons.RightnowasmoreandmoreEMUsareproducedwithinnerbearingsitisexpectedthattheacceptabilityofinnerbearingbogieswiththeadvantageslessweightandlowerforcesattheaxlesincurveswillbemoreacceptable.

Page 35: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

Figure41:MaincomponentsofLEILAbogie[88]

Figure42:LeilaBogiefrombeneathwiththeinnerbearings,crossanchorandwheeldiscbrakesclearlyvisible

4.11 TheTVP2007BogieTheTVP2007isavariantoftheY25bogiedevelopedbyTatravagónkaa.s..Itsmaindifferenceisamodifiedprimarysuspensioncharacteristic:TwodoubleLenoirlinksandenablesalongitudinalplayof±4mm.Theoppositeaxleboxesareconnectedbycrossanchorstoimprovetherunningcharacteristic.TheTVP2007isshowninfigure43.

Page 36: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

Figure43:TVP2007bogiebyTatravagónkaa.s.

Morethan3000bogiesareinoperationsince2009ontheEuropeancontinentunderdifferentwagonstructures.ThebigadvantagesarethatmainlystandardY25componentscanbeusedexceptforslightlymodifiedaxlebearingsandthecrossanchorsthemselves.AswiththeLeilabogiethecrossanchorcouplesthetwoaxlessothattheyturnwithaphaseshiftof180°.Thisstabilizestheradialsteeringeffectevenwhenthewheel‐railcontactisnotperfectandthesecondveryimportanteffectisdynamicstabilisationwithoutyawdampersforhighspeedstraighttrackrunning.Oncurvytracksignificantflangeandrunningsurfacewearreductionandalsosignificantreductionoftherunningresistanceoccur.

4.12 TheSUSTRAILBogieTheaimoftheSUSTRAILprojectistopromotemodalshiftoffreightinEuropefromroadtorail.TheSUSTRAILprojectintendstoprovidetheapproach,structure,andtechnicalcontenttosupportthismodalshiftthroughimprovementsintherailwayfreightsystemincludinginnovationsinrollingstockintrackcomponents.Theprojectincludesworkpackagesfocusedonmarketresearch,vehicles,infrastructureandassessmentofcostbenefits.Theworkdescribedhereispartofworkpackage3:‘Thefreightvehicleofthefuture’.

ThemainscientificandtechnologicalinnovationsbeingconsideredfortheSUSTRAILfreightvehicleare:

The development of advanced vehicle dynamics concepts based on new wheelprofilesandimprovementsinsuspensiondesignrespondingtotheneedsofamixedtrafficrailway;

Developmentsinthetractionandbrakingsystemsforhighspeedlowimpactfreightoperation;

Noveldesignsandmaterials for lightweighthighperformance freightwagonbodyvehiclesandbogiestructures;

Advancedconditionbasedpredictivemaintenance tools for critical componentsofbothrailwayvehiclesandthetrack;

Identification of performance based design principles to move towards the zeromaintenanceidealforthevehicle/tracksystem.

Page 37: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

Partnersintheprojecthavecarriedoutatechnologyreviewtoidentifythepotentialinnovativetechnologiestomeettheaboverequirementsandtheresultshavebeenrankedandtwoconceptvehiclesarebeingdesigned.The‘Conventional’vehiclewilluseoptimisedexistingtechnologyandademonstratorforthisisbeingbuiltaspartoftheproject.The‘Futuristic’vehiclewillutilisetechnologywhichhasnotyetbeenprovenintherailwayfieldbuthaspotentialtomakegreaterimprovements.

Simulationshavebeencarriedoutofthedynamicbehaviouroftheconceptdesignvehiclesrunningontypicaltrackintare,partladenandfullyladencases.Inlinewiththetargetofa50%reductioninlateralforcesonthetrackandstablerunningat140km/hasuspensionusingdoubleLenoirlinkages,longitudinallinkagesbetweenaxleboxesandcentrepivotsuspensionhasbeenselected.Computersimulationhasbeenusedtooptimisethesuspensionandtoselectsuitableparametersforthevariouscomponents.Assessmentoftheresultsisbasedon:

Stability:stablerunningontypicalEuropeantrackatthedesignspeedof140km/hmust be ensured and ride quality (vertical lateral and longitudinal accelerationsexperiencedbythegoodstransported)willbeassessed.

Reduced track forces: track geometrical deterioration (ballast settlement andhorizontallevel,alignmentandbuckling),railsurfacedamage(wear,rollingcontactfatigue – RCF) and track components damage (sleeper cracking, rail paddeterioration,railfatigue,fasteningdeterioration)willallbeassessed.

