16
REVIEWS in MINERALOGY and GEOCHEMISTRY Volume 72 2010 Diffusion in Minerals and Melts EDITORS Youxue Zhang Daniele J. Cherniak University of Michigan Ann Arbor, Michigan, U.S.A. Rensselaer Polytechnic Institute Troy, New York, U.S.A. ON THE COVER: Top Left: A BSE image showing zonation of zircon (Zhang 2008, Geochemical Kinetics). Lower Right: Ar diffusivity in air, water, melts and hornblende, and heat diffusivity as a function of temperature (data are from various sources). Series Editor: Jodi J. Rosso MINERALOGICAL SOCIETY of AMERICA GEOCHEMICAL SOCIETY

Diffusion in minerals and melts : [ Short Course on Diffusion in … · 2012. 9. 3. · OXYGENDIFFUSION Self-diffusion ofoxygenin silicate meltsunderdryconditions Chemicaldiffusion

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • REVIEWS in MINERALOGY

    and GEOCHEMISTRY

    Volume 72 2010

    Diffusion in

    Minerals and Melts

    EDITORS

    Youxue Zhang

    Daniele J. Cherniak

    University ofMichiganAnn Arbor, Michigan, U.S.A.

    Rensselaer Polytechnic Institute

    Troy, New York, U.S.A.

    ON THE COVER: Top Left: A BSE image showing zonation of zircon

    (Zhang 2008, Geochemical Kinetics). Lower Right: Ar diffusivity in air,

    water, melts and hornblende, and heat diffusivity as a function of temperature

    (data are from various sources).

    Series Editor: Jodi J. Rosso

    MINERALOGICAL SOCIETY of AMERICA

    GEOCHEMICAL SOCIETY

  • TABLE OF CONTENTS

    1 Diffusion in Minerals and Melts: Introduction

    Y. Zhang, D.J. Chemiak

    INTRODUCTION: RATIONALE FOR THIS VOLUME 1

    SCOPE AND CONTENT OF THIS VOLUME 2

    REFERENCES 3

    JL Diffusion in Minerals and Melts:Theoretical Background

    K Zhang

    INTRODUCTION 5

    FUNDAMENTALS OF DIFFUSION 6

    Basic concepts 6

    Microscopic view of diffusion 9Various kinds of diffusion 10

    General mass conservation and various forms of the diffusion equation 14

    Diffusion in three dimensions (isotropic media) 17SOLUTIONS TO BINARY AND ISOTROPIC DIFFUSION PROBLEMS 18

    Thin-source diffusion 18

    Comments about fitting data 19

    Sorption or desorption 20Diffusion couple or iriple 22Diffusive crystal dissolution 23Variable diffusivily along a profile 25

    Homogenization of a crystal with oscillatory zoning 26One dimensional diffusional exchange between two phases at

    constant temperature 27

    Spinodal decomposition 28Diffusive loss of radiogenic nuclides and closure temperature 29

    DIFFUSION IN ANISOTROPIC MEDIA 32

    MULTICOMPONENT DIFFUSION 35

    Effective binary approach, FEBD and SEBD 36Modified effective binary approach (activity-based effective binary approach) 39

    Diffusivity matrix approach 40

    Activity-based diffusivity matrix approach 42

    Origin of the cross-diffusivity terms 42DIFFUSION COEFFICIENTS 43

    Temperature dependence of diffusivities; Arrhenius relation 43Pressure dependence ofdiffusivities 43Diffusion in crystalline phases and defects 45Diffusivities and oxygen fugacity 47Compositional dependence of diffusivities 47

    iv

  • Diffusion in Minerals and Melts - Table ofContents

    Relation between diffusivity, particle size, particle charge, and viscosity

    Diffusivity and ionic porosityCompensation "law"

    Interdiffusivity and self diffusivityCONCLUSIONS

    ACKNOWLEDGMENTS

    REFERENCES

    APPENDIX 1. EXPRESSION OF DIFFUSION TENSOR IN CRYSTALS

    WITH DIFFERENT SYMMETRY

    Non-traditional and Emerging Methods for CharacterizingDiffusion in Minerals and Mineral Aggregates

