84
Eung Jin Chun Leptogenesis & Dirac gaugino dark matter Yonsei University, Oct. 19, 2010 EJC, J.C. Park, arXiv:0812.0308 [hep-ph] EJC, J.C. Park and S. Scopel, arXiv:0911.5273 [hep-ph] EJC, arXiv:1009.0983 [hep-ph]

Dirac gaugino dark matter - Yonsei Universitykimcs.yonsei.ac.kr/sub_pages/seminar/2010b_schedule... · 2015-11-17 · 2010-10-19 Yonsei U. Leptogesis & Dirac gaugino dark matter EJChun@KIAS

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Eung Jin Chun

Leptogenesis & Dirac gaugino dark matter

Yonsei University, Oct. 19, 2010

EJC, J.C. Park, arXiv:0812.0308 [hep-ph]EJC, J.C. Park and S. Scopel, arXiv:0911.5273 [hep-ph]EJC, arXiv:1009.0983 [hep-ph]

Contents

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Neutrino mass and Seesaw mechanism

Leptogenesis

Dark matter: theory & experiments

Dirac gaugino dark matter

Leptogenesis origin of baryons and dark matter

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Neutrino Mass & Seesaw Mechanism

Dirac neutrino

L = LSM + yν LHνc

Majorana neutrino

L=LSM + yν2 LHLH/2M

Seesaw type I

L=LSM + yν LHN + M NN/2

Seesaw type II

L=LSM + yν LL∆ +μ HH∆ + M2|∆|2

Seesaw type III

L=LSM + yν LH∑ + M ∑∑/2

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Neutrino beyond Standard Model

yν ~ 10-12

yν ~ 1, M~1014 GeV

∆ = (∆++,∆+, ∆0) Y=1

∑ = (∑ +, ∑ 0 , ∑ -) Y=0

Three Seesaws

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

© T.Hambye

Majorana

(Dirac)

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Neutrino masses

Weak eigenstates: να

Mass eigenstates: νi

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Neutrino Mixing

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Recent oscillation dataMINOS (10) KAMLAND (Jan. 08)

For a light neutrino,

A generous limit on the relic density, Ωh2< 0.1, gives

Neutrino is hot dark matter.

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Absolute mass & cosmology

eV 30/

433

3

2 ννγ

γ

νν ρ mmn

TTh c ≈⎟⎟⎠

⎞⎜⎜⎝

⎛××=Ω

eV 3≤νm

Neutrinos are hot dark matter.

They freely stream away to disturb the formation of small scale structures.

Scales smaller than dFS damped out suppressed power spectrum.

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Impact on structure formation

eV932 ∑=Ω ν

ν

mh K2

114 3/1

≈⎟⎠⎞

⎜⎝⎛= γν TT

1eVFS Gpc 1~ −md

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Structure formation

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Limit on the absolute mass

Gonzalez-Garcia, Maltoni, Salvado, 1006.3795

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Baryon-antibaryonasymmetry

Baryogenesis

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

QFT says every particle has a corresponding antiparticle.

The very early universe right after the Bigbang was in the thermal equilibrium of all the particles, antiparticles and radiations and started with a symmetric state.

Then, the asymmetry in baryons and antibaryons can be generated dynamically during the evolution of the Universe if QFT has

Baryon number violation

C & CP symmetry violation

Interactions out of equilibrium [Sakharov, 1967]

Leptogenesis

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Seesaw mechanism realizes the Sakharov conditions of Lepton number violation

C & CP violation

Out of equilibrium

It generates a lepton asymmetry which is transformed to a baryon asymmetry through the anomalous SU(2)L process.

Standard Leptogenesis (Type I)

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

• L asymmetry from N decay: (CP phase in Yν)

Davidson-Ibarra

• Seesaw with heavy right-handed neutrinos:

• N decay: C/CP violation (CP phase)

Out of equilibrium (Γ< H)

Standard Model violates B+L

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

B+L is anomalous :

• Active B+L violation at finite temperaure :

L to B conversion

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Standard interactions in thermal equilibrium:

L asymmetry converted to B asymmetry: nB=cSP Li (cSP=28/79)

(M > 109 GeV)g* ~ 100, η<1, ε>10-7

B-L=0

B+L=0(B-L)i =-Li ≠ 0

(B-L)f ≠ 0

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Dark Matter

Abundant non-baryonic matterUnidentified matter 5 times more than baryons in the Universe.

