110
Design Tools for Hollow Section Joints with MSH Sections in accordance with EN 1993 and EN 10210 Resistance Tables for Standardised Joints CoP – Software for Individual Joint Dimensions K. Weynand, J. Kuck, R. Oerder, S. Herion, O. Fleischer, M. Rode 010011011011010 010011011011010 Design Tools for Hollow Section Joints with MSH Sections CoP – Software for Individual Joint Dimensions in accordance with EN 1993 and EN 10210 010011011011010 010011011011010 Design Tools for Hollow Section Joints with MSH Sections in accordance with EN 1993 and EN 10210 RESISTANCE TABLES FOR STANDARDISED JOINTS COP – SOFTWARE FOR INDIVIDUAL JOINT DIMENSIONS We’ll be sending you copies from existing stocks until the revised version is available.

Design Tools for Hollow Section Joints with MSH Sections in

Embed Size (px)

Citation preview

Page 1: Design Tools for Hollow Section Joints with MSH Sections in

V & M DEUTSCHLAND GmbH

Theodorstr. 90

D-40472 Düsseldorf · Germany

www.vmtubes.com/msh

[email protected]

Vallourec Group

Desig

n Too

ls fo

r Holl

ow Se

ction

Joint

s with

MSH

Secti

ons

in a

cco

rdan

ce w

ith

EN

199

3 an

d E

N 1

0210

Design Tools for Hollow Section Joints with MSH Sections

in accordance with EN 1993 and EN 10210

Resistance Tables for Standardised Joints

CoP – Software for Individual Joint Dimensions

ISBN 978-3-9814698-1-3

K. W

eyna

nd, J

. Kuc

k, R

. Oer

der

, S. H

erio

n, O

. Fle

isch

er, M

. Rod

e

K. Weynand, J. Kuck, R. Oerder, S. Herion, O. Fleischer, M. Rode

010011011011010

010011011011010

010011011011010010011011011010

010011011011010010011011011010010011011011010010011011011010010011011011010

010011011011010

010011011011010

Design Tools for Hollow Section Joints with MSH Sections

CoP – Software for Individual Joint Dimensions in accordance with EN 1993 and EN 10210

010011011011010

010011011011010

010011011011010010011011011010

010011011011010010011011011010010011011011010

CoP – Software for Individual Joint Dimensions in accordance with EN 1993 and EN 10210

010011011011010

VM_CoP2_Einband_A4.indd 2 22.09.11 08:46

Design Tools for Hollow Section Joints

with MSH Sections in accordance

with EN 1993 and EN 10210

RESISTANCE TABLES FOR STANDARDISED JOINTS

COP – SOFTWARE FOR INDIVIDUAL JOINT DIMENSIONS

We’ll be sending you copies

from existing stocks until the

revised version is available.

Page 2: Design Tools for Hollow Section Joints with MSH Sections in

Edition January 2013

Design Tools for Hollow Section Joints

Developed by:

Feldmann + Weynand GmbHTechnologies in civil engineeringVaalser Straße 25952074 Aachen Germany

www.fw-ing.com

KoRoH GmbHKompetenzzentrum Rohre und HohlprofileSchönfeldstraße 876131 Karlsruhe Germany

www.ccth-group.com

V & M DEUTSCHLAND GmbHTheodorstraße 9040472 Düsseldorf Germany

www.vmtubes.com

Vallourec Group

In coorporation with:

Supported and initiated by:

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 1 24.01.13 10:31

Page 3: Design Tools for Hollow Section Joints with MSH Sections in

ll

This publication is copyright protected. All rights are reser-ved to the authors. With regard to any intellectual rights con-tained in or resulting from this publication no right is granted to the user of this book. The intellectual property rights contained in or resulting from this publication belong exclu-sively to the authors, Feldmann + Weynand GmbH (F+W), KoRoH GmbH (CCTH) and V & M DEUTSCHLAND GmbH (V & M TUBES) respectively.

This publication, or part thereof, may not be reproduced or translated in any form or by any means, electronic or mecha-nical, including photocopying, recording or any information storage and retrieval system, without written permission from the authors. The information and design tables are provided ‘as they are’ and the authors will not offer any further assis-tance or help with respect to the content of the publication or to the background of the design methods for free.

The authors took care to ensure that all data and information in this publication is factual and that presented numerical values are accurate. To the best of the authors’ knowledge, all information in this book is accurate at the time of publication. Anyone making use of the contents of this publication is solely and exclusively liable for any and all possible damage arising out of or resulting from such use. The authors or F+W or CCTH or V & M TUBES furthermore assume no responsi-bility and/or liability for any oversight or misinterpretation of the information contained in this publication or resulting from the use of the information contained herein, nor can they be held responsible or liable for any damage arising out of the use of any information contained in this publication.

Copyright and disclaimer

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 2 24.01.13 10:31

Page 4: Design Tools for Hollow Section Joints with MSH Sections in

lll

Authors:

Dr. Klaus Weynand, Feldmann + Weynand GmbH

Dr. Jürgen Kuck, Feldmann + Weynand GmbH

Ralf Oerder, Feldmann + Weynand GmbH

Dr. Stefan Herion, KoRoH GmbH

Oliver Fleischer, KoRoH GmbH

Martin Rode, KoRoH GmbH

ISBN: 978-3-9814698-1-3

December 2011 Edition

Published by V & M DEUTSCHLAND GmbH, Düsseldorf, 2011

This publication is also available in German language.

010011011011010

010011011011010

Design Tools for Hollow Section Joints with MSH Sections

CoP – Software for Individual Joint Dimensions in accordance with EN 1993 and EN 10210

010011011011010

010011011011010

010011011011010010011011011010

010011011011010010011011011010010011011011010

CoP – Software for Individual Joint Dimensions in accordance with EN 1993 and EN 10210

010011011011010

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 3 24.01.13 10:31

Page 5: Design Tools for Hollow Section Joints with MSH Sections in

lV

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 4 24.01.13 10:31

Page 6: Design Tools for Hollow Section Joints with MSH Sections in

V

Contents

1 Introduction ............................................................................................................................ 12 Scope of application ............................................................................................................. 33 Design models ....................................................................................................................... 4

3.1 Joints in lattice structures ............................................................................................... 43.2 Joints in building frames ................................................................................................. 8

4 General approval by German building authorities ............................................................ 105 Design resistance tables for RHS joints ........................................................................... 15

5.1 Scope ............................................................................................................................ 155.2 How to use .................................................................................................................... 16

Welded K gap joints

Welded K overlap joints

Welded N overlap joints

Welded X joints

Welded Y joints

Welded T joints

Welded joints connecting gusset plates to RHS chords

Fin plate joints to RHS columns

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 5 24.01.13 10:31

Page 7: Design Tools for Hollow Section Joints with MSH Sections in

Vl

6 Worked examples ................................................................................................................ 846.1 Introduction ................................................................................................................... 84 6.2 General range of validity ................................................................................................ 856.3 Y joint ............................................................................................................................ 866.4 K joint with gap .............................................................................................................. 886.5 K joint with overlap ........................................................................................................ 906.6 T joint ............................................................................................................................. 92

7 Software – getting started .................................................................................................. 947.1 System requirements..................................................................................................... 947.2 Installation ..................................................................................................................... 947.3 You don’t have an installation CD? ............................................................................... 957.4 Getting started ............................................................................................................... 96

8 Abbreviations & symbols .................................................................................................... 989 References ......................................................................................................................... 100

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 6 24.01.13 10:31

Page 8: Design Tools for Hollow Section Joints with MSH Sections in

joints include all relevant configurations covered by EN 1993-1-8, see Figure 1.1. They allow the user a simple and straightforward analysis of the behaviour of hollow section joints under static loading. The intention is to provide design tools for the verification of typical lattice girder steel constructions and simple frames made of hollow sections such as the ones shown below.

To facilitate the use of the provided tables in Germany, these tables have been checked by the responsible German building authorities resulting in a ‘Bescheid zur Typenprüfung in Statischer Hinsicht’. This makes them allowed and approved design solutions, see chapter 4.

The design tools for hollow section joints are developed by Feldmann + Weynand GmbH, Aachen, Germany (F+W) in close cooperation with KoRoH GmbH, Karlsruhe, Germany (CCTH). The project is supported by V & M DEUTSCH-LAND GmbH, Düsseldorf, Germany (V & M TUBES). The authors would like to express their special thanks for the intensive and valuable support by Ole Josat and Dr. Marcel Schneider from V & M TUBES. They also thank Prof. Laurie Boswell from City University London for reviewing the English text.

1

The new European standard for the design of joints EN1993-1-8 [2] provides actual design rules for joints between both open and hollow sections. Design rules for joints between open sections are mainly based on recommendations develo-ped under the umbrella of ECCS (European Convention for Constructional Steelwork), whereas design rules for hollow section joints were published originally as design recommen-dations of CIDECT (International Committee for Research and Technical Support for Hollow Section Structures). However, these two design methods are based on different approaches: The so-called component method recommended by ECCS is used for the design of joints between open sec-tions, whereas design formulae for hollow section joints are based on semi-empirical investigations in which analytical models were fitted with test results.

Although in many cases the use of hollow sections offers clear advantages, in Germany and other countries engineers often decide to use open sections instead. There are various reasons for this preference: The design of hollow section joints seems to be complex and only few design tools are available, whereas these are widely available for joints of open sections. Moreover, many engineers do not have the necessary knowledge to work with hollow sections. Architec-tural arguments seem to be less relevant at that moment.

In order to facilitate the use of hollow sections, VALLOU-REC & MANNESMANN TUBES has launched an initiative to develop new design tools for the daily design practice resulting in the present publication.

The main objective is to enable the engineer to perform design checks of joints connecting hollow sections in an easy, safe and economic manner. Two different kinds of design tools are provided. The present book presents a set of design tables for standardised joints with predefined dimensions. In addition, software for the verification of joints with in- dividual dimensions is available in English and German lan-guage. The scope of the software includes also some splices and column base connections and some types of connections for joints between hollow sections and open sections. Design notes generated by the software allow quick and efficient approval by building authorities and/or insurance companies.

The scope of this publication cannot cover all possible joint configurations. However, the design tools for hollow section

1 Introduction

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 7 24.01.13 10:31

Page 9: Design Tools for Hollow Section Joints with MSH Sections in

2

CC CR RR CI RI RUCU IR

K

N

T

X

Y

KT

DT

DK

DY

CC CR RR CI RI RUCU

CC CR RR

TT

XX

KK

IC IR

T

DT

L

DL

C R

B

R

C R

S

Uniplanar truss jointsSimple joints (axial)

CC CR RR CI RI RUCU IR

K

N

T

X

Y

KT

DT

DK

DY

CC CR RR CI RI RUCU

CC CR RR

TT

XX

KK

IC IR

T

DT

L

DL

C R

B

R

C R

S

Moment resistant joints

Multiplanar truss jointsSimple joints (axial)

Joints in plane framesSimple joints (shear)

Column basesSimple (axial) Moment res.

SplicesSimple (axial)

ProfilesC: CHSR: RHSI: Open section (I or H)U: Channel section

Joint, e.g.CR: Circular member to rectangular memberIC: I or H member to circular member

Figure 1.1 – Covered joint configurations

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 8 24.01.13 10:31

Page 10: Design Tools for Hollow Section Joints with MSH Sections in

3

The present design tools provide resistances of hollow section joints. Resistances of connected members are not part of the design tools. Cross section and member resistances should be checked separately.

The technical rules are strictly based on the design rules given in Eurocode 3 (EN 1993-1-1 [1] and EN 1993-1-8 [2]) including its latest corrigenda and the German National Annexes [3, 4].

Hollow sections should be in accordance with EN 10210 [7, 8]. Even if the denomination of the sections are the same for hot finished hollow sections according to EN 10210 and cold formed hollow sections according to EN 10219 [5, 6], differences can be found with regard to cross section dimen-sions and the section properties. Due to this fact, a simple substitution of hot finished sections by cold formed sections cannot be done without taking these differences into account. Furthermore, EN1993-1-8 gives in section 4.14 restricting conditions for RHS regarding welding in cold-formed zones. Especially for larger brace to chord width ratios β, these restrictions have to be kept in mind, whereas for hotfinished sections no restrictions exist.

However, the types of joint configurations, the choice of materials, geometrical detailing, etc., which are covered by the present design tools for hollow section joints are limited to the scope described hereafter. As the design tools are based on the rules given in Eurocode 3, the limit of application specified in this standard applies also to the use of the design tables and design software. In particular, the joint resistances obtained from the design tables or software are only valid for joints subjected to static loading.

Quite a number of joint configurations are covered by the design tools. An overview is summarised in Figure 1.1. As it can be seen in Figure 1.1, connected members include RHS, CHS and for a few configurations also I or H sections. Con-crete filling or composite sections are not covered. Although the design tables are valid for materials S 355 H and S 460 NH/NLH according to Table 3.1 of EN 1993-1-1 only, the software is not limited to these steel grades and covers more materials.

The design tools do not provide particular rules for joints of purlins. Such joints are often detailed based on the engineer’s experience. However, a number of standardised connection layouts can be found for example in [21].

