Direct Method Truss Analysis Matrice Di Rigidezza Composizione

Embed Size (px)

Citation preview

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    1/55

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    2/55

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    3/55

    CCOORRNNEELLLLU N I V E R S I T Y 3MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Truss analysis

    Internal forces in a truss element act along

    the member However, displacements at the nodes can

    have both components (x- and y-directions,

    in local coordinates). This is due to rotation

    '( ) '( )

    1 2 0e e

    y yF F= =

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    4/55

    CCOORRNNEELLLLU N I V E R S I T Y 4MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Truss analysis

    To analyze a truss

    element in the globalcoordinates xand y, youneed to account for bothcomponents ofdisplacement:

    Also note that the crosssection of truss elementscan vary as shown.

    ( ) ( ) ( ) ( )

    1 1 2 2, , ,

    e e e e

    x y x yu u u u

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    5/55

    CCOORRNNEELLLLU N I V E R S I T Y 5MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Stiffness of a truss element The internal force in the

    truss is given (see free body

    diagram) as:

    Assuming elasticdeformations:

    The (small) strain is given as:

    Finally:

    ( ) ( )

    2 1

    e e e e ep F F A = = =

    ( ) ( )

    2 1

    e e e e e ep F F A E = = =

    2 1

    e ee

    e

    u u

    L

    =

    ep

    ( ) ( )

    2 1 2 1

    2 1

    ( )

    ( )

    e ee e e e

    e

    e e e

    A EF F u u

    L

    k u u

    = = =

    =

    ( )

    1

    eF ( )

    2

    eF

    ( ) ( )( ) ( )

    1 1

    ( ) ( ) ( ) ( )

    2 2

    e ee e

    e e e e

    F uk k

    F k k u

    =

    e e

    e

    e

    A Ek

    L=

    http://www.amazon.com/First-Course-Finite-Elements/dp/0470035803http://www.amazon.com/First-Course-Finite-Elements/dp/0470035803http://www.amazon.com/First-Course-Finite-Elements/dp/0470035803http://www.amazon.com/First-Course-Finite-Elements/dp/0470035803http://www.amazon.com/First-Course-Finite-Elements/dp/0470035803http://www.amazon.com/First-Course-Finite-Elements/dp/0470035803
  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    6/55

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    7/55

    CCOORRNNEELLLLU N I V E R S I T Y 7MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Element stiffness in global coordinates

    We need to be able to

    transform displacementsfrom the xand yaxes todisplacements along the xand yaxes. We start withthe reverse:

    Transformation matrix T(e)

    ( ) ( )( )

    '( ) ( )

    1 1

    '( ) ( )

    1 1

    '( ) ( )

    2 2

    '( ) ( )2 2

    { }{ ' }

    cos sin 0 0

    sin cos 0 0

    0 0 cos sin

    0 0 sin cos

    e ee

    e ee ex x

    e ee ey y

    e e e e

    x x

    e ee ey y

    T dd

    u u

    u u

    u u

    u u

    =

    The angle is measuredanti-clockwise from

    xto x

    e

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    8/55

    CCOORRNNEELLLLU N I V E R S I T Y 8MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Coordinate transformation

    ( ) ( )( )

    '( ) ( )

    1 1

    '( ) ( )

    1 1

    '( ) ( )

    2 2

    '( ) ( )

    2 2

    [ ] { }{ ' }

    cos sin 0 0

    sin cos 0 0

    0 0 cos sin

    0 0 sin cos

    e ee

    e ee ex x

    e ee ey y

    e e e e

    x x

    e ee e

    y y

    T dd

    u u

    u u

    u u

    u u

    =

    { ' } [ ]{ }

    e e e

    d T d=

    { } [ ] { ' }e e T ed T d=

    :

    [ ] [ ] [ ]e T e

    Note that

    T T I=

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    9/55

    CCOORRNNEELLLLU N I V E R S I T Y 9MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    4 4

    cos sin 0 0 cos sin 0 0

    sin cos 0 0 sin cos 0 0

    0 0 cos sin 0 0 cos sin

    0 0 sin cos 0 0 sin cos

    1 0 0 0

    0 1 0 00 0 1 0

    0 0 0 1

    T ee

    e e e e

    e e e e

    e e e e

    e e e e

    TT

    I

    =

    Coordinate transformation

    Verify that:4 4

    [ ] [ ] [ ]e T e

    xT T I=

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    10/55

    CCOORRNNEELLLLU N I V E R S I T Y 10MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Stiffness of a truss element

    Similarly for the forces:

    ( )

    '( ) ( )

    1 1

    '( ) ( )

    1 1

    '( ) ( )

    2 2'( ) ( )

