27
Lecture – 14 Review of Matrix Theory – II Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

  • Upload
    lamhanh

  • View
    232

  • Download
    6

Embed Size (px)

Citation preview

Page 1: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

Lecture – 14

Review of Matrix Theory – II

Dr. Radhakant PadhiAsst. Professor

Dept. of Aerospace EngineeringIndian Institute of Science - Bangalore

Page 2: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

2

Matrix Transformations

Question:Can a matrix be transformed into a “simplified”form, without losing its properties?

Answer:Yes!

Options:• Similarity transformation• Equivalence transformation

Page 3: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

3

Similarity Transformation

Definition:

Simplest forms possible:• Diagonal form

(if there are n linearly independent eigenvectors)• Jordan form

(if the number of linearly independent eigenvectors are less then n)

1

If and are nonsingular matrices and isa non-singular matrix such that , then

and are "similar".

n n n n n nA B PB P AP

A B

× × ×

−=

Page 4: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

4

Similarity Transformation

Steps for finding P

Find the eigenvalues of

Find n linearly independent eigenvectors (include generalized eigenvectors, if necessary)

Construct the P matrix by putting the eigenvectors and generalized vectors as column vectors

n nA ×

nV

Page 5: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

5

Similarity Transformation: Some useful results

( )1 2

1 2

If , then an orthogonal matrix ( . . ),whose columns are normalized eigenvectors of , such that

, , ,where , , , are eigenvalues of .

T T T

Tn

n

A A P i e PP P P IA

B P AP diagA

λ λ λλ λ λ

= ∃ = =

= = ……

is similar to a diagonal matrix has linearly independent eigenvectors.A A nif and only if

If has n distinct eigenvalues, then has linearly independent eigenvectors, and hence, it is similar to a diagonal matrixconsisting of its eigenvalues in the diagonal elements.

A A n

Page 6: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

6

Having n distinct eigenvalues is only a sufficient condition for A to be similar to a diagonal matrix.

The necessary condition is to have n linearly independent eigenvectors. Having repeated eigenvalues does not guarantee that the eigenvectors are linearly independent (e.g. identity matrix).

If the matrix is of full rank, however, it guarantees that it has n linearly independent eigenvectors.

Similarity Transformation

Page 7: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

7

Equivalence Transformation

, ,

For a (non-square) matrix , a transformation of the form, where and are non-singular matrices is called an

"equivalence transformation".

If has rank , then , : 0

m m n n

m n

r r r n r

m n AB PAQ P Q

A r P QI

PAQ

× ×

×

×=

=, ,

,

0 0

where is the identity matrix.m r r m r n r m n

r rI r r− − − ×

⎡ ⎤⎢ ⎥⎣ ⎦

×

Page 8: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

8

Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a special class of equivalence transformation, where P and Q matrices are restricted to be orthogonal.Under an orthogonal equivalence transformation (i.e. in SVD), we can achieve a diagonal matrix.Under an orthogonal similarity transformation, however, we can achieve only a triangular matrix (Schur’s theorem).

Page 9: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

9

Singular Values

( )( )*

, if is real

, if is complex

TA A A A

A A A

σ λ

λ

*Both and are positive semidefinite, and hence, theireigenvalues are always non-negative.

For singular value computation, only positive square roots needto be found out.

TA A A A

Page 10: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

10

Singular Values

1

1

For any real (complex) of rank , orthogonal (unitary)matrices and :

0 0

,0 00 0 0

where , , are singular values of .

m n

m m n n

m nr

r

A rP Q

A PDQ D

A

σ

σ

σ σ

×

× ×

×

⎡ ⎤⎢ ⎥⎢ ⎥= =⎢ ⎥⎢ ⎥⎣ ⎦

Page 11: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

11

How to find matrices P and Q ?

Let and be the eigenvalues and corresponding “orthonormal eigenvectors” of

Construct

Order such that

1, , nλ λ… 1, , nX X…

TA A

( ) ( ), 1, ,i iA i nσ λ= = …

'i sσ0, 1, ,0, 1, ,

i

i

i ri r n

σσ

> =

= = +

……

Page 12: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

12

Construct

Extend to an orthonormal basis

Then

How to find matrices P and Q ?