    E.B. Watson, R. Dolimen

    INTRODUCTION f<

    Why use thin films? '> '>

    Fitting of diffusion profiles from thin-film diffusion couples h>

    Analytical solutions - examples

    Fitting uncertainties ^"

    Pulsed laser ablation: a versatile method for thin film deposition (

  • Diffusion in Minerals and Melts - Table of Contents

    4 Analytical Methods in Diffusion Studies

    D.J. Cherniak, R. Hervig, J. Koepke,Y. Zhang, D. Zhao

    INTRODUCTION 107

    "CLASSICAL" METHODS FOR MEASURING DIFFUSION PROFILES

    USING RADIOACTIVE TRACERS 109

    Serial sectioning 109

    Autoradiography 110

    ELECTRON MICROPROBE ANALYSIS 111

    Principles of EMPA IllInstrumentation for EMPA 113

    Applications and limitations of EMPA 120

    Summary 123

    SECONDARY ION MASS SPECTROMETRY (SIMS) 123

    Basic principles of SIMS 123

    Using SIMS to measure diffusion profiles 125

    Depth profile analyses 129Ion implantation and SIMS 134

    Summary comments 134LASER ABLATION 1CP-MS (LA ICP-MS) 134RUTHERFORD BACKSCATTERING SPECTROMETRY (RBS) 137

    Basic principles of RBS 137

    Depth and muss resolution 140Example applications of RBS in diffusion studies 141

    NUCLEAR REACTION ANALYSIS (NRA) 143

    ELASTIC RECOIL DETECTION (ERD) 147

    FOURIER TRANSFORM INFRARED SPECTROSCOPY 148

    Vibrational modes and infrared absorption 148Instrumentation for Infrared Spectroscopy 152Different types of IR spectra 152

    Calibration 153

    Applications to geology 155SYNCHROTRON X-RAY FLUORESCENCE MICROANALYSIS (u-SRXRF) 156

    Instrumental setup, spectra acquisition and data processing 156

    Sample preparation 158

    Applications of (.t-SRXRF for measuring trace element diffusivitiesin silicate melts 158

    ACKNOWLEDGMENTS 160

    REFERENCES 160

    D Diffusion of H, C, and O Components in Silicate Melts

    y. Zhang, H. Ni

    INTRODUCTION 171

    vi

  • Diffusion in Minerals and Melts - Table of Contents

    DIFFUSION OF THE H20 COMPONENT

    H20 speciation: equilibrium and kineticsH,0 diffusion literature

    H20 diffusion, theory and data summaryMOLECULAR H2 DIFFUSION

    DIFFUSION OF THE CO, COMPONENT

    OXYGEN DIFFUSION

    Self-diffusion of oxygen in silicate melts under dry conditions

    Chemical diffusion of oxygen under dry conditions"Self diffusion of oxygen in the presence of H,0

    "Self diffusion of oxygen in natural silicate melts in natural environments

    Contribution of CO, diffusion to lfiO transport in C02-bearing melts

    Oxygen diffusion and viscosity: applicability of the Eyring equationO, DIFFUSION IN PURE SILICA MELT

    SUMMARY AND CONCLUSIONS

    ACKNOWLEDGMENTS

    REFERENCES

    6 Noble Gas Diffusion in Silicate Glasses and MeltsH. lichmn

    INTRODUCTION '"'

    EXPERIMENTAL AND ANALYTICAL METHODS *

    Studies at atmospheric and sub-atmospheric pressureStudies at high-pressure

    ';

    DIFFUSION SYSTEMATICS '

    Temperature dependence of diffusivity ;'

    Pressure dependence of diffusivity -1 •

    Comparison of different noble gases in the same matrix glass ;'

