30
Schematic representation of the Dirac delta function by a line surmounted by an arrow. The height of the arrow is usually used to specify the value of any multiplicative constant, which will give the area under the function. The other convention is to write the area next to the arrowhead. Dirac delta function From Wikipedia, the free encyclopedia In mathematics, the Dirac delta function, or δ function, is a generalized function, or distribution, on the real number line that is zero everywhere except at zero, with an integral of one over the entire real line. [1][2][3] The delta function is sometimes thought of as an infinitely high, infinitely thin spike at the origin, with total area one under the spike, and physically represents the density of an idealized point mass or point charge. [4] It was introduced by theoretical physicist Paul Dirac. In the context of signal processing it is often referred to as the unit impulse symbol (or function). [5] Its discrete analog is the Kronecker delta function, which is usually defined on a discrete domain and takes values 0 and 1. From a purely mathematical viewpoint, the Dirac delta is not strictly a function, because any extendedreal function that is equal to zero everywhere but a single point must have total integral zero. [6] The delta function only makes sense as a mathematical object when it appears inside an integral. While from this perspective the Dirac delta can usually be manipulated as though it were a function, formally it must be defined as a distribution that is also a measure. In many applications, the Dirac delta is regarded as a kind of limit (a weak limit) of a sequence of functions having a tall spike at the origin. The approximating functions of the sequence are thus "approximate" or "nascent" delta functions. Contents 1 Overview 2 History 3 Definitions 3.1 As a measure 3.2 As a distribution 3.3 Generalizations 4 Properties 4.1 Scaling and symmetry 4.2 Algebraic properties 4.3 Translation 4.4 Composition with a function 4.5 Properties in n dimensions 5 Fourier transform 6 Distributional derivatives 6.1 Higher dimensions

Dirac Delta Function

Embed Size (px)

DESCRIPTION

dirac delta function

Citation preview

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 1/30

    SchematicrepresentationoftheDiracdeltafunctionbyalinesurmountedbyanarrow.Theheightofthearrowisusuallyusedtospecifythevalueofanymultiplicativeconstant,whichwillgivetheareaunderthefunction.Theotherconventionistowritetheareanexttothearrowhead.

    DiracdeltafunctionFromWikipedia,thefreeencyclopedia

    Inmathematics,theDiracdeltafunction,orfunction,isageneralizedfunction,ordistribution,ontherealnumberlinethatiszeroeverywhereexceptatzero,withanintegralofoneovertheentirerealline.[1][2][3]Thedeltafunctionissometimesthoughtofasaninfinitelyhigh,infinitelythinspikeattheorigin,withtotalareaoneunderthespike,andphysicallyrepresentsthedensityofanidealizedpointmassorpointcharge.[4]ItwasintroducedbytheoreticalphysicistPaulDirac.Inthecontextofsignalprocessingitisoftenreferredtoastheunitimpulsesymbol(orfunction).[5]ItsdiscreteanalogistheKroneckerdeltafunction,whichisusuallydefinedonadiscretedomainandtakesvalues0and1.

    Fromapurelymathematicalviewpoint,theDiracdeltaisnotstrictlyafunction,becauseanyextendedrealfunctionthatisequaltozeroeverywherebutasinglepointmusthavetotalintegralzero.[6]Thedeltafunctiononlymakessenseasamathematicalobjectwhenitappearsinsideanintegral.WhilefromthisperspectivetheDiracdeltacanusuallybemanipulatedasthoughitwereafunction,formallyitmustbedefinedasadistributionthatisalsoameasure.Inmanyapplications,theDiracdeltaisregardedasakindoflimit(aweaklimit)ofasequenceoffunctionshavingatallspikeattheorigin.Theapproximatingfunctionsofthesequencearethus"approximate"or"nascent"deltafunctions.

    Contents

    1Overview2History3Definitions

    3.1Asameasure3.2Asadistribution3.3Generalizations

    4Properties4.1Scalingandsymmetry4.2Algebraicproperties4.3Translation4.4Compositionwithafunction4.5Propertiesinndimensions

    5Fouriertransform6Distributionalderivatives

    6.1Higherdimensions

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 2/30

    TheDiracdeltafunctionasthelimit(inthesenseofdistributions)ofthesequenceofzerocenterednormaldistributions

    as .

    7Representationsofthedeltafunction7.1Approximationstotheidentity7.2Probabilisticconsiderations7.3Semigroups7.4Oscillatoryintegrals7.5Planewavedecomposition7.6Fourierkernels7.7Hilbertspacetheory

    7.7.1Spacesofholomorphicfunctions7.7.2Resolutionsoftheidentity

    7.8Infinitesimaldeltafunctions8Diraccomb9SokhotskiPlemeljtheorem10RelationshiptotheKroneckerdelta11Applications

    11.1Probabilitytheory11.2Quantummechanics11.3Structuralmechanics

    12Seealso13Notes14References15Externallinks

    Overview

    Thegraphofthedeltafunctionisusuallythoughtofasfollowingthewholexaxisandthepositiveyaxis.Despiteitsname,thedeltafunctionisnottrulyafunction,atleastnotausualonewithrangeinrealnumbers.Forexample,theobjectsf(x)=(x)andg(x)=0areequaleverywhereexceptatx=0yethaveintegralsthataredifferent.AccordingtoLebesgueintegrationtheory,iffandgarefunctionssuchthatf=galmosteverywhere,thenfisintegrableifandonlyifgisintegrableandtheintegralsoffandgareidentical.RigoroustreatmentoftheDiracdeltarequiresmeasuretheoryorthetheoryofdistributions.

    TheDiracdeltaisusedtomodelatallnarrowspikefunction(animpulse),andothersimilarabstractionssuchasapointcharge,pointmassorelectronpoint.Forexample,tocalculatethedynamicsofabaseballbeinghitbyabat,onecanapproximatetheforceofthebathittingthebaseballbyadeltafunction.Indoingso,onenotonlysimplifiestheequations,butonealsoisabletocalculatethemotionofthebaseballbyonlyconsideringthetotalimpulseofthebatagainsttheballratherthanrequiringknowledgeofthedetailsofhowthebattransferredenergytotheball.

    Inappliedmathematics,thedeltafunctionisoftenmanipulatedasakindoflimit(aweaklimit)ofasequenceoffunctions,eachmemberofwhichhasatallspikeattheorigin:forexample,asequenceofGaussiandistributionscenteredattheoriginwithvariancetendingtozero.

    History

    JosephFourierpresentedwhatisnowcalledtheFourierintegraltheoreminhistreatiseThorieanalytiquedelachaleurintheform:[7]

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 3/30

    whichistantamounttotheintroductionofthefunctionintheform:[8]

    Later,AugustinCauchyexpressedthetheoremusingexponentials:[9][10]

    Cauchypointedoutthatinsomecircumstancestheorderofintegrationinthisresultwassignificant.[11][12]

    Asjustifiedusingthetheoryofdistributions,theCauchyequationcanberearrangedtoresembleFourier'soriginalformulationandexposethefunctionas:

    wherethefunctionisexpressedas:

    Arigorousinterpretationoftheexponentialformandthevariouslimitationsuponthefunctionfnecessaryforitsapplicationextendedoverseveralcenturies.Theproblemswithaclassicalinterpretationareexplainedasfollows:[13]

    ThegreatestdrawbackoftheclassicalFouriertransformationisarathernarrowclassoffunctions(originals)forwhichitcanbeeffectivelycomputed.Namely,itisnecessarythatthesefunctionsdecreasesufficientlyrapidlytozero(intheneighborhoodofinfinity)inordertoinsuretheexistenceoftheFourierintegral.Forexample,theFouriertransformofsuchsimplefunctionsaspolynomialsdoesnotexistintheclassicalsense.TheextensionoftheclassicalFouriertransformationtodistributionsconsiderablyenlargedtheclassoffunctionsthatcouldbetransformedandthisremovedmanyobstacles.

    FurtherdevelopmentsincludedgeneralizationoftheFourierintegral,"beginningwithPlancherel'spathbreakingL2theory(1910),continuingwithWiener'sandBochner'sworks(around1930)andculminatingwiththeamalgamationintoL.Schwartz'stheoryofdistributions(1945)...",[14]andleadingtotheformaldevelopmentoftheDiracdeltafunction.

