77
Asymptotics Helle Bunzel Iowa State University September 26, 2008 Bunzel (ISU) Asymptotics Septemb er 26, 2008 1 / 77

Detailed Notes on Asymptotics

  • Upload
    kmak500

  • View
    231

  • Download
    0

Embed Size (px)

Citation preview

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 1/77

Asymptotics

Helle Bunzel

Iowa State University

September 26, 2008

Bunzel (ISU) Asymptotics September 26, 2008 1 / 77

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 2/77

Asymptotics: What and Why?   I

We study the asymptotic behavior of sequences of random variables.

Typical sequence:   X 1, 12 (X 1 + X 2)  ,

 13  ∑ 

3i =1 X i , ....,

 1n  ∑ 

ni =1 X i 

Asymptotics: What happens when  n ! ∞.

Why is this interesting?

n = ∞ :  The largest possible amount of   informationFinite sample vs asymptotic distributions.

Many types of convergence concepts for random variables:

1   Convergence in distribution2   Convergence in probability3   Mean square convergence4   Almost sure convergence

Bunzel (ISU) Asymptotics September 26, 2008 2 / 77

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 3/77

Convergence in distribution I

De…nition

Let fY ng  be a sequence of random variables and let fF ng  be the sequenceof associated CDFs. If there exists a CDF  F ,  such that  F n (y ) ! F  (y )  forall  y   where F   is continuous, then  F  is called the limiting CDF of  fY ng  andletting  Y   have CDF F , we say that  Y n  converges in distribution to the r.v.

Y .

Also called "convergence in law"

Denoted  Y nd ! Y   or Y n

L! Y   or Y n ) Y   or  Y nd ! F   etc.

If  Y   is degenerate, we say that  Y n   converges in distribution to aconstant.

Often we can …nd  F ,  but not  F n .

How does this help us?

Bunzel (ISU) Asymptotics September 26, 2008 3 / 77

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 4/77

Convergence in distribution II

Sometimes the density is su¢cient to establish convergence indistribution:

Theorem

Let  fY ng  be a sequence of either co ntinuou s or non-negative, integer valued, discrete random variables, and let  ff ng  be the corresponding sequence of pdfs. If there exists a density function f such that f n (y ) ! f   (y )  ,  except perhaps on a set of points A such that 

P Y  (A) = 0,  where Y   f  .  Then Y nd ! Y .

Bunzel (ISU) Asymptotics September 26, 2008 4 / 77

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 5/77

Convergence in distribution III

A consequence of convergence in distribution is that the mean andthe variance of  X n  converge to the mean and the variance of  X .

Simplistic example: If we sample form a normal distribution, thenX n  N µ,

 σ 2

n

.

The limiting distribution of  X   is the degenerate distribution with meanµ  and variance 0.

Bunzel (ISU) Asymptotics September 26, 2008 5 / 77

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 6/77

Convergence in distribution IExample

Let

 fX n

g be a sequence of r.v.s.   X n

 N  (0, 1)

8n.

Let fZ ng  be a sequence of r.v.s where  Z n  =

3 +   1n

X n +   2n

n1 .

Then  Z n  N 

  2nn1 ,

3 +   1

n

2

 and  Z nd ! N  (2, 9)

Bunzel (ISU) Asymptotics September 26, 2008 6 / 77

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 7/77

Convergence in probability I

De…nition

The sequence of random variables fX ng  converges in probability to therandom variable  X   i¤ 

a. Scalar case: limn!∞ P  (jx n x j<

ε) = 1 8ε>

0b. Matrix case: limn!∞ P  (jx n [i , j ] x [i , j ]j < ε) = 1 8ε > 0, 8  i   and   j 

The notation we use is  X nP ! X   or plim(X n ) = X .

For large enough  n,  outcomes of  X  can serve as approximations of outcomes of  X n .

Bunzel (ISU) Asymptotics September 26, 2008 7 / 77

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 8/77

Convergence in probability.   Examples. I

Example 1:

Let fY ng  have an associated sequence of density functionsf n (y ) = n1I f0g (y ) +

1 n1

I f1g (y )

Then limn!∞ P  (jy n 1j = 0) = limn!∞

1 n1

 =  1 and

plimY n  = 1

Example 2:

Let fY ng  be such that  E  (Y n ) =

  23

 and  V  (Y n ) =   1

n

  2 11 1

.

Then, using Markov’s inequality:

P  (jy n [1] 2j < ε)     1  2 1n

ε2 )

limn!∞

P  (jy n [1] 2j < ε)     limn!∞

1  2 1

n

ε2

! = 1

Bunzel (ISU) Asymptotics September 26, 2008 8 / 77

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 9/77

Convergence in probability.   Examples. II

and

P  (jy n [2] 3j < ε)     1 1n

ε2 )

limn!∞

P  (jy n [2] 3j < ε)     limn!∞

1 1n

ε2

! = 1

So,  Y nP !

  23 .

Bunzel (ISU) Asymptotics September 26, 2008 9 / 77

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 10/77

Convergence in probability I

Theorem

If limn!∞E  (X n ) = µ  and limn!∞V  (X n ) = 0 then plimX n  = µ

Prove using Chebychev’s inequality.

Events or distributions. What is the di¤erence?

Many di¤erent experiments can have the same distributions.Convergence in probability talks speci…cally about the probability of speci…c events.