    2 2

    [ ]{ ' } { }

    cos sin 0 0

    sin cos 0 0

    0 0 cos sin

    0 0 sin cos

    ee e

    e ee ex x

    e ee ey y

    e e e e

    x xe ee e

    y y

    TF F

    F F

    F F

    F F

    F F

    =

    { } [ ] { ' }e e T eF T F=

    { ' } [ ]{ }e e e

    F T F=

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    11/55

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    12/55

    CCOORRNNEELLLLU N I V E R S I T Y 12MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Truss element stiffness( ) ( ) ( ) ( )

    [ ] [ ] [ ' ][ ]e e T e e

    K T K T =

    ( ) ( )

    1 0 1 0

    0 0 0 0[ ' ] ,

    1 0 1 0

    0 0 0 0

    e eK k

    =

    ( )

    cos sin 0 0

    sin cos 0 0[ ]

    0 0 cos sin

    0 0 sin cos

    e e

    e e

    e

    e e

    e e

    T

    =

    2 2

    2 2

    ( ) ( )

    2 2

    2 2

    cos sin cos cos sin cos

    sin cos sin sin cos sin[ ]

    cos sin cos cos sin cossin cos sin sin cos sin

    e e e e e e

    e e e e e e

    e e

    e e e e e e

    e e e e e e

    K k

    =

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    13/55

    CCOORRNNEELLLLU N I V E R S I T Y 13MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Truss element stiffness

    ( ) ( )2 21 1

    ( ) 2 21 ( )

    ( ) 2 2

    2

    2 2( )

    2

    cos sin cos cos sin cos

    sin cos sin sin cos sin

    cos sin cos cos sin cos

    sin cos sin sin cos sin

    e ee e e e e ex x

    e e e e e e ey e

    e e e e e e e

    x

    e e e e e ee

    y

    F u

    F ukF

    F

    =

    ( )

    1

    ( )

    2

    ( )

    2

    e

    x

    e

    x

    e

    y

    u

    u

    Note the 2x2symmetric submatrix structure This implies that you can reverse the numbering of nodes (1 and 2)

    without any changes in the element stiffness.

    ( ) ( )2 22 2

    ( ) 2 22 ( )

    ( ) 2 2

    1

    2 2( )

    1

    cos sin cos cos sin cos

    sin cos sin sin cos sin

    cos sin cos cos sin cos

    sin cos sin sin cos sin

    e ee e e e e ex x

    e e e e e e ey e

    e e e e e e e

    x

    e e e e e ee

    y

    F u

    F uk

    F

    F

    =

    ( )2

    ( )

    1

    ( )

    1

    ex

    e

    x

    e

    y

    u

    u

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    14/55

    CCOORRNNEELLLLU N I V E R S I T Y 14MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Assembly process

    The assembly process is identical to the

    one discussed for `spring structures and itwill not be repeated here in its generalform (no need to show at this point

    complicated looking matrix operations). We will however provide soon a simple

    example demonstrating this assemblyprocess.

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    15/55

    CCOORRNNEELLLLU N I V E R S I T Y 15MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Generalizing the application of essential BCs

    You already have seen through an example

    how essential boundary conditions areapplied to the global system of eqs:

    In essence, we partition the stiffness matrix

    in a way that separates known from unknowndegrees of freedom as follows:

    [ ]{ } { }K d F=

    EE EF E

    T

    EF F F F

    K K fd

    K K d f

    =

    :Ed Known displacements

    :Fd Unknown displacements

    :Ef Unknown reaction forcescorresponding tonodes/directionswith prescribed displacement:Ff Applied (known) forces

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    16/55

    CCOORRNNEELLLLU N I V E R S I T Y 16MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Generalizing the application of essential BCs

    EE EF E

    TEF F F F

    K K fd

    K K d f

    =

    EE EF F E

    TEEF F F F

    K d K d f

    K d K d f

    + =

    + =

    The unknown displacements are obtained from the 2nd eq. as:

    1( )

    T TE EEF F F F F F F EF

    K d K d f d K f K d + = =

    With known , we can return to the 1st eq. to compute thereaction forces:

    EE EF FEf K d K d= +

    Fd

    Note that the matrix is symmetric and positive definite,so a solution for always exists!

    FK

    Fd

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    17/55

    CCOORRNNEELLLLU N I V E R S I T Y 17MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    A truss example

    Construct the global stiffness matrix and load vector

    Partition the matrices and solve for the unknowndisplacements at point B, and displacement in x

    direction at point D. Find the stresses in the three bars

    Find the reactions at C, D and F

    E= 107Pa

    Note that point D isfree to move in the x

    direction

    1 2 3

    1,23,4 5,6

    7,8

    1 210A A

    =

    22A A=

    3A A=

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    18/55

    CCOORRNNEELLLLU N I V E R S I T Y 18MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    A truss example: Element 1

    (1)

    1/ 2 1/ 2 1/ 2 1/ 2

    1/ 2 1/ 2 1/ 2 1/ 2[ ]