2 Scope of application

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 9 24.01.13 10:31

Page 11: Design Tools for Hollow Section Joints with MSH Sections in

4

• Chord shear failure (CSF) Failure due to shear forces in the chord side wall.

• Punching shear failure (PSF) Chord failure in the flange wall.

• Brace failure (BF) Failure due to cracking in the welds or in the brace

members with reduced effective width.

• Local buckling failure Failure due to instability of the chord or brace members at

the joint location. However, this failure is not governing for joints within the scope of application according to tables 7.1 and 7.8 of EN 1993-1-8.

For each failure mode, Eurocode 3 provides appropriate de-sign resistance formulae. To determine the design resistance of a joint, all relevant failure modes must be checked and the corresponding resistances should be determined. The mini-mum resistance is taken as the design resistance of a joint.

3.1.3 Models for CHS chords

The design formulae for CHS chord failure modes are based on the so-called Ring Model [23]. This model assumes that the brace member stresses (axial stresses) into the chord sec-tion are transferred mainly at the saddle of the brace members (see point A in Figure 3.1). This loading is taken into account by a pair of concentrated forces acting vertically to the flange, each 0,5 · N1 · sin Θ1. In longitudinal direction, it is assumed that the loads are transferred within an effective length Le (see Figure 3.1). The design formulae are derived assuming that yielding will occur in the chord section. Based on equilibrium of internal and external work, adequate equations can be derived [23].

These basic formulae were modified and calibrated based on experimental or numerical investigations [25] to cover the various failure modes for relevant practical configurations and loading situations, see Table 7.2 and Table 7.5 of EN 1993-1-8.

3.1 Joints in lattice structures

3.1.1 General

Lattice structures are often composed of combinations of circular, square or rectangular hollow sections. The design resistance of joints between the braces and chords are ex-pressed in terms of design axial and/or moment resistances of the brace members, or, in some cases, in terms of design axial resistances of the chords.

The complex geometry of the joints, local influences of the corners of rectangular sections and residual stresses, for instance due to welding, lead to non-uniform stress distributions. Strain hardening and membrane effects are also influencing the local structural behaviour. Due to the complexity of the parameters which influence the resistance of the joints, semi-empirical approaches were used to develop design models.

Simplified analytical models which consider the most rele-vant parameters were developed. Based on extensive research activities, these models were calibrated with parameters based on results of experimental and numerical investiga-tions. The parameters used in the design formulae are based on statistical evaluations. This approach directly led to design values and not to characteristic values. Consequently, the partial safety factor γM5 of EN 1993-1-8 [2] is recommended as γM5 = 1,0. The design equations are only valid within the investigated parameter ranges. Those application limits are given in EN 1993-1-8, Table 7.1 and Table 7.8.

3.1.2 Failure modes

The design resistance of a joint depends on the resistance of the weakest part of the joint. Eurocode 3 distinguishes between six different failure modes for joints in lattice structures:

• Chord face failure (CFF) Also referred to as chord plastification. Failure due to

plas tification of the chord face or the whole chord cross section.

• Chord web failure (CWF) Also referred to as chord side wall failure. Failure due to

yielding, crushing or instability (crippling or buckling of the chord side wall or chord web) under the compression brace member.

3 Design models

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 10 24.01.13 10:31

Page 12: Design Tools for Hollow Section Joints with MSH Sections in

5

of the braces Ni · sinΘi and, if necessary, the unequal stiff-ness distribution along the connection between the brace and the chord flange by the effective width be,p, see Figure 3.4.

3.1.6 Model for brace failure

Due to the unequal stiffness distribution the brace can fail by fracture close to the weld, local yielding or buckling. Like in the equations for punching shear failure, also for brace failure (BF), the effects of the unequal stiffness distribution are taken into account by an effective width be f f in the appro-priate formulae of EN 1993-1-8 (Tables 7.10, 7.11, 7.12 and 7.13, see Figure 3.5).

3.1.7 M-N interaction

The design resistances provided in the aforementioned tables of EN 1993-1-8 are resistances of a joint expressed in terms of design axial or moment resistance of the brace members. When brace member connections are subjected to combined bending and axial force, the following condition should be satisfied.

For welded joints between CHS or RHS brace members and RHS chord members (EN 1993-1-8, Eq. 7.4):

For welded joints between CHS members (EN 1993-1-8, Eq. 7.3):

3.1.4 Models for RHS chords

As mentioned in section 3.1.2 different failure modes need to be checked to determine the design resistance of a joint. For joints between braces and the flange of rectangular hollow sections, the following failure modes are relevant: chord face failure (CFF), chord web failure (CWF), chord shear failure (CSF) and punching shear failure (PSF). The basic models for the design formulae to check those failure modes are briefly described hereafter. More details can be found in [24, 26, 18, 17, 20, 25].

The basic model to check the chord face failure (CFF) is the yield line model for T , Y and X joints under axial load, which is shown in Figure 3.2. By ‘equalizing’ the externally applied work and the internal work, the lowest load for flange plastification can be calculated. The design values for the resistances for chord face failure given in EN 1993-1-8, Table 7.11 for T, X and Y joints are directly derived from this model. The design models for in-plane bending (IPB) and out-of-plane bending (OPB) are deduced from that model as well. As the analytic model for N and K joints result in very complex equations, a semi-empiric approach, also based on a yield line model, has been used to develop and validate the design equations in Eurocode 3 (see EN 1993-1-8, Table 7.12).

The model for chord web failure (CWF) of T, X and Y joints with RHS chords is based on the theory of linear elastic buckling of an isolated member (‘Euler case 2’). The width of the isolated member is determined by an assumed load distri-bution into the web of 1:2,5 through the wall thickness. The buckling length is equal to the height of the web. To calculate the buckling strength fb buckling curve a is used. The appro-priate design equation is given in EN 1993-1-8, Table 7.11.

In N and K joints with RHS chords, the joint may fail due to high shear in the chord section, see Figure 3.3. This failure is called chord shear failure (CSF). In the design equations of EN 1993-1-8, Table 7.12, the influence of the gap size is con-sidered by a factor in the determination of the shear area Av.

3.1.5 Punching shear failure

Punching shear failure (PSF) is also a chord face failure, where the flange of the chord can fail in shear due to the bra-ce loaded in tension, compression or bending. The appropri-ate formulae in EN 1993-1-8 consider the normal component

Design tools for hollow section joints

equations can be derived [23].

These basic formulae were modified and calibratedbased on experimental or numerical investigations[25] to cover the various failure modes for relevantpractical configurations and loading situations, seeTable 7.2 and Table 7.5 of EN 1993-1-8.

3.1.4 Model for RHS chords

As mentioned in section 3.1.2 different failuremodes need to be checked to determine the designresistance of a joint. For joints between braces andthe flange of rectangular hollow sections, the fol-lowing failure modes are relevant: chord face fail-ure (CFF), chord web failure (CWF), chord shearfailure (CSF) and punching shear failure (PSF). Thebasic models for the design formulae to check thosefailure modes are briefly described hereafter. Moredetails can be found in [24, 26, 18, 17, 20, 25].

The basic model to check the chord face failure(CFF) is the yield line model for T , Y and X jointsunder axial load, which is shown in Figure 3.2. By‘equalizing’ the externally applied work and the in-ternal work, the lowest load for flange plastificationcan be calculated. The design values for the resis-tances for chord face failure given in EN 1993-1-8,Table 7.11 for T, X and Y joints are directly derivedfrom this model. The design models for in-planebending (IPB) and out-of-plane bending (OPB) arededuced from that model as well. As the analyticmodel for N and K joints result in very complexequations, a semi-empiric approach, also based ona yield line model, has been used to develop andvalidate the design equations in Eurocode 3 (seeEN 1993-1-8, Table 7.12).

The model for chord web failure (CWF) of T, X andY joints with RHS chords is based on the theory oflinear elastic buckling of an isolated member (‘Eu-ler case 2’). The width of the isolated member isdetermined by an assumed load distribution into theweb of 1:2,5 through the wall thickness. The buck-ling length is equal to the height of the web. To cal-culate the buckling strength fb buckling curve a isused. The appropriate design equation is given inEN 1993-1-8, Table 7.11.

In N and K joints with RHS chords, the joint mayfail due to high shear in the chord section, see Fig-ure 3.3. This failure is called chord shear failure(CSF). In the design equations of EN 1993-1-8, Ta-

ble 7.12, the influence of the gap size is consideredby a factor in the determination of the shear area Av.

3.1.5 Punching shear failure

Punching shear failure (PSF) is also a chord facefailure, where the flange of the chord can fail inshear due to the brace loaded in tension, com-pression or bending. The appropriate formulae inEN 1993-1-8 consider the normal component of thebraces Ni · sinΘi and, if necessary, the unequal stiff-ness distribution along the connection between thebrace and the chord flange by the effective widthbe,p, see Figure 3.4.

3.1.6 Model for brace failure

Due to the unequal stiffness distribution the bracecan fail by fracture close to the weld, local yield-ing or buckling. Like in the equations for punch-ing shear failure, also for brace failure (BF), the ef-fects of the unequal stiffness distribution are takeninto account by an effective width be f f in the appro-priate formulae of EN 1993-1-8 (Tables 7.10, 7.11,7.12 and 7.13, see Figure 3.5).

3.1.7 M-N interaction

The design resistances provided in the aforemen-tioned tables of EN 1993-1-8 are resistances of ajoint expressed in terms of design axial or momentresistance of the brace members. When brace mem-ber connections are subjected to combined bendingand axial force, the following condition should besatisfied.

For welded joints between CHS or RHS brace mem-bers and RHS chord members (EN 1993-1-8, Eq.7.4):

Ni,Ed

Ni,Rd+

Mip,i,Ed

Mip,i,Rd+

Mop,i,Ed

Mop,i,Rd≤ 1,0

For welded joints between CHS members (EN 1993-1-8, Eq. 7.3):

Ni,Ed

Ni,Rd+

[Mip,i,Ed

Mip,i,Rd

]2

+

∣∣Mop,i,Ed∣∣

Mop,i,Rd≤ 1,0

3.2 Joints in building frames

3.2.1 General

For joints between H or I sections, a new theoreticalapproach based on the so-called component method

Edition December 2011 5

Design tools for hollow section joints

equations can be derived [23].

These basic formulae were modified and calibratedbased on experimental or numerical investigations[25] to cover the various failure modes for relevantpractical configurations and loading situations, seeTable 7.2 and Table 7.5 of EN 1993-1-8.

3.1.4 Model for RHS chords

As mentioned in section 3.1.2 different failuremodes need to be checked to determine the designresistance of a joint. For joints between braces andthe flange of rectangular hollow sections, the fol-lowing failure modes are relevant: chord face fail-ure (CFF), chord web failure (CWF), chord shearfailure (CSF) and punching shear failure (PSF). Thebasic models for the design formulae to check thosefailure modes are briefly described hereafter. Moredetails can be found in [24, 26, 18, 17, 20, 25].

The basic model to check the chord face failure(CFF) is the yield line model for T , Y and X jointsunder axial load, which is shown in Figure 3.2. By‘equalizing’ the externally applied work and the in-ternal work, the lowest load for flange plastificationcan be calculated. The design values for the resis-tances for chord face failure given in EN 1993-1-8,Table 7.11 for T, X and Y joints are directly derivedfrom this model. The design models for in-planebending (IPB) and out-of-plane bending (OPB) arededuced from that model as well. As the analyticmodel for N and K joints result in very complexequations, a semi-empiric approach, also based ona yield line model, has been used to develop andvalidate the design equations in Eurocode 3 (seeEN 1993-1-8, Table 7.12).

The model for chord web failure (CWF) of T, X andY joints with RHS chords is based on the theory oflinear elastic buckling of an isolated member (‘Eu-ler case 2’). The width of the isolated member isdetermined by an assumed load distribution into theweb of 1:2,5 through the wall thickness. The buck-ling length is equal to the height of the web. To cal-culate the buckling strength fb buckling curve a isused. The appropriate design equation is given inEN 1993-1-8, Table 7.11.

In N and K joints with RHS chords, the joint mayfail due to high shear in the chord section, see Fig-ure 3.3. This failure is called chord shear failure(CSF). In the design equations of EN 1993-1-8, Ta-

ble 7.12, the influence of the gap size is consideredby a factor in the determination of the shear area Av.

3.1.5 Punching shear failure

Punching shear failure (PSF) is also a chord facefailure, where the flange of the chord can fail inshear due to the brace loaded in tension, com-pression or bending. The appropriate formulae inEN 1993-1-8 consider the normal component of thebraces Ni · sinΘi and, if necessary, the unequal stiff-ness distribution along the connection between thebrace and the chord flange by the effective widthbe,p, see Figure 3.4.

3.1.6 Model for brace failure

Due to the unequal stiffness distribution the bracecan fail by fracture close to the weld, local yield-ing or buckling. Like in the equations for punch-ing shear failure, also for brace failure (BF), the ef-fects of the unequal stiffness distribution are takeninto account by an effective width be f f in the appro-priate formulae of EN 1993-1-8 (Tables 7.10, 7.11,7.12 and 7.13, see Figure 3.5).