    COMPOSITIONAL EFFECTS ON NOBLE GAS DIFFUSION

  • Diffusion in Minerals and Melts - Table of Contents

    Observations and Applications to Magmatic Systems

    C.E. Lesher

    INTRODUCTION 269

    ADDITIONAL TERMINOLOGY 270

    THEORETICAL CONSIDERATIONS 271

    Self and tracer diffusion 271

    Intradiffusion 276

    Polyanionic diffusion 280EXPERIMENTAL METHODS AND DATA 283

    Thin source method 283

    Diffusion couple method 284

    Capillary-reservoir method 284Gas exchange method 285

    DISCUSSION 285

    Background 285Ionic charge and size 286

    Temperature 288

    Viscosity and the Eyring diffusivity 291Pressure 296

    CONCLUDING REMARKS 303

    ACKNOWLEDGMENTS 305

    REFERENCES 305

    O Diffusion Data in Silicate Melts

    Y. Zhang, H. M, Y. Chen

    INTRODUCTION 311

    Terminology 312General comments about experimental methods to extract diffusivities 313

    Grouping of the elements 315Data compilation 315Quantification of D as a function of T, H,0, P,f(), and melt composition 317

    DIFFUSION OF INDIVIDUAL ELEMENTS '. 317Diffusion of major elements versus minor and trace elements 317H diffusion 320

    The alkalis (Li, Na, K, Rb, Cs, Fr) 320The alkali earths (Be, Mg, Ca, Sr, Ba, Ra) 330

    B, A1, Ga, In, and TI 340C, Si, Ge, Snand Pb 345N,P, As, Sb,Bi 352O, S, Se, Te, Po 354

    F,Cl,Br, I, At 356

    He, Ne.Ar, Kr,Xe, Rn 360

    viii

  • Diffusion in Minerals and Melts - Table of Contents

    Sc,Y,REE 3o(i

    Ti,Zr,Hf 375

    V, Nb.Ta 3W>

    Cr, Mo, W 3N3

    Mn, Fe, Co, Ni, Cu, Zn 383

    Tc, Ru, Rh, Pd,Ag, Cd 3JW

    Re, Os, Ir, Pt, Au, Hg 3Kli

    Ac,Th,Pa, U 3^)1

    DISCUSSION 3M3

    The empirical model by Mungall (2002) 33

    Effect of ionic size on diffusivities of isovalent ions 3l>5

    Dependence of diffusivities on melt composition 3')?

    Diffusivity sequence in various melts 3l'.SCONCLUDING REMARKS 402

    ACKNOWLEDGMENTS 40-1

    REFERENCES 404

    7 Multicomponent Diffusion in Molten Silicates:

    Theory, Experiments, and Geological Applications

    Y. Liang

    INTRODUCTION 40"

    IRREVERSIBLE THERMODYNAMICS AND MULTICOMPONENT DIFFUSION 41 I

    The rate of entropy production 411

    Diffusing species and choice of endmember component 412GENERAL FEATURES OF MULTICOMPONENT DIFFUSION 411

    Solutions to multicomponent diffusion equations 41 -I

    Essential features of multicomponent diffusion 41 5EXPERIMENTAL STUDIES OF MULTICOMPONENT DIFFUSION 423

    Experimental design and strategy 42.<

    Inversion methods 425

    Experimental results 42s

    EMPIRICAL MODELS FOR MULTICOMPONENT DIFFUSION 434

    Empirical models 43-1

    Experimental tests of the empirical models 43d

    GEOLOGICAL APPLICATIONS 437

    Modeling isotopic ratios during chemical diffusion in multicomponent melts 437Convective crystal dissolution in a multicomponent melt 43S