    1/ 2 1/ 2 1/ 2 1/ 22

    1/ 2 1/ 2 1/ 2 1/ 2

    EAK

    =

    7 8 1 2

    7

    8

    1

    2

    (1) 0135 =

    Note: Recall that you can number the corresponding global nodes in thesequence 1 2 7 8 without any changes in .(1)[ ]K

    Local node 1

    Local node 2

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    19/55

    CCOORRNNEELLLLU N I V E R S I T Y 19MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    A truss example: Element 2

    (2)

    0 0 0 0

    0 2 2 0 2 2

    [ ] 0 0 0 02

    0 2 2 0 2 2

    EA

    K

    =

    7 8 3 4

    7

    8

    3

    4

    090 =

    22A A=

    3,4

    Local node 1

    Local node 2

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    20/55

    CCOORRNNEELLLLU N I V E R S I T Y 20MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    A truss example: Element 3

    (3)

    1/ 2 1/ 2 1/ 2 1/ 2

    1/ 2 1/ 2 1/ 2 1/ 2[ ]

    1/ 2 1/ 2 1/ 2 1/ 221/ 2 1/ 2 1/ 2 1/ 2

    EAK

    =

    7 8 5 6

    7

    8

    5

    6

    045 =

    3A A=

    Local node 1

    Local node 2

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    21/55

    CCOORRNNEELLLLU N I V E R S I T Y 21MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    A truss example: Assembly (element 1)

    1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 2

    1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 2

    0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0[ ]

    0 0 0 0 0 0 0 02

    0 0 0 0 0 0 0 0

    1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 2

    1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 2

    EAK

    =

    1

    2

    3

    4

    5

    6

    7

    8

    1 2 3 4 5 6 7 8

    (1)

    1/ 2 1/ 2 1/ 2 1/ 2

    1/ 2 1/ 2 1/ 2 1/ 2[ ]1/ 2 1/ 2 1/ 2 1/ 22

    1/ 2 1/ 2 1/ 2 1/ 2

    EAK

    =

    7 8 1 2

    7

    8

    1

    2

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    22/55

    CCOORRNNEELLLLU N I V E R S I T Y 22MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    A truss example: Assembly (element 2)

    1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 21/ 2 1/ 2 0 0 0 0 1/ 2 1/ 2

    0 0 0 0 0 0 0 0

    0 0 0 2 2 0 0 0 2 2[ ]

    0 0 0 0 0 0 0 02

    0 0 0 0 0 0 0 0

    1/ 2 1/ 2 0 0 0 0 1/ 2 0 1/ 2 0

    1/ 2 1/ 2 0 2 2 0 0 1/ 2 1/ 2 2 2

    EAK

    =

    + + +

    1 2 3 4 5 6 7 8

    1

    2

    3

    4

    5

    6

    7

    8

    ( 2)

    0 0 0 0

    0 2 2 0 2 2[ ]0 0 0 02

    0 2 2 0 2 2

    EAK

    =

    7 8 3 4

    7

    8

    3

    4

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    23/55

    CCOORRNNEELLLLU N I V E R S I T Y 23MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    A truss example: Assembly (element 3)

    1/ 2 1 / 2 0 0 0 0 1/ 2 1/ 21/ 2 1/ 2 0 0 0 0 1 / 2 1/ 2

    0 0 0 0 0 0 0 0

    0 0 0 2 2 0 0 0 2 2[ ]

    0 0 0 0 1/ 2 1/ 2 1/ 2 1/ 22

    0 0 0 0 1/ 2 1/ 2 1/ 2 1/ 2

    1/ 2 1/ 2 0 0 1/ 2 1/ 2 1/ 2 0 1/ 2 1/ 2 0 1/ 2

    1/ 2 1 / 2 0 2 2 1 / 2 1/ 2 1/ 2 1/ 2 1/ 2 2 2 1 / 2

    EAK

    =

    + + + + + + +

    1 2 3 4 5 6 7 81

    2

    3

    4

    5

    6

    7

    8

    (3)

    1/ 2 1/ 2 1/ 2 1/ 2

    1/ 2 1/ 2 1/ 2 1/ 2

    [ ] 1/ 2 1 / 2 1/ 2 1/ 22

    1/ 2 1 / 2 1/ 2 1/ 2

    EAK

    =

    7 8 5 6

    7

    8

    5

    6

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    24/55

    CCOORRNNEELLLLU N I V E R S I T Y 24MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    A truss example: Assembly

    1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 21/ 2 1/ 2 0 0 0 0 1/ 2 1/ 2

    0 0 0 0 0 0 0 0

    0 0 0 2 2 0 0 0 2 2[ ]

    0 0 0 0 1/ 2 1/ 2 1/ 2 1/ 22

    0 0 0 0 1/ 2 1/ 2 1/ 2 1/ 2

    1/ 2 1/ 2 0 0 1/ 2 1/ 2 1 0

    1/ 2 1/ 2 0 2 2 1/ 2 1/ 2 0 1 2 2

    EAK

    =

    +

    1 2 3 4 5 6 7 8

    1

    2

    3

    4

    5

    6

    7

    8

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    25/55

    A l P i i d BC

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    26/55

    CCOORRNNEELLLLU N I V E R S I T Y 26MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    1

