dùng thực vật trong làm sạch nước thải 2

Embed Size (px)

Citation preview

  • 8/16/2019 dùng thực vật trong làm sạch nước thải 2

    1/12

    Temperature 

    inuence  on   nitrogen  removal in  a  hybrid constructedwetland

     

    system 

    in 

    Northern 

    Italy

    Anna Mietto, Marco Politeo, Simone Breschigliaro, Maurizio Borin *

    Department of Agronomy, Food, Natural Resources, Animals and Environment –DAFNAE, Agripolis, University of Padova, Viale Dell’ Università 16,   35020

    Legnaro,  Padova, Italy

    A  R   T  I  C  L   E  I   N   F   O

     Article  history:

    Received   7  March  2014Received   in  revised  form  16  September 2014

    Accepted  9  November  2014

    Available 

    online 

    xxx

    Keywords:

    Vertical  ow  (VF)

    Horizontal  ow  (HF)

    Temperature

    VF  operation  mode

    Phragmites  australis

    Canna  indica

    A  B  S  T  R   A  C  T

    The objective of this research was to investigate the ef ciency and seasonal performance of a full-scale

    hybrid constructed wetland system (HCW) in reducing total nitrogen (TN), ammonia nitrogen (NH4-N)and nitrate nitrogen (NO3-N). HCWwith a total areaof about 130m

    2 and hydraulic load of 2m3/day was

    composed of three subsurface ow vertical systems (VF), working in parallel and one horizontal (HF)

    connected in series. The system was loaded daily with synthetic wastewater having an average

    concentration of TNof 250mg/L (about125mg/L of NH4-Nand125mg/L ofNO3-N). Watersamples were

    collected and analyzed from May to July 2011 and from January 2012 to July 2012. Variations were

    observed in nutrient removal performance related to temperature.

    During thewhole monitoringperiodmedian reduction ef ciency (RE)in the HCWwas TN95%, NH4-N

    95% and NO3-N 93%, although three sub-periods characterized by different performances have been

    observed.Duringthe rstperiod (fromMayto July 2011) theRE waspositive for the three nitrogen forms

    considered, whereas from January to the end of March 2012 the RE was lower, particularly for TN and

    NO3-N. From April 2012, when the temperature rose above 14.8C, there was an increase in the

    performance that reached the 2011 values.

    Internal production of NO3-N was observed, mainly in the VF systems between January and March

    2012. The median removals ofmass pollutants per m2 of HCW per day were TN3.1g/m2/d, NH4-N 1.5g/

    m2

    /d, NO3-N 1.5g/m2

    /d. Segmented regression analysis identied a breakpoint at 14.2

    C forwastewatertemperature thatcaused variationsin TNand NO3-N concentrationreductionperformances.According to

    this approach the abatementwasalways positivelycorrelatedwith temperature, butdifferent regression

    slopes were obtained below and above the breakpoint. In particular, with lower 

    temperature the

    abatementof NO3-N and TN increased by 1.7 and2.0%per C of temperature increase;with temperature

    higher than 14.2C the increase in abatement due to increased temperaturewas sharper, especially for

    NO3-N.

    ã  2014 Elsevier B.V. All rights reserved.

    1. Introduction

    Wetland  technology   emerged  in  the  1950s  and  the  use  of 

    controlled   wetland  environments   for  wastewater  treatment  hassince  been  developed.  The  major  nitrogen   removal   mechanism   is

    achieved   by  biological  processes  that  convert  the  organic  and

    ammonia   nitrogen   to  nitrate   in  an  aerobic  environment   (nitrica-

    tion)  and  then  reduce  the  nitrate   to  nitrogen   gas  in  an  anoxic

    environment   (denitrication)   (Leverenz   et  al.,  2010). Volatiliza-

    tion,  absorption  and  plant  uptake  play  a  much   less  important  role

    in  CWs  (Kadlec  and  Wallace,   2009).  The  use  of   vertical-subsurface

    ow  constructed  wetland  (VF)  systems  became   very   popular  in

    Europe   in  the  1990s  compared   to  the  horizontal   system  (HF)  due  to

    their  enhanced   ability  to  oxidize  ammonia  nitrogen   (Stefanakisand  Tsihrintzis,   2012).  Single-stage  CWs cannot  achieve   high

    removal  of   total  nitrogen   because  of   their  inability  to  provide   both

    aerobic  and  anaerobic  conditions   at  the  same  time.

    The  design  of   hybrid  constructed  wetland   systems   (HCW)

    (combination   of   vertical  and  horizontal   ow  systems)  has  been

    proposed  to  exploit  the  anoxic   areas  within   the  horizontal   bed  for

    denitrication  (Cooper  et  al.,  1999;  Kadlec  and  Wallace,   2009;

    Molle  et  al.,  2008).  HCW  systems  have  been  used  to  treat  domestic

    or municipal  sewage   (Brix et  al., 2003; Canga  et  al., 2011),  and more

    recently   for  many  other  types  of   wastewater  including  agro-*  Corresponding  author.   Tel.:  +39  0498272838;  fax:  +39  0498272839.

    E-mail  address:  [email protected]  (M. Borin).

    http://dx.doi.org/10.1016/j.ecoleng.2014.11.027

    0925-8574/ã  2014  Elsevier  B.V.   All  rights  reserved.

    Ecological  Engineering  75  (2015)  291–302

    Contents 

    lists 

    available 

    at 

    ScienceDirect

    Ecological 

    Engineering

    journal   homepage:  www.else vie r .com/locate/e  coleng

    mailto:[email protected]:[email protected]://dx.doi.org/10.1016/j.ecoleng.2014.11.027http://dx.doi.org/10.1016/j.ecoleng.2014.11.027http://dx.doi.org/10.1016/j.ecoleng.2014.11.027http://dx.doi.org/10.1016/j.ecoleng.2014.11.027http://dx.doi.org/10.1016/j.ecoleng.2014.11.027http://dx.doi.org/10.1016/j.ecoleng.2014.11.027http://dx.doi.org/10.1016/j.ecoleng.2014.11.027http://dx.doi.org/10.1016/j.ecoleng.2014.11.027http://dx.doi.org/10.1016/j.ecoleng.2014.11.027http://dx.doi.org/10.1016/j.ecoleng.2014.11.027http://dx.doi.org/10.1016/j.ecoleng.2014.11.027http://dx.doi.org/10.1016/j.ecoleng.2014.11.027http://www.sciencedirect.com/science/journal/09258574http://www.elsevier.com/locate/ecolenghttp://www.elsevier.com/locate/ecolenghttp://www.elsevier.com/locate/ecolenghttp://www.elsevier.com/locate/ecolenghttp://www.elsevier.com/locate/ecolenghttp://www.elsevier.com/locate/ecolenghttp://www.elsevier.com/locate/ecolenghttp://www.elsevier.com/locate/ecolenghttp://www.sciencedirect.com/science/journal/09258574http://dx.doi.org/10.1016/j.ecoleng.2014.11.027http://dx.doi.org/10.1016/j.ecoleng.2014.11.027mailto:[email protected]://crossmark.dyndns.org/dialog/?doi=10.1016/j.ecoleng.2014.11.027&domain=pdf

  • 8/16/2019 dùng thực vật trong làm sạch nước thải 2

    2/12

    industrial  (Comino   et  al.,  2011),  agricultural  (Borin  et  al.,  2013;

    Hunt  and  Poach,   2001;  Kantawanichkul   et  al.,  2003) and  landll

    leachate   (Mæhlum  et  al.,  1999).

    As reported  in  several  previous  studies  (Akratos   and  Tsihrintzis,

    2007;  Kadlec  and  Wallace,   2009;  Kotti   et  al.,  2010;  Kuschk   et  al.,

    2003;  Vymazal, 1999)   temperature  is  one  of   the  principal  variables

    that  mainly   inuences  biological   activity  and  so  the  seasonal

    performances  of   constructed  wetlands.  Hill  and  Payton   (1998)

    reported  that   the  ef ciency   of   treatment  in  a  constructed  wetland

    decreases  at  low  temperature  primarily  due  to  reduced  biotic

    activity.  Kadlec  and  Reddy  (2001)   studied  the  temperature

    dependence   in  surface  ow  wetlands   on  removal  of   contaminants.