Bunzel (ISU) Asymptotics September 26, 2008 10 / 77

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 11/77

Convergence in probability II

TheoremLet X n

P ! X ,  and let g be a functio n which is continuous, except perhaps on a set of points with probability  0. Thenplim g  (X n ) = g  (plim (X n ))  .

EXTREMELY useful theorem.

Consider example from before where  plimY n [1] = 2.

Using the theorem we know that  plim   1Y n [1]

  =   12 .

But we couldn’t do the calculations from scratch since we don’t knowE 

  1Y n [1]

.

Bunzel (ISU) Asymptotics September 26, 2008 11 / 77

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 12/77

Convergence in probability, Examples I

Let fX ng  be a strictly positive valued r.v. such that  X nP ! 3.  Then

Y n  = g  (X n ) = ln (X n ) +p 

X nP 

!ln (3) +

p 3 = 2.8307

Let fX ng : k  1 be such that  X nP ! X   N  (0, I k )  and let

Y n  = g  (X n ) = X 0nX n .  Then  Y nP ! X 0X    χ2 (k )

Bunzel (ISU) Asymptotics September 26, 2008 12 / 77

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 13/77

Convergence in probability IProperties

For conformable r.v.s  X n ,  Y n  and constant matrix  A   :

1 plim  AX n  = A  plimX n

2 plim  ∑ mi =1 X n [i ] = ∑ mi =1   plimX n [i ]3 plim  ∏

mi =1 X n [i ] = ∏

mi =1   plimX n [i ]

4 plim  X nY n  =  plimX n plimY n

5 plim  X 1n   Y n  = (plimX n )1

 plimY n

Bunzel (ISU) Asymptotics September 26, 2008 13 / 77

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 14/77

Convergence in probability, Examples I

Let A =   2 11 1  and let fX ng  be such that plim X n  =

  25 . Then

plim  AX n  = A plim  X n  =

  2 11 1

  25

 =

  97

and

plim   (X n [1] + X n [2]) = plim X n [1] + plim  X n [2] = 2 + 5 = 7

and

plim   (X n [1] X n [2]) = (plim  X n [1]) (plim  X n [2]) = 2 5 = 10

Bunzel (ISU) Asymptotics September 26, 2008 14 / 77

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 15/77

Convergence in probability, Examples II

Let fY ng  be such that plim Y n  =

  1 22 1

 and fX ng  be such that

plim  X n  =

  3 12 1

.

Then

plimX nY n  = plimX n

plimY n  =   3 1

2 1   1 2

2 1 =   5 7

4 5

plim (X n )1 Y n   =   (plimX n )1 plimY n  =   3 12 1

1

  1 22 1

=

  1   12 3

  1 22 1

 =

 1 14   1

Bunzel (ISU) Asymptotics September 26, 2008 15 / 77

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 16/77

C i b I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 17/77

Connections between convergence types I

Theorem

Let  f(X n , Y n )g  be a sequence of pairs of m k random matrices, where X n

d ! X and X n Y nP ! 0.  Then Y n

d ! X .

Used when it is di¢cult to show directly that  Y nd ! X .

Example:

X n  N 

0, n1

n

 such that  X n

d ! N  (0, 1)

Let  Z n  be independent of  X n   and  Z n   χ2 (n)

Let  Y n  = 1 +   1nX n +   1

n Z n

1.

plim (X n Y n )   =   plim

1

nX n  1

nZ n + 1

=   1 plimX nn plim

Z nn

Bunzel (ISU) Asymptotics September 26, 2008 17 / 77

C i b II

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 18/77

Connections between convergence types II

Now,  E 

X nn

 =  0,  V 

X nn

 =   n1

n3   ! 0 so plim

X nn

 = 0

E Z nn  = 1,  V Z n

n  =   2n

 !0 so plimZ n

n  =  1

This implies that plim(X n Y n ) =  0 and theref ore Y nd ! N  (0, 1)

Theorem

Y nP 

! Y  ) Y nd 

! Y 

Previous theorem with  X n  = Y  8n.

Bunzel (ISU) Asymptotics September 26, 2008 18 / 77

C i b III

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 19/77

Connections between convergence types III

Theorem

Y nd 

! c  ) Y nP 

! c 

Not true unless the limit is a constant.

Proof:

Y nd 

! c  ) F n (y ) ) F  (y ) =  1fy c g (y )P  (jy n c j < ε) =  F n (c  + ε) F n (c  ε) ! 1

Theorem

Let  fX ng : k  m, fY ng : l  q ,  and  fang : j  p be such that X nd 

! X ,Y n

P ! Y and an ! a.  Let B be such that P X  (B ) = 1 and let the randomvariable g  (X n , Y n , an )  be de…ned by a function g that is continuous at 

every point in B  y  a.  Then g  (X n , Y n , an )  d ! g  (X , Y , a)

Bunzel (ISU) Asymptotics September 26, 2008 19 / 77

C ti b t t E l I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 20/77

Connections between convergence types, Example I

De…ne fZ ng  such that

Z nd ! Z   N 

  23

,

  4 00 9

and let

µn  =   2 +   1

n

31+e n !   2

3

and

Σn  =

  4 +   1

n1n

1n   9 +   1

n

!