    Crystal growth and dissolution in a multicomponent melt 441

    FUTURE DIRECTIONS 442

    ACKNOWLEDGMENTS 443

    REFERENCES 443

    ix

  • Diffusion in Minerals and Melts - Table of Contents

    1 0 Oxygen and Hydrogen Diffusion in MineralsJ.R. Farver

    INTRODUCTION 447

    EXPERIMENTAL METHODS 447

    Bulk exchange experiments 447

    Single crystal experiments 448

    ANALYTICALMETHODS 449

    Mass Spectrometry 449

    Nuclear Reaction Analysis 450

    Fourier Transform Infrared Spectroscopy 450

    Other methods 450

    RESULTS 451

    Quartz 451

    Feldspars 4-55

    Olivine 461

    Pyroxene 4-65

    Amphiboles 470Sheet silicates 471

    Garnet 472

    Zircons 474

    Titanite 474

    Meliliie 475

    Tourmaline and beryl 476

    Oxides 477

    Carbonates 480

    Phosphates 482

    DISCUSSION 483

    Effect of temperature 483

    Effect of mineral structure 485

    Empirical methods 486

    Anisotropy 486Pressure dependence 488Effect of water 488

    Hydrogen chemical diffusion and the role of defects 489ACKNOWLEGMENTS 490

    REFERENCES 490

    I I Diffusion of Noble Gases in Minerals

    E.F. Baxter

    INTRODUCTION 509The interpretive challenge ofbulk-degassing experiments 510

    HELIUM 513He in apatite 514

    x

  • Diffusion in Minerals and Melts - Table of Contents

    He in titanite 52o

    He in zircon and zircon-structure rare earth element orthophosphates 52uHe in monazite and monazite-structure rare earth element orthophosphates 52He diffusion in other minerals 52 '

    ARGON 32"

    Ar in micas 52k

    Ar in amphiboleAr in feldspar 52l*Ar diffusion in other minerals 5

    THE OTHER NOBLE GASES: NEON, KRYPTON, XENON, RADON 5 «;

    THEMES IN NOBLE GAS DIFFUSION IN MINERALS 5

    Effect of radiation damage 5Effect of deformation 5'*

    Multi-domain diffusion 5

  • Diffusion in Minerals and Melts - Table of Contents

    Treatment of diffusion data 580

    A SEMI-EMPIRICAL MODEL OF DIVALENT CATION DIFFUSION 581

    Carlson model 581

    Discussion 582

    GEOLOGICAL APPLICATIONS 585

    Modeling multicomponent diffusion profiles using effective binary diffusionformulation 586

    Cooling rates of metamorphic rocks: diffusion modeling of garnet vs.

    geochronological constraints 587Subduction and exhumation rates 587

    Modeling partially modified growth zoning of garnets in metamorphic rocks 589

    Interpretation of REE patterns of basaltic magma 592Sm-Nd and Lu-Hf geochronology of garnets in metamorphic rocks 594

    CONCLUDING REMARKS 596

    ACKNOWLEDGMENTS 598

    REFERENCES 598

    APPENDIX: COMBINED ANALYTICAL AND NUMERICAL METHOD FORMODELING MULTICOMPONENT DIFFUSION PROFILES 600

    I j Diffusion Coefficients in

    Olivine, Wadsleyite and Ringwoodite

    S. Chakraborty

    INTRODUCTION 603

    OLIVINE 603

    Structure of olivine and types of diffusion coefficients 603

    Diffusion mechanisms in olivine 605

    Diffusion of divalent cations 608

    Diffusion of Si and oxygen 620

    Diffusion of ions that enter olivine via heterovalent substitutions 623

    INFORMATION FROM OLIVINES OTHER THAN Fe-Mg BINARY SOLIDSOLUTIONS 627

    SPECTROSCOPIC MEASUREMENTS 628

    COMPUTER CALCULATIONS 628

    WADSLEYITE AND RINGWOODITE 629

    Diffusion of divalent cations 630Diffusion ofsilicon and oxygen 631

    Diffusion of ions that are incorporated by heterovalent substitutions 633A SUMMARY, AND APPLICATIONS OF DIFFUSION DATA IN OLIVINE,

    WADSLEYITE AND RINGWOODITE 633

    ACKNOWLEDGMENTS 635

    REFERENCES 635

    xii

  • Diffusion in Minerals and Melts - Table of Contents

    \ t- Diffusion in Pyroxene, Mica and Amphibole

    D.J. Cherniak, A. Dimanav

    INTRODUCTION MlCATION DIFFUSION IN PYROXENES 6-11

    Pioneering approaches 64 <More recent investigations of major element diffusion (S-l-lDiffusion of major element cations in clinopyroxenes 645Diffusion in synthetic versus natural crystals 656Major element cation diffusion in orthopyroxenes 6.56Pyroxene point defect chemistry 658Diffusion of minor and trace elements in pyroxene 661

    Comparison of diffusion of cations in pyroxene 672DIFFUSION IN AMPH1BOLES AND MICAS 676

    F-OH interdiffusion in tremolite 677

    Sr diffusion in tremolite and hornblende 67H

    Sr diffusion in fluorphlogopite 67l)K and Rb diffusion in biotite 67')

    ACKNOWLEDGMENTS 680REFERENCES 6X0

    APPENDIX 6X5

    1 D Cation Diffusion in Feldspars

    D.J. Cherniak

    INTRODUCTION M\

    DIFFUSION OF MAJOR CONSTITUENTS 62

    Sodium

    Potassium (W

    K-Na interdiffusion 6l)6Calcium

    Barium 69l!