    2

    3

    4

    6

    5

    7

    8

    1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 2 0

    1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 2 0

    0 0 0 0 0 0 0 0 0

    00 0 0 2 2 0 0 0 2 2

    00 0 0 0 1/ 2 1/ 2 1/ 2 1/ 22

    0 0 0 0 1/ 2 1/ 2 1/ 2 1/ 2

    1/ 2 1/ 2 0 0 1/ 2 1/ 2 1 0

    1/ 2 1/ 2 0 2 2 1/ 2 1/ 2 0 1 2 2

    d

    d

    d

    dEA

    d

    d

    d

    d

    = =

    =

    = =

    +

    1

    2

    3

    4

    6

    3

    0

    10

    0

    r

    r

    r

    r

    r

    N

    =

    A truss example: Partition and BCs

    [ ]E

    K

    [ ]F

    K

    [ ]EF

    K

    [ ]EF

    TKF

    f

    Ef

    0Ed =

    Fd

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    27/55

    A l R i l l i

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    28/55

    CCOORRNNEELLLLU N I V E R S I T Y 28MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    1

    2

    3

    4

    6

    5

    7

    8

    1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 2 0

    1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 2 0

    0 0 0 0 0 0 0 0 0

    00 0 0 2 2 0 0 0 2 2

    00 0 0 0 1/ 2 1/ 2 1/ 2 1/ 22

    0 0 0 0 1/ 2 1/ 2 1/ 2 1/ 2

    1/ 2 1/ 2 0 0 1/ 2 1/ 2 1 0

    1/ 2 1/ 2 0 2 2 1/ 2 1/ 2 0 1 2 2

    d

    d

    d

    dEA

    d

    d

    d

    d

    = =

    =

    = =

    +

    1

    2

    3

    4

    6

    3

    0

    10

    0

    r

    r

    r

    r

    r

    N

    =

    A truss example: Reaction calculation

    [ ]E

    K

    [ ]F

    K

    [ ]EF

    K

    [ ]EF

    TKF

    f

    Ef

    0Ed =

    Fd

    EE EF FEf K d K d= +

    A t l R ti l l ti

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    29/55

    CCOORRNNEELLLLU N I V E R S I T Y 29MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    1

    52

    3 7

    4 8

    6

    0 1/ 2 1/ 2

    0 1/ 2 1/ 2

    0 0 02

    0 0 2 2

    1/ 2 1/ 2 1/ 2 F

    EEF

    d

    f K

    r

    drEA

    r d

    r d

    r

    =

    A truss example: Reaction calculation

    1

    2

    3

    4

    6

    10001000

    0

    1000

    0

    Fx

    Fy

    Cx

    Cy

    Dy

    Rr N

    Rr N

    r R

    Nr R

    rR

    =

    A t l C t th t

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    30/55

    CCOORRNNEELLLLU N I V E R S I T Y 30MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    cos sin cos sin { }e

    e e e e e e

    e

    Ed

    L =

    A truss example: Compute the stresses

    ' ' ' '

    2 1 2 1

    e e e ee e ex x x x

    e e

    u u u uE

    L L

    = =

    Combining the 2 Eqs gives:{ }

    ed

    '( ) ( )

    1 1

    '( ) ( )

    1 1

    '( ) ( )

    2 2

    '( ) ( )

    2 2

    cos sin 0 0

    sin cos 0 0

    0 0 cos sin

    0 0 sin cos

    e ee ex x

    e ee ey y

    e e e e

    x x

    e ee e

    y y

    u u

    u u

    u u

    u u

    =

    However:

    A t l C t th t

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    31/55

    CCOORRNNEELLLLU N I V E R S I T Y 31MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    cos sin cos sin { }e

    e e e e e e

    e

    Ed

    L =

    A truss example: Compute the stresses

    Applying this to each element, we have:

    (1)

    0.033284

    0.0052 2 2 2

    141.42102 2 2 22

    0

    = =

    m

    mE

    kPa

    [ ](2 )

    0.033284

    0.0050 1 0 1 50

    0

    0

    = =

    m

    mE kPa

    (3)

    0.033284

    0.0052 2 2 20

    0.0382842 2 2 22

    0

    = =

    m

    mEkPa

    m

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    32/55

    Th di i l ( ) t t t

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    33/55

    CCOORRNNEELLLLU N I V E R S I T Y 33MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Three-dimensional (space) truss structures

    '( ) '( )( ) ( )

    1 1

    '( ) ( ) ( ) '( )

    2 2

    e ee e

    x x

    e e e e

    x x

    F uk kF k k u

    =

    A unit vector along the direction x of a 3D truss

    element has the components (direction cosines ofthe axes between x and x,y,z, respectively):

    where are the nodalcoordinates in the (x,y,z) system.