3.1.7 M-N interaction

The design resistances provided in the aforemen-tioned tables of EN 1993-1-8 are resistances of ajoint expressed in terms of design axial or momentresistance of the brace members. When brace mem-ber connections are subjected to combined bendingand axial force, the following condition should besatisfied.

For welded joints between CHS or RHS brace mem-bers and RHS chord members (EN 1993-1-8, Eq.7.4):

Ni,Ed

Ni,Rd+

Mip,i,Ed

Mip,i,Rd+

Mop,i,Ed

Mop,i,Rd≤ 1,0

For welded joints between CHS members (EN 1993-1-8, Eq. 7.3):

Ni,Ed

Ni,Rd+

[Mip,i,Ed

Mip,i,Rd

]2

+

∣∣Mop,i,Ed∣∣

Mop,i,Rd≤ 1,0

3.2 Joints in building frames

3.2.1 General

For joints between H or I sections, a new theoreticalapproach based on the so-called component method

Edition December 2011 5

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 11 24.01.13 10:31

Page 13: Design Tools for Hollow Section Joints with MSH Sections in

6

2ϕ ϕ

11*1 sinΘ⋅= NN

*1N

2

*1N

2

*1N

2

*1N

2

*1N

2

*1N

00 td -

1d

0d

plm

0t

1t

A

2

*1N

eLN⋅2

*1

11 dc ⋅ eL

1s

1s

plm

0t

1t

1N

0h

0b 1b

0t

1b

1h

1

1

sinΘh

0b

αtan210 bb -

α

1N

δ

αtan210 bb -

210 bb -

210 bb -

1b

1t

yield line

Figure 3.1 – Ring model for chord plastifi cation under axial brace loading [23]

Figure 3.2 – Yield line model for T, Y and X joints

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 12 24.01.13 10:31

Page 14: Design Tools for Hollow Section Joints with MSH Sections in

7

0t

1t1N

0h

1b

1h

0b

0h

20b⋅α2t

2N2b

2h

g

VV

MM

20 VAA −

Figure 3.3 – Analytical model for chord shear failure

Figure 3.4 – Effective width for punching shear failure

0t

1t

1N

0h

0b 1b

0t

1b

1h

peb ,

1

1

sinΘh

1N

1b

0t

1t

0b

0t

1b

1h

1

1

sinΘh

2t

2N

2b

2

2

sinΘh

2b

2h

0b

0h

1,, peb 2,, peb

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 13 24.01.13 10:31

Page 15: Design Tools for Hollow Section Joints with MSH Sections in

8

0t 1t

1N

0h

1b

1h

1N

0t

1t

1b1h

2t

2N

2b 2h

0b

0h

2effb

2effb

21,effb

21,effb

22,effb

22,effb

Figure 3.5 – Effective width for brace failure

• Step 3: ‘Assemble’ the single components, so as to derive the structural properties of the complete joint. By means of a simplifi ed spring model, the structural properties of the joint are determined. The behaviour of a joint subjected to bending moments is typically expressed in terms of a moment-rotation curve.

The component method provides the user with information about the stiffness and resistance of all the constitutive parts of the joints (called components). Hence, the component method is useful to:

• show how resistance (and the stiffness) are ‘distributed’ between the constitutive joint components

• derive the actual failure mode • assess the related level of ductility • give indications on how to stiffen or strengthen

the joint in an easy and economic way when needed.

Eurocode 3 only provides little information concerning joints between hollow sections and open sections. However, quite a number of individual components can be found which allow the determination of the joint resistance in confi gura-tions where hollow section members are connected to open sections. More details about the application of the component method for such cases can be found in [14, 13].

3.2 Joints in building frames

3.2.1 General

For joints between H or I sections, a new theoretical approach based on the so-called component method has been introdu-ced in Eurocode 3. It allows an analytical evaluation of the stiffness and resistance properties based on the mechanical models of a wide range of joint confi gurations and connection types [11, 12]. In the case of joints between hollow sections and H or I sections, or in cases where other connection ele-ments like end plates, fi n plates or cleats are used to connect the members of a structure, the component method may also be used.

The component method is a three step procedure which is specifi ed as follows:

• Step 1: Identify the constitutive individual components of the joint. Any joint is considered as a set of individual

components. Not only the geometrical confi guration of the joint has to be taken into consideration, but also the type of loading to which the joint is subjected (axial forces, bending moments, shear forces or combinations of these loadings).

• Step 2: Determine the structural properties of all these components by using appropriate design formulae. In general, the structural properties of a component are (a) its resistance (shear, tension, compression), (b) its stiffness and (c) its ductility. The component properties may be expressed in terms of a load-deformation curve.

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 14 24.01.13 10:31

Page 16: Design Tools for Hollow Section Joints with MSH Sections in

9

3.2.2 Model for fin plate joints

The model for fin plate joints is based on the component method as described in 3.2.1. In order to determine the design resistance of a fin plate joint, the resistances of the following basic components have to be evaluated.BS Bolts in shearPHB Fin plate in bearingPSG Fin plate in shear (gross section)PSN Fin plate in shear (net section)PBT Block tearing of fin platePB Fin plate in bendingPS Plate stability – fin plate in bucklingBHB Beam web in bearingBSG Beam web in shear (gross section)BSN Beam web in shear (net section)BBT Block tearing of beam web

Then, the shear resistance of the joint is the minimum value of the component resistances listed before.

In addition further requirements must be fulfilled in order to

• ensure sufficient rotation capacity,• avoid premature weld failure,• allow a plastic redistribution of internal forces.

For more details concerning the design rules of a fin plate joint, reference is made to [11].

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 15 24.01.13 10:31

Page 17: Design Tools for Hollow Section Joints with MSH Sections in

10

to established design standards or recommendations. If such approved types of construction are used in Germany, an additional check by the building authorities (or by a proof engineer) is no more required. The general approval and its annexes, issued by a German building authority, are re- produced hereafter. The original documents remain with the authority in Hannover.

In a similar way as done for the design tables, all algorithms used for the software with an extended scope (see chap-ter 7) have been programmed twice by F+W and CCTH respectively. The results have been compared by extensive computations based on automatically generated combinations of joint layouts.

The complexity of the design rules and the quantity of combinations of joint details and joint configurations result in an immense variety of joint layouts. In order to check the programs and calculation modules which have been used to generate the present design tools in a comprehensive way, the routines to create all design tables have been programmed independently by the design offices F+W and CCTH and the results have been compared electronically. Subsequently, an external check of the design restistance tables (pages 18 to 79) has been made by the German building authorities resul-ting in a ‘Bescheid zur Typenprüfung in Statischer Hinsicht’.

A ‘Bescheid zur Typenprüfung in Statischer Hinsicht’ is a ge-neral approval for types of constructions designed according

4 General approval by German building authorities

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 16 24.01.13 10:31

Page 18: Design Tools for Hollow Section Joints with MSH Sections in

11

Bemessungshilfen für Hohlprofilanschlüsse

Ausgabe Dezember 2011 11

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 17 24.01.13 10:32

Page 19: Design Tools for Hollow Section Joints with MSH Sections in

12

Bemessungshilfen für Hohlprofilanschlüsse

12 VALLOUREC & MANNESMANN TUBES

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 18 24.01.13 10:32

Page 20: Design Tools for Hollow Section Joints with MSH Sections in

13

Bemessungshilfen für Hohlprofilanschlüsse

Ausgabe Dezember 2011 13

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 19 24.01.13 10:32

Page 21: Design Tools for Hollow Section Joints with MSH Sections in

14

Bemessungshilfen für Hohlprofilanschlüsse

14 VALLOUREC & MANNESMANN TUBES

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 20 24.01.13 10:32

Page 22: Design Tools for Hollow Section Joints with MSH Sections in

15

It is recommended to use always full strength welds. Based on Table 3.1 of EN 1993-1-1 [1], welds of direct welded hot finished hollow sections can be considered as being full strength if the following criterion is fulfilled:

• t ≤ 8 mm and fillet welds where

• t > 8 mm and full penetration welds where

where t is the thickness of the brace member section. In this case no further checks of the welds are required. For more information, see EN 1993-1-8 section 7.3.1 [2]. According to the German National Annex [4] welds for S 460 NH/NLH are full strength if a ≥ 1,23 · ti . The following design resistance tables take this criterion into account.

It is assumed that the same material (S 355 H or S 460 NH) is used for all hollow section members. Tables indicating S 460 NH are also valid for S 460 NLH. All plates and I or H sections are made of steel grade S 355. For fin plate joints the resistaces are valid if the bolts are of class 10.9 and the shear plane is in the shank of the bolts.

In case that more than one brace is connected to a chord (K or N joints), both brace sections are of the same dimension. Therefore, for K joints, with respect to Figures 3.3, 3.4 or 3.5, in the design tables h2 = h1, b2 = b1 and t2 = t1, and both brace angles are of the same value (Θ = Θ1 = Θ2). Consequently, the design resistances are the same for both braces, i.e. N2,Rd = N1,Rd. For N joints, Θ1 = 90° whereas Θ2 may vary. Accordingly, different design resistances are obtained for N1,Rd and N2,Rd respectively.

The design tables which refer to axial brace loads can be used to estimate the design resistance of joints with CHS braces connected to RHS chords by multiplying the tabled design resistances by π / 4. To do so, the CHS brace should meet the following requirements: di ≥ bi and ti,CHS ≥ ti,RHS.

In case of K or N joints the design resistances are determined considering the complete range of allowable gap or overlap respectively. The limits are specified in the table header and

5.1 Scope

The following design tables provide design resistances for hollow section joints. Cross section and member resistances are not taken into account in the design tables. Due to the large number of possible configurations and combinations of sections, the tables can only provide a condensed set of stan-dardised joints. The main objective is to allow the user to get a quick overview of the structural joint properties, especially at pre-design stage when the engineer must select the type and size of the sections.

In order to limit the number of combinations tabled in this book, various choices had to be made. Only joints between RHS members are considered and only ‘preferred’ section dimensions from [15] are included. For example, for K joints, only square hollow sections with chord widths of b0 = 100/150/200/250/300 mm (each with maximum 3 values of thickness t0 ), width ratio β ≈ 0,4/0,6/0,8 and thickness ratio τ ≤ 1,0 are tabled. For one specific type of joint confi-guration, e.g. K, N or T joint, such a limitation of parameter variations already results in 45 possible combinations, which are presented in one table on a single page.

In order to cover more geometrical configurations with res-pect to the brace angles and the given loading in the chord, as it is indicated in each table, the listed design resistances are valid for a range of brace angles Θi and chord stress ratios n respectively. It should be understood that the most critical combination is taken as the basis for determining the design values given in the tables. Hence, the use of the design tables may result in a conservative design and consequently result in a less economical choice of sections.

For other combinations of sections or individual sets of parameters that are not covered by the design tables, the reader can use the software ‘CoP2 V & M Edition’, which is provided with this book, see chapter 7.

The internal forces and moments should be determined using elastic global analysis. If plastic global analysis is used, further checks may be required.

The tables are valid for axial loading or moment loading only. When a joint is subjected to both, axial forces and bending moments, additional M-N interaction checks are required, as mentioned in section 3.1.7.

5 Design resistance tables for RHS joints

Design tools for hollow section joints

5 Design resistance tables for RHS joints

5.1 Scope

The following design tables provide design resis-tances for hollow section joints. Cross section andmember resistances are not taken into account in thedesign tables. Due to the large number of possibleconfigurations and combinations of sections, the ta-bles can only provide a condensed set of standard-ised joints. The main objective is to allow the userto get a quick overview of the structural joint prop-erties, especially at pre-design stage when the engi-neer must select the type and size of the sections.

In order to limit the number of combinations tabledin this book, various choices had to be made.Only joints between RHS members are consideredand only ‘preferred’ section dimensions from [15]are included. For example, for K joints, onlysquare hollow sections with chord widths of b0 =100/150/200/250/300 mm (each with maximum 3values of thickness t0), width ratio β ≈ 0,4/0,6/0,8and thickness ratio τ ≤ 1,0 are tabled. For one spe-cific type of joint configuration, e.g. K, N or T joint,such a limitation of parameter variations already re-sults in 45 possible combinations, which are pre-sented in one table on a single page.

In order to cover more geometrical configurationswith respect to the brace angles and the given load-ing in the chord, as it is indicated in each table,the listed design resistances are valid for a rangeof brace angles Θi and chord stress ratios n respec-tively. It should be understood that the most criticalcombination is taken as the basis for determining thedesign values given in the tables. Hence, the use ofthe design tables may result in a conservative designand consequently result in a less economical choiceof sections.

For other combinations of sections or individual setsof parameters that are not covered by the design ta-bles, the reader can use the software ‘CoP2 V&MEdition’, which is provided with this book, see chap-ter 7.

The internal forces and moments should be deter-

mined using elastic global analysis. If plastic globalanalysis is used, further checks may be required.

The tables are valid for axial loading or momentloading only. When a joint is subjected to both, axialforces and bending moments, additional M-N inter-action checks are required, as mentioned in section3.1.7.