  4 00 9

Then, from the theorem

g  (Z n , µn ,Σn ) = (Z n µn )0Σ1

n   (Z n µn)

d ! (Z   µ)0Σ1 (Z   µ)  χ2 (2)

Bunzel (ISU) Asymptotics September 26, 2008 20 / 77

C ti b t t I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 21/77

Connections between convergence types I

Theorem

Slutsky’s Theorems: Let X nd ! X and Y n

P ! c .  Then, for conformable X nand Y n

a. X n + Y n d ! X  + c b. Y n X n

d ! cX 

c. Y 1n   X n

d ! c 1X 

All special cases of previous theorem.

Bunzel (ISU) Asymptotics September 26, 2008 21 / 77

Order of magnitude in probability I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 22/77

Order of magnitude in probability I

De…nition

Let fX ng  be a sequence of random scalars.   Thena. The sequence fX ng  is said to be at most of order  nk  in probability,denoted by O P  nk   i¤ for every  ε > 0 there exists a corresponding positive

constant  c  (ε) < ∞  such that  P 

nk 

jX n j c  (ε) 1 ε  for all  n.

b. The sequence fX ng   is said to be of order smaller than  nk  in probability,

denoted by  o P 

nk 

  i¤  nk X nP ! 0.

Main use: Find out which terms are irrelevant as  n   increases.O P  (1)   :  Bounded in probability.

Bunzel (ISU) Asymptotics September 26, 2008 22 / 77

Example I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 23/77

Example I

Let fX ng  be such that  X i   N  (0, 1) 8i   and all the  X i   areindependent.

Let fZ ng  be de…ned as  Z n  = ∑ ni =1 X i .

What are the orders of  X n   and  Z n?

Note that we can always …nd a  c  (ε)   large enough that

P  (jX n j c  (ε)) = 2

Z   c (ε)

0N  (x ; 0, 1) dx   1 ε

So,  X n  = O P  (1)Consider  Z n   :

Z n  =n

∑ i =1

X i   N  (0, n)

Bunzel (ISU) Asymptotics September 26, 2008 23 / 77

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 24/77

Mean Square Convergence I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 25/77

Mean Square Convergence I

Also called Convergence in Quadratic Mean.

De…nition

The sequence of random variables fY ng  converges in mean square to therandom variable  Y   i¤ a. Scalar case: limn!∞ E  (Y n Y )2 = 0b. Matrix case: limn!∞ E  (Y n [i , j ] Y  [i , j ])2 = 0 8i , j 

Notation:   Y n m! Y 

Bunzel (ISU) Asymptotics September 26, 2008 25 / 77

Mean Square Convergence II

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 26/77

Mean Square Convergence II

Theorem

Y nm! Y i¤ 

a. E  (Y n [i , j ]) ! E  (Y  [i , j ])b. V  (Y n [i , j ]) ! V  (Y  [i , j ])b. Cov  (Y n [i , j ]  , Y  [i , j ])

!V  (Y  [i , j ])

Proof, scalar case only.

Y nm! Y  )  a. b. and c.

a.

jEY n EY j = jE  (Y n Y )j E  jY n Y j h

E  jY n Y j2i 1

2 ! 0

Bunzel (ISU) Asymptotics September 26, 2008 26 / 77

Mean Square Convergence III

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 27/77

Mean Square Convergence III

b.V  (Y n ) = E  (Y n EY n )2 = E 

Y 2n

(EY n )2

Y 2n

 =  E  (Y n Y )2 + E 

Y 2

+ 2E  (Y  (Y n Y ))

By Cauchy-Schwartz

jE  (Y  (Y n

Y ))

j hE Y 2E ((Y n

Y ))2i12

,

h

Y 2

((Y n Y ))2i 1

2   E  (Y  (Y n Y ))

hE Y 2 E ((Y n Y ))2

i12

and therefore

E  (Y n Y )2 + E 

Y 2

2h

Y 2

((Y n Y ))2i 1

2 E 

Y 2n

E  (Y n

Y )2 + E Y 2 + 2 hE Y 2 E ((Y n

Y ))2i

12

Bunzel (ISU) Asymptotics September 26, 2008 27 / 77

Mean Square Convergence IV

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 28/77

Mean Square Convergence IV

Taking limits:

E Y 2     lim

n!∞

E Y 2n E Y 2 ,

limn!∞

Y 2n

  =   E 

Y 2

limn!∞

V  (Y n ) =   limn!∞

Y 2n

  lim

n!∞(EY n )2 = E 

Y 2

(EY )2 = V  (Y )

c. We know that

E  (Y n Y )2 = E 

Y 2n

+ E 

Y 2

2E  (Y nY ) ! 0

By de…nition

Cov  (Y n,

Y )   =   E  [(Y n EY n ) (Y   EY )] = E  (Y n Y ) EY n EY  ,E  (Y n Y )   =   Cov  (Y n , Y ) + EY n EY 

2E  (Y n Y )   =   2Cov  (Y n , Y ) 2EY n EY 

Bunzel (ISU) Asymptotics September 26, 2008 28 / 77

Mean Square Convergence V

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 29/77

Mean Square Convergence V

E  (Y n Y )2 = E 

Y 2n

+ E 

Y 2 2Cov  (Y n , Y ) 2EY n EY  ! 0

Taking limits on the left side:

2E 

Y 2

2 limn!∞

Cov  (Y n , Y ) 2 (EY )2 = 0

limn!∞Cov  (Y n,

Y ) = V  (Y )

Now prove that a. b. and c. imply  Y nm! Y .

