Author
myra
View
39
Download
0
Embed Size (px)
DESCRIPTION
Dynamics of Multi-Phase Interstellar Medium. Thanks to Hiroshi Koyama (Univ. Maryland) Tsuyoshi Inoue (Kyoto Univ.) Patrick Hennebelle (Paris Obs. & ENS) Masahiro Nagashima (Nagasaki Univ.) Keywords: radiative cooling/heating, thermal instability, MHD, ambipolar diffusion, etc. - PowerPoint PPT Presentation
Dynamics of Multi-Phase Interstellar Medium
Shu-ichiro Inutsuka (Nagoya Univ)
Thanks to Hiroshi Koyama (Univ. Maryland)Tsuyoshi Inoue (Kyoto Univ.)Patrick Hennebelle (Paris Obs. & ENS)Masahiro Nagashima (Nagasaki Univ.)
Keywords:radiative cooling/heating, thermal instability,MHD, ambipolar diffusion, etc.
Polarization Map of Synchrotron Rad
Depolarized region looks likeCanal!
No good theory yet!
n vs Height from Galactic Midplane
Ferrière 2001, Rev.Mod.Phys. 73, 1031H2 gas
ionized gas
HI gas
average number density n cm-3
Vertical (Quasi-)Hydrostatic Equilibrium?
PCR > Pmag > Pgas Parker Instability?
Pgas
Ferrière 2001, Rev.Mod.Phys. 73, 1031
Various Components (Radial)
NGC6946
MRI does not explain this!
equipartition assumed
M51 Synchrotron
Polarization(Fletcher & Beck 2005)
Dynamical Timescale of ISM
Dynamical Three Phase Medium– McKee & Ostriker 1977
SN Explosion Rate in Galaxy… 1/(100yr) Expansion Time…1Myr Expansion Radius… 100pc
( 10-2 yr-1 )( 106 yr )( 100pc ) 3 = 1010 pc3 VGal.Disk
Dynamical Timescale of ISM 1Myr
« Timescale of Galactic Density Wave 100Myr
(10kpc)2
100pc
CGPS data in W5 HII region
21cm continuum (HII gas) Tb=5K (bright) → 12.5K (dark)
Image : 60m dust emissionContour : 12CO(1-0) @ vLSR=-39.8 km/s
Ionized gas is surrounded with the dust shell. Distribution of CO molecules show poor correlation with the dust shell.
CGPS data in W5 HII regionHI 21cm emission @ vLSR=-39.8 km/s
: Tb=45K (bright) → 110K (dark)
Shell-like HI Self-Absorption feature is found around W5. HISA feature overlaps with the dust shell.
Hosokawa & SI 2007, ApJ 664, 363
See also recent Planck paper (arXiv1101.2029) on “Dark Gas”
contour : 60μm dust emission
Radiative Equilibrium
WNM(Warm Medium)
CNM(Cold Medium)
Solid: NH=1019cm-2, Dashed: 1020cm-2
Radiative Cooling & HeatingSolid: Cooling, Dashed: Heating
Koyama & Inutsuka (2000) ApJ 532, 980 , based on Wolfire et al. 1995
grains
2D Evolution from Unstable Equilibrium
Periodic Box Evolution without Shock Driving
With Cooling/Heating and Thermal Conduction
Without Physical Viscosity Pr = 0
1D Shock Propagation into WNM
Density-Pressure Diagram
Density-Temperature Diagram– through unstable region
unstable
Koyama & SI 2000, ApJ 532, 980
See also Hennebelle & Pérault 1999
20 p
c104*104 pixels
10,0002
Hennebelle & Audit 07
Audit & Hennebelle 20073D simulations12003
Heitsch et al. 40962
2D
Property of "Turbulence"
v < CS,WNM Kolmogorov-like SpectrumHennebelle & Audit 2007
Property of "Turbulence"
v < CS,WNM Kolmogorov-like
Spectrum
Hennebelle & Audit 2007
Armstrong, Rickett, & Spangler 1995
Evaporation of Spherical CNM in WNM
Smaller CNM cloud evaporates:R~0.01pc clouds evaporate in ~Myr
condensationevaporation
Analytic Formula
Nagashima, Koyama, Inutsuka & 2005, MNRAS 361, L25Nagashima, Inutsuka, & Koyama 2006, ApJL 652, L41
Evaporation Timescale
Size of CNM cloud
CNM
WNM
Rc
Evaporation of Spherical CNM in WNM
If the ambient pressure is larger, the critical size of the stable cloud is smaller.
"Tiny Scale Atomic Structure"? Braun & Kanekar 2005
Nagashima, Inutsuka, & Koyama 2006, ApJL 652, L41
Ambient Pressure
Critical
Radius
CNM
WNM
Rc
Summary• Shock waves in ISM create
Turbulent CNM embedded in WNM.• In Turbulent Multi-Phase ISM
– Thermal Instability, Magnetic Field, Ambipolar Diffusion, etc.
What nextTurbulent Diffusion of Magnetic FieldParticle AccelerationOverall Modeling of Gaseous Galactic Halo
Good Information from CMB observations