AbenchmarkvehiclehasbeenselectedbasedonaY25bogieandflatbedwagonandhasbeenusedtoallowquantificationofthebenefitsofthenewdesign.

AnumberofradicalinnovationswereconsideredduringthetechnologyreviewstageoftheprojectbutitwasdecidedthattheuseofdoubleLenoirlinkprimarysuspensionasin theY37 series of bogies (figure44),would be investigated.ThedoubleLenoir linksuspension provides much lower longitudinal primary stiffness while still utilisingstandard components and methods which are well established within the railwayindustry.

Figure44:AsuspensionwithdoubleLenoirlinks

Page 38: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

Aspart of the optimisation of theprimary suspension the followingparameterswerevaried:

Theverticalcoilspringstiffness(Kc) ThelengthoftheLenoirlink(L) TheangleoftheLenoirlink(Aistheoffset) The friction coefficient at the sliding surfaces (μyz) (controlled through

changingmaterial) Theverticalclearancetothebumpstop(dz0)

Theseparametersareillustratedinfigure45.

Figure45:TheLenoirlinkshowingtheparametersvariednthiswork

A model of the SUSTRAIL vehicle was set up with double Lenoir links using thecomputer simulation tool Gensys and the influence of variations in the suspensionparametersonthecriticalspeedofthewagonwassimulated.Straighttrackwasusedforthissimulationandaninitiallateraldisturbancewasintroducedfollowedbyidealtrackwithnoirregularities.Axle loadis22.5t,wheelprofile isS1002andrailprofileUIC60inclinedat1:40.Thewheelrailcoefficientoffrictionissetat0.35.Thewagonspeedwasreducedfromaninitial170km/handcriticalspeedassumedtohavebeenreachedwhenthetrackshiftingforce(∑ )dropsbelow2.5kN.Anexampleisshowninfigure46.

Page 39: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

Figure46:AsamplesimulationresultsshowingtheestablishmentofthecriticalspeedfortheSUSTRAILvehiclewithdoubleLenoirlinks

Theeffectsofthevarioussuspensionparametersonthecriticalspeedaresummarisedinfigure47.

Figure47:TheeffectofLenoirlinkangle,lengthandfrictioncoefficientonthecriticalspeedoftheSUSTRAILvehicle

The simulations were repeated with a speed of 120 km/h on straight track withmeasuredirregularitiesandthemaximumverticaltrackforcewasestablishedforeachtracksectionasshowninfigure48.

120

130

140

150

160

170

26 28 30 32 34 36 38

Critical speed [km/h]

A [mm]

SUSTRAIL OR, S1002, UIC60i40, mu=0.35

120

130

140

150

160

170

0.20.250.30.350.40.450.50.550.6

Critical speed [km/h]

Damping in primary suspension

SUSTRAIL OR, S1002, UIC60i40, mu=0.35

120

130

140

150

160

170

60 70 80 90 100 110

Critical speed [km/h]

L [mm]

SUSTRAIL OR, S1002, UIC60i40, mu=0.35

110120130140150160170

0 20 40 60 80 100 120

-40-30-20-10

010203040

0 20 40 60 80 100 120

Time [s]

Y [kN] Speed [km/h]

Page 40: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

Figure48:MaximumverticalforceontherailfortheSUSTRAILvehiclerunningat120km/h

Furthervariationswerecarriedoutandtheeffectofthefrictioncoefficientandstiffnesswithinthesuspensiononthemaximumcontactforceisshowninfigure49.

Figure49:Theeffectoffrictioncoefficientandspringstiffnessonthecontactforce

It can be seen that the maximum vertical contact forces tends to increase with thedampingandwiththespringstiffness.In order to improve the running behavior of the SUSTRAIL vehicle it was decided toassess thebenefitof linkagesprovividing longitudinal stiffnessbetween theaxleboxesusingaradialarm.AradialarmdesignedbyScheffel[90]wasstudiedpreviouslyintheInfra‐Radialproject [91]whichaimedtodevelopabogie forheavyhaulvehicles(axleloadsover25T)withreducedlifecyclecosts.Testsusing theradialarmwith fourdifferentprimarysuspension types showedgoodresultswithstablerunningandradiallyalignedwheelsetsincurves.Wearofthewheelswasseentoreducesignificantly[91].Intheworkreportedheresimulationwascarriedout using MEDYNA for the SUSTRAIL vehicle with double Lenoir links and modifiedradialarms.Simulationshaveconfirmedthattheradialarmshouldprovidelateralstiffnessbetweenthe wheelsets and optimised parameters have been defined. A prototype of theSUSTRAILfreightvehicleisbeingconstructedbyREMARULengineering.Inadditionto