    Aninfinitesimalformulaforaninfinitelytall,unitimpulsedeltafunction(infinitesimalversionofCauchydistribution)explicitlyappearsinan1827textofAugustinLouisCauchy.[15]SimonDenisPoissonconsideredtheissueinconnectionwiththestudyofwavepropagationasdidGustavKirchhoffsomewhatlater.KirchhoffandHermannvonHelmholtzalsointroducedtheunitimpulseasalimitofGaussians,whichalsocorresponded

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 4/30

    toLordKelvin'snotionofapointheatsource.Attheendofthe19thcentury,OliverHeavisideusedformalFourierseriestomanipulatetheunitimpulse.[16]TheDiracdeltafunctionassuchwasintroducedasa"convenientnotation"byPaulDiracinhisinfluential1930bookThePrinciplesofQuantumMechanics.[17]Hecalleditthe"deltafunction"sinceheuseditasacontinuousanalogueofthediscreteKroneckerdelta.

    Definitions

    TheDiracdeltacanbelooselythoughtofasafunctiononthereallinewhichiszeroeverywhereexceptattheorigin,whereitisinfinite,

    andwhichisalsoconstrainedtosatisfytheidentity

    [18]

    Thisismerelyaheuristiccharacterization.TheDiracdeltaisnotafunctioninthetraditionalsenseasnofunctiondefinedontherealnumbershastheseproperties.[17]TheDiracdeltafunctioncanberigorouslydefinedeitherasadistributionorasameasure.

    Asameasure

    Onewaytorigorouslydefinethedeltafunctionisasameasure,whichacceptsasanargumentasubsetAofthereallineR,andreturns(A)=1if0A,and(A)=0otherwise.[19]Ifthedeltafunctionisconceptualizedasmodelinganidealizedpointmassat0,then(A)representsthemasscontainedinthesetA.Onemaythendefinetheintegralagainstastheintegralofafunctionagainstthismassdistribution.Formally,theLebesgueintegralprovidesthenecessaryanalyticdevice.TheLebesgueintegralwithrespecttothemeasuresatisfies

    forallcontinuouscompactlysupportedfunctionsf.ThemeasureisnotabsolutelycontinuouswithrespecttotheLebesguemeasureinfact,itisasingularmeasure.Consequently,thedeltameasurehasnoRadonNikodymderivativenotruefunctionforwhichtheproperty

    holds.[20]Asaresult,thelatternotationisaconvenientabuseofnotation,andnotastandard(RiemannorLebesgue)integral.

    AsaprobabilitymeasureonR,thedeltameasureischaracterizedbyitscumulativedistributionfunction,whichistheunitstepfunction[21]

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 5/30

    ThismeansthatH(x)istheintegralofthecumulativeindicatorfunction1(,x]withrespecttothemeasuretowit,

    ThusinparticulartheintegralofthedeltafunctionagainstacontinuousfunctioncanbeproperlyunderstoodasaStieltjesintegral:[22]

    Allhighermomentsofarezero.Inparticular,characteristicfunctionandmomentgeneratingfunctionarebothequaltoone.

    Asadistribution

    Inthetheoryofdistributionsageneralizedfunctionisthoughtofnotasafunctionitself,butonlyinrelationtohowitaffectsotherfunctionswhenitis"integrated"againstthem.Inkeepingwiththisphilosophy,todefinethedeltafunctionproperly,itisenoughtosaywhatthe"integral"ofthedeltafunctionagainstasufficiently"good"testfunctionis.Ifthedeltafunctionisalreadyunderstoodasameasure,thentheLebesgueintegralofatestfunctionagainstthatmeasuresuppliesthenecessaryintegral.

    AtypicalspaceoftestfunctionsconsistsofallsmoothfunctionsonRwithcompactsupport.Asadistribution,theDiracdeltaisalinearfunctionalonthespaceoftestfunctionsandisdefinedby[23]

    (1)

    foreverytestfunction.

    Fortobeproperlyadistribution,itmustbe"continuous"inasuitablesense.Ingeneral,foralinearfunctionalSonthespaceoftestfunctionstodefineadistribution,itisnecessaryandsufficientthat,foreverypositiveintegerNthereisanintegerMNandaconstantCNsuchthatforeverytestfunction,onehastheinequality[24]

    Withthedistribution,onehassuchaninequality(withCN=1)withMN=0forallN.Thusisadistributionoforderzero.Itis,furthermore,adistributionwithcompactsupport(thesupportbeing{0}).

    Thedeltadistributioncanalsobedefinedinanumberofequivalentways.Forinstance,itisthedistributionalderivativeoftheHeavisidestepfunction.Thismeansthat,foreverytestfunction,onehas

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 6/30

    Intuitively,ifintegrationbypartswerepermitted,thenthelatterintegralshouldsimplifyto

    andindeed,aformofintegrationbypartsispermittedfortheStieltjesintegral,andinthatcaseonedoeshave

    Inthecontextofmeasuretheory,theDiracmeasuregivesrisetoadistributionbyintegration.Conversely,equation(1)definesaDaniellintegralonthespaceofallcompactlysupportedcontinuousfunctionswhich,bytheRieszrepresentationtheorem,canberepresentedastheLebesgueintegralofwithrespecttosomeRadonmeasure.

    Generalizations

    ThedeltafunctioncanbedefinedinndimensionalEuclideanspaceRnasthemeasuresuchthat

    foreverycompactlysupportedcontinuousfunctionf.Asameasure,thendimensionaldeltafunctionistheproductmeasureofthe1dimensionaldeltafunctionsineachvariableseparately.Thus,formally,withx=(x1,x2,...,xn),onehas[5]

    (2)

    Thedeltafunctioncanalsobedefinedinthesenseofdistributionsexactlyasaboveintheonedimensionalcase.[25]However,despitewidespreaduseinengineeringcontexts,(2)shouldbemanipulatedwithcare,sincetheproductofdistributionscanonlybedefinedunderquitenarrowcircumstances.[26]

    ThenotionofaDiracmeasuremakessenseonanyset.[19]ThusifXisaset,x0Xisamarkedpoint,andisanysigmaalgebraofsubsetsofX,thenthemeasuredefinedonsetsAby

    isthedeltameasureorunitmassconcentratedatx0.

    Anothercommongeneralizationofthedeltafunctionistoadifferentiablemanifoldwheremostofitspropertiesasadistributioncanalsobeexploitedbecauseofthedifferentiablestructure.ThedeltafunctiononamanifoldMcenteredatthepointx0Misdefinedasthefollowingdistribution:

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 7/30

    (3)

    forallcompactlysupportedsmoothrealvaluedfunctionsonM.[27]AcommonspecialcaseofthisconstructioniswhenMisanopensetintheEuclideanspaceRn.

    OnalocallycompactHausdorffspaceX,theDiracdeltameasureconcentratedatapointxistheRadonmeasureassociatedwiththeDaniellintegral(3)oncompactlysupportedcontinuousfunctions.Atthislevelofgenerality,calculusassuchisnolongerpossible,howeveravarietyoftechniquesfromabstractanalysisareavailable.Forinstance,themapping isacontinuousembeddingofXintothespaceoffiniteRadonmeasuresonX,equippedwithitsvaguetopology.Moreover,theconvexhulloftheimageofXunderthisembeddingisdenseinthespaceofprobabilitymeasuresonX.[28]

    Properties

    Scalingandsymmetry

    Thedeltafunctionsatisfiesthefollowingscalingpropertyforanonzeroscalar:[29]

    andso

    (4)

    Inparticular,thedeltafunctionisanevendistribution,inthesensethat

    whichishomogeneousofdegree1.

    Algebraicproperties

    Thedistributionalproductofwithxisequaltozero:

    Conversely,ifxf(x)=xg(x),wherefandgaredistributions,then

    forsomeconstantc.[30]

    Translation

    TheintegralofthetimedelayedDiracdeltaisgivenby:

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 8/30

    Thisissometimesreferredtoasthesiftingproperty[31]orthesamplingproperty.Thedeltafunctionissaidto"siftout"thevalueatt=T.