It is recommended to use always full strength welds.Based on Table 3.1 of EN 1993-1-1 [1], welds of di-rect welded hot finished hollow sections can be con-sidered as being full strength if the following crite-rion is fulfilled:

• t ≤ 8mm and fillet welds where

a ≥

1,11 · t for S 355 H

1,45 · t for S 460 NH/NLH

• t > 8mm and full penetration welds where

a ≥ t

where t is the thickness of the brace member sec-tion. In this case no further checks of the welds arerequired. For more information, see EN 1993-1-8section 7.3.1 [2]. According to the German NationalAnnex [4] welds for S 460 NH/NLH are full strengthif a ≥ 1,23 · ti. The following design resistance ta-bles take this criterion into account.

It is assumed that the same material (S 355 H orS 460 NH) is used for all hollow section mem-bers. Tables indicating S 460 NH are also valid forS 460 NLH. All plates and I or H sections are madeof steel grade S 355. For fin plate joints the resis-taces are valid if the bolts are of class 10.9 and theshear plane is in the shank of the bolts.

In case that more than one brace is connected to achord (K or N joints), both brace sections are of thesame dimension. Therefore, for K joints, with re-spect to Figures 3.3, 3.4 or 3.5, in the design tablesh2 = h1, b2 = b1 and t2 = t1, and both brace anglesare of the same value (Θ = Θ1 = Θ2). Consequently,the design resistances are the same for both braces,

Edition December 2011 15

Design tools for hollow section joints

5 Design resistance tables for RHS joints

5.1 Scope

The following design tables provide design resis-tances for hollow section joints. Cross section andmember resistances are not taken into account in thedesign tables. Due to the large number of possibleconfigurations and combinations of sections, the ta-bles can only provide a condensed set of standard-ised joints. The main objective is to allow the userto get a quick overview of the structural joint prop-erties, especially at pre-design stage when the engi-neer must select the type and size of the sections.

In order to limit the number of combinations tabledin this book, various choices had to be made.Only joints between RHS members are consideredand only ‘preferred’ section dimensions from [15]are included. For example, for K joints, onlysquare hollow sections with chord widths of b0 =100/150/200/250/300 mm (each with maximum 3values of thickness t0), width ratio β ≈ 0,4/0,6/0,8and thickness ratio τ ≤ 1,0 are tabled. For one spe-cific type of joint configuration, e.g. K, N or T joint,such a limitation of parameter variations already re-sults in 45 possible combinations, which are pre-sented in one table on a single page.

In order to cover more geometrical configurationswith respect to the brace angles and the given load-ing in the chord, as it is indicated in each table,the listed design resistances are valid for a rangeof brace angles Θi and chord stress ratios n respec-tively. It should be understood that the most criticalcombination is taken as the basis for determining thedesign values given in the tables. Hence, the use ofthe design tables may result in a conservative designand consequently result in a less economical choiceof sections.

For other combinations of sections or individual setsof parameters that are not covered by the design ta-bles, the reader can use the software ‘CoP2 V&MEdition’, which is provided with this book, see chap-ter 7.

The internal forces and moments should be deter-

mined using elastic global analysis. If plastic globalanalysis is used, further checks may be required.

The tables are valid for axial loading or momentloading only. When a joint is subjected to both, axialforces and bending moments, additional M-N inter-action checks are required, as mentioned in section3.1.7.

It is recommended to use always full strength welds.Based on Table 3.1 of EN 1993-1-1 [1], welds of di-rect welded hot finished hollow sections can be con-sidered as being full strength if the following crite-rion is fulfilled:

• t ≤ 8mm and fillet welds where

a ≥

1,11 · t for S 355 H

1,45 · t for S 460 NH/NLH

• t > 8mm and full penetration welds where

a ≥ t

where t is the thickness of the brace member sec-tion. In this case no further checks of the welds arerequired. For more information, see EN 1993-1-8section 7.3.1 [2]. According to the German NationalAnnex [4] welds for S 460 NH/NLH are full strengthif a ≥ 1,23 · ti. The following design resistance ta-bles take this criterion into account.

It is assumed that the same material (S 355 H orS 460 NH) is used for all hollow section mem-bers. Tables indicating S 460 NH are also valid forS 460 NLH. All plates and I or H sections are madeof steel grade S 355. For fin plate joints the resis-taces are valid if the bolts are of class 10.9 and theshear plane is in the shank of the bolts.

In case that more than one brace is connected to achord (K or N joints), both brace sections are of thesame dimension. Therefore, for K joints, with re-spect to Figures 3.3, 3.4 or 3.5, in the design tablesh2 = h1, b2 = b1 and t2 = t1, and both brace anglesare of the same value (Θ = Θ1 = Θ2). Consequently,the design resistances are the same for both braces,

Edition December 2011 15

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 21 24.01.13 10:32

Page 23: Design Tools for Hollow Section Joints with MSH Sections in

(expressed in terms of maximum design axial and/or moment resistances of the brace members) with the applied loading, i.e. the design values of the internal forces at the end of the connected members determined by the global frame analysis (Ni,Ed ≤ Ni,Rd or Mi,Ed ≤ Mi,Rd). Note: If the joint is subjected to both, N and M, interaction should be checked, see section 3.1.7.

The governing failure mode is also indicated for each joint. Note that the abbreviations of all considered failure modes are explained in the header of the tables. This is helpful es-pecially at pre-design stage when the decision is made which kind of section shall be used, or how to select other sections if the design check is not fulfilled. As the failure mode indi-cates the location of the weakest part of the joint, for example chord web failure (CWF), the engineer can more easily de-cide how to modify the structural details in order to increase the joint resistance. For example: If the design resistance of the joint is limited due to CWF, a chord section with a thicker wall could be chosen. As an alternative, the side wall of the chord may be reinforced by a supplementary web plate. If the latter possibility is followed, appropriate design checks can be done using CoP2, see chapter 7.

As the chord of a K or N gap joint is subjected to shear forces, an additional check for chord shear failure (N0,Ed ≤ N0,Rd) is required, where

with

and

Due to the fact that this failure mode is directly dependent on the applied shear force VEd, the value of N0,Rd is not given in the design resistance tables. This check is also required for X joints, if cos Θ > h1 / h0, see Table 7.11 of EN 1993-1-8. In this case, for the calculation of Av, the parameter α should be taken as α = 0.

16

their compliance must be checked in each case by the user. Furthermore, it must also be checked that the joint eccen-tricity e is restricted to −0,55 ≤ e / h0 ≤ 0,25. The design tables may only be used if the joint eccentricity e remains within these limits. Larger eccentricities should be taken into account in the global frame analysis and resulting additional internal forces have to be considered for the design checks of the joint. However, EN 1993-1-8 does not provide rules for determining moment resistances of typical K or N joints.

The tables for fin plate joints are valid for single-sided and for double-sided joint configurations. Due to the large num- ber of possible combinations of sections, plates and hole patterns, the tables provide only some typical solutions. Here, fin plates with two or three bolts in a vertical line have been standardised. Note, that for a number of beams, no beam type is given because of geometrical restrictions. For such cases, other connection details must be used, for example fin plates with two bolts in a horizontal row, double web cleated connections, etc.

5.2 How to use

The starting points are the topology of the global structure in-cluding the selection of the member sections and material, the determination of the internal forces at the end of the members obtained from a global frame analysis, and the selection of a proper joint configuration.

5.2.1 Lattice girder joints

With these input values the use of the design tables is very easy. In a first step, based on

• the type of joint configuration, e.g. K joint,• if applicable, the angle between brace member(s)

and the chord,• if applicable, the chord stress ratio, i.e. n ≤ 0 for tension,

0 < n ≤ 0,5 (n : 0,25) for low compression or 0,5 < n ≤ 1,0 (n : 0,75 or n : 0,65) for high compression stresses in the chord, where

the appropriate table must be chosen. Then the relevant com-bination of the connected members and the material (S 355 H or S 460 NH/NLH) is selected and one can find the appropriate design resistance. In a last step the user only has to compare the given design resistance(s) of the joint

Design tools for hollow section joints

i.e. N2,Rd = N1,Rd . For N joints, Θ1 = 90 ◦ whereasΘ2 may vary. Accordingly, different design resis-tances are obtained for N1,Rd and N2,Rd respectively.

The design tables which refer to axial brace loadscan be used to estimate the design resistance ofjoints with CHS braces connected to RHS chords bymultiplying the tabled design resistances by π/4. Todo so, the CHS brace should meet the following re-quirements: di ≥ bi and ti,CHS ≥ ti,RHS.

In case of K or N joints the design resistances aredetermined considering the complete range of al-lowable gap or overlap respectively. The limits arespecified in the table header and their compliancemust be checked in each case by the user. Further-more, it must also be checked that the joint eccen-tricity e is restricted to −0,55 ≤ e/h0 ≤ 0,25. Thedesign tables may only be used if the joint eccentric-ity e remains within these limits. Larger eccentrici-ties should be taken into account in the global frameanalysis and resulting additional internal forces haveto be considered for the design checks of the joint.However, EN 1993-1-8 does not provide rules fordetermining moment resistances of typical K or Njoints.

The tables for fin plate joints are valid for single-sided and for double-sided joint configurations. Dueto the large number of possible combinations of sec-tions, plates and hole patterns, the tables provideonly some typical solutions. Here, fin plates withtwo or three bolts in a vertical line have been stan-dardised. Note, that for a number of beams, nobeam type is given because of geometrical restric-tions. For such cases, other connection details mustbe used, for example fin plates with two bolts in ahorizontal row, double web cleated connections, etc.

5.2 How to use

The starting points are the topology of the globalstructure including the selection of the member sec-tions and material, the determination of the internalforces at the end of the members obtained from aglobal frame analysis, and the selection of a properjoint configuration.

5.2.1 Lattice girder joints

With these input values the use of the design tablesis very easy. In a first step, based on

• the type of joint configuration, e.g. K joint,• if applicable, the angle between brace member(s)

and the chord,• if applicable, the chord stress ratio, i.e. n ≤ 0

for tension, 0 < n ≤ 0,5 (n : 0,25) for low com-pression or 0,5 < n ≤ 1,0 (n : 0,75 or n : 0,65)for high compression stresses in the chord, wheren = (σ0,Ed/ fy0)/γM5 with σ0,Ed = σ (N,M).

the appropriate table must be chosen. Then the rele-vant combination of the connected members and thematerial (S 355 H or S 460 NH/NLH) is selected andone can find the appropriate design resistance. In alast step the user only has to compare the given de-sign resistance(s) of the joint (expressed in terms ofmaximum design axial and/or moment resistances ofthe brace members) with the applied loading, i.e. thedesign values of the internal forces at the end of theconnected members determined by the global frameanalysis (Ni,Ed ≤ Ni,Rd or Mi,Ed ≤ Mi,Rd). Note: Ifthe joint is subjected to both, N and M, interactionshould be checked, see section 3.1.7

The governing failure mode is also indicated foreach joint. Note that the abbreviations of all con-sidered failure modes are explained in the header ofthe tables. This is helpful especially at pre-designstage when the decision is made which kind of sec-tion shall be used, or how to select other sectionsif the design check is not fulfilled. As the failuremode indicates the location of the weakest part ofthe joint, for example chord web failure (CWF), theengineer can more easily decide how to modify thestructural details in order to increase the joint resis-tance. For example: If the design resistance of thejoint is limited due to CWF, a chord section with athicker wall could be chosen. As an alternative, theside wall of the chord may be reinforced by a sup-plementary web plate. If the latter possibility is fol-lowed, appropriate design checks can be done usingCoP2, see chapter 7.

As the chord of a K or N gap joint is subjected toshear forces, an additional check for chord shearfailure (N0,Ed ≤ N0,Rd) is required, where

N0,Rd =

[(A0 −Av) · fy0+

+Av · fy0 ·

√1−

(VEd

Vpl,Rd

)2]/γM5

with

Av = (2 ·h0 +α ·b0) · t0

16 VALLOUREC & MANNESMANN TUBES

Design tools for hollow section joints

i.e. N2,Rd = N1,Rd . For N joints, Θ1 = 90 ◦ whereasΘ2 may vary. Accordingly, different design resis-tances are obtained for N1,Rd and N2,Rd respectively.

The design tables which refer to axial brace loadscan be used to estimate the design resistance ofjoints with CHS braces connected to RHS chords bymultiplying the tabled design resistances by π/4. Todo so, the CHS brace should meet the following re-quirements: di ≥ bi and ti,CHS ≥ ti,RHS.

In case of K or N joints the design resistances aredetermined considering the complete range of al-lowable gap or overlap respectively. The limits arespecified in the table header and their compliancemust be checked in each case by the user. Further-more, it must also be checked that the joint eccen-tricity e is restricted to −0,55 ≤ e/h0 ≤ 0,25. Thedesign tables may only be used if the joint eccentric-ity e remains within these limits. Larger eccentrici-ties should be taken into account in the global frameanalysis and resulting additional internal forces haveto be considered for the design checks of the joint.However, EN 1993-1-8 does not provide rules fordetermining moment resistances of typical K or Njoints.