    2 1 2 1 2 1

    2 1 2 1 2 1

    2 2 2

    , ,

    ( ) ( ) ( )

    s s s

    e e e e e e

    e e e

    e e e

    e e e e e e e

    x x y y z zl m n

    L L L

    L x x y y z z

    = = =

    = + +

    1 1 1 22 2( , , ) ( , , )

    e e e e e ex y z and x y z

    Three dimensional (space) tr ss str ct res

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    34/55

    CCOORRNNEELLLLU N I V E R S I T Y 34MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Three-dimensional (space) truss structures

    '( ) '( )( ) ( )

    1 1

    '( ) ( ) ( ) '( )

    2 2

    e ee e

    x x

    e e e e

    x x

    F uk k

    F k k u

    =

    The displacement transformation then takes the form:

    Similar transformation is applied for the forces:

    ( )

    1

    ( )

    1

    '( ) ( )

    1 1

    '( ) ( )

    2 2

    ( )[ ] 2

    ( )

    2

    { }

    0 0 0[ ]{ }

    0 0 0

    s s s

    s s s

    e

    e

    e

    x

    e

    y

    e e ee e

    x z e e

    e e e e e

    x x

    eT y

    e

    z

    d

    uu

    l m nu uT d

    u l m n u

    u

    u

    =

    '( )

    1

    '( )

    2

    [ ]{ }

    e

    x e e

    e

    x

    FT F

    F

    =

    Three dimensional (space) truss structures

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    35/55

    CCOORRNNEELLLLU N I V E R S I T Y 35MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Three-dimensional (space) truss structures

    '( ) '( )( ) ( )

    1 1

    '( ) ( ) ( ) '( )

    2 2

    '

    =

    e

    e ee e

    x x

    e e e e

    x x

    K

    F uk k

    F k k u

    Similarly to the derivation for 2D trusses, the stiffness

    matrix in global coordinates is then:

    ( )

    6 6 6 2 2 62 2

    [ ] [ ] ' [ ] e e T e e

    x x xx

    K T K T

    Stiffness of a space element

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    36/55

    CCOORRNNEELLLLU N I V E R S I T Y 36MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Stiffness of a space element

    2 2

    2 2

    2 2

    ( )

    2 2

    2 2 2

    [ ]

    s s s s s s s s s s

    s s s s s s s s s s

    s s s s s s s s s s

    s s s s s s s s s s

    s s s s s s s s s s

    s s s

    e e e e e e e e e e

    e e e e e e e e e e

    e e e e e e e e e ee e

    e

    e e e e e e e e e e e

    e e e e e e e e e e

    e e e

    l m l n l l m l n l

    m l m m n m l m m n

    n l m n n n l m n nE AK

    L l m l n l l m l n l

    m l m m n m l m m nn l m

    =

    2 2

    s s s s s s s

    e e e e e e en n n l m n n

    2 1 2 1 2 1

    2 1 2 1 2 1

    2 2 2

    : , ,

    ( ) ( ) ( )

    s s s

    e e e e e e

    e e ee e e

    e e e e e e e

    x x y y z zwhere l m n

    L L L

    L x x y y z z

    = = =

    = + +

    Computing the stresses in a space truss element

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    37/55

    CCOORRNNEELLLLU N I V E R S I T Y 37MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    { }s s s s s s

    ee e e e e e e e

    e

    El m n l m n d

    L =

    Computing the stresses in a space truss element

    ' '

    2 1

    ' '' '2 1

    2 1( )

    e ee x x

    e

    e e ee e e ex x

    x xe e

    u u

    L

    u u EE u u

    L L

    =

    = =

    Combining the 2 Eqs gives:

    ( )

    1

    ( )

    1

    '( ) ( )

    1 1

    '( ) ( )

    2 2

    ( )

    2( )

    2

    0 0 0[ ]{ }

    0 0 0

    s s s

    s s s

    e

    x

    e

    y

    e e ee e

    x z e e

    e e e e e

    x x

    e

    ye

    z

    u

    ul m nu u

    T du l m n u

    u

    u

    =

    However:

    Accounting for thermal effects in truss analysis

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    38/55

    CCOORRNNEELLLLU N I V E R S I T Y 38MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Accounting for thermal effects in truss analysis

    Consider a truss structure that is heated. We need toaccount for thermal expansion effects. Note:

    Hookes law is now modified as follows (using the xcoordinate system):

    2 1( ) ( )

    e ee e e e e e e e e

    elastic thermal e

    total strain

    u uE E E T

    L

    = = =

    0

    ( ) ( ) 2 1

    2 1

    2 1 0

    ( )

    ( ) ,

    e

    e ee e e e e e e e e

    e

    e ee e e e e e e

    e

    u uF F p A A E T

    L

    A Ek u u A E k

    L

    = = = = =

    = =

    ( ) ( )( ) ( )