    Itfollowsthattheeffectofconvolvingafunctionf(t)withthetimedelayedDiracdeltaistotimedelayf(t)bythesameamount:

    (using(4): )

    Thisholdsunderthepreciseconditionthatfbeatempereddistribution(seethediscussionoftheFouriertransformbelow).Asaspecialcase,forinstance,wehavetheidentity(understoodinthedistributionsense)

    Compositionwithafunction

    Moregenerally,thedeltadistributionmaybecomposedwithasmoothfunctiong(x)insuchawaythatthefamiliarchangeofvariablesformulaholds,that

    providedthatgisacontinuouslydifferentiablefunctionwithgnowherezero.[32]Thatis,thereisauniquewaytoassignmeaningtothedistribution sothatthisidentityholdsforallcompactlysupportedtestfunctionsf.Therefore,thedomainmustbebrokenuptoexcludetheg'=0point.Thisdistributionsatisfies(g(x))=0ifgisnowherezero,andotherwiseifghasarealrootatx0,then

    Itisnaturalthereforetodefinethecomposition(g(x))forcontinuouslydifferentiablefunctionsgby

    wherethesumextendsoverallrootsofg(x),whichareassumedtobesimple.[32]Thus,forexample

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 9/30

    Intheintegralformthegeneralizedscalingpropertymaybewrittenas

    Propertiesinndimensions

    Thedeltadistributioninanndimensionalspacesatisfiesthefollowingscalingpropertyinstead:

    sothatisahomogeneousdistributionofdegreen.Underanyreflectionorrotation,thedeltafunctionisinvariant:

    Asintheonevariablecase,itispossibletodefinethecompositionofwithabiLipschitzfunction[33]

    g:RnRnuniquelysothattheidentity

    forallcompactlysupportedfunctionsf.

    Usingthecoareaformulafromgeometricmeasuretheory,onecanalsodefinethecompositionofthedeltafunctionwithasubmersionfromoneEuclideanspacetoanotheroneofdifferentdimensiontheresultisatypeofcurrent.Inthespecialcaseofacontinuouslydifferentiablefunctiong:RnRsuchthatthegradientofgisnowherezero,thefollowingidentityholds[34]

    wheretheintegralontherightisoverg1(0),the(n1)dimensionalsurfacedefinedbyg(x)=0withrespecttotheMinkowskicontentmeasure.Thisisknownasasimplelayerintegral.

    Moregenerally,ifSisasmoothhypersurfaceofRn,thenwecanassociatedtoSthedistributionthatintegratesanycompactlysupportedsmoothfunctiongoverS:

    whereisthehypersurfacemeasureassociatedtoS.ThisgeneralizationisassociatedwiththepotentialtheoryofsimplelayerpotentialsonS.IfDisadomaininRnwithsmoothboundaryS,thenSisequaltothenormalderivativeoftheindicatorfunctionofDinthedistributionsense:

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 10/30

    wherenistheoutwardnormal.[35][36]Foraproof,seee.g.thearticleonthesurfacedeltafunction.

    Fouriertransform

    Thedeltafunctionisatempereddistribution,andthereforeithasawelldefinedFouriertransform.Formally,onefinds[37]

    Properlyspeaking,theFouriertransformofadistributionisdefinedbyimposingselfadjointnessoftheFouriertransformunderthedualitypairing oftempereddistributionswithSchwartzfunctions.Thus isdefinedastheuniquetempereddistributionsatisfying

    forallSchwartzfunctions.Andindeeditfollowsfromthisthat

    Asaresultofthisidentity,theconvolutionofthedeltafunctionwithanyothertempereddistributionSissimplyS:

    Thatistosaythatisanidentityelementfortheconvolutionontempereddistributions,andinfactthespaceofcompactlysupporteddistributionsunderconvolutionisanassociativealgebrawithidentitythedeltafunction.Thispropertyisfundamentalinsignalprocessing,asconvolutionwithatempereddistributionisalineartimeinvariantsystem,andapplyingthelineartimeinvariantsystemmeasuresitsimpulseresponse.Theimpulseresponsecanbecomputedtoanydesireddegreeofaccuracybychoosingasuitableapproximationfor,andonceitisknown,itcharacterizesthesystemcompletely.SeeLTIsystemtheory:Impulseresponseandconvolution.

    TheinverseFouriertransformofthetempereddistributionf()=1isthedeltafunction.Formally,thisisexpressed

    andmorerigorously,itfollowssince

    forallSchwartzfunctionsf.

    Intheseterms,thedeltafunctionprovidesasuggestivestatementoftheorthogonalitypropertyoftheFourierkernelonR.Formally,onehas

    Thisis,ofcourse,shorthandfortheassertionthattheFouriertransformofthetempereddistribution

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 11/30

    is

    whichagainfollowsbyimposingselfadjointnessoftheFouriertransform.

    ByanalyticcontinuationoftheFouriertransform,theLaplacetransformofthedeltafunctionisfoundtobe[38]

    Distributionalderivatives

    ThedistributionalderivativeoftheDiracdeltadistributionisthedistributiondefinedoncompactlysupportedsmoothtestfunctionsby[39]

    Thefirstequalityhereisakindofintegrationbyparts,forifwereatruefunctionthen

    Thekthderivativeofisdefinedsimilarlyasthedistributiongivenontestfunctionsby

    Inparticular,isaninfinitelydifferentiabledistribution.

    Thefirstderivativeofthedeltafunctionisthedistributionallimitofthedifferencequotients:[40]

    Moreproperly,onehas

    wherehisthetranslationoperator,definedonfunctionsbyh(x)=(x+h),andonadistributionSby

    Inthetheoryofelectromagnetism,thefirstderivativeofthedeltafunctionrepresentsapointmagneticdipolesituatedattheorigin.Accordingly,itisreferredtoasadipoleorthedoubletfunction.[41]

    Thederivativeofthedeltafunctionsatisfiesanumberofbasicproperties,including:

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 12/30

    [42]

    Furthermore,theconvolutionofwithacompactlysupportedsmoothfunctionfis

    whichfollowsfromthepropertiesofthedistributionalderivativeofaconvolution.

    Higherdimensions

    Moregenerally,onanopensetUinthendimensionalEuclideanspaceRn,theDiracdeltadistributioncenteredatapointaUisdefinedby[43]

    forallS(U),thespaceofallsmoothcompactlysupportedfunctionsonU.If=(1,...,n)isanymulti

    indexanddenotestheassociatedmixedpartialderivativeoperator,thenthethderivativeaofais

    givenby[43]

    Thatis,thethderivativeofaisthedistributionwhosevalueonanytestfunctionisthethderivativeofata(withtheappropriatepositiveornegativesign).

    Thefirstpartialderivativesofthedeltafunctionarethoughtofasdoublelayersalongthecoordinateplanes.Moregenerally,thenormalderivativeofasimplelayersupportedonasurfaceisadoublelayersupportedonthatsurface,andrepresentsalaminarmagneticmonopole.Higherderivativesofthedeltafunctionareknowninphysicsasmultipoles.

    Higherderivativesenterintomathematicsnaturallyasthebuildingblocksforthecompletestructureofdistributionswithpointsupport.IfSisanydistributiononUsupportedontheset{a}consistingofasinglepoint,thenthereisanintegermandcoefficientscsuchthat[44]

    Representationsofthedeltafunction

    Thedeltafunctioncanbeviewedasthelimitofasequenceoffunctions

    where(x)issometimescalledanascentdeltafunction.Thislimitismeantinaweaksense:eitherthat

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 13/30

    (5)

    forallcontinuousfunctionsfhavingcompactsupport,orthatthislimitholdsforallsmoothfunctionsfwithcompactsupport.Thedifferencebetweenthesetwoslightlydifferentmodesofweakconvergenceisoftensubtle:theformerisconvergenceinthevaguetopologyofmeasures,andthelatterisconvergenceinthesenseofdistributions.