0

50

100

150

200

0 5 10 15 20

rical force (Q) - 99.85% percentile

Track section

Max:Mean:Std:

148.79 [kN]137.99 [kN]4.9131 [kN]

135

140

145

150

155

160

165

0.20.250.30.350.40.450.50.550.6

Max vertical contact force [kN]

Damping in primary suspension [-]

135

140

145

150

155

160

165

50 60 70 80 90 100

Max vertical contact force [kN]

Vertical coils spring stiffness [%]

Page 41: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

theinnovativesuspensiondescribedinthispapertheSUSTRAILvehiclewillhavediskbrakeswithanelectroniccontrolsystem.Thebogiedesignisshowninfigure50.

Figure50:TheprototypeSUSTRAILfreightbogie

5 LongitudinaldynamicsThelongitudinaldynamicbehaviourofrailwayvehiclesisoftenneglectedasthelinktothevehicletrackinteractionisgenerallynotsignificantandithasbeencommontoassumethatallvehiclesofthesametypeinatrainwillbehaveidentically.Inheavyhaulfreightapplicationshoweverwherelongtrainsarecommontheeffectoflongitudinaldynamicscanbecomesignificant.In[71]forexampleQietalmodelthelongitudinalbehaviourofalongtrainincludingtractionandbrakingandthecouplingbetweenvehicles.Belforteetal[93]alsoanalysetheeffectsofseveretractionandbrakingforcesonlongitudinaldynamics.

Thereareseveralareaswherelongitudinaldynamicscaninteractwiththegeneralvehicledynamics.Theseinclude:

Wheelunloadingoncurvesduetolateralcomponentsofcouplerforces; Wagonbodypitchduetocouplerimpactforcesand Bogiepitchduetocouplerimpactforces

Cole[94]describeshowtheseeffectscanbeassessedindifferentcasesandMcClanachan[95]andElSibaie[96]presentresultsofcomputersimulationsincludingcouplermodels.

Page 42: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

6 Conclusions

Freightvehicleshavetoprovidesatisfactoryperformanceatlowcostintareandladenconditiononvaryingtrackquality.ThishasresultedinseveralstandarddesignsincludingtheY25andthethree‐piecebogie.Thesedesignsusefrictiondampingproportionaltothevehiclemasstoprovidegooddynamicperformanceatallloadingconditions.Inrecentyearsvehicledesignershavetriedtoimproveonthedynamicperformanceoffreightwagonsandtheuseofcomputertoolshavehelpedtoovercomethecompromisebetweengoodcurvingperformanceandstabilityathigherspeeds.Thishasresultedinanumberofinnovativedesignswithdemonstrableperformanceimprovementsbutitisnotablethatfewofthesehaveyettomakesignificantimpactintheworldwidefreighttrainfleets.

Akeyreasonforthislackofadoptionisprobablytheinnatelyconservativenatureoftherailwayindustry.Ofcoursethisoftenhasasoundbasisin,forexample,thebenefitofusingstandardcomponentswhichalloweffectivemaintenanceofwidelydispersedfleetsofvehiclesbutinordertoallowthebenefitsoftheinnovativetechniquesanddesignssummarisedinthispaperitistimetoreconsiderthedesignoffreightvehicles.Thiscouldallowincreasesinspeedwithlowerimpactontrackandenvironmentandaresultingstepchangeinperformanceoftherailwaysystem.Oneencouragingsignistheestablishmentinsomecountriesoftrackaccesschargingwhichbenefitstheuseofvehicleswith‘trackfriendly’suspension.Togetherwithemerginglegislationandgrowingpressuresonsystemcapacityitislikelythatthedemandforfreightvehicleswithhigherdynamicperformancewillclimbrapidly.

Railfreightonlycancontributeinmitigatingtheenvironmentalimpactsoftransportationiftheknowledgeandtodaysexperienceforinnovativeproductsisused.Somebasicthoughtscanbefoundhereandin[97].Optimisingperformancethroughthedevelopmentofinnovativeproductsistobeplannedandprocuredcarefully.Thispaperhasdemonstratedthatfreightvehicledesignershaveinnovativedesignsofrunninggearandcomputersimulationtoolsreadyforthischallenge.

References[1] Hecht.M.,Europeanfreightvehiclerunninggear:today’spositionandfuture

demands,Proc.OftheInst.OfMech.Engrs.,PartF,JournalofRailandRapidTransit,Vol215,pp.1‐11,2001.