E  (Y n Y )2 =   E Y 2n + E Y 2 2E  (Y nY )

=   E 

Y 2n

+ E 

Y 2 2Cov  (Y n , Y ) 2EY nEY 

!   2E 

Y 2

2V  (Y ) 2 (EY )2 = 0

Bunzel (ISU) Asymptotics September 26, 2008 29 / 77

Mean Square Convergence, Example I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 30/77

Mean Square Convergence, Example I

Let

E  (Y n ) =

  2 +   3

n1 +   1

n

!

  21

V  (Y n) =  1n2

  2 11 1

!

  0 00 0

Then it follows that  Y nm!

  21 .

Bunzel (ISU) Asymptotics September 26, 2008 30 / 77

Mean Square Convergence I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 31/77

Mean Square Convergence I

Corollary

Y nm

! Y  )  ρ (Y n [i , j ]  , Y  [i , j ]) ! 1  when V  (Y  [i , j ]) > 0 8i , j .

Intuition. Outcomes perfectly correlated with equal variances.

Bunzel (ISU) Asymptotics September 26, 2008 31 / 77

Mean Square Convergence II

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 32/77

q g

Theorem

Y n

m

! Y  ) Y n

! Y  ) Y n

! Y 

Proof of the …rst relation:

Use Markov’s inequality:

(y n y )2 ε2

  E  (Y n Y )2

ε2  ,

P  (jy n y j ε)   E  (Y n Y )2

ε2  ,

P  (jy n y j < ε) 1  E  (Y n

Y )2

ε2   ,lim

n!∞P  (jy n y j < ε) 1 ,

limn!∞

P  (jy n y j < ε) = 1

Bunzel (ISU) Asymptotics September 26, 2008 32 / 77

Mean Square Convergence, Example I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 33/77

q g , p

Let  Y   N  (0, 1) ,  E  (Y n ) = 0 8n,  Var  (Y n ) ! 1,  Cov  (Y n , Y ) ! 1.

Then

E  (Y n Y )2 =   V  (Y n ) + V  (Y ) 2Cov  (Y n , Y )

+ (E  (Y n ) E  (Y ))2

!  2V  (Y )

2V  (Y ) = 0

)Y nm! Y    )   Y n

d ! Y   = N  (0, 1)

Knew nothing about the distribution of  Y n !

Bunzel (ISU) Asymptotics September 26, 2008 33 / 77

Mean Square Convergence, Example II

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 34/77

q g p

(Counter)Example:

Let  Y n  be such that

P  (y n  = 0) = 1   1n2

and

P  (y n  = n) =  1

n2

Then we know thatlim

n!∞P  (y n  = 0) = 1

and therefore plimY n  = 0 and  Y nd ! 0.

Look at  E  (Y n 0)2

:

E  (Y n 0)2 = E  (Y n)2 =

1   1

n2

02 +

  1

n2n2 = 1

No convergence in mean square!

Bunzel (ISU) Asymptotics September 26, 2008 34 / 77

Almost sure convergence I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 35/77

g

Almost sure convergence is the convergence of  outcomes .

De…nition

The sequence of random variables fY ng  converges almost surely to therandom variable  Y   i¤ a. Scalar case:   P  (limn

!∞ y n  = y ) = 1

b. Matrix case:   P  (limn!∞ y n [i , j ] = y  [i , j ]) = 1 8i , j 

The notation is  Y na.s .!  Y .

Note that each sequence of random variables has MANY possible

sequences of outcomes.

Note that  Y np ! c ; that limn!∞ y n   exists. Why?

For limn!∞ y n  = c , it must be the case that8n N  (ε) , jy n c j < ε.

Bunzel (ISU) Asymptotics September 26, 2008 35 / 77

Almost sure convergence II

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 36/77

A.s. convergence provides this limit with probability 1.

Y n p ! c  , P  (jy n c j < ε) ! 1 8ε.

This corresponds to

8n N  (δ)   : 1 P  (jy n c j < ε) < δ

or 8n N  (δ)   : P  (jy n c j < ε) > 1 δ

So, for big n, the probability that  y n   is close to c   is high, but not 1.  ForNO …xed  n   is the probability 1, so it certainly isn’t for all  n  greaterthan  N .

Thus, convergence in probability does NOT imply almost sureconvergence.

Bunzel (ISU) Asymptotics September 26, 2008 36 / 77

Almost sure convergence III

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 37/77

Theorem

P  (limn!∞ y n  = y ) = 1 ,limn!∞ P  (jy i   y j < ε   i   n) = 1, 8ε > 0.

Alternative de…nition.