    Approximationstotheidentity

    Typicallyanascentdeltafunctioncanbeconstructedinthefollowingmanner.LetbeanabsolutelyintegrablefunctiononRoftotalintegral1,anddefine

    Inndimensions,oneusesinsteadthescaling

    Thenasimplechangeofvariablesshowsthatalsohasintegral1.[45]Oneshowseasilythat(5)holdsforallcontinuouscompactlysupportedfunctionsf,andsoconvergesweaklytointhesenseofmeasures.

    Theconstructedinthiswayareknownasanapproximationtotheidentity.[46]Thisterminologyisbecause

    thespaceL1(R)ofabsolutelyintegrablefunctionsisclosedundertheoperationofconvolutionoffunctions:fgL1(R)wheneverfandgareinL1(R).However,thereisnoidentityinL1(R)fortheconvolutionproduct:noelementhsuchthatfh=fforallf.Nevertheless,thesequencedoesapproximatesuchanidentityinthesensethat

    Thislimitholdsinthesenseofmeanconvergence(convergenceinL1).Furtherconditionsonthe,for

    instancethatitbeamollifierassociatedtoacompactlysupportedfunction,[47]areneededtoensurepointwiseconvergencealmosteverywhere.

    Iftheinitial=1isitselfsmoothandcompactlysupportedthenthesequenceiscalledamollifier.Thestandardmollifierisobtainedbychoosingtobeasuitablynormalizedbumpfunction,forinstance

    Insomesituationssuchasnumericalanalysis,apiecewiselinearapproximationtotheidentityisdesirable.Thiscanbeobtainedbytaking1tobeahatfunction.Withthischoiceof1,onehas

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 14/30

    whichareallcontinuousandcompactlysupported,althoughnotsmoothandsonotamollifier.

    Probabilisticconsiderations

    Inthecontextofprobabilitytheory,itisnaturaltoimposetheadditionalconditionthattheinitial1inanapproximationtotheidentityshouldbepositive,assuchafunctionthenrepresentsaprobabilitydistribution.Convolutionwithaprobabilitydistributionissometimesfavorablebecauseitdoesnotresultinovershootorundershoot,astheoutputisaconvexcombinationoftheinputvalues,andthusfallsbetweenthemaximumandminimumoftheinputfunction.Taking1tobeanyprobabilitydistributionatall,andletting(x)=1(x/)/asabovewillgiverisetoanapproximationtotheidentity.Ingeneralthisconvergesmorerapidlytoadeltafunctionif,inaddition,hasmean0andhassmallhighermoments.Forinstance,if1istheuniform

    distributionon[1/2,1/2],alsoknownastherectangularfunction,then:[48]

    AnotherexampleiswiththeWignersemicircledistribution

    Thisiscontinuousandcompactlysupported,butnotamollifierbecauseitisnotsmooth.

    Semigroups

    Nascentdeltafunctionsoftenariseasconvolutionsemigroups.Thisamountstothefurtherconstraintthattheconvolutionofwithmustsatisfy

    forall,>0.ConvolutionsemigroupsinL1thatformanascentdeltafunctionarealwaysanapproximationtotheidentityintheabovesense,howeverthesemigroupconditionisquiteastrongrestriction.

    Inpractice,semigroupsapproximatingthedeltafunctionariseasfundamentalsolutionsorGreen'sfunctionstophysicallymotivatedellipticorparabolicpartialdifferentialequations.Inthecontextofappliedmathematics,semigroupsariseastheoutputofalineartimeinvariantsystem.Abstractly,ifAisalinearoperatoractingonfunctionsofx,thenaconvolutionsemigrouparisesbysolvingtheinitialvalueproblem

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 15/30

    inwhichthelimitisasusualunderstoodintheweaksense.Setting(x)=(,x)givestheassociatednascentdeltafunction.

    Someexamplesofphysicallyimportantconvolutionsemigroupsarisingfromsuchafundamentalsolutionincludethefollowing.

    Theheatkernel

    Theheatkernel,definedby

    representsthetemperatureinaninfinitewireattimet>0,ifaunitofheatenergyisstoredattheoriginofthewireattimet=0.Thissemigroupevolvesaccordingtotheonedimensionalheatequation:

    Inprobabilitytheory,(x)isanormaldistributionofvarianceandmean0.Itrepresentstheprobabilitydensityattimet=ofthepositionofaparticlestartingattheoriginfollowingastandardBrownianmotion.Inthiscontext,thesemigroupconditionisthenanexpressionoftheMarkovpropertyofBrownianmotion.

    InhigherdimensionalEuclideanspaceRn,theheatkernelis

    andhasthesamephysicalinterpretation,mutatismutandis.Italsorepresentsanascentdeltafunctioninthesensethatinthedistributionsenseas0.

    ThePoissonkernel

    ThePoissonkernel

    isthefundamentalsolutionoftheLaplaceequationintheupperhalfplane.[49]Itrepresentstheelectrostaticpotentialinasemiinfiniteplatewhosepotentialalongtheedgeisheldatfixedatthedeltafunction.ThePoissonkernelisalsocloselyrelatedtotheCauchydistribution.Thissemigroupevolvesaccordingtotheequation

    wheretheoperatorisrigorouslydefinedastheFouriermultiplier

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 16/30

    Oscillatoryintegrals

    Inareasofphysicssuchaswavepropagationandwavemechanics,theequationsinvolvedarehyperbolicandsomayhavemoresingularsolutions.Asaresult,thenascentdeltafunctionsthatariseasfundamentalsolutionsoftheassociatedCauchyproblemsaregenerallyoscillatoryintegrals.Anexample,whichcomesfromasolutionoftheEulerTricomiequationoftransonicgasdynamics,[50]istherescaledAiryfunction

    AlthoughusingtheFouriertransform,itiseasytoseethatthisgeneratesasemigroupinsomesense,itisnotabsolutelyintegrableandsocannotdefineasemigroupintheabovestrongsense.Manynascentdeltafunctionsconstructedasoscillatoryintegralsonlyconvergeinthesenseofdistributions(anexampleistheDirichletkernelbelow),ratherthaninthesenseofmeasures.

    AnotherexampleistheCauchyproblemforthewaveequationinR1+1:[51]

    Thesolutionurepresentsthedisplacementfromequilibriumofaninfiniteelasticstring,withaninitialdisturbanceattheorigin.

    Otherapproximationstotheidentityofthiskindincludethesincfunction(usedwidelyinelectronicsandtelecommunications)

    andtheBesselfunction

    Planewavedecomposition

    Oneapproachtothestudyofalinearpartialdifferentialequation

    whereLisadifferentialoperatoronRn,istoseekfirstafundamentalsolution,whichisasolutionoftheequation

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 17/30

    WhenLisparticularlysimple,thisproblemcanoftenberesolvedusingtheFouriertransformdirectly(asinthecaseofthePoissonkernelandheatkernelalreadymentioned).Formorecomplicatedoperators,itissometimeseasierfirsttoconsideranequationoftheform

    wherehisaplanewavefunction,meaningthatithastheform

    forsomevector.Suchanequationcanberesolved(ifthecoefficientsofLareanalyticfunctions)bytheCauchyKovalevskayatheoremor(ifthecoefficientsofLareconstant)byquadrature.So,ifthedeltafunctioncanbedecomposedintoplanewaves,thenonecaninprinciplesolvelinearpartialdifferentialequations.

    SuchadecompositionofthedeltafunctionintoplanewaveswaspartofageneraltechniquefirstintroducedessentiallybyJohannRadon,andthendevelopedinthisformbyFritzJohn(1955).[52]Chooseksothatn+kisaneveninteger,andforarealnumbers,put

    ThenisobtainedbyapplyingapoweroftheLaplaciantotheintegralwithrespecttotheunitspheremeasuredofg(x)forintheunitsphereSn1:

    TheLaplacianhereisinterpretedasaweakderivative,sothatthisequationistakentomeanthat,foranytestfunction,

    TheresultfollowsfromtheformulafortheNewtonianpotential(thefundamentalsolutionofPoisson'sequation).ThisisessentiallyaformoftheinversionformulafortheRadontransform,becauseitrecoversthevalueof(x)fromitsintegralsoverhyperplanes.Forinstance,ifnisoddandk=1,thentheintegralontherighthandsideis

    whereR(,p)istheRadontransformof:

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 18/30

    Analternativeequivalentexpressionoftheplanewavedecomposition,fromGel'fand&Shilov(19661968,I,3.10),is

    forneven,and

    fornodd.

