25
New Approaches for Traffic State Estimation: Calibrating Heterogeneous Car-Following Behavior using Vehicle Trajectory Data Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of Utah 1

Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of Utah

  • Upload
    jeb

  • View
    19

  • Download
    0

Embed Size (px)

DESCRIPTION

New Approaches for Traffic State Estimation: Calibrating Heterogeneous Car-Following Behavior using Vehicle Trajectory Data. Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of Utah. Outline. Background on Dynamic Time Warping (DTW) Application to Newell’s Simplified CFM Calibration Results - PowerPoint PPT Presentation

Citation preview

Page 1: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

1

New Approaches for Traffic State Estimation:

Calibrating Heterogeneous Car-Following Behavior using Vehicle Trajectory Data

Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of Utah

Page 2: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

2

Outline Background on Dynamic Time Warping (DTW) Application to Newell’s Simplified CFM Calibration Results Important Considerations

Page 3: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

3

Motivations: I Real-time Traffic Management

Automatic Vehicle IdentificationAutomatic Vehicle Location

Loop Detector

Video Image Processing

Page 4: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

4

Motivation 2: Self-driving Cars as Mobile Sensor Controlled , coordinated movements

Proactive approach Applications

Automated cars Unmanned aerial vehicles

Page 5: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

5

Motivation 3: Detecting Distracted/Risky Drivers

Page 6: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

6

Underlying Theory:Cross-resolution Traffic Modeling

Reaction distance/spacing δ Reaction time lag τW = δ/ τ

Time

Spac

e

Page 7: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

7

How to Estimate Driver-specific Car-following Parameters? Input and output

Page 8: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

8

Intro to Dynamic Time Warping (DTW)

Time

Position

1 2 3 4 5 6 7 8

(A) Vehicle Trajectories with DTW Match Solution

X: Leader

Y: FollowerMatch Solution

Time

Velocity

X: LeaderY: Follower

1 2 3 4 5 6 7 8

(B) Vehicle Velocity Time Series

• Matches points by measure of similarity

Page 9: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

Euclidean Vs Dynamic Time Warping

Euclidean DistanceSequences are aligned “one to one”.

“Warped” Time AxisNonlinear alignments are possible.

Reference: Eamonn KeoghComputer Science & Engineering Department

University of California - Riverside

Page 10: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

10

Construct Cost Matrix for Traffic Trajectory Matching

1 2 3 4 5 6 7 81 0 0 0 0 20 18 18 52 0 0 0 0 20 18 18 53 0 0 0 0 20 18 18 54 20 20 20 20 3 3 3 255 20 20 20 20 3 3 3 256 5 5 5 5 23 23 23 07 5 5 5 5 23 23 23 08 5 5 5 5 23 23 23 0

Time

Velocity Y: Follower

TimeVelocity

X: Leader

(C) Cost Matrix (for Velocity)

wijjxixrdjxixijYXYXC FL

FLjiji)()()()(),(

Time

Position

1 2 3 4 5 6 7 8

(A) Vehicle Trajectories with DTW Match Solution

X: Leader

Y: FollowerMatch Solution

Page 11: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

11

Cumulative Cost Matrix Dynamic programming

Calculate the least cost for matching a pair of points

Warp path Least cost matching

points from end to beginning

1 2 3 4 5 6 7 81 0 0 0 0 20 38 56 62 0 0 0 0 20 38 56 613 0 0 0 0 20 38 56 614 20 20 20 20 3 6 9 345 40 40 40 40 6 6 9 346 45 45 45 45 29 29 29 97 50 50 50 50 52 52 52 98 55 55 55 55 75 75 75 9

(D) Cumulative Cost Matrix with Highlighted Warp Path

τ = TF – TL

d = XL(tL) - XF(tF)

Follower:

Lead

er

SingularityTime

Position

1 2 3 4 5 6 7 8

(A) Vehicle Trajectories with DTW Match Solution

X: Leader

Y: FollowerMatch Solution

Page 12: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

12

Application to Newell’s Model Follower separated

by leader by reaction time and critical jam spacing

Algorithm finds optimal τn (time lag) for best velocity match Calculate dn for all time

steps along the trajectory

Sn

Sn’

τndn

Xn(t)

Xn-1(t)