Ω DE h2 = 0.361 +/- 0.008

Ωm h2 = 0.1349 +/- 0.004

ΩΒ h2 = 0.0226 +/- 0.0008

Ων h2 = 0.0005 – 0.0047

ΩDM h2 = 0.1123 +/- 0.0035

Ωr h2 = 2.469x10-5

Coincidences? Ω DE ~ 3 ΩDM, ΩDM ~ 5 ΩΒ

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

WMAP7 + BAO + H0Komatsu et al. 2010

Evidences

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

©Paolo Gondolo

DM clumps baryons

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Matter-radiation equality: DM perturbation to grow.Baryons & photons start to oscillate as acoustic waves.DM clumps drag baryons to form galaxies.

Baryon Acoustic Oscillation

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

DM clumped to baryon acoustic peak is observed in the correlation of luminous red galaxies.

Ω m h2 = 0.120.130.14

Acoustic oscillationPropagation of initial point-like perturbation in media composed of DM, baryons, photons, neutrinos, caused by the interplay of gravity & gas pressure.

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

CMBR power spectrum

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Photons free to travel at recombination.Baryons & dark matter detectable from CMBR peaks.

ΩB/Ωγ Ωm/Ωr

Ωr = Ωγ+ν = 1.69 Ωγ

ΩDM & ΩΒ from CMBR+BAO

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Riotto, 1010.2642

What we know about DMNeutral

Non-baryonic

Stable on cosmological time

Cold: massive, non-relativistic

Current portion of the energy density:

ρDM = mDM nDM = 0.2ρc

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

DM CandidatesGravitino

Axion, Axino

Gaugino, Higgsino, sneutrino

KK particle

keV neutrino (WDM)

new singlets (LDM)

new gauge multiplets (MDM, IDM)

Hidden particles (Higgs/kinetic portal)

……

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Origin of DM population

Non-thermal

Thermal freeze-in

Thermal freeze-out: standard cosmology

Thermal freeze-out: non-std. cosmology

Baryo-DM genesis

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Non-thermal production

ex) inflaton decay: φ DMno information on DM interactionno need to be in equilibriumReheat temperature dependent:

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Freeze-in

Extremely weak interaction; never in thermal equilibrium. (axino, gravitino, Dirac sRHN)

Produced from scatterings or decays of thermal particles.Interaction rate: Γ∼ λ2T (for T > m)

Expansion rate: H∼ T2/MP

Γ < H λ2 < T/MP λ < (m/MP)1/2∼10-8

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

“EWIMP”: K-Y.Choi, Roszkowski, hep-ph/0511003

Hall, Jedamzik, March-Russell, West, 0911.1120

Freeze-in

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Boltzmann equation:

Simple solution:

Freeze-out

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Out of equilibrium when relativistic

In thermal equilibrium

Out of equilibriumwhen non-relativistic

Freeze-out: hot dark matter

When relativistic: very weak interaction

YDM =10-3, mDM=0.4 keV

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Freeze-out: cold dark matter

When non-relativistic: weak interaction

YDM =10-12, mDM=400 GeV

Non-relativistic freeze-out determines:

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Neutrinos as DM

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

The standard weak interaction of a 10 GeV neutrino

[Lee-Weinberg, 1977]

HDM

CDM

Freeze-out: non-standardStronger interaction:

freeze-out at lower Tf, suppressed ΩDM

ΓA = Hnon-st > Hst

ex) Kinetic energy dominance in quintessence model:

Hkin ~ T3 vs. Hst ~ T2

Right ΩDM for Stronger interaction

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Freeze-in vs. Freeze-out

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Freeze-in:

Freeze-out:

Toward identifying DM

What mass? What interactions?Cosmic production.