    They  concluded  that  the  performance  of   wetlands   in  treating

    wastewater   is  seasonally cyclic   and  the biotic  reactions  are  reduced

    at  temperatures  lower  than   the  optimal  range  (20  to  35 C).  Kadlec

    (2006)  pointed  out  three  reasons  for  the  importance  of   water

    temperature   in  treatment  wetlands:   (1)  temperature  modies the

    rates   of   several  key  biological  processes,  (2)  temperature   is

    sometimes  a  regulated  water  quality  parameter,   and  (3)  water

    temperature   is  a  prime  determinant  of   evaporative   water  loss

    processes.  Several  biogeochemical  processes  that  regulate   the

    removal  of   nutrients  in  wetlands   are  affected  by  temperature,  thus

    inuencing  the  overall   treatment   ef ciency   (Kadlec  and  Reddy,

    2001).The  goals  of   this   study  are  (1)  to  investigate   the  ef ciency   of   a

    full-scale  hybrid  constructed  wetland  system  (HCW)  in  reducing

    total  nitrogen   (TN),  ammonia  nitrogen   (NH4-N)  and  nitrate

    nitrogen   (NO3-N);   (2)  study  the  effects  of   temperature  on  nitrogen

    forms  abatement;   (3)  conrm  or  identify  a  wastewater  tempera-

    ture  breakpoint  that  causes  variation   in  nutrient  removal   perform-

    ances;   (4)  study  the  effects  on  vertical   ow  cells  performance  in

    relation  to  different  vegetation,   medium  and  operational  mode.

    2. 

    Materials 

    and 

    methods

     2.1. Hybrid  constructed  wetland  con  guration  and  characteristics

    The  HCW  was  located  at  a  private   pig  farm  in  Carmignano   diBrenta,  Padova,  in  Veneto  Region,   NE  Italy,  (E:  11419.58  ; N:

    453745.16;  46 m  a.s.l).

    It  was  built  in  2008  and  designed  to  provide   tertiary  treatment

    of   2 m3/d  of   pre-treated  liquid   fraction   of   pig  slurry  ef uent.  The

    design  guidelines  provided   by  APAT  were  based  on  municipal

    wastewater   treatment  wetlands   (APAT,  2005).

    The HCW  system  is  composed  of   three  vertical-subsurface  ow

    wetlands   (VF1–VF2–VF3) in  parallel  with   a  total  area  of   21 m2,

    followed   by  one  horizontal-subsurface  ow  wetland   (HF)  con-

    nected   in  series  (105 m2)  (Fig.  1).

    The  entire  system  was  designed  for  a  hydraulic   retention  time

    (HRT)  of   7  days  as  minimum.   Each   VF  unit   was  built  in  concrete

    (length:   10 m;  width:   1 m;  depth:   0.7 m).  Three  different  plastic

    sheet  liners  were   placed  inside  each   cell  to  prevent   leakage  and

    contact   of   wastewater   with   groundwater.  The  layers   from  bottom

    to  top  were:   nonwoven  geotextile   sheet  with   a  basic  weight   of 

    400–800 g/m2 and  thickness  1 mm;  interlayer   EPDM   geo-mem-

    brane;   nonwoven  geotextile   sheet  with  a  basic  weight   of   400–

    800 g/m2 and  thickness  1 mm.  The  rst  two  cells  were  lled  with

    washed   gravel:  grain   size  10–20mm  (d10= 8.5 mm;  d60= 9.7 mm)

    with   porosity of   40%.   The  rst  one  (VF1)  was  vegetated  with   Canna

    indica  L.,  the  second  (VF2)  with   Phragmites  australis  (Cav.)  Trin.  Ex

    Steud  (common   reed).  The  third  (VF3),  planted   as  VF2  cell,  was

    lled  with   a  0.10m  deep  gravel  layer   (grain   size  10–20 mm)

    overlying   a  0.10m   deep  coarse  sand   (grain  size  3–5mm)  and

    zeolite  (grain   size  5–10 mm)  transition  layer  and  a  0.30  m  deep

    gravel  drainage   layer   (10–20 mm  in  size).  The  main  components   of 

    the  zeolite were:  chabasite 60%,  K-feldspar  13%, phillipsite 5%, mica

    5%  and  augite  2%.  The  synthetic  wastewater  was  distributed  evenly

    over  the  surface  of   the  VF  beds   by  a  pressurized  PVC  distributionpipe  75 mm  in  diameter  that   ran  along   the  VF  wetland  units.  Three

    lters  with   interchangeable   cartridges  were  placed  in  series  at  the

    inlet  of   VF  system.  The  lters  were  used  to  remove   particles  larger

    than   1 mm  from  the  feeding  tank   ef uent,  and  were  installed  to

    minimize   the  accumulation  of   solids  in  the  inuent  distribution

    pipe.  At  the  inlet  of   each  VF  wetland  units  a  water  meter  with   ve

    digit  mechanical   counter  was  attached   at  the  distribution  pipe  to

    measure  the  incoming   wastewater  quantity   delivered  to  each  cell.

    A  drainage   pipe  (diameter  75 mm  and  length   10 m)  was  located  on

    the  bottom   of   each  VF  cell  in  order  to  facilitate  ef uent  collection.

    The  drainage   pipe  was  connected   on  one  side  to  a  100 mm

    diameter  collection  pipe  that  discharged  the  ef uent   from  the  bed

    to  a  manhole   that  had  a  water  level  control  structure  equipped

    with   a  siphon  pipe  where   a  timer-controlled   pump  was  placed(Fig.  2).

    The  siphon  maintained  water  level  at  0.30  m  from  the  surface  in

    each   VF  cell.  A  200 watt  power  submersible  pump  installed  in  the

    same   manhole   was  used  to  drain  the  porous  media  and  transport

    the  leachate   to  separate  sumps  (OUT  VF1,  OUT  VF2,  OUT  VF3).  The

    wastewater  discharged   from  each  VF  sump  was  collected  in  a

    Fig.   1.  HCW  system   dimensions  in  overhead   view.   Sampling  points:  (1)  inuent,  (2)  VF1  ef uent,  (3)  VF2  ef uent,  (4)  VF3  ef uent,  (5)  inuent  to  HF,  (6)  HF  ef uent  (nal

    ef uent).

    292   A.  Mietto  et   al.  /   Ecological  Engineering   75  (2015)   291– 302

  • 8/16/2019 dùng thực vật trong làm sạch nước thải 2

    3/12

    common   sump  (OUT  VF)  (length:   1.2 m;  width:   0.8 m;  depth:

    0.66 m).  The  VF  ef uent  was  then  transferred  with  a  submersible

    sump  pump   with  an  integrated   oat  switch   to  the  horizontal

    subsurface  ow  wetland.   A  water  meter  with  vedigit  mechanical

    counter  attached  to  the  submersible  pump  outlet  measured  the  HF

    incoming   wastewater  volume.

    The  horizontal-subsurface  ow  wetland   (HF)  was  a  basin  25 m

    long,   4 m  wide   and  depth  0.7 m  with   a  bottom  slope  of   1%.  The

    bottom  and  sides  of   the  basin  were   waterproofed   with   the  same

    plastic  sheets  used  for  VF  cells.  The  inlet  and  the  outlet  sections

    were  lled  using  two strips  of   coarse-rock  material  (grain   size  50–

    100 mm)  along  two  opposite  edges  of   the  basin,  with   washed

    gravel:   grain  size  10–20mm  (d10= 8.5 mm;  d60= 9.7 mm)  with

    porosity 

    of  

    40% 

    placed 

    in 

    the 

    central 

    area. 

    At 

    the 

    HF 

    inlet 

    adistributor  pipe  was  buried  immediately   below  the  surface

    (diameter  100 mm),  placed  horizontally   and  perpendicular  to

    the  direction  of   ow.  At  the  outlet,  a  similar  collector  pipe  was

    buried  at  the  bottom.   The  HF  ef uent  volumes  were   measured  by  a

    water  meter,  collected  in  an  interred   tank   and  recycled   for  cleaning

    the  piggery.  The  wetland   was  planted  in  April  2008  with

    Phragmites  australis  (Cav.)  Trin.  Ex  Steud.   (common   reed).