The tables for fin plate joints are valid for single-sided and for double-sided joint configurations. Dueto the large number of possible combinations of sec-tions, plates and hole patterns, the tables provideonly some typical solutions. Here, fin plates withtwo or three bolts in a vertical line have been stan-dardised. Note, that for a number of beams, nobeam type is given because of geometrical restric-tions. For such cases, other connection details mustbe used, for example fin plates with two bolts in ahorizontal row, double web cleated connections, etc.

5.2 How to use

The starting points are the topology of the globalstructure including the selection of the member sec-tions and material, the determination of the internalforces at the end of the members obtained from aglobal frame analysis, and the selection of a properjoint configuration.

5.2.1 Lattice girder joints

With these input values the use of the design tablesis very easy. In a first step, based on

• the type of joint configuration, e.g. K joint,• if applicable, the angle between brace member(s)

and the chord,• if applicable, the chord stress ratio, i.e. n ≤ 0

for tension, 0 < n ≤ 0,5 (n : 0,25) for low com-pression or 0,5 < n ≤ 1,0 (n : 0,75 or n : 0,65)for high compression stresses in the chord, wheren = (σ0,Ed/ fy0)/γM5 with σ0,Ed = σ (N,M).

the appropriate table must be chosen. Then the rele-vant combination of the connected members and thematerial (S 355 H or S 460 NH/NLH) is selected andone can find the appropriate design resistance. In alast step the user only has to compare the given de-sign resistance(s) of the joint (expressed in terms ofmaximum design axial and/or moment resistances ofthe brace members) with the applied loading, i.e. thedesign values of the internal forces at the end of theconnected members determined by the global frameanalysis (Ni,Ed ≤ Ni,Rd or Mi,Ed ≤ Mi,Rd). Note: Ifthe joint is subjected to both, N and M, interactionshould be checked, see section 3.1.7

The governing failure mode is also indicated foreach joint. Note that the abbreviations of all con-sidered failure modes are explained in the header ofthe tables. This is helpful especially at pre-designstage when the decision is made which kind of sec-tion shall be used, or how to select other sectionsif the design check is not fulfilled. As the failuremode indicates the location of the weakest part ofthe joint, for example chord web failure (CWF), theengineer can more easily decide how to modify thestructural details in order to increase the joint resis-tance. For example: If the design resistance of thejoint is limited due to CWF, a chord section with athicker wall could be chosen. As an alternative, theside wall of the chord may be reinforced by a sup-plementary web plate. If the latter possibility is fol-lowed, appropriate design checks can be done usingCoP2, see chapter 7.

As the chord of a K or N gap joint is subjected toshear forces, an additional check for chord shearfailure (N0,Ed ≤ N0,Rd) is required, where

N0,Rd =

[(A0 −Av) · fy0+

+Av · fy0 ·

√1−

(VEd

Vpl,Rd

)2]/γM5

with

Av = (2 ·h0 +α ·b0) · t0

16 VALLOUREC & MANNESMANN TUBES

Design tools for hollow section joints

i.e. N2,Rd = N1,Rd . For N joints, Θ1 = 90 ◦ whereasΘ2 may vary. Accordingly, different design resis-tances are obtained for N1,Rd and N2,Rd respectively.

The design tables which refer to axial brace loadscan be used to estimate the design resistance ofjoints with CHS braces connected to RHS chords bymultiplying the tabled design resistances by π/4. Todo so, the CHS brace should meet the following re-quirements: di ≥ bi and ti,CHS ≥ ti,RHS.

In case of K or N joints the design resistances aredetermined considering the complete range of al-lowable gap or overlap respectively. The limits arespecified in the table header and their compliancemust be checked in each case by the user. Further-more, it must also be checked that the joint eccen-tricity e is restricted to −0,55 ≤ e/h0 ≤ 0,25. Thedesign tables may only be used if the joint eccentric-ity e remains within these limits. Larger eccentrici-ties should be taken into account in the global frameanalysis and resulting additional internal forces haveto be considered for the design checks of the joint.However, EN 1993-1-8 does not provide rules fordetermining moment resistances of typical K or Njoints.

The tables for fin plate joints are valid for single-sided and for double-sided joint configurations. Dueto the large number of possible combinations of sec-tions, plates and hole patterns, the tables provideonly some typical solutions. Here, fin plates withtwo or three bolts in a vertical line have been stan-dardised. Note, that for a number of beams, nobeam type is given because of geometrical restric-tions. For such cases, other connection details mustbe used, for example fin plates with two bolts in ahorizontal row, double web cleated connections, etc.

5.2 How to use

The starting points are the topology of the globalstructure including the selection of the member sec-tions and material, the determination of the internalforces at the end of the members obtained from aglobal frame analysis, and the selection of a properjoint configuration.

5.2.1 Lattice girder joints

With these input values the use of the design tablesis very easy. In a first step, based on

• the type of joint configuration, e.g. K joint,• if applicable, the angle between brace member(s)

and the chord,• if applicable, the chord stress ratio, i.e. n ≤ 0

for tension, 0 < n ≤ 0,5 (n : 0,25) for low com-pression or 0,5 < n ≤ 1,0 (n : 0,75 or n : 0,65)for high compression stresses in the chord, wheren = (σ0,Ed/ fy0)/γM5 with σ0,Ed = σ (N,M).

the appropriate table must be chosen. Then the rele-vant combination of the connected members and thematerial (S 355 H or S 460 NH/NLH) is selected andone can find the appropriate design resistance. In alast step the user only has to compare the given de-sign resistance(s) of the joint (expressed in terms ofmaximum design axial and/or moment resistances ofthe brace members) with the applied loading, i.e. thedesign values of the internal forces at the end of theconnected members determined by the global frameanalysis (Ni,Ed ≤ Ni,Rd or Mi,Ed ≤ Mi,Rd). Note: Ifthe joint is subjected to both, N and M, interactionshould be checked, see section 3.1.7

The governing failure mode is also indicated foreach joint. Note that the abbreviations of all con-sidered failure modes are explained in the header ofthe tables. This is helpful especially at pre-designstage when the decision is made which kind of sec-tion shall be used, or how to select other sectionsif the design check is not fulfilled. As the failuremode indicates the location of the weakest part ofthe joint, for example chord web failure (CWF), theengineer can more easily decide how to modify thestructural details in order to increase the joint resis-tance. For example: If the design resistance of thejoint is limited due to CWF, a chord section with athicker wall could be chosen. As an alternative, theside wall of the chord may be reinforced by a sup-plementary web plate. If the latter possibility is fol-lowed, appropriate design checks can be done usingCoP2, see chapter 7.

As the chord of a K or N gap joint is subjected toshear forces, an additional check for chord shearfailure (N0,Ed ≤ N0,Rd) is required, where

N0,Rd =

[(A0 −Av) · fy0+

+Av · fy0 ·

√1−

(VEd

Vpl,Rd

)2]/γM5

with

Av = (2 ·h0 +α ·b0) · t0

16 VALLOUREC & MANNESMANN TUBES

Design tools for hollow section joints

and

α =

√√√√√1

1+4 ·g2

3 · t20

Due to the fact that this failure mode is directly de-pendent on the applied shear force VEd , the valueof N0,Rd is not given in the design resistance ta-bles. This check is also required for X joints, ifcosΘ > h1/h0, see Table 7.11 of EN 1993-1-8. Inthis case, for the calculation of Av, the parameter αshould be taken as α = 0.

If the chord is also subjected to bending mo-ments, interaction should be checked according toEN 1993-1-1, 6.2.9.1(5), where N0,Rd should be usedfor Npl,Rd .

For some combinations of chord and brace sections,no design resistances are given in the tables. Here,at least one of the requirements of Table 7.8 inEN 1993-1-8 is not fulfilled. These sections havebeen kept in order to present the same section com-binations in all tables of one joint type. In somecases, results are listed for S 355 H only, but not forS 460 NH/NLH. This is an indication that one of the

sections is not in class 1 or 2.

For K gap joints the user should check the geometricboundary conditions given in the table header (gapand eccentricity) in any case. If no resistance valueis given, the design of this joint is not possible dueto geometric restrictions.

5.2.2 Fin plate joints

The tables for fin plate joints consist of two parts:

• Beam types on the left hand side and• Design resistances on the right hand side.

In order to make the use of the resistance tablesin the present publication as simple as possible,fin plates are standardised for different beam types.Each beam type represents a group of hot rolled I orH sections. For a given beam section, the left handtable is used to select a beam type. This beam typeas well as the column section are the input for thetable Design resistances on the right hand side. Ifthe given combination of the column section and thebeam type is covered by the resistance tables, all ge-ometrical details for the fin plates are given and thedesign resistance of the joints can be obtained fromthe table.

Edition December 2011 17

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 22 24.01.13 10:32

Page 24: Design Tools for Hollow Section Joints with MSH Sections in

17

If the chord is also subjected to bending moments, interaction should be checked according to EN 1993-1-1, 6.2.9.1(5), where N0,Rd should be used for Npl,Rd.

For some combinations of chord and brace sections, no design resistances are given in the tables. Here, at least one of the requirements of Table 7.8 in EN 1993-1-8 is not fulfilled. These sections have been kept in order to present the same section combinations in all tables of one joint type. In some cases, results are listed for S 355 H only, but not for S 460 NH/NLH. This is an indication that one of the sections is not in class 1 or 2.

For K gap joints the user should check the geometric bounda-ry conditions given in the table header (gap and eccentricity) in any case. If no resistance value is given, the design of this joint is not possible due to geometric restrictions.

5.2.2 Fin plate joints

The tables for fin plate joints consist of two parts:

• Beam types on the left hand side and• Design resistances on the right hand side.

In order to make the use of the resistance tables in the present publication as simple as possible, fin plates are standardised for different beam types. Each beam type represents a group of hot rolled I or H sections. For a given beam section, the left hand table is used to select a beam type. This beam type as well as the column section are the input for the table Design resistances on the right hand side. If the given com-bination of the column section and the beam type is covered by the resistance tables, all geometrical details for the fin plates are given and the design resistance of the joints can be obtained from the table.

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 23 24.01.13 10:32

Page 25: Design Tools for Hollow Section Joints with MSH Sections in

18

Design tools for hollow section joints

Design resistances n : 0 Θ : 30◦ K

( ) ( )

( ) ( )

1

0 1

0

1 2

0

10

2

0,5 1 0,5

1,5 1 1,5

+ =ìï³ í

× -b × = × -ïî

£ × -b × = × -

t t tg

b b b

g b b b

0/ ,55 0 250, e h £- £

Check range of validity:

b0

t0h0

+e

g

b1

t1

N1,Rd

Q

b1

t1

N1,Rd

Q

h1h1

e

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 N1,Rd

* a** N1,Rd* a**

mm mm kg/m cm2 mm mm kg/m kN mm kN mm40 5,0 5,3 166 CFF 6 193 CFF 7

5,0 14,7 18,7 60 5,0 8,4 249 CFF 6 290 CFF 780 5,0 11,6 332 CFF 6 387 CFF 740 6,3 6,3 301 BF 7 351 BF 8

100 8,0 22,6 28,8 60 8,0 12,5 503 CFF 9 587 CFF 1080 8,0 17,5 606 CSF 9 706 CSF 1040 6,3 6,3 301 BF 7 351 BF 8

12,5 33,0 42,1 60 8,0 12,5 590 BF 9 688 BF 1080 10,0 21,1 994 BF 10 1159 BF 1060 6,3 10,3 287 CFF 7 335 CFF 8

6,3 28,1 35,8 90 6,3 16,2 431 CFF 7 503 CFF 8120 6,3 22,2 575 CFF 7 670 CFF 860 8,0 12,5 590 BF 9 688 BF 10

150 12,5 52,7 67,1 90 10,0 24,3 1136 BF 10 1324 BF 10120 12,5 40,9 1426 CSF 13 1663 CSF 1360 8,0 12,5 590 BF 9 688 BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 BF 10 1324 BF 10120 12,5 40,9 1908 BF 13 2225 BF 1380 6,3 14,2 – – – – – –

6,3 38,0 48,4 120 6,3 22,2 498 CFF 7 – – –160 6,3 30,1 664 CFF 7 – – –80 10,0 21,1 928 CFF 10 1082 CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 1392 CFF 13 1623 CFF 13160 12,5 56,6 1854 CSF 13 2162 CSF 1380 10,0 21,1 994 BF 10 1159 BF 10

20,0 109,7 139,7 120 12,5 40,9 1908 BF 13 2225 BF 13160 20,0 84,6 3102 CSF 20 3617 CSF 20100 8,0 22,6 – – – – – –

8,0 60,3 76,8 150 8,0 35,1 796 CFF 9 – – –200 8,0 47,7 1062 CFF 9 – – –100 12,5 33,0 1037 CFF 13 1210 CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 1556 CFF 13 1815 CFF 13200 12,5 72,3 2075 CFF 13 2420 CFF 13100 12,5 33,0 1553 BF 13 1811 BF 13

20,0 141,1 179,7 150 20,0 78,3 3149 CFF 20 3673 CFF 20200 20,0 109,7 3788 CSF 20 4418 CSF 20120 8,0 27,6 813 CFF 9 948 CFF 10