    1 1

    0( ) ( ) ( ) ( )

    2 2

    l n

    1

    1

    e ee e

    e e e

    e e e e

    Therma odal vector

    F uk kA E

    F k k u

    + =

    e e e

    elastic thermal

    total strain

    = +

    Element equations with thermal effects

    http://www.amazon.com/First-Course-Finite-Elements/dp/0470035803
  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    39/55

    CCOORRNNEELLLLU N I V E R S I T Y 39MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Element equations with thermal effects

    Expanding these equations to include nodal displacementsin the y axis gives:

    We need to transform this to xand ydisplacements (ourdegrees of freedom for this element)

    ( )( ) ( )

    '( ) '( )

    1 1

    '( ) '( )

    1 1( )

    0'( ) '( )

    2 2'( ) '( )

    2 2

    { ' } [ ' ]{ ' } { ' }

    1 1 0 1 0

    0 0 0 0 0

    1 1 0 1 0

    0 0 0 0 0

    e ethermale e

    e e

    x x

    e e

    y ye e e e

    e e

    x xe e

    y y

    F KF d

    F u

    F uA E k

    F u

    F u

    + =

    { ' } [ ]{ }e e ed T d= { ' } [ ]{ }e e eF T F=

    Element equations with thermal effects

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    40/55

    CCOORRNNEELLLLU N I V E R S I T Y 40MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Element equations with thermal effects

    We can transform these element equations as follows:

    From these equations, we conclude that:

    ( )( ) ( )

    '( ) '( )

    1 1

    '( ) '( )

    1 1( )

    0'( ) '( )

    2 2

    '( ) '( )

    2 2

    { ' } [ ' ]{ ' } { ' }

    1 1 0 1 0

    0 0 0 0 0

    1 1 0 1 0

    0 0 0 0 0

    e ethermale e

    e e

    x x

    e e

    y ye e e e

    e e

    x x

    e e

    y y

    F KF d

    F u

    F u

    A E kF u

    F u

    + =

    { ' } [ ]{ }e e ed T d=

    { ' } [ ]{ }e e eF T F=

    ( )[ ]{ } { ' } [ ' ][ ]{ }

    e e e e e e

    thermalT F F K T d + =

    ( )

    ( )

    [ ]{ }

    { } [ ] { ' } [ ] [ ' ][ ]{ }

    eethermal

    e e T e e T e e e

    thermal

    KF

    F T F T K T d + =

    Element equations with thermal effects

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    41/55

    CCOORRNNEELLLLU N I V E R S I T Y 41MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Element equations with thermal effects

    ( )

    ( )

    [ ]{ }

    { } [ ] { ' } [ ] [ ' ][ ]{ }

    ee

    thermal

    e e T e e T e e e

    thermal

    KF

    F T F T K T d + =

    ( )

    ( ) 2 21

    ( ) 2 21 ( )

    0( ) 2

    2

    ( )

    2

    { }{ }

    cos cos sin cos cos sin cos

    sin sin cos sin sin cos sin

    cos cos sin cos

    sin

    eethermal

    e e e e e e e ex

    e e e e e e e ey

    e e e ee e e e

    x

    ee

    y

    FF

    F

    F

    A E kF

    F

    + =

    ( ) ( )

    ( )

    1

    ( )

    1

    2 ( )

    2

    2 2 ( )

    2

    [ ]

    cos sin cos

    sin cos sin sin cos sin

    e e

    e

    x

    e

    y

    e e e e e

    x

    e e e e e e e

    y

    K d

    u

    u

    u

    u

    ( )

    cos sin 0 0

    sin cos 0 0[ ]

    0 0 cos sin

    0 0 sin cos

    e e

    e e

    e

    e e

    e e

    T

    =

    Use:

    Finally we obtain:

    (for 2D trusses)

    Element equations with thermal effects

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    42/55

    CCOORRNNEELLLLU N I V E R S I T Y 42MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Element equations with thermal effects

    What do you need to do to account for thermal effects in truss analysis?

    For each truss element that is heated, simply add to the element force, thefollowing extra term

    You will need to define at which truss elements thermal effects take place andfor each of them read the values and

    0 0

    { }

    cos

    sin,

    cos

    sin

    ethermal

    e

    e

    e e e e e e

    e

    e

    F

    A E where T

    =

    e .eT

    Principle of minimum potential energy

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    43/55

    CCOORRNNEELLLLU N I V E R S I T Y 43MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Principle of minimum potential energy

    An alternative equivalent approach to solving

    many structural problems is the principle ofminimum potential energy.

    From all the possiblecompatible

    displacements of a structure, the one thatminimizes the total potential energyis theexact solution.