     2.2. 

    System 

    mode 

    operation

    From  May  2011   the  HCW  system   was  loaded  daily  with

    synthetic  wastewater.  The  wastewater  was  prepared  daily  in  the

    feeding  tanks   just  before  the  feeding  by  dissolving  ammonium

    nitrate   fertilizer  26%  N  (13%  nitrate   and  13%  ammonia)   in  1.7 m3 of 

    fresh  water.   The  average  concentration   was  250.3  (3.7) mg/L   of 

    TN,  124.5  (2.5) mg/L   of   NO3-N  and  124.9  (3.2)  mg/L   of   NH4-N.

    The  feeding  tank   (pump  chamber)   consisted  of   a  5 m   0.7 m

    concrete   tank   0.7 m  deep,  with   a  submersible  water   pump  inside

    used  to  load  the  wastewater  to  each  VF  unit.  The  pump  was

    controlled   by  two  programmable   timers  in  series.  One  timer

    dictated   the  time   of   loading  cycles   and  was  set  to  work  once   per

    day,  with   one  loading  cycle  in  the  morning   from  10  am  to  12  am.

    The  other   timer  dictated  the  loading  time  per  cycle  (one   minute)

    and  the  time  between  pumping  events   within   each  loading  cycle

    (every   4 min).   Daily  wastewater  ow  rate   of   1.7m3 was  evenly

    distributed  to  all  three   VF  cells  with   average  ow  rate   of   565 L/day

    per  cell.

    Two  programmable   timers  in  series  controlled   the  submersible

    water  pump   placed  inside  the  water  level  control   structure  of   each

    VF.  The  rst  timer  dictated   the  time  of   discharging  cycles   and  was

    set  to  work  once   per  day,   the  other  timer  dictated  the  discharging

    time   per  cycle  (one   minute)  and  the  time   between pumping  events

    within   each  discharging  cycle  (every  4 min).

    To  provide   suf cient  oxygen  transfer  for  nitrication,  load  and

    discharge   cycles   of   VF  unit  were   set  with   anoxic/oxic   (A/O)  steps.

    The  A/O  stages  were   generated   with  rapid   water  ow  through  the

    lter  media,  the  phenomenon   called  passive  air-pump   (Greenet  al.,  1998). During  the  investigation   period  two  different  daily

    operation  modes  (DOM)   of   the  vertical-ow system  were   tested

    (Table  1). We  chosen   this   loading  scheme  to  manage   the  VF  cells

    with   alternation  of   period  of   saturation  and  unsaturation  as

    describe  below.  The  rst  (DOM  1)  was  applied  from  May  to   July

    2011   and  from   January  to  11th   July  2012  with   a  feeding  strategy

    consisting  of   2 h  of   wastewater  inow,  followed   by  6 h  of 

    completely   full  cell,  2 h  of   discharging  and  14 h   of   completely

    empty  cell  in  order  to  assist  the  oxidation.   This   “intermittent

    feeding”  mode   was  chosen   to  provide   good  oxygen  transfer  to  the

    water  phase.  DOM  2  was  applied  from  11th   to  25th    July  2012,

    programming   14 h  of   fully  lled  cells  and  6 h  of   empty  cells.

     2.3.  Sampling,  chemical  analysis  and  data  elaboration

    Water  samples  were  collected  and  analyzed  from  May  to   July

    2011   and  from  January  to  July  2012  from  inow  (1;  IN),  outow  of 

    VF1  (2;  OUT  VF1),  outow  of   VF2  (3;  OUT  VF2),  outow  of   VF3  (4;

    OUT  VF3),  inow  of   HF  (5;  IN  HF),  outow  of   HF  and  nal  ef uent

    (6;  OUT  HF)  (Fig.  1).  IN  sample  was  taken  at  the  beginning   of   each

    cycle,  after  synthetic  feed  preparation,   OUT  VF  of   each  cell   and  IN

    HF  were  taken  at  the  end  of   the  daily  feeding  period  of   the  cycle

    (after  6 h  from  inlet),  and  OUT  HF  sample  was  taken  according   to

    the  retention   time   (after  7  days  from  the  start  of   the  cycle).

    Monitoring   consisted  of   thirty   seven  weekly  samplings  during  the

    whole   investigation   period,  collecting  211  samples.

    In  situ,  measurements  of   pH,  electrical  conductivity   (EC),

    dissolved 

    oxygen 

    (DO), 

    wastewater 

    temperatures 

    (T ) 

    and 

    redox-potential   (E h),  were   taken  with   a  Hach  Lange   HQD  40d  multi-

    parameter  meter  with  interchangeable   probes   according   to

    standard   methods  (APHA,  1998). Before  testing,  each  probe  was

    carefully  calibrated   according   to  the  manufacturer's   procedures.

    Samples  were  collected,  preserved  at  4 C  and  then  analyzed

    within   a  short  time.

    Total  nitrogen   (TN),  ammonia-nitrogen   (NH4-N)  and  nitric-

    nitrogen   (NO3-N),   were  determined   photometrically   using  a  Hach-

    Lange   DR-2800  spectrophotometer   and  adequate   cuvette   test  kits

    (cuvette-tests   LCK  338,  302,   340),  (Hach-Lange,1989),  according   to

    DIN  (1985). Adequate  sample  dilutions  were   made   with   a  stock

    supply  of   deionized  water.

    Air  temperature,  humidity,   solar  radiation,  rainfall  volumes,

    wind 

    speed 

    and 

    direction 

    were 

    recorded 

    every 

    day 

    from 

    the

    Fig.   2.  Schematic  representation  (not   to  scale)  of   water  level  control  structure  of 

    each  VF  cell.

     Table  1

    Daily 

    operation 

    modes 

    of  

    the 

    vertical-ow  system.   DOM1:  from  May to   July

    2011  and  from   January  to  11th    July  2012;  DOM2:  from  11th   to  25th   July  2012.

    DOM  1  DOM  2

    Phase  VF  unit  cycle  Duration

    (h)

    Schedule  Duration

    (h)

    Schedule

    I loading  cycle  2  10  a.m.–12  a.

    m.

    2  10  a.m.–12 a.

    m.

    II  wet  period  6  12  a.m.–6  p.

    m.

    14  12  a.m.–2  a.

    m.

    III 

    unloading

    cycle

    p.m.–8 

    p.m. 

    a.m.–4 

    a.m.

    IV  dry  period  14  8  p.m.–10  a.

    m.

    6  4  a.m.–10  a.

    m.

     A.   Mietto  et   al.  /  Ecological  Engineering   75  (2015)   291– 302  293

  • 8/16/2019 dùng thực vật trong làm sạch nước thải 2

    4/12

    beginning   of   the  experiment  by  a  meteorological   station  installed

    at  the  site.  Evapotranspiration   (ETO)  was  calculated  with   the  FAO

    56  Penmam-Monteith   equation  (Allen  et  al.,  1998) for  short

    reference  crop  ETos  (Allen  et  al.,  2005).

    The  data  series  of   the  parameters  did  not  follow  normal

    distribution  even   after  transformations.  Thus,  statistical  analyses

    were  carried  out  with   the  Kruskal–Wallis  nonparametric   test  to

    compare   the  six  sampling  positions  (IN,   OUT  VF1,  OUT  VF2,  OUT

    VF3,  IN  HF, OUT  HF)  and Box  and Whiskers  were used  to display  the

    variability.