10,0 90,2 114,9 180 8,0 42,7 1219 CFF 9 1422 CFF 10250 8,0 60,3 1694 CFF 9 – – –120 12,5 40,9 1646 CFF 13 1919 CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 2469 CFF 13 2879 CFF 13250 12,5 91,9 3429 CFF 13 3999 CFF 13120 12,5 40,9 1908 BF 13 2225 BF 13

20,0 172,5 219,7 180 20,0 97,1 3450 CFF 20 4024 CFF 20250 20,0 141,1 4546 CSF 20 5302 CSF 20

* Additional check of chord resistance N0,Rd required, see page 16 ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles30◦ ≤ Θ ≤ 37◦

Chord stress ratioTension: −1 ≤ n ≤ 0

Failure modesCFF: Chord face failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

18 VALLOUREC & MANNESMANN TUBES Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 24 24.01.13 10:32

Page 26: Design Tools for Hollow Section Joints with MSH Sections in

19

Design tools for hollow section joints

Design resistances n : 0,25 Θ : 30◦ K

( ) ( )

( ) ( )

1

0 1

0

1 2

0

10

2

0,5 1 0,5

1,5 1 1,5

+ =ìï³ í

× -b × = × -ïî

£ × -b × = × -

t t tg

b b b

g b b b

0/ ,55 0 250, e h £- £

Check range of validity:

b0

t0h0

+e

g

b1

t1

N1,Rd

Q

b1

t1

N1,Rd

Q

h1h1

e

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 N1,Rd

* a** N1,Rd* a**

mm mm kg/m cm2 mm mm kg/m kN mm kN mm40 5,0 5,3 132 CFF 6 154 CFF 7

5,0 14,7 18,7 60 5,0 8,4 240 CFF 6 280 CFF 780 5,0 11,6 332 CFF 6 387 CFF 740 6,3 6,3 268 CFF 7 313 CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 487 CFF 9 568 CFF 1080 8,0 17,5 606 CSF 9 706 CSF 1040 6,3 6,3 301 BF 7 351 BF 8

12,5 33,0 42,1 60 8,0 12,5 590 BF 9 688 BF 1080 10,0 21,1 994 BF 10 1159 BF 1060 6,3 10,3 230 CFF 7 268 CFF 8

6,3 28,1 35,8 90 6,3 16,2 416 CFF 7 486 CFF 8120 6,3 22,2 575 CFF 7 670 CFF 860 8,0 12,5 590 BF 9 688 BF 10

150 12,5 52,7 67,1 90 10,0 24,3 1136 BF 10 1324 BF 10120 12,5 40,9 1426 CSF 13 1663 CSF 1360 8,0 12,5 590 BF 9 688 BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 BF 10 1324 BF 10120 12,5 40,9 1908 BF 13 2225 BF 1380 6,3 14,2 – – – – – –

6,3 38,0 48,4 120 6,3 22,2 481 CFF 7 – – –160 6,3 30,1 664 CFF 7 – – –80 10,0 21,1 742 CFF 10 865 CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 1345 CFF 13 1569 CFF 13160 12,5 56,6 1854 CSF 13 2162 CSF 1380 10,0 21,1 994 BF 10 1159 BF 10

20,0 109,7 139,7 120 12,5 40,9 1908 BF 13 2225 BF 13160 20,0 84,6 3102 CSF 20 3617 CSF 20100 8,0 22,6 – – – – – –

8,0 60,3 76,8 150 8,0 35,1 770 CFF 9 – – –200 8,0 47,7 1062 CFF 9 – – –100 12,5 33,0 830 CFF 13 968 CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 1504 CFF 13 1754 CFF 13200 12,5 72,3 2075 CFF 13 2420 CFF 13100 12,5 33,0 1553 BF 13 1811 BF 13

20,0 141,1 179,7 150 20,0 78,3 3044 CFF 20 3551 CFF 20200 20,0 109,7 3788 CSF 20 4418 CSF 20120 8,0 27,6 650 CFF 9 758 CFF 10

10,0 90,2 114,9 180 8,0 42,7 1179 CFF 9 1375 CFF 10250 8,0 60,3 1694 CFF 9 – – –120 12,5 40,9 1316 CFF 13 1535 CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 2386 CFF 13 2783 CFF 13250 12,5 91,9 3429 CFF 13 3999 CFF 13120 12,5 40,9 1840 CFF 13 2146 CFF 13

20,0 172,5 219,7 180 20,0 97,1 3335 CFF 20 3889 CFF 20250 20,0 141,1 4546 CSF 20 5302 CSF 20

* Additional check of chord resistance N0,Rd required, see page 16 ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles30◦ ≤ Θ ≤ 37◦

Chord stress ratioCompression: 0 < n ≤ 0,5

Failure modesCFF: Chord face failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 19

Wel

ded

K g

ap

join

t

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 25 24.01.13 10:32

Page 27: Design Tools for Hollow Section Joints with MSH Sections in

20

Design tools for hollow section joints

Design resistances n : 0,75 Θ : 30◦ K

( ) ( )

( ) ( )

1

0 1

0

1 2

0

10

2

0,5 1 0,5

1,5 1 1,5

+ =ìï³ í

× -b × = × -ïî

£ × -b × = × -

t t tg

b b b

g b b b

0/ ,55 0 250, e h £- £

Check range of validity:

b0

t0h0

+e

g

b1

t1

N1,Rd

Q

b1

t1

N1,Rd

Q

h1h1

e

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 N1,Rd

* a** N1,Rd* a**

mm mm kg/m cm2 mm mm kg/m kN mm kN mm40 5,0 5,3 49,8 CFF 6 58,0 CFF 7

5,0 14,7 18,7 60 5,0 8,4 157 CFF 6 183 CFF 780 5,0 11,6 265 CFF 6 309 CFF 740 6,3 6,3 100 CFF 7 117 CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 319 CFF 9 372 CFF 1080 8,0 17,5 537 CFF 9 626 CFF 1040 6,3 6,3 196 CFF 7 229 CFF 8

12,5 33,0 42,1 60 8,0 12,5 590 BF 9 688 BF 1080 10,0 21,1 994 BF 10 1159 BF 1060 6,3 10,3 86,2 CFF 7 100 CFF 8

6,3 28,1 35,8 90 6,3 16,2 273 CFF 7 318 CFF 8120 6,3 22,2 460 CFF 7 536 CFF 860 8,0 12,5 241 CFF 9 281 CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 763 CFF 10 890 CFF 10120 12,5 40,9 1285 CFF 13 1499 CFF 1360 8,0 12,5 487 CFF 9 569 CFF 10

20,0 78,3 99,7 90 10,0 24,3 1136 BF 10 1324 BF 10120 12,5 40,9 1908 BF 13 2225 BF 1380 6,3 14,2 – – – – – –

6,3 38,0 48,4 120 6,3 22,2 315 CFF 7 – – –160 6,3 30,1 531 CFF 7 – – –80 10,0 21,1 278 CFF 10 324 CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 881 CFF 13 1028 CFF 13160 12,5 56,6 1484 CFF 13 1731 CFF 1380 10,0 21,1 563 CFF 10 657 CFF 10

20,0 109,7 139,7 120 12,5 40,9 1784 CFF 13 2080 CFF 13160 20,0 84,6 3005 CFF 20 3504 CFF 20100 8,0 22,6 – – – – – –

8,0 60,3 76,8 150 8,0 35,1 504 CFF 9 – – –200 8,0 47,7 850 CFF 9 – – –100 12,5 33,0 311 CFF 13 363 CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 985 CFF 13 1149 CFF 13200 12,5 72,3 1660 CFF 13 1936 CFF 13100 12,5 33,0 629 CFF 13 734 CFF 13

20,0 141,1 179,7 150 20,0 78,3 1994 CFF 20 2326 CFF 20200 20,0 109,7 3359 CFF 20 3918 CFF 20120 8,0 27,6 243 CFF 9 284 CFF 10

10,0 90,2 114,9 180 8,0 42,7 772 CFF 9 901 CFF 10250 8,0 60,3 1389 CFF 9 – – –120 12,5 40,9 493 CFF 13 575 CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1563 CFF 13 1823 CFF 13250 12,5 91,9 2811 CFF 13 3279 CFF 13120 12,5 40,9 690 CFF 13 804 CFF 13

20,0 172,5 219,7 180 20,0 97,1 2185 CFF 20 2548 CFF 20250 20,0 141,1 3929 CFF 20 4583 CFF 20

* Additional check of chord resistance N0,Rd required, see page 16 ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles30◦ ≤ Θ ≤ 37◦

Chord stress ratioCompression: 0,5 < n ≤ 1

Failure modesCFF: Chord face failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

20 VALLOUREC & MANNESMANN TUBES

Wel

ded

K g

ap

join

t

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 26 24.01.13 10:32

Page 28: Design Tools for Hollow Section Joints with MSH Sections in

21

Design tools for hollow section joints

Design resistances n : 0 Θ : 40◦ K

( ) ( )

( ) ( )

1

0 1

0

1 2

0

10

2

0,5 1 0,5

1,5 1 1,5

+ =ìï³ í

× -b × = × -ïî

£ × -b × = × -

t t tg

b b b

g b b b

0/ ,55 0 250, e h £- £

Check range of validity:

b0

t0h0

+e

g

b1

t1

N1,Rd

Q

b1

t1

N1,Rd

Q

h1h1

e

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 N1,Rd

* a** N1,Rd* a**

mm mm kg/m cm2 mm mm kg/m kN mm kN mm40 5,0 5,3 146 CFF 6 170 CFF 7

5,0 14,7 18,7 60 5,0 8,4 219 CFF 6 256 CFF 780 5,0 11,6 292 CFF 6 341 CFF 740 6,3 6,3 296 CFF 7 345 CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 444 CFF 9 518 CFF 1080 8,0 17,5 534 CSF 9 623 CSF 1040 6,3 6,3 301 BF 7 351 BF 8

12,5 33,0 42,1 60 8,0 12,5 590 BF 9 688 BF 1080 10,0 21,1 878 CSF 10 1024 CSF 1060 6,3 10,3 253 CFF 7 295 CFF 8

6,3 28,1 35,8 90 6,3 16,2 380 CFF 7 443 CFF 8120 6,3 22,2 507 CFF 7 591 CFF 860 8,0 12,5 590 BF 9 688 BF 10

150 12,5 52,7 67,1 90 10,0 24,3 1063 CFF 10 1240 CFF 10120 12,5 40,9 1258 CSF 13 1467 CSF 1360 8,0 12,5 590 BF 9 688 BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 BF 10 1324 BF 10120 12,5 40,9 1908 BF 13 2225 BF 1380 6,3 14,2 – – – – – –

6,3 38,0 48,4 120 6,3 22,2 439 CFF 7 – – –160 6,3 30,1 586 CFF 7 – – –80 10,0 21,1 818 CFF 10 955 CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 1228 CFF 13 1432 CFF 13160 12,5 56,6 1636 CSF 13 1907 CSF 1380 10,0 21,1 994 BF 10 1159 BF 10

20,0 109,7 139,7 120 12,5 40,9 1908 BF 13 2225 BF 13160 20,0 84,6 2737 CSF 20 3192 CSF 20100 8,0 22,6 – – – – – –

8,0 60,3 76,8 150 8,0 35,1 703 CFF 9 – – –200 8,0 47,7 937 CFF 9 – – –100 12,5 33,0 915 CFF 13 1067 CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 1373 CFF 13 1601 CFF 13200 12,5 72,3 1831 CFF 13 2135 CFF 13100 12,5 33,0 1553 BF 13 1811 BF 13

20,0 141,1 179,7 150 20,0 78,3 2779 CFF 20 3241 CFF 20200 20,0 109,7 3343 CSF 20 3899 CSF 20120 8,0 27,6 717 CFF 9 836 CFF 10

10,0 90,2 114,9 180 8,0 42,7 1076 CFF 9 1255 CFF 10250 8,0 60,3 1495 CFF 9 – – –120 12,5 40,9 1452 CFF 13 1693 CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 2178 CFF 13 2540 CFF 13250 12,5 91,9 3026 CFF 13 3528 CFF 13120 12,5 40,9 1908 BF 13 2225 BF 13

20,0 172,5 219,7 180 20,0 97,1 3044 CFF 20 3550 CFF 20250 20,0 141,1 4012 CSF 20 4678 CSF 20

* Additional check of chord resistance N0,Rd required, see page 16 ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles37◦ < Θ ≤ 43◦

Chord stress ratioTension: −1 ≤ n ≤ 0

Failure modesCFF: Chord face failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 21

Wel

ded

K g

ap

join

t

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 27 24.01.13 10:32

Page 29: Design Tools for Hollow Section Joints with MSH Sections in

22

Design tools for hollow section joints

Design resistances n : 0,25 Θ : 40◦ K

( ) ( )

( ) ( )