    CaAl-NaSi interdiffusion 70(1

    Silicon

    DIFFUSION OF MINOR AND TRACE ELEMENTS 705

    Lithium 705

    Rubidium 705

    Magnesium 707Iron 70X

    Strontium 70X

    Lead 717

    Radium 721

    Rare Earth Elements 721

    COMPARISON OF RELATIVE DIFFUSIVITIES OF CATIONS IN VARIOUS

    FELDSPAR COMPOSITIONS 72 <

    xiii

  • Diffusion in Minerals and Melts - Table of Contents

    Albite 723

    K-feldspar 723

    Intermediate alkali feldspars 725

    Anorthite 725

    Labradorite 726

    Oligoclase 728

    ACKNOWLEDGMENTS 728

    REFERENCES 728

    1 6 Diffusion in Quartz, Melilite,Silicate Perovskite, and Mullite

    D.J. Cherniak

    INTRODUCTION 735

    DIFFUSION IN QUARTZ 735Silicon 736

    Aluminum and gallium 738

    Alkali elements - Li, Na, K 739

    Calcium 741

    Titanium 741

    Diffusion in quartz - a summary 742

    DIFFUSION IN MELILITE 743

    Al+Al

  • Diffusion in Minerals and Melts - Table of Contents

    Other group I1A divalent cations 7Ms

    Group IIIA and IIIB trivalent cations 7dMTetravalent cations 7" !

    Transition metals 77 i

    Hydrogen 7 s »

    SPINEL 7k;

    Oxygen ""s ">

    Magnesium 7KS

    Fe-Mg interdiffusion 7Hf-<

    Mg-Al interdiffusion 7S""

    Cr-Al interdiffusion 7K""

    Hydrogen 7Ks

    MAGNETITE 7KK

    Oxygen 7K«*

    Iron 71

    Other cations 794

    RUTILE 7*,

    Oxygen 7M'

    Tetravalent and pentavalent cations 7'w

    Divalent and trivalent cations HO!

    Monovalent cations 8()*

    ACKNOWLEDGMENTS «IM

    REFERENCES 8(M

    APPENDIX 8lo

    I O Diffusion in Accessory Minerals:

    Zircon, Titanite, Apatite, Monazite and Xenotime

    D.J. Cherniak

    INTRODUCTION 827

    DIFFUSION IN ZIRCON 827

    Lead 828

    Rare Earth Elements (REE) 832

    Tetravalent cations 835

    Cation diffusion in zircon - a summary 83.H

    DIFFUSION IN TITANITE 8-41

    Strontium and Lead 841

    Neodynium 84 t

    Zirconium 843

    Summary of diffusion data for titanite 84-1

    DIFFUSION IN MONAZITE 844

    Calcium and Lead 845

    Thorium 84"?