    Fourierkernels

    InthestudyofFourierseries,amajorquestionconsistsofdeterminingwhetherandinwhatsensetheFourierseriesassociatedwithaperiodicfunctionconvergestothefunction.ThenthpartialsumoftheFourierseriesofafunctionfofperiod2isdefinedbyconvolution(ontheinterval[,])withtheDirichletkernel:

    Thus,

    where

    AfundamentalresultofelementaryFourierseriesstatesthattheDirichletkerneltendstotheamultipleofthedeltafunctionasN.Thisisinterpretedinthedistributionsense,that

    foreverycompactlysupportedsmoothfunctionf.Thus,formallyonehas

    ontheinterval[,].

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 19/30

    Inspiteofthis,theresultdoesnotholdforallcompactlysupportedcontinuousfunctions:thatisDNdoesnotconvergeweaklyinthesenseofmeasures.ThelackofconvergenceoftheFourierserieshasledtotheintroductionofavarietyofsummabilitymethodsinordertoproduceconvergence.ThemethodofCesrosummationleadstotheFejrkernel[53]

    TheFejrkernelstendtothedeltafunctioninastrongersensethat[54]

    foreverycompactlysupportedcontinuousfunctionf.TheimplicationisthattheFourierseriesofanycontinuousfunctionisCesrosummabletothevalueofthefunctionateverypoint.

    Hilbertspacetheory

    TheDiracdeltadistributionisadenselydefinedunboundedlinearfunctionalontheHilbertspaceL2ofsquareintegrablefunctions.Indeed,smoothcompactlysupportfunctionsaredenseinL2,andtheactionofthedeltadistributiononsuchfunctionsiswelldefined.Inmanyapplications,itispossibletoidentifysubspacesofL2andtogiveastrongertopologyonwhichthedeltafunctiondefinesaboundedlinearfunctional.

    Sobolevspaces

    TheSobolevembeddingtheoremforSobolevspacesonthereallineRimpliesthatanysquareintegrablefunctionfsuchthat

    isautomaticallycontinuous,andsatisfiesinparticular

    ThusisaboundedlinearfunctionalontheSobolevspaceH1.EquivalentlyisanelementofthecontinuousdualspaceH1ofH1.Moregenerally,inndimensions,onehasHs(Rn)provideds>n/2.

    Spacesofholomorphicfunctions

    Incomplexanalysis,thedeltafunctionentersviaCauchy'sintegralformulawhichassertsthatifDisadomaininthecomplexplanewithsmoothboundary,then

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 20/30

    forallholomorphicfunctionsfinDthatarecontinuousontheclosureofD.Asaresult,thedeltafunctionzisrepresentedonthisclassofholomorphicfunctionsbytheCauchyintegral:

    Moregenerally,letH2(D)betheHardyspaceconsistingoftheclosureinL2(D)ofallholomorphicfunctionsinDcontinuousuptotheboundaryofD.ThenfunctionsinH2(D)uniquelyextendtoholomorphicfunctionsinD,andtheCauchyintegralformulacontinuestohold.InparticularforzD,thedeltafunctionzisa

    continuouslinearfunctionalonH2(D).Thisisaspecialcaseofthesituationinseveralcomplexvariablesinwhich,forsmoothdomainsD,theSzegkernelplaystheroleoftheCauchyintegral.

    Resolutionsoftheidentity

    Givenacompleteorthonormalbasissetoffunctions{n}inaseparableHilbertspace,forexample,thenormalizedeigenvectorsofacompactselfadjointoperator,anyvectorfcanbeexpressedas:

    Thecoefficients{n}arefoundas:

    whichmayberepresentedbythenotation:

    aformofthebraketnotationofDirac.[55]Adoptingthisnotation,theexpansionofftakesthedyadicform:[56]

    LettingIdenotetheidentityoperatorontheHilbertspace,theexpression

    iscalledaresolutionoftheidentity.WhentheHilbertspaceisthespaceL2(D)ofsquareintegrablefunctionsonadomainD,thequantity:

    isanintegraloperator,andtheexpressionforfcanberewrittenas:

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 21/30

    ADiraccombisaninfiniteseriesofDiracdeltafunctionsspacedatintervalsofT

    TherighthandsideconvergestofintheL2sense.Itneednotholdinapointwisesense,evenwhenfisacontinuousfunction.Nevertheless,itiscommontoabusenotationandwrite

    resultingintherepresentationofthedeltafunction:[57]

    WithasuitableriggedHilbertspace(,L2(D),*)whereL2(D)containsallcompactlysupportedsmoothfunctions,thissummationmayconvergein*,dependingonthepropertiesofthebasisn.Inmostcasesofpracticalinterest,theorthonormalbasiscomesfromanintegralordifferentialoperator,inwhichcasetheseriesconvergesinthedistributionsense.[58]

    Infinitesimaldeltafunctions

    Cauchyusedaninfinitesimaltowritedownaunitimpulse,infinitelytallandnarrowDiractypedeltafunctionsatisfying inanumberofarticlesin1827.[59]Cauchydefinedan

    infinitesimalinCoursd'Analyse(1827)intermsofasequencetendingtozero.Namely,suchanullsequencebecomesaninfinitesimalinCauchy'sandLazareCarnot'sterminology.

    Nonstandardanalysisallowsonetorigorouslytreatinfinitesimals.ThearticlebyYamashita(2007)containsabibliographyonmodernDiracdeltafunctionsinthecontextofaninfinitesimalenrichedcontinuumprovidedbythehyperreals.HeretheDiracdeltacanbegivenbyanactualfunction,havingthepropertythatforeveryrealfunctionFonehas asanticipatedbyFourierandCauchy.

    Diraccomb

    Asocalleduniform"pulsetrain"ofDiracdeltameasures,whichisknownasaDiraccomb,orastheShahdistribution,createsasamplingfunction,oftenusedindigitalsignalprocessing(DSP)anddiscretetimesignalanalysis.TheDiraccombisgivenastheinfinitesum,whoselimitisunderstoodinthedistributionsense,

    whichisasequenceofpointmassesateachoftheintegers.

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 22/30

    Uptoanoverallnormalizingconstant,theDiraccombisequaltoitsownFouriertransform.ThisissignificantbecauseiffisanySchwartzfunction,thentheperiodizationoffisgivenbytheconvolution

    Inparticular,

    ispreciselythePoissonsummationformula.[60]

    SokhotskiPlemeljtheorem

    TheSokhotskiPlemeljtheorem,importantinquantummechanics,relatesthedeltafunctiontothedistributionp.v.1/x,theCauchyprincipalvalueofthefunction1/x,definedby

    Sokhotsky'sformulastatesthat[61]

    Herethelimitisunderstoodinthedistributionsense,thatforallcompactlysupportedsmoothfunctionsf,

    RelationshiptotheKroneckerdelta

    TheKroneckerdeltaijisthequantitydefinedby

    forallintegersi,j.Thisfunctionthensatisfiesthefollowinganalogofthesiftingproperty:if isanydoublyinfinitesequence,then

    Similarly,foranyrealorcomplexvaluedcontinuousfunctionfonR,theDiracdeltasatisfiesthesiftingproperty

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 23/30

    ThisexhibitstheKroneckerdeltafunctionasadiscreteanalogoftheDiracdeltafunction.[62]

    Applications

    Probabilitytheory

    Inprobabilitytheoryandstatistics,theDiracdeltafunctionisoftenusedtorepresentadiscretedistribution,orapartiallydiscrete,partiallycontinuousdistribution,usingaprobabilitydensityfunction(whichisnormallyusedtorepresentfullycontinuousdistributions).Forexample,theprobabilitydensityfunctionf(x)ofadiscretedistributionconsistingofpointsx={x1,...,xn},withcorrespondingprobabilitiesp1,...,pn,canbewrittenas

    Asanotherexample,consideradistributionwhich6/10ofthetimereturnsastandardnormaldistribution,and4/10ofthetimereturnsexactlythevalue3.5(i.e.apartlycontinuous,partlydiscretemixturedistribution).Thedensityfunctionofthisdistributioncanbewrittenas

    Thedeltafunctionisalsousedinacompletelydifferentwaytorepresentthelocaltimeofadiffusionprocess(likeBrownianmotion).ThelocaltimeofastochasticprocessB(t)isgivenby

    andrepresentstheamountoftimethattheprocessspendsatthepointxintherangeoftheprocess.Moreprecisely,inonedimensionthisintegralcanbewritten

    where1[x,x+]istheindicatorfunctionoftheinterval[x,x+].