1, , rY Y…

1 1, , , , ,r r mY Y Y Y+… …

( )1 , 1, ,i ii

Y AX i rσ

= = …

1 mY YP ⎡ ⎤= ⎢ ⎥↓ ↓ ↓⎣ ⎦

1T

nX XQ ⎡ ⎤= ⎢ ⎥↓ ↓ ↓⎣ ⎦

Page 13: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

13

Example

( )

( ) ( ) ( )

1,2,3

1 2 3

2 0 21 0 1

, 0 0 01 0 1

2 0 2

4,0,0

1 0 11 10 , 1 , 02 21 0 1

4 0 0

T

T

A A A

A A

X X X

for for for

λ

λ λ λ

−⎡ ⎤−⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥−⎣ ⎦

=

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦= = =

Page 14: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

14

Example

( )

( )

[ ]

11

2 2

3 3

1 11

T2 1 2

1 2

20 Note: The values are ordered0

11 0 1 11 1 1 101 0 1 12 2 21

Next, find = such that and will be orthonormal

i.e. ,

Y AX

Y a b Y Y

Y Y Y

λσσ λσ λ

σ

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥= =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦⎡ ⎤

−⎡ ⎤ ⎡ ⎤⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥−⎣ ⎦

= 2 21 2 2 2 2 20 and , 1T TY a b Y Y Y Y a b= − = = = + =

Page 15: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

15

Example2

1 2

1 2 3

1

11Solution: 1/ 2. Hence, 12

1 111 12

1 0 11 0 2 02 1 0 1

0 0 2 0 00 0 0 0 0 0

1 0 11 1 2 0 01 1: 0 2 01 1 0 0 02 2 1 0 1

T

a b Y

Y YP

X X XQ

D

Verify PDQ

σ

⎡ ⎤= = = ⎢ ⎥

⎣ ⎦⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥↓ ↓ −⎣ ⎦ ⎣ ⎦−⎡ ⎤

⎢ ⎥⎡ ⎤= = ⎢ ⎥⎢ ⎥↓ ↓ ↓⎣ ⎦ ⎢ ⎥− −⎣ ⎦⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

−⎡⎡ ⎤ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ − −

1 0 11 0 1

A

⎤−⎢ ⎥ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−⎣ ⎦⎢ ⎥⎣ ⎦

Page 16: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

16

Summary of Transformations

Non-square

Matrix (A)

Square

Non-symmetric Symmetric/Non-symmetric

Has n-independent eigenvectors

Doesn’t have n-independenteigenvectors

* Triangular form by orthogonal similarity Transformation(Schur’s Theorem)

* Diagonal form byorthogonal equivalenceTransformation

* Semi-diagonal form (Ir,r inthe main diagonal)

* Singular value Decomposition form (P and Q are orthogonal)

Diagonal form by similarity Transformation

Jordan form by similarity Tranformation

Page 17: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

17

Vector/Matrix Calculus:Definitions

( ) [ ]1 2( ) ( ) ( ) T

nX t x t x t x t

( ) 1 20 0 0 0

( ) ( ) ( )Tt t t t

nX d x d x d x dτ τ τ τ τ τ τ τ⎡ ⎤⎢ ⎥⎣ ⎦

∫ ∫ ∫ ∫

( ) [ ]1 2( ) ( ) ( ) T

nX t x t x t x t

Page 18: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

18

Vector/Matrix Calculus:Definitions

( )11 1

1

( ) ( )

( ) ( )

n

m mn

a t a tA t

a t a t

⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦

( )11 1

1

( ) ( )

( ) ( )

n

m mn

a t a tA t

a t a t

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

11 10 0

0

10 0

( ) ( )

( )

( ) ( )

t t

n

t

t t

m mn

a d a d

A d

a d a d

τ τ τ τ

τ τ

τ τ τ τ

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

∫ ∫∫

∫ ∫

Page 19: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

19

Vector/Matrix Calculus:Some Useful Results

( )( ) ( ) ( ) ( )d A t B t A t B tdt

+ = +

( )( ) ( ) ( ) ( ) ( ) ( )d A t B t A t B t A t B tdt

= +

( )1 1 1( )( ) ( ) ( )d dA tA t A t A tdt dt

− − −= −

Page 20: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

20

Vector/Matrix Calculus:Definitions

( ) ( ) [ ]( )

1If , then / / /

is called the "gradient" of .