    In  this  study,  the  performance  comparison  of   each  HCW  unit

    was  based  on  three  different  approaches:

    (a)  concentration  percentage   abatement  (A),   calculated   on  the

    rst  quartile  (Q1),   second   quartile  (Q2;   median)  and  third  quartile

    (Q3)  concentration   values  as  (Eq.   (1)):

    A%  ¼  Cin    Coutð Þ

    Cin

     

      100  (1)

    where   Cin  is  inow  concentration   (mg/L)   and  Cout  is  outow

    concentration   (mg/L);

    (b)  Reduction  ef ciency   (RE)  calculated  as  (Eq.   (2)):

    RE%  ¼  Cin    Vinð Þ    Cout    Voutð  Þ

    Cin 

     

    Vinð 

    Þ

     

      100  (2)where   Cin  is  inow  concentration   (mg/L),   Vin  is  average   inow

    volume   of   synthetic  wastewater   applied  (m3/d)  with   daily  rainfall

    volume   (mm/d)   included,  Cout  is  outow  concentration   (mg/L),

    Vout  is  outow  volume   detected   at  the  outlet  of   the  unit  (m3/d);

    (c)  Areal  load   reduction  (ALR),   expressing  the  removed

    pollutants  mass  per  m2 of   CW  and  time  (g/m2/d).  ALR   is  a  useful

    parameter   to  assess  system  ef ciency   (Stefanakis  and  Tsihrintzis,

    2012).

    In  addition,  segmented  linear  regression  analysis   (or  broken-

    line   regression)  with   a  non-parametric  approach  developed  by

    Pettitt  (1979)   was  used  to  identify  a  change-point   of   wastewater

    temperature   that   caused  variation   in  nutrient  percentage   abate-

    ment.   For  this   purpose,  the  Flat  Steps  method   (Bai  and  Perron,

    2003) 

    was 

    used, 

    implemented 

    in 

    the 

    Strucchange 

    library 

    of  

    R software   (Zeileis  et  al.,  2003).  Partial  F -test  in  one-way   analysis   of 

    variance   was  used  to  determine  any  signicant  differences  at

     p <  0.05.

    3. Results  and  discussion

     3.1.   Wastewater,   air   temperature  and  evapotranspiration

    During  the  rst monitoring  period  (May– July  2011),  slight

    differences  in  air  and  wastewater  temperatures  were  found  at

    different  HCW  sampling  points  (Fig.  3).  Inlet  temperature   values

    ranged between 20.5  and 22.3 C.  These  values   result  as being more

    ef cient  for biological N  removal  (range  of  20–25 C)  as  reported by

    Sutton  et  al.  (1975)   since  ambient  temperature   positively

    inuences   microbial  activity   and  diffusion  rates  (Phipps   and

    Crumpton,   1994).

    During  the  second  period  (January– July 2012)  air  temperature

    vs  inlet  wastewater  showed   two  different  trends:  in  cold   months

    (January–March)  air  temperature  (average  6.3 C)  was  lower  than

    the  inlet  wastewater   (average   11.9 C)  whereas  in  the  warm  period

    (from  April  to  July)  an  opposite  tendency   was  observed,  especially

    in  June– July.  The  freshwater   temperature used  to prepare  synthetic

    wastewater  (average  14.2 C)  showed   less  variation   than   the  other

    sampling  points  during   the  second  part  of   the  monitoring   period,

    ranged  between  9.2  and  17.7 C.  Until  the  beginning   of   March

    2012  wastewater  temperature   measured  from  VF  unit  (average

    8.1C)  was  lower   than   inlet  (average  11.1 C),  whereas  higher

    values   (average  19.8 C)  were   observed  in  VF  with   respect  to  theinlet  (average  15.3 C)  till  the  end  of   the  experimental  period.  HF

    temperature  followed  the  same  tendency   observed  for  VF

    wastewater  (Fig.  3).

    The  daily  ETO results  were   in  accordance   with   the  data   found  in

    the  literature   for  similar  conditions   (size,  latitude  and  measure-

    ment  method)  (Borin  et  al.,  2011).  The  time   pattern   of   the

    cumulative   ETos  in   the  rst  period,  from  May  to  September  2011,

    showed  an  average  daily  ETO  of   5.90  mm;  from  October   2011  to

    March  2012,   plants   consumed   1.97mm/day  on  average.  In  the

    winter-spring   period,  daily   ETO  was   5.04 mm.

     3.2.  On  site   parameters

    During  rst  monitoring   period  (May– July  2011),  electricalconductivity   (EC)  of   the  inuent  wastewater   was  higher   than

    1600 mS/cm  and  increased  after  passage  through  VF  cells.  HF

    slightly  increased  this  to  a  median  value   of   1840 mS/cm  (Fig.  4).

    Fig. 

    3. 

    Mean 

    air 

    and 

    wastewater 

    temperature 

    at 

    the 

    sampling 

    points 

    of  

    the 

    HCW 

    system 

    during 

    the 

    monitored 

    period.

    294   A.  Mietto  et   al.  /   Ecological  Engineering   75  (2015)   291– 302

  • 8/16/2019 dùng thực vật trong làm sạch nước thải 2

    5/12

    Fig.   4.  Variation  of   EC,  pH,  DO,  E h at   the  sampling  points  of   the  HCW  system   during  the  monitored  period.

     A.   Mietto  et   al.  /  Ecological  Engineering   75  (2015)   291– 302  295

  • 8/16/2019 dùng thực vật trong làm sạch nước thải 2

    6/12

    Fig.   5.  Nitrogen  forms  concentration  at  the  sampling  points  of   the  HCW  system   during  the  monitoring  period.

    296   A.  Mietto  et   al.  /   Ecological  Engineering   75  (2015)   291– 302

  • 8/16/2019 dùng thực vật trong làm sạch nước thải 2

    7/12

    During   the  second  monitoring   period  (January– July  2012),   the

    incoming   EC  did  not  exceed   1600 mS/cm  until  28th   March,  then

    rose  to  higher   values   until  the  end  of   monitoring:   this   is  probably

    related  to  the  increasing   water  temperature   that  promoted

    dissolving  ammonium  nitrate   in  water.  The  same  trends  as  the

    previous  monitoring  period  were   observed  for  VF  and  HF,  mainly

    due  to  substrate  biolm  interaction   that   may  result  in  soluble  salt

    release  from  the  media  to  the  water  (Stefanakis  and  Tsihrintzis,

    2012).  EC  seasonal  variations   were   observed  during  summer  each

    year  probably   due  to  increased  evapotranspiration   (May–Septem-

    ber  2011  and  April– July  2012)   and  plant  growth,   as  reported  by

    Hench  et  al.  (2003).

    The  median  inuent  pH  during  the  rst  and  second   monitoringperiod  was  neutral  or  slightly  alkaline  7.64   0.04.  HF  unit

    exhibited  alkaline  pH  values   from  21st  March  2012  till  the  end

    of   the  monitoring   period  (Fig.  4).  As  nitrication   proceeds

    optimally   at  pH  between  7.5  and  8.5  (Platzer,  1996), the  pH  values

    were  optimal  in  all  three  VF  beds.  However   pH  values   measured  in

    the  HF  unit  were  not  optimal  for  denitriers  that   operate   best  in

    the  range  between  6.5  and  7.5 (Paul  and  Clark, 1996). Furthermore

    ammonia   nitrogen   loss  through   volatilization   was  negligible  since

    it  generally   requires  a  pH  of   9.3  ( Jing  and  Lin,   2004).

    Median  dissolved  oxygen  concentration   value   at  the  inlet  was

    constant   (4.17   0.05 mg/L)  during  the  whole   investigation   period.

    DO  concentration   above   1.5 mg/L   is  essential  for  nitrication   to

    occur   (Ye  and  Li,  2009).  During  rst  monitoring   period  DO

    concentration   increased  after  passage  through   VF  cells  to  the

    median  value   of   4.57 mg/L   probably   due  to  aerobic  conditions

    provided   by  the  oxic  stage  during  DOM  1  of   the  vertical-ow

    system.  The  DO  detected   at  the  ef uent  of   HF  cell  varied   from

    0.14   to  0.28 mg/L.  The  same  trends  were  observed  during   the

    second  monitoring   period  in  VF  unit:  from  the  beginning   of   March

    to  11th    July  2012  a  slight  increase  appeared  in  ef uent  DO

    concentration,   possibly  due  to  plant  growth   and  enhanced   oxygentransfer   to  the  plant  roots.   From  11th    July  2012  to  the  end  of 

    monitoring   average   DO  concentration   from  VF  unit  ef uent

    decreased  from  4.18  to  2.74 mg/L   due  to  the  longer  anoxic   stage

    promoted   by  DOM  2.  HF  ef uent  DO  concentration   was  very  low

    during   end  winter-early   spring,  from  May  to  4th   July  2012  it

    slightly  rose  with  the  common   reed  re-activation   (Fig.  4).