    DIFFUSION IN XENOTIME 84S

    DIFFUSION IN APATITE 85t >

    Lead and Calcium 85f •

    xv

  • Diffusion in Minerals and Melts - Table of Contents

    Strontium 852

    Manganese 853

    Rare Earth Elements (REE) 854

    Phosphorus 858

    Uranium and Thorium 858

    F-OH-C1 859

    Comparison of diffusivities of cations and anions in apatite 860

    COMPARISON OF DIFFUSIVITIES AMONG ACCESSORY MINERALS 861

    Lead 861

    Rare Earth Elements (REE) 862

    Thorium and Uranium 863

    ACKNOWLEDGMENTS 864

    REFERENCES 864

    I y Diffusion in Carbonates, Fluorite,Sulfide Minerals, and Diamond

    D.J. Cherniak

    INTRODUCTION 871

    CARBONATES 871

    Carbon 872

    Calcium 875

    Magnesium 876Strontium and Lead 877

    Rare Earth Elements 878

    Diffusion in calcite - an overview 879

    FLUORITE 880

    Fluorine 881

    Calcium 883

    Strontium, Yttrium and Rare Earth Elements 883

    DIAMOND 885

    SULFIDE MINERALS 885

    Pyrite 886Pyrrhotite 888

    Sphalerite 889

    Chalcopyrite 891Galena 892

    Summary of diffusion findings for the sulfides 892ACKNOWLEDGMENTS 893

    REFERENCES 894

    xvi

  • Diffusion in Minerals and Melts - Table of Contents

    ZU Diffusion in Minerals: An Overview ofPublished Experimental Diffusion Data

    J.B. Brady, D.J. CherniaA

    INTRODUCTION S«*<

    ARRHENIUS RELATIONS **>

    DIFFUSION COMPENSATION DIAGRAMS '«>-;

    IONIC POROSITY »'l l

    DIFFUSIONANISOTROPY "I ;

    CONCLUDING REMARKS l>)

    ACKNOWLEDGMENTS l'l'

    REFERENCES '»!"

    Z1 Diffusion in Polyerystalline Materials:Grain Boundaries, Mathematical Models, and Experimental Data

    R. Dohmen, R. Milkc

    INTRODUCTION l>2)

    Geological relevance of grain boundary diffusion 'J-1'

    Physical nature of a grain/interphase boundary V22

    Thermodynamic model for interfaces l>2*

    THE ISOLATED GRAIN BOUNDARY

    Basic mathematical description l)2~Kinetic regimes and diffusion penetration distances

    THE MONOPHASE POLYCRYSTALLINE AGGREGATE l> V

    Models and kinetic regimesBulk diffusion coefficients

    A geological example l)

    Profile analysts - the Le Claire approach

    Complexities of real and polyphase systems ^-K*

    Asymmetric grain boundaries/interphase boundaries l)4 IThe migrating isolated grain boundary ^2Presence of dislocations/sub-grain boundaries

    Element/isotope exchange mediated by grain boundary diffusion 1>-U>

    EXPERIMENTAL METHODS 7

    Setup with bi-crystals

    Setup with a polyerystalline aggregate W>

    Source-sink studies

  • Diffusion in Minerals and Melts - Table of Contents

    in Minerals and Melts

    N. de Koker, L. Stixmde

    INTRODUCTION 971

    THEORETICAL FOUNDATIONS 972

    Thermodynamic description 972

    Statistical mechanical description 974

    COMPUTATIONAL APPROACHES 976

    Characterization of bonding 977

    Adding temperature 978

    Computation of diffusion 980

    SELECTED APPLICATIONS 981

    Liquids and melts 981

    Solids 988

    A VIEW TO THE FUTURE 991

    ACKNOWLEDGMENTS 991

    REFERENCES 991

    JL3 Applications of Diffusion Data to

    High-Temperature Earth Systems

    T. Mueller, E.B. Watson, T.M. Harrison

    INTRODUCTION 997

    DECIPHERING KINETICALLY CONTROLLED PROCESSES USING DIFFUSION ...999

    Mass transport in geological systems 999Diffusion in minerals 1002

    Control of solid-state reaction rates and compositions of reaction

    products by diffusion 1005

    Metamorphic example of diffusion-limited uptake: REE behavior duringgarnet growth 1011

    Chemical diffusive fractionation 1014

    Diffusive fractionation in a thermal gradient 1017THERMOCHRONOLOGY 1018

    Background 1018Bulk closure 1019

    Continuous histories 1021

    Dating metamorphic events 1024

    GEOSPEEDOMETRY 1025

    The concept of geospeedometry 1025

    Deciphering timescales from kinetic modeling 1026Diffusion in two or three dimentions and the effect of geometry 1027

    Example: Deciphering short-term metamorphic events and timescales 1029ACKNOWLEDGMENTS 1032

    REFERENCES 1032

    xviii