1

0 1

0

1 2

0

10

2

0,5 1 0,5

1,5 1 1,5

+ =ìï³ í

× -b × = × -ïî

£ × -b × = × -

t t tg

b b b

g b b b

0/ ,55 0 250, e h £- £

Check range of validity:

b0

t0h0

+e

g

b1

t1

N1,Rd

Q

b1

t1

N1,Rd

Q

h1h1

e

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 N1,Rd

* a** N1,Rd* a**

mm mm kg/m cm2 mm mm kg/m kN mm kN mm40 5,0 5,3 117 CFF 6 136 CFF 7

5,0 14,7 18,7 60 5,0 8,4 212 CFF 6 247 CFF 780 5,0 11,6 292 CFF 6 341 CFF 740 6,3 6,3 237 CFF 7 276 CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 429 CFF 9 501 CFF 1080 8,0 17,5 534 CSF 9 623 CSF 1040 6,3 6,3 301 BF 7 351 BF 8

12,5 33,0 42,1 60 8,0 12,5 590 BF 9 688 BF 1080 10,0 21,1 878 CSF 10 1024 CSF 1060 6,3 10,3 203 CFF 7 236 CFF 8

6,3 28,1 35,8 90 6,3 16,2 367 CFF 7 429 CFF 8120 6,3 22,2 507 CFF 7 591 CFF 860 8,0 12,5 567 CFF 9 661 CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 1028 CFF 10 1199 CFF 10120 12,5 40,9 1258 CSF 13 1467 CSF 1360 8,0 12,5 590 BF 9 688 BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 BF 10 1324 BF 10120 12,5 40,9 1908 BF 13 2225 BF 1380 6,3 14,2 – – – – – –

6,3 38,0 48,4 120 6,3 22,2 424 CFF 7 – – –160 6,3 30,1 586 CFF 7 – – –80 10,0 21,1 655 CFF 10 764 CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 1187 CFF 13 1384 CFF 13160 12,5 56,6 1636 CSF 13 1907 CSF 1380 10,0 21,1 994 BF 10 1159 BF 10

20,0 109,7 139,7 120 12,5 40,9 1908 BF 13 2225 BF 13160 20,0 84,6 2737 CSF 20 3192 CSF 20100 8,0 22,6 – – – – – –

8,0 60,3 76,8 150 8,0 35,1 679 CFF 9 – – –200 8,0 47,7 937 CFF 9 – – –100 12,5 33,0 732 CFF 13 854 CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 1327 CFF 13 1548 CFF 13200 12,5 72,3 1831 CFF 13 2135 CFF 13100 12,5 33,0 1482 CFF 13 1728 CFF 13

20,0 141,1 179,7 150 20,0 78,3 2686 CFF 20 3133 CFF 20200 20,0 109,7 3343 CSF 20 3899 CSF 20120 8,0 27,6 574 CFF 9 669 CFF 10

10,0 90,2 114,9 180 8,0 42,7 1040 CFF 9 1213 CFF 10250 8,0 60,3 1495 CFF 9 – – –120 12,5 40,9 1162 CFF 13 1355 CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 2106 CFF 13 2456 CFF 13250 12,5 91,9 3026 CFF 13 3528 CFF 13120 12,5 40,9 1623 CFF 13 1893 CFF 13

20,0 172,5 219,7 180 20,0 97,1 2943 CFF 20 3432 CFF 20250 20,0 141,1 4012 CSF 20 4678 CSF 20

* Additional check of chord resistance N0,Rd required, see page 16 ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles37◦ < Θ ≤ 43◦

Chord stress ratioCompression: 0 < n ≤ 0,5

Failure modesCFF: Chord face failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

22 VALLOUREC & MANNESMANN TUBES

Wel

ded

K g

ap

join

t

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 28 24.01.13 10:32

Page 30: Design Tools for Hollow Section Joints with MSH Sections in

23

Design tools for hollow section joints

Design resistances n : 0,75 Θ : 40◦ K

( ) ( )

( ) ( )

1

0 1

0

1 2

0

10

2

0,5 1 0,5

1,5 1 1,5

+ =ìï³ í

× -b × = × -ïî

£ × -b × = × -

t t tg

b b b

g b b b

0/ ,55 0 250, e h £- £

Check range of validity:

b0

t0h0

+e

g

b1

t1

N1,Rd

Q

b1

t1

N1,Rd

Q

h1h1

e

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 N1,Rd

* a** N1,Rd* a**

mm mm kg/m cm2 mm mm kg/m kN mm kN mm40 5,0 5,3 43,9 CFF 6 51,2 CFF 7

5,0 14,7 18,7 60 5,0 8,4 139 CFF 6 162 CFF 780 5,0 11,6 234 CFF 6 273 CFF 740 6,3 6,3 88,9 CFF 7 103 CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 281 CFF 9 328 CFF 1080 8,0 17,5 474 CFF 9 553 CFF 1040 6,3 6,3 173 CFF 7 202 CFF 8

12,5 33,0 42,1 60 8,0 12,5 550 CFF 9 641 CFF 1080 10,0 21,1 878 CSF 10 1024 CSF 1060 6,3 10,3 76,1 CFF 7 88,7 CFF 8

6,3 28,1 35,8 90 6,3 16,2 241 CFF 7 281 CFF 8120 6,3 22,2 406 CFF 7 473 CFF 860 8,0 12,5 212 CFF 9 248 CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 673 CFF 10 785 CFF 10120 12,5 40,9 1134 CFF 13 1323 CFF 1360 8,0 12,5 430 CFF 9 502 CFF 10

20,0 78,3 99,7 90 10,0 24,3 1136 BF 10 1324 BF 10120 12,5 40,9 1908 BF 13 2225 BF 1380 6,3 14,2 – – – – – –

6,3 38,0 48,4 120 6,3 22,2 278 CFF 7 – – –160 6,3 30,1 468 CFF 7 – – –80 10,0 21,1 245 CFF 10 286 CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 778 CFF 13 907 CFF 13160 12,5 56,6 1310 CFF 13 1528 CFF 1380 10,0 21,1 497 CFF 10 579 CFF 10

20,0 109,7 139,7 120 12,5 40,9 1574 CFF 13 1836 CFF 13160 20,0 84,6 2651 CFF 20 3092 CFF 20100 8,0 22,6 – – – – – –

8,0 60,3 76,8 150 8,0 35,1 445 CFF 9 – – –200 8,0 47,7 750 CFF 9 – – –100 12,5 33,0 274 CFF 13 320 CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 869 CFF 13 1014 CFF 13200 12,5 72,3 1464 CFF 13 1708 CFF 13100 12,5 33,0 555 CFF 13 648 CFF 13

20,0 141,1 179,7 150 20,0 78,3 1760 CFF 20 2053 CFF 20200 20,0 109,7 2964 CFF 20 3457 CFF 20120 8,0 27,6 215 CFF 9 251 CFF 10

10,0 90,2 114,9 180 8,0 42,7 681 CFF 9 795 CFF 10250 8,0 60,3 1226 CFF 9 – – –120 12,5 40,9 435 CFF 13 508 CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1379 CFF 13 1609 CFF 13250 12,5 91,9 2481 CFF 13 2893 CFF 13120 12,5 40,9 608 CFF 13 710 CFF 13

20,0 172,5 219,7 180 20,0 97,1 1928 CFF 20 2248 CFF 20250 20,0 141,1 3467 CFF 20 4044 CFF 20

* Additional check of chord resistance N0,Rd required, see page 16 ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles37◦ < Θ ≤ 43◦

Chord stress ratioCompression: 0,5 < n ≤ 1

Failure modesCFF: Chord face failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 23

Wel

ded

K g

ap

join

t

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 29 24.01.13 10:32

Page 31: Design Tools for Hollow Section Joints with MSH Sections in

24

Design tools for hollow section joints

Design resistances n : 0 Θ : 45◦ K

( ) ( )

( ) ( )

1

0 1

0

1 2

0

10

2

0,5 1 0,5

1,5 1 1,5

+ =ìï³ í

× -b × = × -ïî

£ × -b × = × -

t t tg

b b b

g b b b

0/ ,55 0 250, e h £- £

Check range of validity:

b0

t0h0

+e

g

b1

t1

N1,Rd

Q

b1

t1

N1,Rd

Q

h1h1

e

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 N1,Rd

* a** N1,Rd* a**

mm mm kg/m cm2 mm mm kg/m kN mm kN mm40 5,0 5,3 134 CFF 6 156 CFF 7

5,0 14,7 18,7 60 5,0 8,4 201 CFF 6 235 CFF 780 5,0 11,6 268 CFF 6 313 CFF 740 6,3 6,3 272 CFF 7 317 CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 408 CFF 9 475 CFF 1080 8,0 17,5 490 CSF 9 572 CSF 1040 6,3 6,3 301 BF 7 351 BF 8

12,5 33,0 42,1 60 8,0 12,5 590 BF 9 688 BF 1080 10,0 21,1 806 CSF 10 940 CSF 1060 6,3 10,3 232 CFF 7 271 CFF 8

6,3 28,1 35,8 90 6,3 16,2 349 CFF 7 407 CFF 8120 6,3 22,2 465 CFF 7 543 CFF 860 8,0 12,5 590 BF 9 688 BF 10

150 12,5 52,7 67,1 90 10,0 24,3 976 CFF 10 1138 CFF 10120 12,5 40,9 1155 CSF 13 1347 CSF 1360 8,0 12,5 590 BF 9 688 BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 BF 10 1324 BF 10120 12,5 40,9 1908 BF 13 2225 BF 1380 6,3 14,2 – – – – – –

6,3 38,0 48,4 120 6,3 22,2 403 CFF 7 – – –160 6,3 30,1 537 CFF 7 – – –80 10,0 21,1 751 CFF 10 876 CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 1127 CFF 13 1314 CFF 13160 12,5 56,6 1501 CSF 13 1750 CSF 1380 10,0 21,1 994 BF 10 1159 BF 10

20,0 109,7 139,7 120 12,5 40,9 1908 BF 13 2225 BF 13160 20,0 84,6 2512 CSF 20 2929 CSF 20100 8,0 22,6 – – – – – –

8,0 60,3 76,8 150 8,0 35,1 645 CFF 9 – – –200 8,0 47,7 860 CFF 9 – – –100 12,5 33,0 840 CFF 13 979 CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 1260 CFF 13 1469 CFF 13200 12,5 72,3 1680 CFF 13 1959 CFF 13100 12,5 33,0 1553 BF 13 1811 BF 13

20,0 141,1 179,7 150 20,0 78,3 2550 CFF 20 2974 CFF 20200 20,0 109,7 3068 CSF 20 3578 CSF 20120 8,0 27,6 658 CFF 9 768 CFF 10

10,0 90,2 114,9 180 8,0 42,7 987 CFF 9 1152 CFF 10250 8,0 60,3 1372 CFF 9 – – –120 12,5 40,9 1333 CFF 13 1554 CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1999 CFF 13 2331 CFF 13250 12,5 91,9 2777 CFF 13 3238 CFF 13120 12,5 40,9 1862 CFF 13 2172 CFF 13

20,0 172,5 219,7 180 20,0 97,1 2794 CFF 20 3258 CFF 20250 20,0 141,1 3681 CSF 20 4293 CSF 20

* Additional check of chord resistance N0,Rd required, see page 16 ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles43◦ < Θ ≤ 48◦

Chord stress ratioTension: −1 ≤ n ≤ 0

Failure modesCFF: Chord face failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

24 VALLOUREC & MANNESMANN TUBES

Wel

ded

K g

ap

join

t

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 30 24.01.13 10:32

Page 32: Design Tools for Hollow Section Joints with MSH Sections in

25

Design tools for hollow section joints

Design resistances n : 0,25 Θ : 45◦ K

( ) ( )

( ) ( )

1

0 1

0

1 2

0

10

2

0,5 1 0,5

1,5 1 1,5

+ =ìï³ í

× -b × = × -ïî

£ × -b × = × -

t t tg

b b b

g b b b

0/ ,55 0 250, e h £- £

Check range of validity:

b0

t0h0

+e

g

b1

t1

N1,Rd

Q

b1

t1

N1,Rd

Q

h1h1

e

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 N1,Rd

* a** N1,Rd* a**

mm mm kg/m cm2 mm mm kg/m kN mm kN mm40 5,0 5,3 107 CFF 6 125 CFF 7

5,0 14,7 18,7 60 5,0 8,4 194 CFF 6 227 CFF 780 5,0 11,6 268 CFF 6 313 CFF 740 6,3 6,3 217 CFF 7 253 CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 394 CFF 9 460 CFF 1080 8,0 17,5 490 CSF 9 572 CSF 1040 6,3 6,3 301 BF 7 351 BF 8

12,5 33,0 42,1 60 8,0 12,5 590 BF 9 688 BF 1080 10,0 21,1 806 CSF 10 940 CSF 1060 6,3 10,3 186 CFF 7 217 CFF 8

6,3 28,1 35,8 90 6,3 16,2 337 CFF 7 393 CFF 8120 6,3 22,2 465 CFF 7 543 CFF 860 8,0 12,5 520 CFF 9 607 CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 943 CFF 10 1100 CFF 10120 12,5 40,9 1155 CSF 13 1347 CSF 1360 8,0 12,5 590 BF 9 688 BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 BF 10 1324 BF 10120 12,5 40,9 1908 BF 13 2225 BF 1380 6,3 14,2 – – – – – –

