17
Detection of phase synchronization applied to audio-visual stimulation EEG M. Teplan, K. Šušmáková, M. Paluš, M. Vejmělka Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovak republic Institute of Computer Science, Academy of Sciences of the Czech republic, Praha, Czech republic

Detection of phase synchronization applied to audio-visual stimulation EEG M. Teplan, K. Šušmáková, M. Paluš, M. Vejmělka Institute of Measurement Science,

Embed Size (px)

Citation preview

Page 1: Detection of phase synchronization applied to audio-visual stimulation EEG M. Teplan, K. Šušmáková, M. Paluš, M. Vejmělka Institute of Measurement Science,

Detection of phase synchronization applied to audio-visual stimulation EEG

M. Teplan,

K. Šušmáková, M. Paluš, M. Vejmělka

Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovak republic

Institute of Computer Science, Academy of Sciences of the Czech republic, Praha, Czech republic

Page 2: Detection of phase synchronization applied to audio-visual stimulation EEG M. Teplan, K. Šušmáková, M. Paluš, M. Vejmělka Institute of Measurement Science,

Outline

• synchronization phenomena

• phase synchronization detection

• brief illustration of the method

• audio-visual stimulation

• conclusions

Page 3: Detection of phase synchronization applied to audio-visual stimulation EEG M. Teplan, K. Šušmáková, M. Paluš, M. Vejmělka Institute of Measurement Science,

Introduction

- synchronization phenomena play a key role in organization of biological structures

- for application of existing theories and models dfficulties may arise with experimental data contaminated by noise: problem to distinguish phase synchronized regime from asynchronous one.

- we illustrate a method that is able to quantify a degree of phase synchrony

- demonstration on audio-visual stimulation data

Page 4: Detection of phase synchronization applied to audio-visual stimulation EEG M. Teplan, K. Šušmáková, M. Paluš, M. Vejmělka Institute of Measurement Science,

Synchronization phenomena

- biomeasurements may yield complex and broadband data

- emergence of dynamical order: spontanous development of structural organizations in complex systems

- in some cases phase synchronization is sufficient for order maintaining, or it may be a sign for aproaching general synchronization

- simplest system: two coupled 1D harmonic oscilators

- 3D nonlinear system: Lorentz, Rosler

- two or N coupled 3D nonlinear system:

- coupling in one or both directions

- common inherent frequencies or (slightly) different ones

Page 5: Detection of phase synchronization applied to audio-visual stimulation EEG M. Teplan, K. Šušmáková, M. Paluš, M. Vejmělka Institute of Measurement Science,

Phase synchronization detection

- increasing coupling constant: asynchrony, phase synchrony, general synchrony:

M. Rosenblum et al.: Phase synchronization of chaotic oscillators. Physical Review Letters, 1996, 76/11.

- phase synchronization can be expected to occur in real biosystems at different organizational levels due to nonlinear nature and feedback ties

- synchronization may not be obvious but masked

- phase locking: nφ1 - mφ2 = const- applied in study of epilepsy - onset and predictions- cardio-respiratory data

- atmoshere CO2 concentration and sun spot cycles

- estimation of degree of phase dependence- method is sensitive to number of parameters- approaches are still under development

Page 6: Detection of phase synchronization applied to audio-visual stimulation EEG M. Teplan, K. Šušmáková, M. Paluš, M. Vejmělka Institute of Measurement Science,

EEG and wavelet transform

Complex wavelet transform

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

-15

-10

-5

0

5

10

time [sec]

Vol

tage

[V

]

P3O1P4O2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

time [sec]

ampl

itude

Morlet wavelet with central frequency 4 Hz and width 1 Hz

Page 7: Detection of phase synchronization applied to audio-visual stimulation EEG M. Teplan, K. Šušmáková, M. Paluš, M. Vejmělka Institute of Measurement Science,

Phase extraction

655 660 665 670 675 680400

500

600

700

800

900

1000

1100

time [sec]

an

gu

lar

diff

ere

nce

[ra

d]

during stimulation

660 661 662 663 664 665

-3

-2

-1

0

1

2

3

time [sec]

wra

ped

phas

e [r

ad]

Page 8: Detection of phase synchronization applied to audio-visual stimulation EEG M. Teplan, K. Šušmáková, M. Paluš, M. Vejmělka Institute of Measurement Science,

Phase difference in unwrapped mode

flat regions represent synchronized periods, slopy intervals mark phase slips 20 40 60 80 100 120 140 160

0

50

100

150

200

250

time [sec]

angu

lar

diffe

renc

e [r

ad] before stimulation

640 660 680 700 720 7400

10

20

30

40

50

60

time [sec]

angu

lar

diffe

renc

e [r

ad]

during stimulation

710 711 712 71330

31

32

33

34

35

36

37

38

39

40

Page 9: Detection of phase synchronization applied to audio-visual stimulation EEG M. Teplan, K. Šušmáková, M. Paluš, M. Vejmělka Institute of Measurement Science,