Time, tD

ista

nce,

X

nnnn dtxtx )()( 1

Page 13: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

Calibrated Parameters: Car 1737

1 25 49 73 97 1211451691932172412652893133373613854094334574815055295535770

5

10

15

20

25

0

0.5

1

1.5

2

2.5

3

3.5

Critical Jam Spacing Backward Wave Speed Reaction Time

Spac

ing

(m)

& W

ave

Spee

d (k

m/h

)

Reac

tion

Tim

e (s

econ

ds)

Reaction Time Lag (sec)

Critical Spacing (m)

Backward Wave Speed (km/h)

Avg 2.62 13.39 18.46St. Dev 0.41 2.08 1.05

Page 14: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

14

NGSIM Data: I-80 Lane 4

Page 15: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

15

NGSIM Data: I-80 Lane 4: Reaction Time Distribution

-1 0 1 2 3 4 5 6 70

0.5

1

1.5

2

2.5x 10

4

Reaction Time (seconds)

Freq

uenc

y

Mean = 1.48 seconds

Page 16: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

16

NGSIM Data: I-80 Lane 4Critical Spacing Distribution

0 5 10 15 20 25 300

0.5

1

1.5

2

2.5x 10

4

Spacing (meters)

Freq

uenc

y

Mean = 8.06 meters

Page 17: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

17

NGSIM Data: I-80 Lane 4Wave Speed Distribution

0 5 10 15 20 25 30 35 400

2000

4000

6000

8000

10000

12000

14000

16000

Wave Speed (km/h)

Freq

uenc

y

Mean = 20.55 km/h

Page 18: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

18

Current Issues in DTW Application Singularities

Locations with more than one match solution Data reduction algorithms

Parameter estimates differ with available methods

Page 19: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

19

Singularities

1 2 3 4 5 6 7 81 0 0 0 0 20 38 56 62 0 0 0 0 20 38 56 613 0 0 0 0 20 38 56 614 20 20 20 20 3 6 9 345 40 40 40 40 6 6 9 346 45 45 45 45 29 29 29 97 50 50 50 50 52 52 52 98 55 55 55 55 75 75 75 9

(D) Cumulative Cost Matrix with Highlighted Warp Path

τ = TF – TL

d = XL(tL) - XF(tF)

Follower:Le

ader

5160 5180 5200 5220 5240 5260 5280 5300 5320300

350

400

450

500

550

600

650

Time (1/10 sec)

Pos

ition

(ft)

DTW Trajectory Match (Based on Acceleration Data)

Page 20: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

20

Singularity Implications 1st Interpretation: Many

responses to 1 stimulus 2nd Interpretation: 1

response to many stimuli

3rd Interpretation: Algorithm drawback Increases uncertainty in

parameter estimates LCSS force 1-to-1 match

LCSS : Longest Common Subsequence

5160 5180 5200 5220 5240 5260 5280 5300 5320300

350

400

450

500

550

600

650

Time (1/10 sec)

Pos

ition

(ft)

DTW Trajectory Match (Based on Acceleration Data)

Page 21: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

21

SingularitiesWithout Prior Information

With Prior Information

Page 22: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

22

Data Reduction Algorithms

• Piecewise Linear Approximation/Regression– Somewhat subjective in application, needs dynamic

parameters

– Difficulties creating new points application with Newell’s model

Page 23: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

23

Potential Applications Analyze intradriver heterogeneity Markov Chain Monte Carlo method for reaction

time/critical jam spacing Analyze relationships between parameters

Page 24: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

24

Markov Chain Transition MatrixReaction Time + + + 0 0 0 - - -Acceleration + 0 - + 0 - + 0 -

+ 0.1 0.050 0.001 0.048 0.036 0.199 0.102 0.058 0.043 0.0430.0 0.950 0.949 0.952 0.918 0.801 0.898 0.942 0.858 0.751

- 0.1 0.001 0.049 0.000 0.046 0.000 0.000 0.000 0.099 0.207Sum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Reaction Time + + + 0 0 0 - - - Acceleration + 0 - + 0 - + 0 -

0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.010 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

-0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01Sum 100.0% ####

# 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Hypothetical case:

Page 25: Dr. Xuesong Zhou & Jeffrey Taylor, Univ. of  Utah

25

Trajectory Prediction (MCMC)

0 200 400 600 800 1000 12000

200

400

600

800

1000

1200

1400

1600

Original Trajectory

Predicted Trajectory

~ 5% MAPE