    Redox  potential  (E h)  variations   within  a  range   of   a  few  hundred

    mV  from  reduced  (0 mV)  to  moderately   oxidized   redox  conditions

    (+270 mV)  were   observed  (Fig.   4).  During   the  rst  period,  median

    wastewater  redox   potential   value   of   269  decreased  to  206 mV  after

    VF  cells  passage.  This   suggests  that   the  VF  system  provided

    conditions   suitable  for  nitrication,   but  not  for  denitrication.  The

    HF  outow  E h decreased  drastically  in  the  range  from  +10  to  0 mV

    probably   inducing   favorable   (anaerobic)  conditions   suitable  formicrobial   denitrication.  The  second  period  followed  the  same

    trend  as  the  rst.  From   11th   July  2012  to  the  end  of   monitoring  E hfrom  VF  unit   ef uent  decreased  drastically,   possibly  due  to  the

    prolonged   period  of   saturation  of   the  cell  promoted   by  DOM  2,  as

    demonstrated   by  DO  values.  In  the  HF  cell  Eh  patterns  differed

    between  the  warm  and  cold  periods  probably   affected  by

    wastewater  temperature.   Increase  of   temperature   during  the

    warm  period  accelerated  biochemical  processes  including  bacteria

    activity   (Kadlec  and  Reddy,  2001). Moreover,  oxygen  solubility  in

    Fig.   6.  Box-plot  diagrams  of   nitrogen  forms  concentration  (mg/L),  at  the  sampling  points  of   the  HCW  system   during  the  monitoring  period.  Different  letters  indicate

    signicant  differences  at   p = 0.05  by  Kruskal–Wallis   test.

     Table  2

    Slope  and  R2 for  the  linear  relationships  among  wastewater   temperature  and

    nitrogen  forms  abatements  and  for  values  below  and  above  breakpoint.

    Nitrogen 

    form 

    Linear

    regression

    Values 

    below

    breakpoint

    Values 

    above

    breakpoint

    Slope  R 2 Slope  R 2 Slope  R 2

    TN  3.63  0.88  2.01  0.38  2.9  0.7

    NH4-N  0.62  0.66  0.36  0.4  0.44   0.23

    NO3-N  6.5  0.83  1.7  0.1  6.6  0.62

    Fig.  7.  Wastewater   temperature  and  percentage  abatement  correlation  charts  with   breakpoints  for  nitrogen   forms.

     A. Mietto  et   al.  /  Ecological  Engineering   75  (2015)   291– 302  297

  • 8/16/2019 dùng thực vật trong làm sạch nước thải 2

    8/12

    water  decreases  with   increasing   temperature,   so  as  a  result,  Eh

    decreased,  as  also  reported  by  Dušek  et  al.  (2008)  (Fig.  4).

     3.3.  Nitrogen   forms  concentrations

    From May  to  July 2011,  TN  concentration   decrease was  clear  and

    constant   accomplished   by  VF  unit  with   median  value   of   173.4 mg/L and  HF  unit  with  105.6 mg/L.  With   low  temperatures  measured

    during   the  rst  part   of   the  second  period  (January–March  2012,

    average  temperature  10.4 C),  TN  concentration   abatement   was

    negligible.  Then,   from  the  end  of   March  to  the  rst  ten  days  of   May

    following  an  increase   in  temperature  from  15.5  to  20.4 C  the

    concentrations   at  the  outlets  of   VF and  HF  progressively  decreased.

    Finally,   when   mean  wastewater  temperature  of   20.2 C  was

    reached,   TN  outlet  concentrations   showed   similar  values   as  the

    year  before  in  the  same  period  (Fig.  5).

    The  VF  cells  provided   outlet  values   statistically  lower   than   the

    inlet  ones;  differences  were   also  found  among  cells,  with   lower

    values   in  VF3  with   respect  to  VF1,  probably   related  to  the  combine

    effect  of   different  plant  and  porous  media  types.  The  performance

    of   VF2  and  VF3  units,  both  planted   with   P.  australis, were  similarand  the  statistical  analysis   showed   no  signicant  differences.  The

    HF  system  lowered  the  inlet  median  value  from  VF  unit  from

    146 mg/L   to  a  nal discharge  concentration of  114mg/L   and  slightly

    increased  the  variability  (Fig.   6).

    Ammonia  median  concentration  measured  from  VF  and  HF  unit

    showed  a decreasing  trend  in both  monitored  periods.  From May  to

     July  2011  median  NH4-N  concentration  at  VF  outlet  was  68.3  and

    48.6 mg/L   in  HF. From  January  to  July  2012  it  was  68.4  and  50 mg/L,

    respectively.   The  different  wastewater  temperature  did  not

    inuence  ammonia  values   at  the  outlet  of   wetland   cells.  No

    statistically  signicant  differences  were   found  between  VF1  and

    VF2  even  though   different  plant  species  were   used.  Signicant

    differences  were  found  between  VF3  and  the  rst  two VF  cells

    (VF1 

    and 

    VF2) 

    probably 

    due 

    to 

    composition 

    of  

    the 

    medium 

    layerwhich   comprised  zeolite  stones  that   could  absorb  NH4

    + (Nguyen

    and  Tanner,   1998) (Fig.   6).

    During  the  rst  period,  NO3-N  trend  concentrations   followed

    the  same  temporal   pattern  as  the  other  nitrogen   forms,  with

    decreasing  values   passing  through   VF  and  then  HF.  During   the

    second   period,  in  the  cold  season  ef uent  concentrations   from  VF

    and  HF  unit  exceeded   inuent   with   median  values   of   179.7  and

    182.7 mg/L   respectively.   With  increasing  wastewater  temperature

    during   the  warm  season,  measured  concentration   decreased

    reaching   values   found  in  the  rst  period  (Fig.  5).  Statistical

    differences  were  found  only  between  inlet  and  outlet  of   HCW

    system   (Fig.  6). As  reported  by  Kuschk   et  al.  (2003), the   microbial

    activities  related  to  nitrication   and  denitrication  can  decrease

    considerably 

    at 

    water 

    temperature 

    below 

    15 

    or 

    above 

    30

    C. 

    In

    particular,   the  activity   of   denitrifying  bacteria  in  CWs  is  generally

    more   robust  in  spring–summer  seasons  than   in  autumn–winter

    (van  Oostrom  and  Russel,  1994).

     3.4. 

    Effect  

    of  

    wastewater  

    temperature

    In  our  study,  correlation  analysis   was  performed  betweenpercentage   abatement  (A%)   for  nitrogen   forms  calculated  on  a

    weekly   basis  for  all  37  weeks  of   monitoring  and  the  corresponding

    average  wastewater   temperatures  during  the  whole   monitoring

    period.  We  focus  on  the  results  obtained  for  the  whole   HCW.

    First,  linear  regressions  between  A%  and  temperature  were

    calculated  for  the  nitrogen   forms,  obtaining   signicant  relation-

    ships,  with   higher   R2 for  TN  and  NO3-N  (Table  2).  The  regression

    slope  for  NO3-N  suggested  a  sharp  inuence  of   temperature  on

    abatement,   which   increased  by  6.5%  with   every  1 C.  On  the

    contrary,  the  effect  of   temperature  on  NH4-N  was  less  marked,  as

    suggested  by  the  lower  R2 and  regression  slope.

    In  a  second  step a  segmented  regression  analysis  was  conducted

    according   to  Bai  and  Perron  (2003)  to  identify  any  presence  of   a

    breakpoint  of   wastewater   temperature  that  caused  variations   innutrient  abatement  performances.  The  segmented  analysis   model

    was  signicant   with   respect  to  the  linear  regression  for  TN  and

    NO3-N  and  evidenced  breakpoints  at  14.2C  for  both  nitrogen

    forms  (Fig.  7).