    Quantummechanics

    Wegiveanexampleofhowthedeltafunctionisexpedientinquantummechanics.Thewavefunctionofaparticlegivestheprobabilityamplitudeoffindingaparticlewithinagivenregionofspace.WavefunctionsareassumedtobeelementsoftheHilbertspaceL2ofsquareintegrablefunctions,andthetotalprobabilityoffindingaparticlewithinagivenintervalistheintegralofthemagnitudeofthewavefunctionsquaredovertheinterval.Aset{n}ofwavefunctionsisorthonormaliftheyarenormalizedby

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 24/30

    whereherereferstotheKroneckerdelta.Asetoforthonormalwavefunctionsiscompleteinthespaceofsquareintegrablefunctionsifanywavefunctioncanbeexpressedasacombinationofthen:

    with .CompleteorthonormalsystemsofwavefunctionsappearnaturallyastheeigenfunctionsoftheHamiltonian(ofaboundsystem)inquantummechanicsthatmeasurestheenergylevels,whicharecalledtheeigenvalues.Thesetofeigenvalues,inthiscase,isknownasthespectrumoftheHamiltonian.Inbraketnotation,asabove,thisequalityimpliestheresolutionoftheidentity:

    Heretheeigenvaluesareassumedtobediscrete,butthesetofeigenvaluesofanobservablemaybecontinuousratherthandiscrete.Anexampleisthepositionobservable,Q(x)=x(x).Thespectrumoftheposition(inonedimension)istheentirerealline,andiscalledacontinuousspectrum.However,unliketheHamiltonian,thepositionoperatorlackspropereigenfunctions.Theconventionalwaytoovercomethisshortcomingistowidentheclassofavailablefunctionsbyallowingdistributionsaswell:thatis,toreplacetheHilbertspaceofquantummechanicsbyanappropriateriggedHilbertspace.[63]Inthiscontext,thepositionoperatorhasacompletesetofeigendistributions,labeledbythepointsyoftherealline,givenby

    Theeigenfunctionsofpositionaredenotedby inDiracnotation,andareknownaspositioneigenstates.

    Similarconsiderationsapplytotheeigenstatesofthemomentumoperator,orindeedanyotherselfadjointunboundedoperatorPontheHilbertspace,providedthespectrumofPiscontinuousandtherearenodegenerateeigenvalues.Inthatcase,thereisasetofrealnumbers(thespectrum),andacollectionyofdistributionsindexedbytheelementsof,suchthat

    Thatis,yaretheeigenvectorsofP.Iftheeigenvectorsarenormalizedsothat

    inthedistributionsense,thenforanytestfunction,

    where

    Thatis,asinthediscretecase,thereisaresolutionoftheidentity

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 25/30

    wheretheoperatorvaluedintegralisagainunderstoodintheweaksense.IfthespectrumofPhasbothcontinuousanddiscreteparts,thentheresolutionoftheidentityinvolvesasummationoverthediscretespectrumandanintegraloverthecontinuousspectrum.

    Thedeltafunctionalsohasmanymorespecializedapplicationsinquantummechanics,suchasthedeltapotentialmodelsforasingleanddoublepotentialwell.

    Structuralmechanics

    Thedeltafunctioncanbeusedinstructuralmechanicstodescribetransientloadsorpointloadsactingonstructures.ThegoverningequationofasimplemassspringsystemexcitedbyasuddenforceimpulseIattimet=0canbewritten

    wheremisthemass,thedeflectionandkthespringconstant.

    Asanotherexample,theequationgoverningthestaticdeflectionofaslenderbeamis,accordingtoEulerBernoullitheory,

    whereEIisthebendingstiffnessofthebeam,wthedeflection,xthespatialcoordinateandq(x)theloaddistribution.IfabeamisloadedbyapointforceFatx=x0,theloaddistributioniswritten

    AsintegrationofthedeltafunctionresultsintheHeavisidestepfunction,itfollowsthatthestaticdeflectionofaslenderbeamsubjecttomultiplepointloadsisdescribedbyasetofpiecewisepolynomials.

    Alsoapointmomentactingonabeamcanbedescribedbydeltafunctions.ConsidertwoopposingpointforcesFatadistancedapart.TheythenproduceamomentM=Fdactingonthebeam.Now,letthedistancedapproachthelimitzero,whileMiskeptconstant.Theloaddistribution,assumingaclockwisemomentactingatx=0,iswritten

    Pointmomentscanthusberepresentedbythederivativeofthedeltafunction.Integrationofthebeamequationagainresultsinpiecewisepolynomialdeflection.

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 26/30

    Seealso

    Atom(measuretheory)DeltapotentialDiracmeasureFundamentalsolutionGreen'sfunctionLaplacianoftheindicator

    Notes

    1. Dirac1958,15Thefunction,p.582. Gel'fand&Shilov1968,VolumeI,1.1,1.33. Schwartz1950,p.34. Arfken&Weber2000,p.845. Bracewell1986,Chapter56. Vladimirov1971,5.17. JBFourier(1822).TheAnalyticalTheoryofHeat(http://books.google.com/books?id=

    N8EAAAAYAAJ&pg=PA408&dq=%22when+the+integrals+are+taken+between+infinite+limits%22+%22that+is+to+say,+that+we+have+the+equation%22&hl=en&sa=X&ei=rFeT96cEIzKiQKcyfDtDQ&ved=0CD4Q6AEwAA#v=onepage&q=%22when%20the%20integrals%20are%20taken%20between%20infinite%20limits%22%20%22that%20is%20to%20say%2C%20that%20we%20have%20the%20equation%22&f=false)(EnglishtranslationbyAlexanderFreeman,1878ed.).TheUniversityPress.p.408.,cfp449andpp546551.TheoriginalFrenchtextcanbefoundhere(http://books.google.com/books?id=TDQJAAAAIAAJ&pg=PA525&dq=%22c%27est%C3%A0dire+qu%27on+a+l%27%C3%A9quation%22&hl=en&sa=X&ei=SrC7T9yKBorYiALVnc2oDg&sqi=2&ved=0CEAQ6AEwAg#v=onepage&q=%22c%27est%C3%A0dire%20qu%27on%20a%20l%27%C3%A9quation%22&f=false).

    8. HikosaburoKomatsu(2002)."Fourier'shyperfunctionsandHeaviside'spseudodifferentialoperators".InTakahiroKawai,KeikoFujita,eds.MicrolocalAnalysisandComplexFourierAnalysis(http://books.google.com/books?id=8GwKzEemrIcC&pg=PA200&dq=%22Fourier+introduced+the%22+%22+function+much+earlier%22&hl=en&sa=X&ei=oJa6T5L2O6SriQKGloCUBw&ved=0CDQQ6AEwAA#v=onepage&q=%22Fourier%20introduced%20the%22%20%22%20function%20much%20earlier%22&f=false).WorldScientific.p.200.ISBN9812381619.

    9. TynMyintU.,LokenathDebnath(2007).LinearPartialDifferentialEquationsforScientistsAndEngineers(http://books.google.com/books?id=Zbz5_UvERIIC&pg=PA4&dq=%22It+was+the+work+of+Augustin+Cauchy%22&hl=en&sa=X&ei=RnW6T52LNovYiQLa9mABw&ved=0CDgQ6AEwAA#v=onepage&q=%22It%20was%20the%20work%20of%20Augustin%20Cauchy%22&f=false)(4thed.).Springer.p.4.ISBN0817643931.