[2] EuropeanCommission(2011).WhitePaper‐RoadmaptoaSingleEuropeanTransportArea–Towardsacompetitiveandresourceefficienttransportsystem.COM(2011)144final,Brussels,28March.

[3] JönssonP.‐A.,FreightWagonRunningGear‐areview,KTHRailwayDivision,Stockholm,2002.

[4] RailwayvehiclesfromKockums(inSwedish:JärnvägsfordonfrånKockums),Kockumsindustrier,Malmö,Sweden,Pamphlet,1995.

Page 43: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

[5] UICCode517.Wagons–Suspensiongear(Standardisation),6thedition1‐7‐79,Reprint1‐1‐89,incorporating8amendments.

[6] MadeyskiT.LaufwerkskonstruktionundErhöhungderRadsatzlastenimGüterverkehr.ZEV‐GlasersAnnalen107,pp.139‐147,1983.

[7] MüllerL.andNiedermeyerW.,WeiterentwickelteGüterwagendrehgestellederDeutschenBundesbahnfür22.5tRadsatzlast–wiedernachdemLenkachsenprinzip.ZEV‐GlasersAnnalen111,pp.188‐196,1987.

[8] LangeH.,“DynamicanalysisofafreightcarwithstandardUICsingle‐axlerunninggear,”KTHRailwayTechnology,Stockholm,TRITA‐FKTReport1996:34,1996.

[9] StichelS..Runningbehaviorofrailwayfreightwagonwithsingleaxlerunninggear,TRITA‐FKTReport1998:40,DivisionofRailwayTechnology,KTH,1998.

[10] StichelS.HowtoimprovetherunningbehavioroffreightwagonswithUIC‐linksuspension.VehicleSystemDynamicsSupplement33,pp.394‐405,1999.

[11] Stichel,S.Runningbehavioroffreightwagonswithlinkbogies.TRITA‐FKTReport1999:12,DivisionofRailwayTechnology,KTH,1999.

[12] SpechtW.NeueErkenntnisseüberdasVerschleissverhaltenvonGüterwagendrehgestellen,ZEVGlasersAnnalen111,pp.271‐280,1987.

[13] AssociationofAmericanRailroads.Manualofstandardsandrecommendedpractices.SectionD.Trucksandtruckdetails,2010,130p.

[14] GOST9246‐2013Bogiestwo‐axlethree‐pieceforfreightwagonsof1520mmgaugerailways.Generaltechnicalspecifications.38p.

[15] OrlovaA.,andRomenYu.,Refiningthewedgefrictiondamperofthree‐piecefreightbogies.VehicleSystemDynamics,Vol.46,Issue1&2,2008,pp445‐455

[16] BoronenkoY.,OrlovaA.,RudakovaE..Influenceofconstructionschemesandparametersofthree‐piecefreightbogiesonwagonstability,rideandcurvingqualities.VehicleSystemDynamics,Vol.44,Supplement,2006,402–414.

[17] OrlovaA.Identificationofparametersforspatialwedgesystemimplementedinfreightbogiedesign.Proceedingsofthe10thmini‐conferenceonVehicleSystemDynamics,IdentificationandAnomalies.Ed.I.Zobory.ISBN9789634209683.‐Budapest:KomaromiNyomdaesKiadoKft.,2008,pp245‐252

[18] EickhoffB.M.,EvansJ.R.andMinnisA.J.,Areviewofmodelingmethodsforrailwayvehiclesuspensioncomponents.VehicleSystemDynamics:InternationalJournalofVehicleMechanicsandMobility,24:6‐7,469‐496,1995

[19] Brunis.,VinolasJ.,BergM.,PolachO.,andStichelS.,“Modellingofsuspensioncomponentsinarailvehicledynamicscontext,”VehicleSystemDynamics,vol.49,no.7,pp.1021–1072,2011.

[20] StichelS.,JönssonP‐A.,CasanuevaC.andHosseinNiaS.,ModelingandSimulationofFreightWagonwithSpecialattentiontothePredictionofTrackDamage.InternationalJournalofRailwayTechnologyVol.3,2014.

[21] KlauserP.E.,Modellingfrictionwedges,PartI:Thestate‐of‐the‐art.ProceedingsofIMECE042004ASMEInternationalMechanicalEngineeringCongress&Exposition,November13‐20,Anaheim(CA):AmericanSocietyofMechanicalEngineering,2004.