    According   to  this   approach  the  abatement  was  always

    positively  correlated  with   temperature,  but  different  regression

    slopes  were  obtained   below  and  above  the  breakpoint.  In

    particular,   with   lower  temperature  the  abatement  of   NO3-N  and

    TN  increased  by  1.7  and  2.0%   per  C  of   temperature  increase;  with

    temperature  higher   than   14.2 C  the  increase  in  abatement  due  to

    increased  temperature  was  sharper,   especially  for  NO3-N  (6.6%

    every  1 C)  (Table  2).

    Nitrogen   pollutants  abatement   statistics  were   calculated  for

    wastewater 

    temperatures 

    below 

    and 

    above 

    the 

    breakpointidentied  with   segmented  regression  analysis   (Table  3).  As

    previously  mentioned,  higher   performance  was  observed  at

    temperature  above  breakpoint  for  both  TN  as  NO3-N.  In  particular,

    NO3-N  median  abatement   that  was negative   below  14.2C,  became

    consistent  above  this   critical  temperature.

     3.5.  Nitrogen  RE   and   ALR

    Median  TN  RE  during  the  rst  period  (from  May  to   July  2011)

    was  63%,  83%  and  96%  for  VF,  HF  unit  and  SIF  respectively   (Fig.  8).

    During   the  second  period  from   January  to  the  end  of   March

    2012  the  RE  was  lower,  with  values   between  11%  and  40%  for  VF

    unit   and  the  entire  system.  Considering  the  same  period  negative

    reduction 

    values 

    were 

    found 

    for 

    HF 

    unit 

    (ranging 

    from 

    0.7 

    and

     Table  3

    Nitrogen  pollutant  percentage  abatement  (A)  statistics  for  wastewater   temperatures  above  and  below  identied  breakpoint.

    Temperature  below  break  point  Temperature   above  break  point

    VF1  VF2  VF3  HF  HCW  VF1  VF2  VF3  HF  HCW

    TN  (A%)

    Minimum  3.5  6.1  4.4  8.9  5.3  16.2  7.8  22.9  7.4  22.7

    First  quartile  (Q1)  1.2  3.6  3.8  8.7  0.5  18.8  29.5  37.8  14.7  53.8

    Median  (Q2)  5.3  3.8  7.1  4.9  5.1  21  34.4  42.6  19.9  57.5

    Third  quartile  (Q3)  12.4   8  10.8  2.3  8.1  24.3  36.4  46.7  29.2  60.9

    Maximum  17.7  26  35  13.1 41.8  27.1  42.1  50.4  39  63.7

    NO3-N  (A%)

    Minimum  54.4  49.8   61.6  2.7  55.7  28.5  22.3  20.7  1.8  27

    First  quartile  (Q1)  50.6  46.7  51.2   2.1  51.3  10.4  16.7  18.2  14.6  35.6

    Median  (Q2)  47.8  41.8  47.1  0.2  47.3  13.4  26  26.5  25.3  45.4

    Third  quartile  (Q3)  44.3   39.9  39.9  1.2  45.6  14.4  28.7  30.4  30.6  59.3

    Maximum  3.2  3.3  2.6  2.9  1.8  22.1  33.8  46.2  52  68.4

    298   A.  Mietto  et   al.  /   Ecological  Engineering   75  (2015)   291– 302

  • 8/16/2019 dùng thực vật trong làm sạch nước thải 2

    9/12

    Fig.  8.  Nitrogen  forms  RE  (%)  at  the  sampling  points  of   the  HCW  system   during  the  monitoring  period.

     A.   Mietto  et   al.  /  Ecological  Engineering   75  (2015)   291– 302  299

  • 8/16/2019 dùng thực vật trong làm sạch nước thải 2

    10/12

    6%).  From  April  2012,   when   the  temperature   rose   above14.8 C,

    there  was  an  increase   of   TN  reduction  in  the  system   that   reached

    the  2011  values   (Fig.  8).

    VFand HF  system provided   a NH4-N  reduction pattern  similar  to

    that  found  for  TN during  2011,with   values   ranging  from  57%  to 94%

    in  the  entire  system  during  the  whole   monitoring   period  (Fig.  8).

    Fig.  9.  Nitrogen  forms  ALR   of   the  HCW  during  the  monitored  period.

    300    A.  Mietto  et   al.  /   Ecological  Engineering   75  (2015)   291– 302

  • 8/16/2019 dùng thực vật trong làm sạch nước thải 2

    11/12

    VF  reduction  was  slightly  higher   during  the  warm  period  of   2012

    (median  value  71%)   than   cold  period  of   the  same  year  (median

    value  43%).   The  HF  system   performed  better  during  the  last

    monitoring   period,  with   median  reduction  ranging   between  35

    and  87%.

    Median  NO3-N  reduction  ef ciency   during  2011  was  higher   forHF  (85%)   than   VF  (57%)  (Fig.  8).  During   the  cold  period  of 

    2012  negative   reduction  values   were   observed  for  VF  unit   and  in

    the  SIF.  The  negative   RE  value   (30%)   rose  from  the  end  of   March

    until  reaching,   at  the  end of   the  investigation  period,  a value  higher

    than   60%  in  VF.

    The  median  removals   of   mass pollutants  per  m2 of   HCW  per day

    were  TN  3.1 g/m2/d,  NH4-N  1.5 g/m2/d  and  NO3-N  1.5 g/m

    2/d

    (Fig.  9).  ALR   removals   of   nitrogen   forms  showed   a  different  trend

    during   the  rst  monitoring   period  of   2012.  In  particular,   from

     January  to  March  2012  the  data   reveal   a  low  treatment  capability,

    probably   related  to  temperature  (Stefanakis   and  Tsihrintzis,   2012).

    From  April  to  the  end  of   the  monitoring  period  an  increment  was

    observed:  from  the  initially  low  performance,  it  reached  the  same

    results 

    observed 

    during 

    2011 

    (Fig. 

    9). 

    The 

    combination 

    of  

    verticaland  horizontal   stages  ensures  the  right  conditions   to  obtain  a

    higher   nitrogen   removal  performance.  Moreover,  when   consider-

    ing  a  year   of   operation,  we  can  suppose  that   the  HCW  would

    remove   approximately   1.1Kg   TN/m2.

     3.6.  Comparison  among   vertical  systems

    Nitrogen   pollutant  reduction  ef ciency   (RE)  and  areal  load

    reduction  (ALR)  of   VF  system  measured  during  DOM1  and

    DOM2  are  presented  in  Table  4.  The  performance  comparison

    was  made   between  two  loading  cycles   of   each   DOM  with   the  same

    conditions   (air   and  wastewater   temperatures).  In  particular,   we

    considered  the  subset  data  from  the  last  two weeks  of   DOM1  (from

    27th 

     June 

    to 

    11th 

     July 

    2012) 

    and 

    the 

    data 

    of  

    the 

    two 

    weeks 

    of  

    DOM2  (from  11th   to  25th   July  2012).   DOM  1  allowed   higher   RE  and  ALR 

    to  be  obtained,  probably   due  to  the  longer  empty  period  that

    promoted   better  oxidative   conditions.  Lower  average  RE  values   for

    TN  (varying   between  64.1  to  68.3%)   and  NH4-N  (varying   between

    68.6  and  73.1%)   were   found  with  DOM  2.  However  RE  values   for

    NO3-N  were   quite   similar  to  those  observed  during  DOM  1.

    VF  systems  planted   with   P.  australis  (VF2  and  VF3)  showed

    better  performance  in  TN  reduction  ef ciency   (70.3  and  70.5%,

    respectively)   than  VF1  (63%),  planted with  C.  indica. Average NH4-N

    reduction  ef ciency   was  76.3  and  77.3%  in  VF2  and

    VF3  respectively  with   higher   ALR   of   8.2 g/m2/d  in  VF2.  NO3-N

    values   were   lower   than   other  nitrogen   forms,  best  RE  and  ALR 

    performances  were   measured  in  VF2  with   65.4%  and  7.1g/m2/d.