Theorem

Y na.s .!  Y  ) Y n

P ! Y 

Proof:

We know that 8ε > 0 limn!∞ P  (jy i   y j < ε   i   n) =  1

Bunzel (ISU) Asymptotics September 26, 2008 37 / 77

Almost sure convergence IV

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 38/77

Note that jy i   y j < ε   i   n ) jy n y j < ε,  so

P  (jy i   y j < ε   i   n) P  (jy n y j < ε) )limn!∞P  (jy n y j < ε)   limn!∞P  (jy i   y j < ε   i   n) = 1 8ε ,

limn!∞

P  (jy n y j < ε) = 1

Bunzel (ISU) Asymptotics September 26, 2008 38 / 77

Almost sure convergence, (Counter)Example I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 39/77

Let fY ng  be a sequence of independent random variables such that

Y n  f n (y ) =

1  1

n

I f0g (y ) +

 1

nI f1g (y )

Convergence in distribution:

f n (y )   !   f   (y ) = I f0g (y ) )Y n

d ! 0

Convergence in probability:Since  Y n  converges in distribution to a constant, we know that

Y nP ! 0

Bunzel (ISU) Asymptotics September 26, 2008 39 / 77

Almost sure convergence, (Counter)Example II

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 40/77

Mean square convergence:

E  (Y n 0)2 =

1  1n

02 +

 1n  12 =

  1n ! 0

Almost sure convergence:

8ε 2 (0,

1)  and 8s  >

n,

 s   integer

P  (jy i j < ε, n i   s )

=s 

∏i =n

1  1

 =

∏i =n

i  1

=

n 1n

  n

n + 1

n + 1n + 2

...

s  2s  1

s  1

=

  n 1

s   ! 0 as  s  ! ∞

Bunzel (ISU) Asymptotics September 26, 2008 40 / 77

Almost sure convergence, (Counter)Example III

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 41/77

This means that

P  (jy i j < ε, n i ) =   lims !∞

P  (jy i j < ε, n i   s ) =  0 8n

Therefore we have

limn!∞

P  (jy i j < ε, n i ) = 0

and clearly it is not the case that limn!∞ P  (jy i j < ε, n i ) =  1 aswould be required for a.s. convergence!

Bunzel (ISU) Asymptotics September 26, 2008 41 / 77

Almost sure convergence, (Counter)Example I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 42/77

Y na.s .!  Y  ; Y n

m! Y 

Let

 fY n

g be a sequence of independent random variables such that

Y n  f n (y ) =

1   1

n2

I f0g (y ) +

  1

n2I fng (y )

2(0, n)  and

 8s  > n,  s   integer

P  (jy i j < ε, n i   s )

=s 

∏i =n

1   1

i 2

 =

∏i =n

i 2 1

i 2

= n2

1

n2 (n+1)2

1

(n+1)2 (n+2)2

1

(n+2)2

... (s 

1)2

1

(s 1)2 s 2

1

s 2

=

(n1)(n+1)n2

n(n+2)

(n+1)2

(n+1)(n+3)

(n+2)2

...

(s 3)2s 

(s 1)2

(s 1)(s +1)

s 2

=  (n 1) (s  + 1)

ns Bunzel (ISU) Asymptotics September 26, 2008 42 / 77

Almost sure convergence, (Counter)Example II

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 43/77

So

P  (jy i j < ε, n i )   =   (n 1)n

limn!∞

P  (jy i j < ε, n i )   =   1

Which proves that  Y na.s .

! Y 

Now, note that  E  (Y n ) =   1n ! 0 but

V  (Y n )   =

1   1

n2

  1

n2 +

  1

n2

n  1

n

2

=

1   1

n2   1

n2  +n2 +   1

n2

 2

n2   ! 1

Then,  Y n  does not converge in mean square.

Bunzel (ISU) Asymptotics September 26, 2008 43 / 77

Overview of convergence modes I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 44/77

Yn   Ya.s.

Yn   YP Yn   Yd

Yn   Ym

y = c

Bunzel (ISU) Asymptotics September 26, 2008 44 / 77

Almost sure convergence I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 45/77

Theorem

Let X n

a.s .

!  X and let the random variable g  (X )  be de…ned by a functiong  (x )  that is continuous, except perhaps on a set of points assigned 

probability  0  by the distribution of X .  Then g  (X n )  a.s .!  g  (X ) .

Same as for plim

Example:

Let  X na.s .!

  21

. Then

g 1 (X n )   =

  X n [2]

X n [1]a.s .

!  1

2

g 2 (X n )   =   X n [2] X n [1] a.s .! 1

g 3 (X n )   =   g 1 (X n ) g 2 (X n ) a.s .! 1

2

Bunzel (ISU) Asymptotics September 26, 2008 45 / 77

Almost sure convergence II

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 46/77

Another example:

Let  X na.s .

!   3

X  [2] ,  where  X  [2]

N  (1, 2) .  Then

g 1 (X n )   =  X n [2]

X n [1]a.s .!   1

3X  [2] N 

1

3,

2

9

g 2 (X n )   =   X n [2] X n [1] a.s .!  X  [2] 3 N  (2, 2)

g 3 (X n )   =   X n [1] (1 + X n [2])  a.

s .

!  3 (1 + X  [2]) N  (6, 18)

Bunzel (ISU) Asymptotics September 26, 2008 46 / 77

Almost sure convergence III

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 47/77

Theorem

Cauchy’s Criterion. A sequence of r andom variables  fY ng  converges almost surely to some (possibly degenerate) random variable i¤ 

limn!∞P 

maxm>n jy m y n j < ε

 = 1 8ε > 0

Intuition. If  y  is to converge eventually, the di¤erences between thelast many terms must be small.

Bunzel (ISU) Asymptotics September 26, 2008 47 / 77

Laws of Large Numbers I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 48/77

Laws of large numbers give results f or the convergence of sequences

fX ng ,  where

X n  =  1

n

n

∑ i =1

X i 

If data is generated by f

X ng

,

 fX n

g is the sequence of sample means.