Page 44: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

[22] WuQ.,ColeC.,SpiryaginMandSunQ.,Areviewofdynamicsmodellingoffrictionwedgesuspensions.VehicleSystemDynamics:InternationalJournalofVehicleMechanicsandMobility,52:11,1389‐1415,2014.

[23] Non‐smoothProblemsinVehicleSystemsDynamics.SpringerBerlinHeidelberg,2010.

[24] AndersonE.,BergM.andStichelS.,RailVehicleDynamics.KTHRoyalInstituteofTechnology,Stockholm,2013.

[25] PolachO.,BergM.andIwnickiS.,Simulation.In:Iwnicki,editor,HandbookofRailwayVehicleDynamics.Chapter12.London:Taylor&Francis,pp.359‐421,2006.

[26] XiaF.,“Modellingofwedgedampersinthepresenceoftwo‐dimensionaldryfriction,”inVehiclesystemdynamics,Lingby,Denmark,2003,vol.37,pp.565–578.

[27] KaiserA.B.,CusumanoJ.P.andGardnerJ.F.,ModelingandDynamicsofFrictionWedgeDampersinRailroadFreightTrucks,VehicleSystemDynamics,vol.38,no.1,pp.55–82,2002.

[28] BossoN.,GugliottaA.andSomaA.,Multibodysimulationofafreightbogiewithfrictiondampers,inRailroadConference,2002ASME/IEEEJoint,2002,pp.47–56.

[29] PiotrowskiJ.,ModeloftheUIClinksuspensionforfreightwagons,ArchiveofAppliedMechanics,vol.73,no.7,pp.517–532,Dec.2003.

[30] PiotrowskiJ.,Smoothingdryfrictiondampingbydithergeneratedinrollingcontactofwheelandrailanditsinfluenceonridedynamicsoffreightwagons,NVSD,vol.48,no.6,pp.675–703,Jun.2010.

[31] TanX.andRogersR.J.,Equivalentviscousdampingmodelsofcoulombfrictioninmulti‐degree‐of‐freedomvibrationsystems,JournalofSoundandVibration,vol.185,no.1,pp.33–50,Aug.1995.

[32] XiaF.,Modellingofatwo‐dimensionalCoulombfrictionoscillator,JournalofSoundandVibration,vol.265,no.5,pp.1063–1074,Aug.2003.

[33] PiotrowskiJ.,Asubstitutemodeloftwo‐dimensionaldryfrictionexposedtodithergeneratedbyrollingcontactofwheelandrail,VehicleSystemDynamics,vol.50,no.10,pp.1495–1514,2012.

[34] TrueH.andAsmundR..ThedynamicsofarailwayfreightwagonwheelsetwithdryfrictiondampingVehicleSystemDynamics44supplement2006pp853‐861

[35] ORE,Flexibilityoftrapezoidalsprings,”Utrecht,25,1986.

[36] ORE,Parabolicspringsforwagons(design,calculation,treatment),”Utrecht,43,1988.

[37] ORE,ImprovementoftherunningstabilityofexistingRIVwagonsrequiredtorununderanyloadingconditionsatspeedsof80km/h,”Utrecht,2,1967.

[38] JolyM.R.,ORE:Etudedelastabilitétransversaled’unvéhiculeferroviaireàdeuxessieux,”Utrecht,1974.

[39] AyasseJ.B.,Computersimulationoffreightvehicleswithleafsprings;acomparisonbetweendifferentpackages,INRETS,TechnicalreportINRETS/RE‐01‐046‐FR,2001.

Page 45: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

[40] JönssonP.‐A.,Modellingandlaboratoryinvestigationsonfreightwagonlinksuspensionswithrespecttovehicle‐trackdynamicinteraction,LicenciateThesis,KTH,Stockholm,2004.

[41] JönssonP.‐A.,AnderssonE.andStichelS.,“Experimentalandtheoreticalanalysisoffreightwagonlinksuspension,”ProceedingsoftheInstitutionofMechanicalEngineers,PartF:JournalofRailandRapidTransit,vol.220,no.4,pp.361–372,Jan.2006.

[42] JönssonP.‐A.,AnderssonE.andStichelS,“Influenceoflinksuspensioncharacteristicsvariationontwo‐axlefreightwagondynamics,”NVSD,vol.44,no.1,pp.415–423,2006.

[43] JönssonP.‐A.,StichelS.,andPerssonI.,NewsimulationmodelforfreightwagonswithUIClinksuspension,VSD,vol.46,no.Suppl.1,pp.695–704,2008.

[44] HoffmannM.,DynamicsofEuropeantwo–axlefreightwagons,Ph.D.Thesis,TechnicalUniversityofDenmark,KongensLyngby,Denmark,2006.