    4.  Conclusions

    The  system  showed  higher   performance  in  terms   of   TN,  NO3-N

    and  NH4-N  reduction.  Nonetheless,  seasonal  variations   appear  to

    affect  the  HCW  system   performance.  Lower   ef uent  concentra-

    tions were observed during  the warm  period  (higher  temperature),

    especially  for  TN  and  NO3-N,  whereas  the  performances  amelio-

    rated  with   the  increase   in  wastewater   temperature.   NH4-N

    reduction  ef ciency  was  inuenced  by  seasonality  to  a  lesser

    extent  in  the  VF  than   the  HF.

    Higher  RE  and  ALR   for  TN  and  NH4-N  were  obtained  with   the

    rst  daily  mode  of   operation  (DOM  1)  probably   related  to  the  dry

    period  of   14h  that  seemed  to  promote   the  medium  layer   oxidation

    and  nitrication  process,  whilst   similar  ndings   were  obtained  in

    DOM  2  for  NO3-N  reduction  ef ciency.  VF  systems  planted   with   P.

    australis  (VF2  and  VF3)  showed   slightly  higher   performance  in  TN

    reduction  ef ciency   compared  to  VF1,  planted  with   C.  indica.

    Segmented  regression   analysis  identied  a  breakpoint   at  14.2 C

    for wastewater  temperature  that  caused  variations  in TN and NO3-N

    concentration  reduction   performances.   According  to this  analysis

    the  abatement  of   NO3-N  and  TN  increased   by  1.7 and  2.0%  per C

    when  temperature   was  below  breakpoint;   with  a  temperature

    higher  than   14.2 C  the  increase   of   abatement  due  to  increased

    temperature  was  sharper,  especially   for  NO3-N  (6.6%  every  1 C)In  the  VF  cells  the  mode  of   operation  of   loading/discharging

    cycles   induced  a  sharp  variation   in  DO  and  E h   values;  both

    decreased  passing  from  6 h   of   completely   full  cells  and  14h   of 

    empty  cells  to  14 h  of   full  cells  and  6 h  of   empty  cells.  As  a

    consequence,   the  NH4-N  concentration  at  the  outlet  increased  and

    the  reduction  ef ciency   decreased.  Addition  of   zeolite  to  the

    porous   medium  reduced  the  NH4-N  concentration   and  P.  australis

    gave   better  results  than   C.  indica.

    It  is  important  to  highlight   that  during  this  study  synthetic

    wastewater  was  used  and  that  temperature  in  the  inuent  was

    affected  by  the  environmental   climate   conditions.  Slurry  temper-

    ature   is  usually  quite  constant   during  the  year,  at  around   15–17 C

    (Politeo, 

    2013) and 

    this 

    can 

    explain 

    the 

    lower 

    performanceobserved  during  winter  compared  to  summer  season.  This   has

    to  be  taken  into  account   when   considering  the  effective  potential

    of  using wetland  hybrid  systems   to  treat   slurry ef uents  as  a higher

    performance  can  be  expected.

     Acknowledgment

    Research  supported  by  Progetto   AGER,  grant  no.  2010-2220.  We

    thank   Luigi  Guarnieri,  the  owner   of   the  pig  farm  and  the  hybrid

    constructed  wetland,   for  its  kind  hospitality.

    References

    APAT,  2005.  Linee  guida   per  la  progettazione  e   gestione  di  zone  umide  articiali   perla depurazione   dei  reui  civili.  Agenzia  per  la  protezione  dell'ambiente  e  per  iservizi  tecnici,  Firenze,  Italy.

    American  Public  Health  Association  (APHA),  1998.  Standard  Methods  for  theExamination  of   Water  and  Wastewater,  20th  ed.  American  Water  WorksAssociation  (AWWA),  and  Water  Environment  Federation  (WPCF),  Washington,DC.

    Allen,  R.G.,  Pereira,   L.S.,  Raes,  D.,  Smith,  M., 1998.  Crop  Evapotranspiration:Guidelines  for  Computing  Crop  Requirements–FAO  Irrigation  and  DrainagePaper  56.  FAO,  Rome,   Italy.

    Allen, R.G., Walter,  I.A., Elliott, R.L., Howell, T.A.,  Itensu, D.,  Jensen, M.E.,  Snyder, R.L.,2005.  The  ASCE  standardized  reference   evapotranspiration  equation.  Am. Soc.Civil

     

    Eng. 

    Reston, 

    VA 

    59 

    (with 

    supplemental 

    appendices).Akratos,  C.S.,  Tsihrintzis,  V.A.,  2007.   Effect  of   temperature,  HRT,  vegetation  and

    porous  media  on  removal   ef ciency  of   pilot-scale  horizontal  subsurface  owconstructed  wetlands.  Ecol.  Eng.  29  (2),  173–191.

    Bai,   J.,  Perron,  P.,  2003.   Computation  and  analysis  of   multiple  structural  changemodels.

     

     J. 

    Appl. 

    Econ. 

    18, 

    1–22.

     Table  4

    Mean  values  of  nitrogen pollutant  reduction  ef ciency  (RE) and  areal  load  reduction

    (ALR) measured during  the  two  last  two weeks of  DOM1  (from 27th  June  to 11th   July

    2012)  and  DOM  2  (from  11th   to  25th   July  2012).

    DOM1 

    DOM2

    VF1 

    VF2 

    VF3 

    VF1 

    VF2 

    VF3

    RE  (%)

    TN  63  70.3  70.5  64.1  68.3  65.5

    NH4-N  73.7  76.3   77.3   68.6   72.5  73.1

    NO3-N  57.1  65.4  58.8  59.4  63.7   58.4

    ALR   (%)

    TN  13.3  15.3  12.7   13.4  14.7  12.1

    NH4-N  7.7  8.2  6.9  7.2  7.8  6.7

    NO3-N  6  7.1  5.3  6.2  6.8  5.4

     A. Mietto  et   al.  /  Ecological  Engineering   75  (2015)   291– 302  301

    http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0005

  • 8/16/2019 dùng thực vật trong làm sạch nước thải 2

    12/12

    Borin,  M.,Milani, M., Salvato, M.,  Toscano,  A., 2011.   Evaluation  of   Phragmites  australis(Cav:)  Trin.  evapotranspiration  in   Northern  and  Southern  Italy.   Ecol.  Eng.  37,721–728.

    Borin,  M., Politeo,  M.,  De   Stefani,  G.,  2013.  Performance  of   a  hybrid   constructedwetland  treating  piggery  wastewater.   Ecol.  Eng.  51,  229–236.

    Brix,  H.,  Arias,  C.A.,   Johansen,  N.H.,  2003.  Experiments  in  a  two-stage  constructedwetland  system:   nitrication  capacity  and  effects  of   recycling  on  nitrogenremoval.  In:  Vymazal,   J.  (Ed.),  Wetlands   –   Nutrients,  Metals  and  Mass  Cycling.Backhuys

     

    Publishers, 

    Leiden, 

    The 

    Netherlands, 

    pp. 

    237–258.Canga,  E.,  Dal  Santo,  S.,  Pressl,  A.,   Borin,   M., Langergraber,  G.,  2011.   Comparison  of 

    nitrogen  elimination  rates  of   different  constructed  wetland  designs.  Water  Sci.

    Technol. 

    64 

    (5), 

    1122–1129.

    Comino,  E.,  Riggio,  V.,  Rosso,   M., 2011.  Mountain  cheese  factory  wastewatertreatment

     

    with 

    the 

    use 

    of  

    hybrid 

    constructed 

    wetland. 

    Ecol. 

    Eng. 

    37, 

    1673–1680.

    Cooper,   P.,  Grif n,  P.,  Humphries,  S.,  Pound,  A.,   1999.  Design  of   a   hybrid   reed  bedsystem   to  achieve  complete  nitrication  and  denitrication  of   domesticsewage.  Water  Sci.  Technol.   40  (3),  283–289.

    DIN 

    (Deutsches 

    Institut 

    für 

    Normung), 

    1985. 

    German 

    Standard 

    Methods 

    for 

    theExamination  of  Water,  Waste Water and  Sludge. Deutches  Institut  für Normung,Berlin.