Convergence in probability: Weak Laws of Large Numbers (WLLN)

Almost Sure Convergence: Strong Laws of  Large Numbers (SLLN)

Two types of Laws of Large Numbers:

1   If  E  (X i ) = µ 8i ,  ¯

X n ! µ2   If  E  (X i ) = µi  (not the same for all   i ),  X n  µn ! 0,  where

µn  =   1n  ∑ 

ni =1 µi 

Bunzel (ISU) Asymptotics September 26, 2008 48 / 77

WLLN I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 49/77

Weak Laws of Large Numbers, basic  idea:Impose conditions such that the limiting distribution of Y n  =   1

n  ∑ ni =1 (X i   µi )  is degenerate on 0.

This happens when  ∑ ni =1 (X i   µi ) = o P  (n)

Suppose X i  are iid with mean  µ  and variance  σ 2?

BUT: Neither iid nor existence of variance is required.

Theorem

(Khinchin’s WLLN) Let  fX ng  be a sequenc e of iid random variables, and suppose E  (X i ) = µ < ∞, 8i .  Then  X n

P ! µ.

Bunzel (ISU) Asymptotics September 26, 2008 49 / 77

WLLN, Examples I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 50/77

Let fX ng  be a sequence of random variables such thatX i   p x  (1 p )1x  1f0,1g (x ) 8i .  Then  E  (X i ) = p  8i  and by

Khinchin’s WLLN  X nP ! p .

Let  f   (x ) = 2x 31[1,∞) (x )  and suppose the sequence of random

variables fX ng   is iid such that  X i    f   (x ) .  Then

E  (X i )   =Z   ∞

∞x 2x 31[1,∞) (x ) dx  =

Z   ∞1

2x 2dx 

= 2x 1∞1   = 2

By Khinchin’s WLLN  X nP ! 2.

Bunzel (ISU) Asymptotics September 26, 2008 50 / 77

WLLN, Examples II

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 51/77

BUT: Note that

V  (X i )   =   E 

X 2i  4

= Z   ∞

∞x 22x 31[1,∞) (x ) dx 

4

=Z   ∞

12x 1dx  4

=   [2 ln (x )]∞1  4 ! ∞

Bunzel (ISU) Asymptotics September 26, 2008 51 / 77

WLLN I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 52/77

Theorem

(Convergence in Probability of Relat ive Fre quency) Let A be any event in

the sample space. Let an outcome N A  be the number of times that anevent occurs in n independent and identical repetitions of the experiment.

Then the relative frequency of event A occurring is such that   N An

P ! P  (A)

The relative frequence can be used as a measure of the probability asn ! ∞.

Now relax iid assumption. Cost: Assume existence of variances.

Bunzel (ISU) Asymptotics September 26, 2008 52 / 77

WLLN II

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 53/77

Theorem

Let  fX ng  be a sequence of random variable s with …nite variances, and let fµng  be the corresponding sequence of expected values. Then

limn!∞

P  (jx n  µn j < ε) = 1, 8ε > 0

i¤ 

"  (  X n  µn )

2

1 + (  X n  µn )2

#! 0

Usage: Any conditions which imply that  E 

  (  X nµn )2

1+(  X nµn )2

! 0 will

provide a WLLN.

Bunzel (ISU) Asymptotics September 26, 2008 53 / 77

WLLN III

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 54/77

Theorem

(WLLN for non-iid case) Let  fX ng  be a seq uence of random variables with

…nite variances, and let  fµng  be the corresponding sequence of expected values. If Var  (  X n ) ! 0,  then  (  X n  µn )

  P ! 0.

Bunzel (ISU) Asymptotics September 26, 2008 54 / 77

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 55/77

WLLN, Example II

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 56/77

Now,

σ 2

i   28i  )n

∑ i =1 σ 2

i   2n

which implies that1

n2

n

∑ i =1

σ 2i    1

n22n ! 0

and

σ ij    =   ρji  j j )n

∑  j >i 

σ ij    =n

∑  j >i 

 ρ j i  = ρi n

∑  j >i 

 ρ j  = ρi  ρ1+i   ρn+1

1  ρ

=  ρ  ρni +1

1  ρ  !   ρ

1  ρ  for i  ! ∞

Bunzel (ISU) Asymptotics September 26, 2008 56 / 77

WLLN, Example III

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 57/77

Which implies that 1

n2

n

∑ i =1

n

∑  j >i 

σ ij  ! 0

We have now shown that

Var  (  X n ) =  1

n2

n

∑ i =1

σ 2i   + 2 1

n2

n

∑ i =1

n

∑  j >i 

σ ij  ! 0

It then follows that¯

X nP 

! 1

Bunzel (ISU) Asymptotics September 26, 2008 57 / 77

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 58/77

SLLN I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 59/77

TheoremLet  fX ng  be a sequence of iid rand om variables. Then E  (X i ) = µ < ∞   is 

necessary and su¢cient for  X na.s .!  µ.

Example:

Let fX ng  be a sequence of   iid   random variables such thatX i     1

θ  exp x i 

θ

1(0,∞) (x ) ,  where  θ  c  < ∞.  Then

E  (X i ) = µ = θ  < ∞  and  X na.s .!   θ.

Another example: Let  f   (x ) = 2x 

31[1

,

∞) (x )  and suppose the

sequence of random variables fX ng  is iid such that  X i    f   (x ) .  Recall

that then  E  (X i ) = 2 and  V  (X i ) = ∞.  But, by SLLN,  X na.s .!  2.