Indirect detections:

Annihilation: DM+DM V V, f f

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Gamma rays: Fermi, HessNeutrinos: IceCube, AMANDA, ANTARESAntiparticles: PAMELA, ATIC, FERMI, AMS2

Toward identifying DMDirect detection:

Scattering: DM + N DM + N

CDMS, Xenon, DAMA, CoGeNT,

COUPP, CRESST, KIMS, …

Production at LHCultimately identify DM mass & interactions.

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Indirect Detections

Pamela

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

e+/(e++e-) p/p-arXiv:0810.4995, 4994 [astro-ph]

ATIC/PPB/FERMI/HESS

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Grasso, et.al.,0905.0636

DM interpretation

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

This is for annihilationto e+μ+τ

Puzzles for DM interpretationExcesses in e+/e-; not in p.

Observed fluxes ~ 100 x predicted flux for thermal DM:

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

-

New DM ideasLeptophilic property:

1) DM couplings dominantly to leptons.

2) DM annihilates to sub-GeV particles: kinematics forbid the decay to p+p.

Boosted annihilation in galaxy: 1) Non-thermal DM.

2) Local clumpiness.

3) Breit-Wigner resonance.

4) Sommerfeld enhancement.

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

-

Sommerfeld factor with U(1)X

2010-10-21 KPSIdentifying DM EJChun@KIAS48

PAMELA/FERMI: <σv>XX ~ 10-6 GeV-2

Sommerfeld factor ~70 for mDM= 1 TeVmissing factor ~10 from local clumpiness.

EJC & Park, 0812.0308

Annihilation mediatedby U(1)X :

Direct detection: θ < 10-6

Direct detection

θ < 10-6

λ<1

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Direct Detections

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

DAMA modulation signal

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Fairbairn, Schwetz, 0808.0704

Magnetic Inelastic DM

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Chang, Weiner, Yavin, 1007.4200

CDMS

CRESST-II

XENON 10

KIMS

ZEPLIN-III

DAMA & CoGent for a light DM

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

DAMA: 2003-2010CoGent: 2010

© T.Schwetz, IDM10

10 GeV DM with U(1)X

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Mambrini, 1006.3318

mX ~ 10 GeV, mDM ~ 5-10 GeV, θ ~ 10-4

10 GeV DM with a light HiggsLarge scattering rate mediated by a light Higgs boson:

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Andreas, et.al., 1003.2595Bae,Kim,Shin, 1005.5131Belikov,Gunion,Hooper,Tait,1005.0549Draper,Liu,Wagner,Want,Zhang,1009.3963

χ10 = singlino

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Dirac GauginoDark Matter

EJC, J.C. Park, 0911.5273

Dirac vs. Majorana DMAnnihilation to fermions: no mf

2 suppression,

Nucleonic scattering σSI through Z/h exchange:

(Almost) Dirac gaugino requires a huge suppression of R-symmetry breaking: mM 0

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Dirac gaugino

δ~Higgsinocomponent

Requiring (almost) pure DiracHow tiny are the Majorana terms?

In the limit of

For small mass splitting, Bino2 decays to Bino1+photon by the effective operator;

Require its lifetime much longer than the age of the Universe:

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

τ> 1026 sec

Requiring (almost) pure Dirac

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Lower bound of anomaly mediated SUSY breaking:

Avoid the ordinary μ and Bμ terms:

Arkani-Hamed, Dimopoulos, Giudice, Romanino, 2004

Hu Hd

μ

R-symmetric gauge-Higgs sector

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Extend with Ru,d=anti-Hu,d and

Φ0/Φ1,2,3 = anti-Bino/Wino;

Two R-symmetries:

The above breaks N=2 SUSY: ξ1 = ξ2, J(H) = J(R).