    10. LokenathDebnath,DambaruBhatta(2007).IntegralTransformsAndTheirApplications(http://books.google.com/books?id=WbZcqdvCEfwC&pg=PA2&dq=%22It+was+the+work+of+Cauchy+that+contained%22&hl=en&sa=X&ei=Jym9T8LNK6OigKm_GYDg&ved=0CDQQ6AEwAA#v=onepage&q=%22It%20was%20the%20work%20of%20Cauchy%20that%20contained%22&f=false)(2nded.).CRCPress.p.2.ISBN1584885750.

    11. IvorGrattanGuinness(2009).ConvolutionsinFrenchMathematics,18001840:FromtheCalculusandMechanicstoMathematicalAnalysisandMathematicalPhysics,Volume2(http://books.google.com/books?id=_GgioErrbW8C&pg=PA653&dq=%22Further,+in+a+double+integral%22&hl=en&sa=X&ei=4gC9T7KVDvDRiALqdTLDQ&ved=0CDgQ6AEwAA#v=onepage&q=%22Further%2C%20in%20a%20double%20integral%22&f=false).Birkhuser.p.653.ISBN3764322381.

    12. See,forexample,Desintgralesdoublesquiseprsententsousuneformeindtermine(http://gallica.bnf.fr/ark:/12148/bpt6k90181x/f387)

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 27/30

    (http://gallica.bnf.fr/ark:/12148/bpt6k90181x/f387)13. DragiaMitrovi,Darkoubrini(1998).FundamentalsofAppliedFunctionalAnalysis:Distributions,Sobolev

    Spaces(http://books.google.com/books?id=Od5BxTEN0VsC&pg=PA62&dq=%22greatest+drawback+of+the+classical+Fourier+transformation+is+a+rather+narrow+class+of+functions%22&hl=en&sa=X&ei=IKG6T_niFqWfiQLJoODdBg&ved=0CDQQ6AEwAA#v=onepage&q=%22greatest%20drawback%20of%20the%20classical%20Fourier%20transformation%20is%20a%20rather%20narrow%20class%20of%20functions%22&f=false).CRCPress.p.62.ISBN0582246946.

    14. ManfredKracht,ErwinKreyszig(1989)."Onsingularintegraloperatorsandgeneralizations".InThemistoclesM.Rassias,ed.TopicsinMathematicalAnalysis:AVolumeDedicatedtotheMemoryofA.L.Cauchy(http://books.google.com/books?id=xIsPrSiDlZIC&pg=PA553&dq=%22To+this+theory%22+%22and+even+more%22++%22that+one+was+able+to+generalize%22&hl=en&sa=X&ei=RJ66Ty7JOLjiAKuoeSUBw&ved=0CDQQ6AEwAA#v=onepage&q=%22To%20this%20theory%22%20%22and%20even%20more%22%20%20%22that%20one%20was%20able%20to%20generalize%22&f=false).WorldScientific.p.553.ISBN9971506661.

    15. Laugwitz1989,p.23016. AmorecompletehistoricalaccountcanbefoundinvanderPol&Bremmer1987,V.4.17. Dirac1958,1518. Gel'fand&Shilov1968,VolumeI,1.1,p.119. Rudin1966,1.2020. Hewitt&Stromberg1963,19.6121. Driggers2003,p.2321.SeealsoBracewell1986,Chapter5foradifferentinterpretation.Otherconventionsforthe

    assigningthevalueoftheHeavisidefunctionatzeroexist,andsomeofthesearenotconsistentwithwhatfollows.22. Hewitt&Stromberg1965,9.1923. Strichartz1994,2.224. Hrmander1983,Theorem2.1.525. Hrmander1983,3.126. Strichartz1994,2.3Hrmander1983,8.227. Dieudonn1972,17.3.328. Federer1969,2.5.1929. Strichartz1994,Problem2.6.230. Vladimirov1971,Chapter2,Example3(d)31. Weisstein,EricW.,"SiftingProperty"(http://mathworld.wolfram.com/SiftingProperty.html),MathWorld.32. Gel'fand&Shilov19661968,Vol.1,II.2.533. Furtherrefinementispossible,namelytosubmersions,althoughtheserequireamoreinvolvedchangeofvariables

    formula.34. Hrmander1983,6.135. Lange2012,pp.293036. GelfandShilov,p.21237. InsomeconventionsfortheFouriertransform.38. Bracewell198639. Gel'fand&Shilov1966,p.2640. Gel'fand&Shilov1966,2.141. Weisstein,EricW.,"DoubletFunction"(http://mathworld.wolfram.com/DoubletFunction.html),MathWorld.42. Thepropertyfollowsbyapplyingatestfunctionandintegrationbyparts.43. Hrmander1983,p.5644. Hrmander1983,p.56Rudin1991,Theorem6.2545. SteinWeiss,Theorem1.1846. Rudin1991,II.6.3147. Moregenerally,oneonlyneeds=1tohaveanintegrableradiallysymmetricdecreasingrearrangement.48. Saichev&Woyczyski1997,1.1The"deltafunction"asviewedbyaphysicistandanengineer,p.349. Stein&Weiss1971,I.150. Valle&Soares2004,7.251. Hrmander1983,7.852. SeealsoCourant&Hilbert1962,14.53. Lang1997,p.31254. IntheterminologyofLang(1997),theFejrkernelisaDiracsequence,whereastheDirichletkernelisnot.

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 28/30

    References

    Aratyn,HenrikRasinariu,Constantin(2006),AshortcourseinmathematicalmethodswithMaple(http://books.google.com/?id=JFmUQGd1I3IC&pg=PA314),WorldScientific,ISBN9812564616.Arfken,G.B.Weber,H.J.(2000),MathematicalMethodsforPhysicists(5thed.),Boston,Massachusetts:AcademicPress,ISBN9780120598250.Bracewell,R.(1986),TheFourierTransformandItsApplications(2nded.),McGrawHill.Crdoba,A.,"LaformulesommatoiredePoisson",C.R.Acad.Sci.Paris,SeriesI306:373376.Courant,RichardHilbert,David(1962),MethodsofMathematicalPhysics,VolumeII,WileyInterscience.Davis,HowardTedThomson,KendallT(2000),LinearalgebraandlinearoperatorsinengineeringwithapplicationsinMathematica(http://books.google.com/?id=3OqoMFHLhG0C&pg=PA344#v=onepage&q),AcademicPress,ISBN012206349XDieudonn,Jean(1976),Treatiseonanalysis.Vol.II,NewYork:AcademicPress[HarcourtBraceJovanovichPublishers],ISBN9780122155024,MR0530406(https://www.ams.org/mathscinetgetitem?mr=0530406).Dieudonn,Jean(1972),Treatiseonanalysis.Vol.III,Boston,Massachusetts:AcademicPress,MR0350769(https://www.ams.org/mathscinetgetitem?mr=0350769)Dirac,Paul(1958),ThePrinciplesofQuantumMechanics(4thed.),OxfordattheClarendonPress,ISBN9780198520115.Driggers,RonaldG.(2003),EncyclopediaofOpticalEngineering,CRCPress,ISBN9780824709402.Federer,Herbert(1969),Geometricmeasuretheory,DieGrundlehrendermathematischenWissenschaften153,NewYork:SpringerVerlag,pp.xiv+676,ISBN9783540606567,MR0257325(https://www.ams.org/mathscinetgetitem?mr=0257325).Gel'fand,I.M.Shilov,G.E.(19661968),Generalizedfunctions15,AcademicPress.Hartman,WilliamM.(1997),Signals,sound,andsensation(http://books.google.com/books?id=3N72rIoTHiEC),Springer,ISBN9781563962837.Hewitt,EStromberg,K(1963),Realandabstractanalysis,SpringerVerlag.Hrmander,L.(1983),TheanalysisoflinearpartialdifferentialoperatorsI,Grundl.Math.Wissenschaft.256,Springer,ISBN3540121048,MR0717035(https://www.ams.org/mathscinetgetitem?mr=0717035).Isham,C.J.(1995),Lecturesonquantumtheory:mathematicalandstructuralfoundations,ImperialCollegePress,ISBN9788177641905.John,Fritz(1955),Planewavesandsphericalmeansappliedtopartialdifferentialequations,IntersciencePublishers,NewYorkLondon,MR0075429(https://www.ams.org/mathscinetgetitem?mr=0075429).Lang,Serge(1997),Undergraduateanalysis,UndergraduateTextsinMathematics(2nded.),Berlin,NewYork:SpringerVerlag,ISBN9780387948416,MR1476913(https://www.ams.org/mathscinetgetitem?mr=1476913).