Bunzel (ISU) Asymptotics September 26, 2008 59 / 77

SLLN II

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 60/77

Theorem

(A.s. convergence of relative freque ncy) Let  A be any event in the sample space. Let an outcome N A  be the number of times that an event occurs inn independent and identical repetitions of the experiment. Then the 

relative frequency of event A occurring is such that   N 

An

a.s .

!  P  (A)

Theorem

If  (  X n  µn ) a.s .!  0  and  µn ! c then  X n

a.s .!  c 

Bunzel (ISU) Asymptotics September 26, 2008 60 / 77

Central Limit Theorems I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 61/77

CLT: Asymptotic distribution of sequences of random variables.

Typical CLT: Sequence of r.v.s such that

Y n  = b 1n   (S n an )

  d ! N  (0,Σ)

where

 fS n

g is a sequence such that  S n  = ∑ 

ni =1 X i .

CLT provides restrictions on fX ng , fang, and fb ng  such that theconvergence in distribution occurs.

Main usage: Distribution of parameter estimates and test statistics, if 

Finite sample distribution is unknown, or

Finite sample distribution is hard to work with.

A good illustration:http://www.statisticalengineering.com/central_limit_theorem.htm

Bunzel (ISU) Asymptotics September 26, 2008 61 / 77

CLT, Independent Scalar r.v.s I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 62/77

The simplest CLT:

Theorem

(Lindberg-Levy CLT or LLCLT) Let  f

X ng

 b e a sequence of iid r.v.s withE  (X i ) = µ  and V  (X i ) = σ 2 8i .  Then

n

12 σ 

1

  n

∑ i =1

X i   nµ

! =

  n12  (  X n µ)

σ 

d ! N  (0, 1)

Bunzel (ISU) Asymptotics September 26, 2008 62 / 77

CLT, Independent Scalar r.v.s II

Intuition:

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 63/77

Intuition:

E    n

∑ i =1 X i !

  =   nµ

  n

∑ i =1

X i 

!  =   nσ 2

Subtract mean, so it doesn’t diverge:

  n

∑ i =1

X i   nµ

! = 0

Re-scale so the variance remains …nite

n 1

2

  n

∑ i =1

X i   nµ

!! = σ 2

Bunzel (ISU) Asymptotics September 26, 2008 63 / 77

CLT, Independent Scalar r.v.s III

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 64/77

Choose to re-scale so variance is 1   :

n

12 σ 

1

  n

∑ i =1

X i   nµ

!! = 1

Also note that  X nd ! µ,  but re-scaling allows the variation to be

captured.

Bunzel (ISU) Asymptotics September 26, 2008 64 / 77

CLT, Independent Scalar r.v.s, Example I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 65/77

Let fX ng  be a sequence of  χ2 (1)  variables.   Then  E  (X i ) = 1 andV  (X i ) = 2 and  ∑ 

ni =1 X i    χ2 (n) .

Then, by LLCLT

∑ n

i =1 X i   nn

12  (2)

12

= ∑ 

n

i =1 X i   n(2n)

12

d ! N  (0, 1)

How good is the approximation? In reality we don’t know. There aresome theoretical bounds. Also we often use simulation techniques to

determine how big n should be for the approximation to work well.

Bunzel (ISU) Asymptotics September 26, 2008 65 / 77

CLT, Independent Scalar r.v.s I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 66/77

A CLT where we don’t require that the variables be iid:

Bunzel (ISU) Asymptotics September 26, 2008 66 / 77

CLT, Independent Scalar r.v.s II

Theorem

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 67/77

(Lindberg’s CLT) Let  fX ng  be a seq uence o f independent random

variables with E  (X i ) = µi  and V  (X i ) = σ 2

i   < ∞

 8i .

 De…ne b 2n  = ∑ ni =1 σ 

2i   ,  σ 2n  =   1

n  ∑ ni =1 σ 

2i   ,  µn  =   1

n  ∑ ni =1 µi ,  and let f i  be the pdf of 

X i .  If, 8ε > 0  in the continuous case:

lim

n!∞

1

b 2n

n

∑ i =1

Z (x i µi )

2

εb 2n

(x i 

 µi )

2 f i  (x i ) dx i   = 0

or in the discrete case:

limn

!∞

1

b 2n

n

∑ i =1

∑ (x i µi )

2

εb 2n ,  f i >0

(x i   µi )2 f i  (x i ) dx i   = 0

then∑ 

ni =1 X i  ∑ 

ni =1 µi 

(∑ ni =1 σ 2i  )

12

=  n

12  (  X n  µn )

σ n

d ! N  (0, 1)

Bunzel (ISU) Asymptotics September 26, 2008 67 / 77

CLT, Independent Scalar r.v.s I

It can be shown that the condition in the Lindberg CLT (Lindberg

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 68/77

It can be shown that the condition in the Lindberg CLT (Lindbergcondition) implies that

limn!∞

σ 2 j 

∑ ni =1 σ 

2i 

= 0 8 j 

Intuition?