[45] StiepelM.andZeipelS.,Freightwagonrunninggearswithleafspringandringsuspension,presentedattheSIMPACKusergroupmeeting,2004.

[46] CebonD.,SimulationoftheResponseofLeafSpringstoBroadBandRandomExcitation,VehicleSystemDynamics,vol.15,no.6,pp.375–390,1986.

[47] FancherP.S.,ErvinR.D.,MacadamC.C.andWinklerC.B,MeasurementandRepresentationoftheMechanicalPropertiesofTruckLeafSprings,SAEInternational,Warrendale,PA,SAETechnicalPaper800905,Aug.1980.

[48] PiotrowskiJ.,OnApplicationoftheRollingContactTheoryforModellingoftheUICLinkSuspensionforFreightWagons,ZeszytyNaukoweInstytutuPojazdów,vol.3,no.50,pp.5–14,2003.

[49] MateiJ.,Anewmathematicalmodelofthebehaviourofafour‐axlefreightwagonwithUICsingle‐linksuspension.ProceedingsoftheInstitutionofMechanicalEngineers,PartF:JournalofRailandRapidTransit,2011225:637,DOI:10.1177/0954409711398173.

[50] VershinskyS.V.,V.N.DanilovV.N.andChelnokovI.I.,Wagondynamics.Мoscow,Transport,1972,304p.(inRussian)

[51] BallewB.,ChanB.J.andSanduC.MultibodydynamicsmodellingofthefreighttrainbogiesystemVehicleSystemDynamics49(4)2011pp501‐526

[52] KlauserP.E.,Modellingfrictionwedges,PartII:Animprovedmodel.ProceedingsofIMECE042004ASMEInternationalMechanicalEngineeringCongress&Exposition,November13‐20,Anaheim(CA):AmericanSocietyofMechanicalEngineering,2004.

[53] KovalevR.,LysikovN.,MikheevG.,PogorelovD.,SimonovV.,YazykovV.,ZakharovS.,ZharovI.,GoryachevaI.,SoshenkovS.,TorskayaE.Freightcarmodelsandtheircomputer‐aideddynamicanalysis.MultibodySystemDynamics,Volume22,Number4,2009,pp.399–423

[54] PogorelovD.,OnCalculationofJacobianMatricesinSimulationofMultibodySystems.InSchiehlenandValasek(eds.)PreprintsoftheNATOAdvancedStudyInstituteonVirtualNonlinearMultibodySystems,CzechTechnicalUniversityinPrague,Prague,2002,pp.159‐164

Page 46: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

[55] McKisicA.D.,UshkalovV.F.andZhechevM.,Possibilityofjammingandwedginginthethree‐piecetrucksofamovingfreightcar.VehicleSystemDynamics,Vol.45,No.1,pp.61‐67,2007.

[56] CusumanoJ.P.andGardnerJ.F.Dynamicmodelsoffrictionwedgedampers.Proceedingsofthe1997IEEE/ASMEJointRailConference,March18‐20,Boston,MA

[57] McClanachan,M.,Handoko,Y.,Dhanasekar,M.,Skerman,D.,Davey,J.ModellingFreightWagonDynamics.VehicleSystemDynamicsSupplement41(2004),p.438‐447

[58] KaiserA.B.,CusumanoJ.P.andGardnerJ.F..ModelinganddynamicsoffrictionwedgedampersinrailroadfreighttrucksVehicleSystemDynamics38(1)2002pp55‐82

[59] Kaas‐PetersenCH(1986)Chaosinarailwaybogie.ActaMechanica61:89–107.

[60] PolachO..Onnon‐linearmethodsofbogiestabilityassessmentusingcomputersimulations.ProceedingsoftheInstitutionofMechanicalEngineers,PartF:JournalofRailandRapidTransit,2006,220,pp.13‐27.

[61] StichelS.,“Limitcyclebehaviourandchaoticmotionsoftwo‐axlefreightwagonswithfrictiondamping,”MultibodySystemDynamics,vol.8,no.3,pp.243–255,2002.

[62] HoffmannM.&TrueH.,Dynamicsoftwo‐axlerailwayfreightwagonswithUICstandardsuspension,VehicleSystemDynamics:InternationalJournalofVehicleMechanicsandMobility,44:sup1,139‐146,DOI:10.1080/00423110600869594.2006.

[63] DiGialleonardoE.,BruniS.&TrueH.,Analysisofthenonlineardynamicsofa2–axlefreightwagonincurves,VehicleSystemDynamics:InternationalJournalofVehicleMechanicsandMobility,52:1,125‐141,DOI:10.1080/00423114.2013.863363.2014.