    Potential energyfor given

    displacements=

    Strain energyfor these givendisplacements

    -

    Work done by externalloads on these given

    displacements

    Principle of minimum potential energy

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    44/55

    CCOORRNNEELLLLU N I V E R S I T Y 44MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Principle of minimum potential energy

    Let us see this principle applied to the trussproblems discussed earlier.

    { }

    '( ) '( ) '( ) '( )

    1 1 2 2

    ( / )

    ,

    1( )

    2

    min

    e

    e e e e

    d e

    e e e e e e e e

    x x x xExternal Work

    Elastic strain energy densitywork volume

    PE PE U W

    PE dV F u F u

    =

    = +

    Assemblyprocess

    Principle of minimum potential energy

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    45/55

    CCOORRNNEELLLLU N I V E R S I T Y 45MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Principle of minimum potential energy

    Lets apply this principle to one truss

    element. We need to minimize with respectto the nodal displacements (localcoordinates) Recall that:'( ) '( )1 2, .

    e e

    x xu u

    '

    2 1'

    ,

    e ee e e ex x

    e

    u uEL

    = =

    2 '( ) '( ) '( ) '( )

    1 1 2 2

    '

    2 '( ) '( ) '( ) '( )2 1

    1 1 2 2

    '

    1

    2

    '1( )

    2

    e

    ee

    e e e e e e e e

    x x x x

    e ee e e e e ex x

    x x x xe

    A dx

    PE E dV F u F u

    u uE dV F u F u

    L

    = =

    Principle of minimum potential energy

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    46/55

    CCOORRNNEELLLLU N I V E R S I T Y 46MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    Principle of minimum potential energy

    ' '1 2 1 2

    '

    2 '( ) '( ) '( ) '( )2 1

    1 1 2 2

    , ' , '

    '1( )

    2

    min mine e e ex x x x

    e ee e e e e e e ex x

    x x x xe

    u u u u

    u uPE E A L F u F u

    L

    =

    Take partial derivatives of wrt :ePE'

    1 2, '

    e e

    x xu u

    ' '( )

    1 2 1

    1

    0 ( ' ) 0

    '

    e e ee e e

    x x xe e

    x

    PE E Au u F

    u L

    = =

    ' '( )

    2 1 2

    2

    0 ( ' ) 0'

    e e ee e e

    x x xe e

    x

    PE E Au u F

    u L

    = =

    '( ) '( )( ) ( )

    1 1

    '( ) ( ) ( ) '( )

    2 2

    e ee e

    x x

    e e e e

    x x

    F uk k

    F k k u

    =

    These are the same Eqs as those obtained with the direct method!

    Principle of minimum potential energy

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    47/55

    CCOORRNNEELLLLU N I V E R S I T Y 47MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/1/2011)

    In general (not just for mechanics

    problems!), the principle of minimumpotential energy takes the following form:

    or after assembly:

    Note that the mimimization gives us thefamiliar solution:

    Principle of minimum potential energy

    ( ) ( ) ( )

    { } { }

    1{ } [ ]{ } { } { }

    2

    min mine e T e e T

    d de e

    PE d K d d F

    =

    { } { }

    1{ } [ ]{ } { } { }

    2min min

    T T

    d d

    d K d d F

    PE

    =

    [ ]{ } { }K d F=

    Principle of minimum potential energy

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    48/55

    CCOORRNNEELLLLU N I V E R S I T Y 48MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/1/2011)

    Principle of minimum potential energy

    We will not use this method to repeat the trusscalculations.

    However, it will be our starting point for computingthe stiffness of beam elements (lecture 4).

    The method of minimum potential energy can beapplied to many problems not related to mechanics

    however there are many problems where thistechnique is not applicable.

    After discussing beam bending problems, we willneed to look for more powerful (`unfortunately alsomore mathematical) methods (weak (Galerkin)formulations).

    Revisiting the 2-node truss element

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    49/55

    CCOORRNNEELLLLU N I V E R S I T Y 49MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/1/2011)

    Revisiting the 2-node truss element

    Up to now we used the direct method to express the nodal loads vs.nodal displacements for the 2-node truss element.

    Let us linearly interpolate the displacement of any point xin theelement in terms of the nodal displacements:

    ( ) ( )1 2

    '( )

    '( ) '( ) '( ) ( ) ( )1

    1 2 '( )

    2

    ' ' ' '(1 ) [1 , ] [ ] { }

    e e

    e

    e e e e ex

    x x xe e e e e

    x basis functionsmatrixN N

    Nodaldisplacementselement basis

    functions

    ux x x xu u u N d

    L L L L u

    = + = =

    The strain in this 2-node element can nowbe computed as follows:

    '

    '

    ee xdu

    dx =

    ' ( ) ( ) ( )'( ) ( ) ( ) ( ) ( ) ( )[ ]{ }

    [ ]{ } [ ]{ } [ ]{ }' ' '

    e e e ee e e e e e e

    xx

    du d N d dN u N d d B d dx dx dx= = = =

    '( ) '( ) '( )( ) ( )( ) 1 2 11 2

    '( )