A version of the CLT that is easier to verify:

Theorem

Let  fX ng  be a sequence of independ ent random variables withE  (X i ) = µi  and V  (X i ) = σ 2i    < ∞

 8i .  If P  (

jx i 

j< m) = 1

 8i for some 

m 2 (0,∞)  and  ∑ ni =1 σ 2i  ! ∞  as n ! ∞,  then

n12  (  X n  µn )

σ n

d ! N  (0, 1)

Bunzel (ISU) Asymptotics September 26, 2008 68 / 77

CLT, Independent Scalar r.v.s, Example I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 69/77

Let the sequence fY ng  be de…ned by  Y i  = z i  β + εi ,  where: β   is a real number

z i   is the i’th element in the sequence of  real numbers fz ng ,  for which1n  ∑ 

ni =1 z 2i    > a > 0 and jz i j < d  < ∞, 8i 

εi   is the i’th element in the sequence iid random variables

 fεn

g,  for

which  E  (εi ) =  0 and  V  (εi ) =  σ 2 2 (0,∞)  and  P  (jεi j m) = 1, 8i ,where  m 2 (0,∞)

Find an asymptotic distribution of the least squares estimator of  βde…ned by

ˆ βn  =  ∑ 

n

i =1 z i Y i ∑ 

ni =1 z 2i 

Bunzel (ISU) Asymptotics September 26, 2008 69 / 77

CLT, Independent Scalar r.v.s, Example II

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 70/77

Step 1: Rewrite to depend on  εi   :

ˆ βn  = ∑ 

ni =1 z i  (z i  β + εi )

∑ ni =1 z 2i 

=  β + ∑ 

ni =1 z i εi 

∑ ni =1 z 2i 

Consider   ˆ βn

 β.

ˆ βn  β =  ∑ ni =1 z i εi 

∑ ni =1 z 2i 

where

E  (z i εi )   =   0V  (z i εi )   =   σ 2z 2i 

Bunzel (ISU) Asymptotics September 26, 2008 70 / 77

CLT, Independent Scalar r.v.s, Example III

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 71/77

Is  z i εi   bounded?

P  (jz i εi j < dm) = P  (jz i j jεi j < dm) P  (jεi j < m) = 1

and  dm

2(0,∞) .

Now check the sum of the variances:

n

∑ i =1

V  (z i εi )   =   σ 2n

∑ i =1

z 2i   = nσ 2

1

n

n

∑ i =1

z 2i 

!

>   anσ 2

! ∞

Bunzel (ISU) Asymptotics September 26, 2008 71 / 77

CLT, Independent Scalar r.v.s, Example IV

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 72/77

Then∑ 

n

i =1 z 

i ε

i  0

(∑ ni =1 σ 2z 2i  )

12

=  ∑ 

n

i =1 z 

i ε

i σ (∑ ni =1 z 2i  )

12

! N  (0, 1)

and therefore

  n

∑ i =1

z 2

i !

12 ˆ βn  β

σ 

!N  (0, 1)

Alternative notation:

ˆ βn

a

N 0@ β, σ 2   n

∑ i =1

z 2

i !

1

1A

Bunzel (ISU) Asymptotics September 26, 2008 72 / 77

Multivariate CLT I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 73/77

Theorem

(Multivariate Lindberg-Levy CLT) Let  fX ng  be a sequence of iid randomvariables with E  (X i ) = µ  and Cov  (X i ) = Σ 8i ,  where  Σ  is a k  k 

positive de…nite matrix. Then

n12

1

n

n

∑ i =1

X i   µ

!  d ! N  (0,Σ)

Bunzel (ISU) Asymptotics September 26, 2008 73 / 77

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 74/77

Multivariate CLT, Example II

Then

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 75/77

E  (X i )   =   p 1

p 2

Cov  (X i )   =

  p 1 (1 p 1)   0

0   p 2 (1 p 2)

Also let  X n  =   1n  ∑ ni =1

  X 1i X 2i 

.

Then, by the multivariate LLCLT

n12  X n

  p 1

p 2   d 

!N 0,   p 1 (1

p 1)   0

0   p 2 (1 p 2)

Suppose we’re interested in the di¤erence in failure rates.

That is  X 1i   X 2i   or cX i ,  where  c  = [1, 1]

Bunzel (ISU) Asymptotics September 26, 2008 75 / 77

Multivariate CLT, Example III

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 76/77

Then

cn12

 X n

  p 1p 2

  =   n

12

c  X n c 

  p 1p 2

=   n12 ((  X 1n  X 2n ) (p 1 p 2))

d ! N 

0, c 

  p 1 (1 p 1)   00   p 2 (1 p 2)

c 0

=   N  (0, p 1 (1 p 1) + p 2 (1 p 2))

Note the variance is what we’d expect when we’re subtracting two

independent variables.

Bunzel (ISU) Asymptotics September 26, 2008 76 / 77

Multivariate CLT I

8/10/2019 Detailed Notes on Asymptotics

http://slidepdf.com/reader/full/detailed-notes-on-asymptotics 77/77

Slightly more general multivariate CLT:

Theorem

(Multivariate Lindberg-Levy CLT) Let  fX ng  be a sequence of independent k 

1 random vectors such that p  (

jx 

1i j m,

jx 

2i j m, ...,

jx 

ki j m) = 1

8i ,  where m 2 (0,∞) .  Let E  (X i ) = µi  and Cov  (X i ) =  Ψi ,  and suppose that limn!∞

1n  ∑ 

ni =1  Ψi  =  Ψ,  a k  k positive de …nite matrix. Then

n 12

  n

∑ i =1

(X i  

µi )!   d 

!N  (0, Ψ)

Bunzel (ISU) Asymptotics September 26, 2008 77 / 77