Phase differences distribution evaluation

1 2 3 4 5 60

20

40

60

80

100

wraped phase difference [rad]

amou

nt

1 2 3 4 5 60

5

10

15

20

25

30

wraped phase difference [rad]

amou

nt

- evaluation of irregularity of the distribution by mean phase coherence

(MPC): values between 0 (uniform) and 1 (fully concentrated) and reflects

how the relative phase is distributed over the unit circle

- high values of MPC do not always identify synchrony clearly

during stimulation before stimulation

Page 10: Detection of phase synchronization applied to audio-visual stimulation EEG M. Teplan, K. Šušmáková, M. Paluš, M. Vejmělka Institute of Measurement Science,

Surrogate data

640 660 680 700 720 740

0.2

0.4

0.6

0.8

time [sec]

during stimulation

20 40 60 80 100 120 140 160

0.2

0.4

0.6

0.8

time [sec]

syn

chro

niz

atio

n m

ea

sure

before stimulation

- Testing hypothesis that value of dependence index is due to

selected data properties

- FT1 surrogates preserves the power spectrum, however randomly changes the

phases of the Fourier coefficients for each time serie separately

- If the null hypothesis stating that surrogates possess the same synchronization as

EEG is refused, occurrence of linear phase synchronization is assumed

Page 11: Detection of phase synchronization applied to audio-visual stimulation EEG M. Teplan, K. Šušmáková, M. Paluš, M. Vejmělka Institute of Measurement Science,

Mind machines?

Page 12: Detection of phase synchronization applied to audio-visual stimulation EEG M. Teplan, K. Šušmáková, M. Paluš, M. Vejmělka Institute of Measurement Science,

Audio-visual stimulation of the brain (AVS): - brain influence through audio and visual sensory channel

- adaptation of dominant EEG frequency – wave brain entrainment

- potential use: strokes, head injury, headaches, dental anxiety, premenstrual syndrome, cognitive and behavioral functioning, performance improvement

- AVS training: direct, short and long term effects

M. Teplan et al.: EEG responses to long-term audio-visual stimulation. International Journal of Psychophysiology, 2006, 59/2

M. Teplan, A. Krakovská, S. Štolc: Direct and transient effects of audio-visual stimulation on EEG, submitted

Page 13: Detection of phase synchronization applied to audio-visual stimulation EEG M. Teplan, K. Šušmáková, M. Paluš, M. Vejmělka Institute of Measurement Science,

Brain wave entrainmentcourse of the stimulation &

brain response - EEG spectrogram:

Page 14: Detection of phase synchronization applied to audio-visual stimulation EEG M. Teplan, K. Šušmáková, M. Paluš, M. Vejmělka Institute of Measurement Science,

Direct effects of stimulation

• evaluation with ratios of relative powers in narrow frequency band:

• during stimulation referenced to interval prior to stimulation

• high statistical significancy of AVS effect, quite large variations

• the strongest effect at visual cortex and for higher frequencies

Ratio of relative band powers

0

5

10

15

20

25

30

F3C3 F4C4 C3P3 C4P4 P3O1 P4O2

2 Hz4 Hz9 Hz17 Hz

Page 15: Detection of phase synchronization applied to audio-visual stimulation EEG M. Teplan, K. Šušmáková, M. Paluš, M. Vejmělka Institute of Measurement Science,

Phase synchronization during AVS

• Difference in phase synchronization during stimulation in respect to nonstimulation conditions: Difference of medians of z-scores. Z-scores evaluate distance of synchronization measure MPC from testing surrogate MPCs. Higher positive values mean higher increase of synchronization during the stimulation.

• Mann-Whitney U test (paired Wilcoxon) reflects a strong level of statistical significance (p-values from 10-7 to 0.03) in all selected pairs for both stimulating frequencies.

• Stronger effect for 17 Hz than for 4 Hz stimulation.

• Interhemispheric relations: without monotonous decrease towards frontal locations - top values for centro-parietal regions.

• Possible enhanced communication also between cross areas (F3C3-P3O1, F4C4-P4O2).

Page 16: Detection of phase synchronization applied to audio-visual stimulation EEG M. Teplan, K. Šušmáková, M. Paluš, M. Vejmělka Institute of Measurement Science,

Comparison to coherence methodsduring stimulation:

prior to stimulation: linear correlation coefficient < 0.5

Page 17: Detection of phase synchronization applied to audio-visual stimulation EEG M. Teplan, K. Šušmáková, M. Paluš, M. Vejmělka Institute of Measurement Science,

- approaches determining phase synchrony level are usefull for EEG studies

- in the case of audio-visual stimulation we were able to determine regions with different synchronization relations

- decrease in synchronization roughly follows power attenuation

- possible impact on higher brain functions across the cortex

- future work: application of directionality index – related technique for finding direction of the information flow

Conclusions