    2

    1 1 1 1[ ] [ , ] [ , ] [ , ]

    ' '

    e e ee ee e x x x

    e e e e ee

    xGradient ofbasis functions

    matrix

    u u udN dN B

    dx dx L L L L Lu

    = = = =

    This is exactly the sameapproximation we usedbefore (constant strain

    element)

    '( )e

    xu

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    50/55

    Truss analysis with displacement constraints

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    51/55

    CCOORRNNEELLLLU N I V E R S I T Y 51MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/1/2011)

    Truss analysis with displacement constraints

    Up to this point, we imposed essential boundary conditionsin terms of prescribed x- or y- nodal displacements. How

    about if the support is inclined as in the figure below:

    Here, we dont know the displacements at node 1 but we

    know the relation between u1xand u1y. In general we writethese constrains on our nodal degrees of freedom as:Cd=q.

    For this problem, the constraint is thatthere is no normal displacement

    at the support 1

    Truss analysis with displacement constraints

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    52/55

    CCOORRNNEELLLLU N I V E R S I T Y 52MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/1/2011)

    Truss analysis with displacement constraints

    Note that at node 1 we dont have essential boundaryconditions we have a displacement constraint.

    To solve this problem we use the principle of minimumpotential energy with the constraint Cd=q:

    Here, we enforce the constraint using Lagrange multipliers.

    Find d and such that

    { }int

    inint

    1min { } [ ]{ } { } { } { } ([ ]{ } { })

    2

    TT T

    d Lagrange ConstramultiplierPotential energyenforcingof unconstra edthe constrasystem

    L d K d d F C d q= +

    Truss analysis with displacement constraints

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    53/55

    CCOORRNNEELLLLU N I V E R S I T Y 53MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/1/2011)

    Truss analysis with displacement constraints

    is the Lagrange multiplier that enforces the constraint itis nothing else but the reaction force at node 1 (normal to

    the support!)

    Minimization is now performed with respect to both d and .

    Find d and such that

    0

    T d FK C

    qC

    =

    { }

    int

    inint

    1min { } [ ]{ } { } { } { } ([ ]{ } { })

    2

    TT T

    d

    Lagrange ConstramultiplierPotential energyenforcingof unconstra edthe constrasystem

    L d K d d F C d q= +

    Apply essential boundary conditionsand then solve for {dF} and

    (here, reaction force at node 1)

    Displacement constraints: Implementation

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    54/55

    CCOORRNNEELLLLU N I V E R S I T Y 54MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/1/2011)

    Displacement constraints: Implementation

    How do you implement this in the MatLab

    libraries of HW1?

    Introduce the constraints in the InputData.m and thenmodify the stiffness and load vectors in the NodalSoln.m.

    Apply the essential boundary conditions first before youaugment the reduced global equations (Kf) with theLagrange multiplier.

    % Read information for constraints

    C = zeros(1,neq-length(debc)); %The dimension of C is neq minus the% prescribed DOF via essential BCs% Here there is only one constraint

    C(1) = sin(pi/6); C(2) = cos(pi/6);q = 0;

    InputData.m

    1 1

    sin 30 cos 30 0x y

    u u+ =

    Displacement constraints: NodalSoln.m

  • 7/31/2019 Direct Method Truss Analysis Matrice Di Rigidezza Composizione

    55/55

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    Displacement constraints: NodalSoln.mfunction [d, rf, lambda] = NodalSoln(K, R, debc, ebcVals, C, q)

    % K=global stiffness, R=global force, debc=degrees of freedom with specified values, ebcVals=specified displacements

    dof = length(R); % Extract the total degreess-of-freedom

    df = setdiff(1:dof, debc); % Sets the difference between two sets of indices, i.e. the global degrees of freedom minus the% degrees of freedom with prescribed essential boundary conditions

    Kf = K(df, df); % Remove eqs. corresponding to prescribed displacements

    Rf = R(df) - K(df, debc)*ebcVals; % Modify the remaining load vector to account for the essential boundary conditions

    [m n] = size(C); % Extract number of constraints

    Kf = [Kf C'; % Augment global equations with the Lagrange multipliersC zeros(m)];

    Rf = [Rf;q]; % Augment load vector

    dfVals = Kf\Rf; % Solve the linear system of equations. Here for simplicity, we use Gauss elimination.

    d = zeros(dof,1); % Restore the solution vector (i.e. include back the nodes with prescribed displacements).d(debc) = ebcVals; % Use the originally established ordering of the nodes.d(df) = dfVals(1:(length(dfVals)-m));

    rf = K(debc,:)*d - R(debc); % Calculate the reaction vector at nodes with prescribed displacements

    lambda = dfVals((length(dfVals)-m+1):length(dfVals)); % Calculate Langrange multipliers (reactions at nodes with constraints)

    0

    T d FK C

    qC =