The field X breaking R-symmetries:

Kribs, Poppitz, Weiner, 07

EJC, J.C. Park, 0911.5273

R-symmetric gauge-Higgs sector

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Dirac gaugino mass and extended μ term from

Suppressed Majorana mass term:

B-term for a proper EWSB: HuHdXW|F

Extended neutralino sector

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

In the basis of

Extended neutralino sector

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Diagonalized by six angles;

Diagonal mass matrix;

Dirac Bino interaction

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Interaction vertices in the mass basis;

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Approximate formula

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

In the small mixing limit: mZ << μ1,2 = M1;

Nucleonic scattering of Dirac gaugino

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Spin-independent cross-section by Z/h exchange:

2

Direct detection of Dirac gaugino

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Dirac gaugino Annihilation

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Main channels:

Others suppressed by v2:

Annihilation into leptons/quarks suppressed by slepton/squark mass leptophilic for lighter slepton:

Astrophysical constraints on σA

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Gamma ray constraint by FERMI

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

mDM= 0.2TeV

0.5 TeV

1 TeV1.2 TeV

2 TeV

Dirac gaugino parameter space

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

μ1 = μ2 μ1 = 0.1 μ2

Excluded by PAMELA anti-proton

Excluded byFERMI gamma ray

BF<10

10-3

1xσCDMS

10-3

10-5

1xσCDMS

Large Higgsinofraction

BF<10

Excluded by PAMELA anti-proton

Large Higgsinofraction

Leptophilic for PAMELA/FERMI?

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

mslepton= 2mDM

mslepton= mDM

σPAMELA/σA

Ωobs/Ωχ

Fitting PAMELA/FERMI

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

mDM=465 GeV(BF=10)

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Genesis of Baryons & Dark Matter

Baryo-DM genesisΩDM/ΩB = 5 : coincidence?Postulate the same origin for matter-antimatter asymmetry & dark matter population.

ΩDM/ΩB = mDMYDM/mBYB

i) YDM ~ YB, mDM ~ 5 GeV (for COGENT/DAMA)

ii) YDM ~ 0.01YB, mDM ~ 500 GeV (?)

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Techni-baryons

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Consider a GUT group containing both the baryon sector and the techni-baryon sector

Asymmetries in both sectors can be assumed to arise from a heavy GUT particle decay: YB = YTB.

ρB= YB mB, ρTB= YTB mTB = ρDM

ΩDM/ΩB = m TB/mB = 5 if ΛTB/ΛB = 5

Nussinov, PLB,1985

Asymmetric Dark Matter

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Assume an initial B-L asymmetry

Add an interaction which equilibrate the dark matter asymmetry and the initial B-L asymmetry

E.g., an interaction conserving B-L+DM/2 number: L H X X

Kaplan, Luty, Zurek, 0911.4117

Chemical equilibrium relation

Interaction rate > Expansion rate

Equilibration interaction

Recent inventions

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Darkogenesis, Shelton, Zurek, 1008

Hylogenesis, Davoudiasle et.al., 1008

Xogenesis, Buckley, Randall, 1009

Aidnogenesis, Blennow, et.al., 1009

Leptogenesis origin of Dirac gaugino dark matter

CP asymmetries in heavy seesaw particle decays produce both L-asymmetry and DM asymmetry

YDM /YB ~0.01 obtained by a mild hierarchy of Yukawa couplings of heavy seesaw particles

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

EJC, 1009.0983

Leptogenesis origin of Dirac gaugino dark matter

Type II seesaw superpotential:

Generalized DM number conservation:

Triplet scalar and fermion decays:

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Leptogenesis origin of Dirac gaugino dark matter

Decay asymmetries:

ΩDM/ΩB= mχ²DM/mB²B-L =5 obtained with

λ/(y~λc) ~ 0.3–0.1 & m χ~ 50–500 GeV

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Conclusion

2010-10-19 Yonsei U.Leptogesis & Dirac gaugino dark matter EJChun@KIAS

Three important puzzles waiting to be solved.

Why neutrino masses are so small?

What happened to the antimatter in the universe?

What is the identity of dark matter?

Seesaw mechanism leading to leptogenesis connects the first two questions.

The origin of dark matter and baryons may be related.

Many DM searches + LHC may resolve all the questions in the near future.