T

nf X f X f x f x

f X

∈ ∂ ∂ ∂ ∂ ∂ ∂R

( ) ( ) ( )

( )

1

1 1 1

1

If , then

/ /

/ /

is called the "Jacobian matrix" of with respect to .

T mm

n

m m n

f X f X f X

f x f xfX

f x f x

f X X

⎡ ⎤ ∈⎣ ⎦∂ ∂ ∂ ∂⎡ ⎤

∂ ⎢ ⎥⎢ ⎥∂⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

R

Page 21: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

21

Vector/Matrix Calculus:Definitions

( )

( )

2 2 2

21 1 2 1

2 22

2 1 22

2 2 2

21 2

If , then

is called the "Hessian matrix" of .

n

n

n n n

f X

f f fx x x x xf f

f x x x xX

f f fx x x x x

f X

⎡ ⎤∂ ∂ ∂⎢ ⎥∂ ∂ ∂ ∂ ∂⎢ ⎥⎢ ⎥∂ ∂⎢ ⎥∂∂ ∂ ∂ ∂⎢ ⎥∂ ⎢ ⎥⎢ ⎥∂ ∂ ∂⎢ ⎥

⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦

R

Page 22: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

22

Vector/Matrix Calculus:Derivative Rules

( ) ( )T Tb X X b bX X∂ ∂

= =∂ ∂

( )AX AX∂

=∂

( ) ( )1If ,2

T T

T T

X AX A A XX

A A X AX AXX

∂= +

∂∂ ⎛ ⎞= =⎜ ⎟∂ ⎝ ⎠

Page 23: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

23

Vector/Matrix Calculus:Derivative Rules

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

:

( ) , ( )

( ) ( )

T TT

T TT T

T TT

f gf X g X g X f XX X X

g fC g X C f X C CX X X X

f gf X Q g X Q g X Q f XX X X

∂ ∂ ∂⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦

∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

∂ ∂ ∂⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦

Corollary

Page 24: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

24

Vector/Matrix Calculus:Derivative Rules

( ) 1 21 2

If ( ) , ,

( )

p m n m

mm

G X X UGG GG X U u u u

X X X X

×∈ ∈ ∈

∂∂ ∂∂ ⎡ ⎤⎡ ⎤ ⎡ ⎤= + + + ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦

R R R

1 2 mG G GG

⎡ ⎤⎢ ⎥↓ ↓ ↓⎣ ⎦

where

[ ]

1If ( ) , ( ) , ,

( ) ( )

m n mf X g X X U

g ff X g X U f g UX X X

×∈ ∈ ∈ ∈

⎡ ⎤∂ ∂ ∂⎡ ⎤ ⎡ ⎤= +⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦⎣ ⎦

R R R R

Page 25: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

25

Vector/Matrix Calculus:Chain Rules

( )

1 1 1 1

If ( ) , ( ) , n

n n

F f X f X X

F f FX X f× × ×

∈ ∈ ∈

⎡ ⎤∂ ∂ ∂⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦

R R R

( )

1 1

If ( ) , ( ) ,m n

T

n n m m

F f X f X X

F f FX X f× × ×

∈ ∈ ∈

⎡ ⎤∂ ∂ ∂⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦

R R R

( )If ( ) , ( ) ,p m n

T

p n m np m

F f X f X X

F F fX f X× ××

∈ ∈ ∈

⎡ ⎤∂ ∂ ∂⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦⎣ ⎦

R R R

Page 26: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

26

Page 27: Dr. Radhakant Padhi - NPTELnptel.ac.in/courses/101108047/module5/Lecture 13.pdfAB P nn nn nn BPAP AB ×× × = − ... 2 10 1 122 1 Next, find = such that and will be orthonormal

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

27