    Dušek, J.,  Picek,  T.,  Cížková,  H.,  2008.  Redox   potential  dynamics  in   a  horizontalsubsurface  ow  constructed  wetland  for  wastewater   treatment:  diel,  seasonaland  spatial  uctuations.  Ecol.  Eng.  34  (3),  223–232.

    Green, 

    M., Friedler, 

    E., 

    Safrai, 

    I., 

    1998. 

    Enhancing 

    nitrication  in   vertical  owconstructed  wetland  utilizing  a  passive  air  pump.  Water  Res.   32  (12),   3513–3520.

    Hach-Lange,  1989.   Water  Analysis  Handbook.  HACH,  Company,   Loveland,  CO,  USA.Hench,   K.R.,  Bissonnette,  G.K.,  Sexstone,   A.J.,  Coleman,  J.G.,  Garbutt  k,  Skousen,  J.G.,

    2003. 

    Fate 

    of  

    physical, 

    chemical 

    and 

    microbial 

    contaminants 

    in 

    domestic

    wastewater   following  treatment  by  small  constructed  wetland.  Water  Res.   37(4),  921–927.

    Hill,  D.T.,   Payton,    J.D.,  1998.   Inuence  of   temperature  on  treatment  ef ciency  of constructed  wetlands.  Trans.   ASAE  41  (2),  393–396.

    Hunt, 

    P.G., 

    Poach, 

    M.E., 

    2001. 

    State 

    of  

    the 

    art 

    for 

    animal 

    wastewater 

    treatment 

    inconstructed  wetlands.  Water  Sci.  Technol.   44   (11–12),  19–25.

     Jing,  S.R.,  Lin,  Y.F.,   2004.  Seasonal  effects  on  ammonia  nitrogen  removal   byconstructed wetlands  treating polluted  river  water  in  southern Taiwan.  Environ.Pollut.  127  (2),  291–301.

    Kadlec,  R.H.,  2006.  Water  temperature  and  evapotranspiration  in   surface  owwetlands

     

    in 

    hot 

    arid 

    climate. 

    Ecol. 

    Eng. 

    26 

    (4), 

    328–340.Kadlec,  R.H.,  Reddy,   K.R.,  2001.  Temperature   effects  in  treatment  wetlands.  Water

    Environ.  Res.  73  (5),  543–557.Kadlec,  R.H.,  Wallace,  S.D.,  2009.   Treatment  Wetlands,   second   ed.  CRC  Press/Lewis

    Publishers,  Boca  Raton,  Florida,  pp.  1016.Kantawanichkul,

     

    S., 

    Somprasert, 

    S., 

    Aekasin, 

    U., 

    Shutes, 

    R.B.E., 

    2003. 

    Treatment 

    of agricultural  wastewater   in   two  experimental  combined  constructed  wetlandsystems   in  a  tropical  climate.  Water  Sci.  Technol.   48   (5),  199–205.

    Kotti,   I.P.,  Gikas,  G.D.,  Tsihrintzis,  V.A.,  2010.  Effect  of   operational  and  designparameters  on  removal  ef ciency  of   pilot-scale  FWS constructed  wetlands  andcomparison  with  HSF  systems.   Ecol.  Eng.  36  (7),  862–875.

    Kuschk,  P.,  Wiebner,  A.,  Kappelmeyer,   U.,  Weibbrodt,   E., Kästner,  M., Stottmeister, U.,2003.  Annual  cycle  of   nitrogen  removal   by  a  pilot-scale  subsurface  horizontalow  in   a  constructed  wetland  under  moderate   climate.  Water  Res.   37  (17),4236–4242.

    Leverenz,  H.L.,  Haunschild,  K.,  Hopes,  G.,  Tchobanoglous, G.,  Darby,   J.L.,  2010.  Anoxictreatment

     

    wetlands 

    for 

    denitrication.  Ecol.  Eng.  36   (11),1544–1551.

    Mæhlum,  T.,  Warner,  W.S.,  Stålnacke,  P.,   Jenssen,  P.D.,  1999.   Leachate  treatment  in

    extended 

    aeration 

    lagoons 

    and 

    constructed 

    wetlands 

    in 

    Norway. 

    In:Mulamoottil,  G.,  McBean,  E.A.,  Revers,  F. (Eds.),  Constructed  WetlandsReferences

     

    499 

    for 

    the 

    Treatment 

    of  

    Landll  Leachates.  Lewis  Publisher/CRCPress,  Boca   Raton,  pp.  151–163.

    Molle,  P.,  Prost-Boucle,  S.,  Lienard,  A.,  2008.  Potential  for  total  nitrogen  removal   bycombining  vertical  ow  and  horizontal  ow  constructed  wetlands:  a  full-scaleexperiment  study.   Ecol.  Eng.  34  (1),  23–29.

    Nguyen, 

    M.L., 

    Tanner, 

    C.C., 

    1998. 

    Ammonium 

    removal 

    from 

    wastewaters 

    usingnatural  New  Zealand  zeolites.  N.  Z.   J.  Agric.  Res.   41  (3),  427–446.

    Paul, E.A., Clark,  F.E.,1996.  Soil Microbiology and Biochemistry,  second  ed. AcademicPress,  San  Diego,  CA,   pp.  340.

    Pettitt,  A.N.,  1979.  A  non-parametric  approach  to  the  change-point  problem.  Appl.Stat.  28  (2),  126–135.

    Phipps, 

    R.G., 

    Crumpton, 

    W.G., 

    1994. 

    Factors 

    affecting 

    nitrogen 

    loss 

    in 

    experimentalwetlands  with  different  hydrologic  loads.  Ecol.  Eng.  3  (4),  399–408.

    Platzer,   C.,  1996.   Enhanced  nitrogen  elimination  in  subsurface  ow  articialwetlands  -  a  multi  stage  concept.  Proceedings  of   the  Fifth  InternationalConference  on  Wetland   Systems   for  Water  Pollution  Control,  Vienna,  AustriaSeptember

     

    15–19, 

    I/7–1–I/7–9.

    Politeo,  M., 2013.  Performance  of   hybrid   constructed  wetland  for  piggerywastewater  treatment.  PhD  Thesis.  University   of   Padova,  pp.  1–134.

    Stefanakis,  A.I.,  Tsihrintzis,  V.A.,  2012. Effects  of   loading,  resting  period,temperature,  porous  media,  vegetation  and  aeration  on  performance  of   pilot-scale

     

    vertical  ow  constructed  wetlands.  Chem.  Eng.   J.  181–182  416–430.

    Sutton,  P.M., Murphy,  K.L.,  Dawson,  R.N.,  1975.  Low  temperature  biologicaldenitrication  of   wastewater.    J.  Water  Pollut.  Control  Fed.  47  (1),  122–134.

    van  Oostrom,   A.J.,  Russel,   J.M., 1994.  Denitrication   in   constructed   wastewaterwetlands  receiving  high concentrations  of  nitrate.  Water Sci.  Technol. 29   (4), 7–14.

    Vymazal,   J.,  1999.   Nitrogen  removal   in  constructed  wetlands  with  horizontal  sub-surface

      ow  –  can we   determine  the  key process?  In:  Vymazal,  J.  (Ed.),  NutrientCycling  and  Retention  in  Natural  and  Constructed  Wetlands.   BackhuysPublishers,  Leiden,  pp.  1–17.

    Ye,F.X.,  Li,  Y.,  2009.  Enhancement  of   nitrogen  removal   in   towery   hybrid   constructedwetland  to  treat domestic wastewater   for  small  rural  communities.  Ecol. Eng. 35(7),

     

    1043–1050.Zeileis,  A.,  Kleiber,   C.,  Krämer,   W.,  Hornik,  K.,  2003.  Testing   and  dating  of   structural

    changes  in  practice.  Comput.  Stat.   Data  Anal.  44   (1–2),  109–123.

    302   A.  Mietto  et   al.  /   Ecological  Engineering   75  (2015)   291– 302

    http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0040http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0040http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0040http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0040http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0040http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0040http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0040http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0040http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0040http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0040http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0040http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0040http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0040http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0040http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0040http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0040http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0040http://refhub.elsevier.com/S0925-8574(14)00598-9/sbref0040http://refhub.elsevier.com/S09