[64] ZhaiW.M.andWangK.Y.,Lateralhuntingstabilityofrailwayvehiclesrunningonelastictrackstructures,JournalofComputationalandNonlinearDynamics,ASME,2010,5(4),pp.041009‐1‐9.

[65] BerghuvudA.,Freightcarcurvingperformanceinbrakedconditions.ProceedingsoftheInstitutionofMechanicalEngineers,PartF:JournalofRailandRapidTransit2002216:23.DOI:10.1243/0954409021531656.

[66] Hecht;M.;KeudelJ.;VerbesserteEnergieeffizienzdurchradialeinstellendesFahrwerk,Eisenbahningenieur05/2006,p.42‐47

[67] FröhlingR.D.Wheel/railinterfacemanagementinheavyhaulrailwayoperations—applyingscienceandtechnology,VehicleSystemDynamics:InternationalJournalofVehicleMechanicsandMobility,45:7‐8,649‐677,DOI:10.1080/00423110701413797,2007.

[68] FergussonS.N.,FröhlingR.D.andKlopperH.(2008)Minimisingwheelwearbyoptimisingtheprimarysuspensionstiffnessandcentreplatefrictionofself‐steeringbogies,VehicleSystemDynamics:InternationalJournalofVehicleMechanicsandMobility,46:S1,457‐468,DOI:10.1080/00423110801993094.

[69] CasanuevaC.,DoulgerakisE.,JönssonP.‐A.andStichelS.,Influenceofswitchesandcrossingsonwheelprofileevolutioninfreightvehicles.VehicleSystem

Page 47: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

Dynamics:InternationalJournalofVehicleMechanicsandMobility,52:sup1,317‐337,DOI:10.1080/00423114.2014.898779.

[70] TunnaJ.andUrbanC.,Aparametricstudyoftheeffectsoffreightvehiclesonrollingcontactfatigueofrail.ProceedingsoftheInstitutionofMechanicalEngineers,PartF:JournalofRailandRapidTransit2009223:141,DOI:10.1243/09544097JRRT228.

[71] BurstowM.,WholeliferailmodelapplicationanddevelopmentforRSSB–developmentofanRCFdamageparameter.AEATR‐ES‐2003‐832,Issue1,RailSafety&StandardsBoard,London,UK,October2003,availablefromhttp://www.rssb.co.uk.

[72] HosseinNiaS.,JönssonP.‐A.andStichelS..WheeldamageontheSwedishironorelineinvestigatedviamultibodysimulation.ProceedingsoftheInstitutionofMechanicalEngineers,PartF:JournalofRailandRapidTransit2014228:652.DOI:10.1177/0954409714523264.

[73] DukkipatiR.V.andDongR.,Thedynamiceffectsofconventionalfreightcarrunningoveradippedjoint.VehicleSystemDynamics31(1999)pp95‐111

[74] RenL.H.,ShenG.andHuY.S..AtestrigformeasuringthreepiecebogiedynamicparametersappliedtofreightcarapplicationVehicleSystemDynamics44supplement2006pp853‐861

[75] WickensA.H.Thedynamicsofrailwayvehiclesonstraighttrack–fundamentalconsiderationsoflateralstabilityProceedingsoftheInstitutionofMechanicalEngineersPart3F1965‐66vol29

[76] WickensA.H.,GilchristA.O.andHobbsA.E.W.,Suspensiondesignforhighperformancetwo‐axlefreightvehiclesProceedingsoftheInstitutionofMechanicalEngineersPart3D1969‐70vol184pp22‐36

[77] WebberH.B.,Trackingtruck,US339466230‐Jul‐1968.

[78] GreenbrierEurope,WagonySwidnicaS.A.,“Ukladzawieszeniapojazdukolejowego,zwlaszczadwuosiowegowagonutowarowego,”PL207920B1B61F5/30(2006.01).

[79] EtwellM.‘AdvancesinRailWagonDesign’ProceedingsoftheInstitutionofMechanicalEngineers,PartF:JournalofRailandRapidTransitJanuary1990vol.204no.145‐54

[80] AssociationofAmericanRailroads.Manualofstandardsandrecommendedpractices.SectionC–partII.Design,fabrication,andconstructionoffreightcars.M‐1001.Chapter11:Serviceworthinesstestsandanalysesfornewfreightcars.2007,374p.

[81] AssociationofAmericanRailroads.Manualofstandardsandrecommendedpractices.SectionD.TrucksandtruckdetailsSpecificationM‐976Truckperformanceforrailcars.Adopted2002,revised2009.