    54. IntheterminologyofLang(1997),theFejrkernelisaDiracsequence,whereastheDirichletkernelisnot.55. Thedevelopmentofthissectioninbraketnotationisfoundin(Levin2002,Coordinatespacewavefunctionsand

    completeness,pp.=109ff)56. Davis&Thomson2000,Perfectoperators,p.34457. Davis&Thomson2000,Equation8.9.11,p.34458. delaMadrid,Bohm&Gadella200259. SeeLaugwitz(1989).60. Crdoba1988Hrmander1983,7.261. Vladimirov1971,5.762. Hartmann1997,pp.15415563. Isham1995,6.2

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 29/30

    Lange,RutgerJan(2012),"Potentialtheory,pathintegralsandtheLaplacianoftheindicator"(http://link.springer.com/article/10.1007%2FJHEP11(2012)032),JournalofHighEnergyPhysics(Springer)2012(11):2930,arXiv:1302.0864(https://arxiv.org/abs/1302.0864),Bibcode:2012JHEP...11..032L(http://adsabs.harvard.edu/abs/2012JHEP...11..032L),doi:10.1007/JHEP11(2012)032(https://dx.doi.org/10.1007%2FJHEP11%282012%29032).Laugwitz,D.(1989),"Definitevaluesofinfinitesums:aspectsofthefoundationsofinfinitesimalanalysisaround1820",Arch.Hist.ExactSci.39(3):195245,doi:10.1007/BF00329867(https://dx.doi.org/10.1007%2FBF00329867).Levin,FrankS.(2002),"Coordinatespacewavefunctionsandcompleteness",Anintroductiontoquantumtheory(http://books.google.com/?id=oc64f4EspFgC&pg=PA109),CambridgeUniversityPress,pp.109ff,ISBN0521598419Li,Y.T.Wong,R.(2008),"IntegralandseriesrepresentationsoftheDiracdeltafunction",Commun.PureAppl.Anal.7(2):229247,doi:10.3934/cpaa.2008.7.229(https://dx.doi.org/10.3934%2Fcpaa.2008.7.229),MR2373214(https://www.ams.org/mathscinetgetitem?mr=2373214).delaMadrid,R.Bohm,A.Gadella,M.(2002),"RiggedHilbertSpaceTreatmentofContinuousSpectrum",Fortschr.Phys.50(2):185216,arXiv:quantph/0109154(https://arxiv.org/abs/quantph/0109154),Bibcode:2002ForPh..50..185D(http://adsabs.harvard.edu/abs/2002ForPh..50..185D),doi:10.1002/15213978(200203)50:23.0.CO2S(https://dx.doi.org/10.1002%2F15213978%28200203%2950%3A2%3C185%3A%3AAIDPROP185%3E3.0.CO%3B2S).McMahon,D.(20051122),"AnIntroductiontoStateSpace",QuantumMechanicsDemystified,ASelfTeachingGuide(http://www.mhprofessional.com/product.php?isbn=0071455469&cat=&promocode=),DemystifiedSeries,NewYork:McGrawHill,p.108,doi:10.1036/0071455469(https://dx.doi.org/10.1036%2F0071455469),ISBN0071455469,retrieved20080317.vanderPol,Balth.Bremmer,H.(1987),Operationalcalculus(3rded.),NewYork:ChelseaPublishingCo.,ISBN9780828403276,MR904873(https://www.ams.org/mathscinetgetitem?mr=904873).Rudin,W.(1991),FunctionalAnalysis(2nded.),McGrawHill,ISBN0070542368.Soares,ManuelValle,Olivier(2004),Airyfunctionsandapplicationstophysics,London:ImperialCollegePress.Saichev,AIWoyczyski,WojborAndrzej(1997),"Chapter1:Basicdefinitionsandoperations",DistributionsinthePhysicalandEngineeringSciences:Distributionalandfractalcalculus,integraltransforms,andwavelets(http://books.google.com/?id=42I7huOhiYC&pg=PA3),Birkhuser,ISBN0817639241Schwartz,L.(1950),Thoriedesdistributions1,Hermann.Schwartz,L.(1951),Thoriedesdistributions2,Hermann.Stein,EliasWeiss,Guido(1971),IntroductiontoFourierAnalysisonEuclideanSpaces,PrincetonUniversityPress,ISBN069108078X.Strichartz,R.(1994),AGuidetoDistributionTheoryandFourierTransforms,CRCPress,ISBN0849382734.Vladimirov,V.S.(1971),Equationsofmathematicalphysics,MarcelDekker,ISBN0824717139.Weisstein,EricW.,"DeltaFunction"(http://mathworld.wolfram.com/DeltaFunction.html),MathWorld.Yamashita,H.(2006),"Pointwiseanalysisofscalarfields:Anonstandardapproach",JournalofMathematicalPhysics47(9):092301,Bibcode:2006JMP....47i2301Y(http://adsabs.harvard.edu/abs/2006JMP....47i2301Y),doi:10.1063/1.2339017(https://dx.doi.org/10.1063%2F1.2339017)Yamashita,H.(2007),"Commenton"Pointwiseanalysisofscalarfields:Anonstandardapproach"[J.Math.Phys.47,092301(2006)]",JournalofMathematicalPhysics48(8):084101,Bibcode:2007JMP....48h4101Y(http://adsabs.harvard.edu/abs/2007JMP....48h4101Y),doi:10.1063/1.2771422(https://dx.doi.org/10.1063%2F1.2771422)

  • 6/4/2015 DiracdeltafunctionWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Dirac_delta_function 30/30

    Externallinks

    Hazewinkel,Michiel,ed.(2001),"Deltafunction"(http://www.encyclopediaofmath.org/index.php?title=p/d030950),EncyclopediaofMathematics,Springer,ISBN9781556080104KhanAcademy.orgvideolesson(http://www.khanacademy.org/video/diracdeltafunction)TheDiracDeltafunction(http://www.physicsforums.com/showthread.php?t=73447),atutorialontheDiracdeltafunction.VideoLecturesLecture23(http://ocw.mit.edu/courses/mathematics/1803differentialequationsspring2010/videolectures/lecture23usewithimpulseinputs),alecturebyArthurMattuck.DiracDeltaFunction(http://planetmath.org/encyclopedia/DiracDeltaFunction.html)onPlanetMathTheDiracdeltameasureisahyperfunction(http://www.osakakyoiku.ac.jp/~ashino/pdf/chinaproceedings.pdf)WeshowtheexistenceofauniquesolutionandanalyzeafiniteelementapproximationwhenthesourcetermisaDiracdeltameasure(http://www.ingmat.udec.cl/~rodolfo/Papers/BGR3.pdf)NonLebesguemeasuresonR.LebesgueStieltjesmeasure,Diracdeltameasure.(http://www.mathematik.unimuenchen.de/~lerdos/WS04/FA/content.html)

    Retrievedfrom"http://en.wikipedia.org/w/index.php?title=Dirac_delta_function&oldid=663481859"

    Categories: Mathematicsofinfinitesimals Fourieranalysis Generalizedfunctions MeasuretheoryDigitalsignalprocessing PaulDirac

    Thispagewaslastmodifiedon22May2015,at01:30.TextisavailableundertheCreativeCommonsAttributionShareAlikeLicenseadditionaltermsmayapply.Byusingthissite,youagreetotheTermsofUseandPrivacyPolicy.WikipediaisaregisteredtrademarkoftheWikimediaFoundation,Inc.,anonprofitorganization.