[82] OrlovaA.,RudakovaE.Comparisonofdifferenttypesoffrictionwedgesuspensionsinfreightwagons.Proceedingsofthe8‐thInternationalConferenceonRailwayBogiesandRunningGears.Budapest:BUTE,2010.–P.41‐50.

[83] BoronenkoYu.P.,OrlovaA.M.Influenceofbogietocarbodyconnectionparametersonstabilityandcurvingoffreightvehicle//Extendedabstracts6th

Page 48: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

internationalconferenceRailwaybogiesandrunninggears.Budapest:BUTE.September2004.–P.23‐25

[84] ScheffelH.,SmitP.H.,ShearStiffnerLinkagesforRadialBogies.SupplementtoVehicleSystemDynamics,27,1997

[85] BoronenkoYu.P.Theinfluenceofinter‐axlelinkagesonstabilityandguidanceoffreightbogies/OrlovaA.M.,RudakovaE.A.//Proceedingsofthe8‐thminiconferenceonvehiclesystemdynamics,identificationandanomalies.Budapest:BUTE,2002.‐P.175‐182

[86] PiotrowskiJ.,PazdzierniakP.andAdamczewskiT.,‘SuspensionoffreightwagonbogiewiththeLenoirfrictiondamperensuringlowwearofwheelsandgoodlateraldynamicsofthewagon’,Proc.ofXVIIIconference‘PojazdySzynow’Vol.I,pp.199‐211,2008

[87] RC25NT

[88] Hecht,M.;Wearandenergy‐savingfreightbogiedesignswithrubberprimarysprings:principlesandexperiences,JRRT227IMechE2009,p.105‐110

[89] Hecht,M.;InnovativeFreightWagons‐APreconditiontoincreasetheMarket‐ShareofRailFreight;ArchivesofTransport,Vol.29,Warsaw,2014,PolishAcademyofSciences,committeeofTransport,p.17‐26

[90] ScheffelH.Anewdesignapproachforrailwayvehiclesuspension;RailInternational.–1974.‐‐№10.‐P.638‐651.

[91] KikW.,ScholdanD.,StephanidesJ;‘ProjectINFRA‐RADIAL–bogiesforaxleloadsof25t–testandsimulation’;XXICenturyRollingStock:Ideas,Requirements,ProjectsConference,St.Petersburg,2007.

[92] QiZ.,HuangZ.andKongX.,SimulationoflongitudinaldynamicsoflongfreighttrainsinpositioningoperationsVehicleSystemDynamics50(9)2012pp1409‐1433

[93] BelforteP.,CeliF.,DianaG.andMelziS.NumericalandexperimentalapproachfortheevaluationofseverelongitudinaldynamicsofheavyfreighttrainsVehicleSystemDynamics46(Supplement)2008pp937‐955

[94] ColeC.‘Longitudinaltraindynamics’inHandbookofRailwayVehicleDynamics,IwnickiedTaylorandFrancis1999

[95] McClanachanM.,ColeC.,RoachD.andScownB.‘Aninvestigationoftheeffectofbogieandwagonpitchassociatedwithlongitudinaltraindynamics’.ThedynamicsofvehiclesonroadsandontracksVehicleSystemDynamicsSupplementSwets&ZeitlingerAmsterdampp374‐3851999

[96] El‐SibaieM.‘Recentadvancementsinbluffanddrafttestingtechniques’,FifthInternationalHeavyHaulConference,Beijing,1993

[97] Koenig,R;Hecht,M.etal.;WhitePaperInnovativeRailFreightWagon2030,TUDresdenTUBerlin2012;http://www.schienenfzg.tu‐Berlin.de/fileadmin/fg62/Dokumente/Downloads/White_Paper_Innovative_Rail_Freight_Wagon_2030.pdf

[98] H.True,“OntheTheoryofNonlinearDynamicsanditsApplicationsinVehicleSystemsDynamics,”VehicleSystemDynamics,vol.31,no.5–6,pp.393–421,1999.

Page 49: DYNAMICS OF RAILWAY FREIGHT VEHICLESeprints.hud.ac.uk/id/eprint/24585/1/Freight_Vehicle_Dynamics.pdfbogie type 931 (figure 4), developed in the 1950s by Deutsche Bahn with a wheelbase

[99] P.Wang,L.Gao.Numericalsimulationofwheelwearevolutionforheavyhaulrailway.J.Cent.SouthUniv.(2015)22:196‐207,DOI:10.1007/s11771‐015‐2510‐1.