6,3 38,0 48,4 120 6,3 22,2 389 CFF 7 – – –160 6,3 30,1 537 CFF 7 – – –80 10,0 21,1 601 CFF 10 701 CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 1089 CFF 13 1270 CFF 13160 12,5 56,6 1501 CSF 13 1750 CSF 1380 10,0 21,1 994 BF 10 1159 BF 10

20,0 109,7 139,7 120 12,5 40,9 1908 BF 13 2225 BF 13160 20,0 84,6 2512 CSF 20 2929 CSF 20100 8,0 22,6 – – – – – –

8,0 60,3 76,8 150 8,0 35,1 623 CFF 9 – – –200 8,0 47,7 860 CFF 9 – – –100 12,5 33,0 672 CFF 13 783 CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 1218 CFF 13 1420 CFF 13200 12,5 72,3 1680 CFF 13 1959 CFF 13100 12,5 33,0 1360 CFF 13 1586 CFF 13

20,0 141,1 179,7 150 20,0 78,3 2465 CFF 20 2875 CFF 20200 20,0 109,7 3068 CSF 20 3578 CSF 20120 8,0 27,6 526 CFF 9 614 CFF 10

10,0 90,2 114,9 180 8,0 42,7 955 CFF 9 1113 CFF 10250 8,0 60,3 1372 CFF 9 – – –120 12,5 40,9 1066 CFF 13 1243 CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1932 CFF 13 2254 CFF 13250 12,5 91,9 2777 CFF 13 3238 CFF 13120 12,5 40,9 1490 CFF 13 1738 CFF 13

20,0 172,5 219,7 180 20,0 97,1 2701 CFF 20 3150 CFF 20250 20,0 141,1 3681 CSF 20 4293 CSF 20

* Additional check of chord resistance N0,Rd required, see page 16 ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles43◦ < Θ ≤ 48◦

Chord stress ratioCompression: 0 < n ≤ 0,5

Failure modesCFF: Chord face failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 25

Wel

ded

K g

ap

join

t

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 31 24.01.13 10:32

Page 33: Design Tools for Hollow Section Joints with MSH Sections in

26

Design tools for hollow section joints

Design resistances n : 0,75 Θ : 45◦ K

( ) ( )

( ) ( )

1

0 1

0

1 2

0

10

2

0,5 1 0,5

1,5 1 1,5

+ =ìï³ í

× -b × = × -ïî

£ × -b × = × -

t t tg

b b b

g b b b

0/ ,55 0 250, e h £- £

Check range of validity:

b0

t0h0

+e

g

b1

t1

N1,Rd

Q

b1

t1

N1,Rd

Q

h1h1

e

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 N1,Rd

* a** N1,Rd* a**

mm mm kg/m cm2 mm mm kg/m kN mm kN mm40 5,0 5,3 40,3 CFF 6 47,0 CFF 7

5,0 14,7 18,7 60 5,0 8,4 127 CFF 6 148 CFF 780 5,0 11,6 215 CFF 6 250 CFF 740 6,3 6,3 81,6 CFF 7 95,1 CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 258 CFF 9 301 CFF 1080 8,0 17,5 435 CFF 9 507 CFF 1040 6,3 6,3 159 CFF 7 185 CFF 8

12,5 33,0 42,1 60 8,0 12,5 504 CFF 9 588 CFF 1080 10,0 21,1 806 CSF 10 940 CSF 1060 6,3 10,3 69,8 CFF 7 81,4 CFF 8

6,3 28,1 35,8 90 6,3 16,2 221 CFF 7 258 CFF 8120 6,3 22,2 372 CFF 7 434 CFF 860 8,0 12,5 195 CFF 9 227 CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 618 CFF 10 721 CFF 10120 12,5 40,9 1041 CFF 13 1214 CFF 1360 8,0 12,5 395 CFF 9 460 CFF 10

20,0 78,3 99,7 90 10,0 24,3 1136 BF 10 1324 BF 10120 12,5 40,9 1908 BF 13 2225 BF 1380 6,3 14,2 – – – – – –

6,3 38,0 48,4 120 6,3 22,2 255 CFF 7 – – –160 6,3 30,1 430 CFF 7 – – –80 10,0 21,1 225 CFF 10 262 CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 713 CFF 13 832 CFF 13160 12,5 56,6 1202 CFF 13 1402 CFF 1380 10,0 21,1 456 CFF 10 532 CFF 10

20,0 109,7 139,7 120 12,5 40,9 1445 CFF 13 1685 CFF 13160 20,0 84,6 2433 CFF 20 2838 CFF 20100 8,0 22,6 – – – – – –

8,0 60,3 76,8 150 8,0 35,1 408 CFF 9 – – –200 8,0 47,7 688 CFF 9 – – –100 12,5 33,0 252 CFF 13 293 CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 798 CFF 13 930 CFF 13200 12,5 72,3 1344 CFF 13 1567 CFF 13100 12,5 33,0 510 CFF 13 594 CFF 13

20,0 141,1 179,7 150 20,0 78,3 1615 CFF 20 1884 CFF 20200 20,0 109,7 2720 CFF 20 3173 CFF 20120 8,0 27,6 197 CFF 9 230 CFF 10

10,0 90,2 114,9 180 8,0 42,7 625 CFF 9 729 CFF 10250 8,0 60,3 1125 CFF 9 – – –120 12,5 40,9 399 CFF 13 466 CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1266 CFF 13 1476 CFF 13250 12,5 91,9 2277 CFF 13 2655 CFF 13120 12,5 40,9 558 CFF 13 651 CFF 13

20,0 172,5 219,7 180 20,0 97,1 1769 CFF 20 2063 CFF 20250 20,0 141,1 3182 CFF 20 3711 CFF 20

* Additional check of chord resistance N0,Rd required, see page 16 ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles43◦ < Θ ≤ 48◦

Chord stress ratioCompression: 0,5 < n ≤ 1

Failure modesCFF: Chord face failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

26 VALLOUREC & MANNESMANN TUBES

Wel

ded

K g

ap

join

ts

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 32 24.01.13 10:32

Page 34: Design Tools for Hollow Section Joints with MSH Sections in

27

Design tools for hollow section joints

Design resistances n : 0 Θ : 50◦ K

( ) ( )

( ) ( )

1

0 1

0

1 2

0

10

2

0,5 1 0,5

1,5 1 1,5

+ =ìï³ í

× -b × = × -ïî

£ × -b × = × -

t t tg

b b b

g b b b

0/ ,55 0 250, e h £- £

Check range of validity:

b0

t0h0

+e

g

b1

t1

N1,Rd

Q

b1

t1

N1,Rd

Q

h1h1

e

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 N1,Rd

* a** N1,Rd* a**

mm mm kg/m cm2 mm mm kg/m kN mm kN mm40 5,0 5,3 121 CFF 6 142 CFF 7

5,0 14,7 18,7 60 5,0 8,4 182 CFF 6 213 CFF 780 5,0 11,6 – – – – – –40 6,3 6,3 246 CFF 7 287 CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 370 CFF 9 431 CFF 1080 8,0 17,5 – – – – – –40 6,3 6,3 301 BF 7 351 BF 8

12,5 33,0 42,1 60 8,0 12,5 590 BF 9 688 BF 1080 10,0 21,1 – – – – – –60 6,3 10,3 211 CFF 7 246 CFF 8

6,3 28,1 35,8 90 6,3 16,2 316 CFF 7 369 CFF 8120 6,3 22,2 – – – – – –60 8,0 12,5 590 CFF 9 688 CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 885 CFF 10 1032 CFF 10120 12,5 40,9 – – – – – –60 8,0 12,5 590 BF 9 688 BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 BF 10 1324 BF 10120 12,5 40,9 – – – – – –80 6,3 14,2 – – – – – –

6,3 38,0 48,4 120 6,3 22,2 365 CFF 7 – – –160 6,3 30,1 – – – – – –80 10,0 21,1 681 CFF 10 795 CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 1022 CFF 13 1192 CFF 13160 12,5 56,6 – – – – – –80 10,0 21,1 994 BF 10 1159 BF 10

20,0 109,7 139,7 120 12,5 40,9 1908 BF 13 2225 BF 13160 20,0 84,6 – – – – – –100 8,0 22,6 – – – – – –

8,0 60,3 76,8 150 8,0 35,1 585 CFF 9 – – –200 8,0 47,7 – – – – – –100 12,5 33,0 762 CFF 13 889 CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 1143 CFF 13 1333 CFF 13200 12,5 72,3 – – – – – –100 12,5 33,0 1542 CFF 13 1799 CFF 13

20,0 141,1 179,7 150 20,0 78,3 2314 CFF 20 2698 CFF 20200 20,0 109,7 – – – – – –120 8,0 27,6 597 CFF 9 696 CFF 10

10,0 90,2 114,9 180 8,0 42,7 896 CFF 9 1045 CFF 10250 8,0 60,3 – – – – – –120 12,5 40,9 1209 CFF 13 1410 CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1813 CFF 13 2115 CFF 13250 12,5 91,9 – – – – – –120 12,5 40,9 1690 CFF 13 1970 CFF 13

20,0 172,5 219,7 180 20,0 97,1 2535 CFF 20 2956 CFF 20250 20,0 141,1 – – – – – –

* Additional check of chord resistance N0,Rd required, see page 16 ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles48◦ < Θ ≤ 55◦

Chord stress ratioTension: −1 ≤ n ≤ 0

Failure modesCFF: Chord face failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 27

Wel

ded

K g

ap

join

ts

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 33 24.01.13 10:32

Page 35: Design Tools for Hollow Section Joints with MSH Sections in

28

Design tools for hollow section joints

Design resistances n : 0,25 Θ : 50◦ K

( ) ( )

( ) ( )

1

0 1

0

1 2

0

10

2

0,5 1 0,5

1,5 1 1,5

+ =ìï³ í

× -b × = × -ïî

£ × -b × = × -

t t tg

b b b

g b b b

0/ ,55 0 250, e h £- £

Check range of validity:

b0

t0h0

+e

g

b1

t1

N1,Rd

Q

b1

t1

N1,Rd

Q

h1h1

e

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 N1,Rd

* a** N1,Rd* a**

mm mm kg/m cm2 mm mm kg/m kN mm kN mm40 5,0 5,3 97,5 CFF 6 113 CFF 7

5,0 14,7 18,7 60 5,0 8,4 176 CFF 6 206 CFF 780 5,0 11,6 – – – – – –40 6,3 6,3 197 CFF 7 230 CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 357 CFF 9 417 CFF 1080 8,0 17,5 – – – – – –40 6,3 6,3 301 BF 7 351 BF 8

12,5 33,0 42,1 60 8,0 12,5 590 BF 9 688 BF 1080 10,0 21,1 – – – – – –60 6,3 10,3 169 CFF 7 197 CFF 8

6,3 28,1 35,8 90 6,3 16,2 306 CFF 7 357 CFF 8120 6,3 22,2 – – – – – –60 8,0 12,5 472 CFF 9 550 CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 856 CFF 10 998 CFF 10120 12,5 40,9 – – – – – –60 8,0 12,5 590 BF 9 688 BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 BF 10 1324 BF 10120 12,5 40,9 – – – – – –80 6,3 14,2 – – – – – –

6,3 38,0 48,4 120 6,3 22,2 353 CFF 7 – – –160 6,3 30,1 – – – – – –80 10,0 21,1 545 CFF 10 636 CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 988 CFF 13 1152 CFF 13160 12,5 56,6 – – – – – –80 10,0 21,1 994 BF 10 1159 BF 10

20,0 109,7 139,7 120 12,5 40,9 1908 BF 13 2225 BF 13160 20,0 84,6 – – – – – –100 8,0 22,6 – – – – – –

8,0 60,3 76,8 150 8,0 35,1 565 CFF 9 – – –200 8,0 47,7 – – – – – –100 12,5 33,0 609 CFF 13 711 CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 1105 CFF 13 1289 CFF 13200 12,5 72,3 – – – – – –100 12,5 33,0 1234 CFF 13 1439 CFF 13

20,0 141,1 179,7 150 20,0 78,3 2237 CFF 20 2608 CFF 20200 20,0 109,7 – – – – – –120 8,0 27,6 478 CFF 9 557 CFF 10

10,0 90,2 114,9 180 8,0 42,7 866 CFF 9 1010 CFF 10250 8,0 60,3 – – – – – –120 12,5 40,9 967 CFF 13 1128 CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1753 CFF 13 2044 CFF 13250 12,5 91,9 – – – – – –120 12,5 40,9 1352 CFF 13 1576 CFF 13

20,0 172,5 219,7 180 20,0 97,1 2450 CFF 20 2857 CFF 20250 20,0 141,1 – – – – – –

* Additional check of chord resistance N0,Rd required, see page 16 ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles48◦ < Θ ≤ 55◦

Chord stress ratioCompression: 0 < n ≤ 0,5

Failure modesCFF: Chord face failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

28 VALLOUREC & MANNESMANN TUBES

Wel

ded

K g

ap

join

ts

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 34 24.01.13 10:32

Page 36: Design Tools for Hollow Section Joints with MSH Sections in

29

Design tools for hollow section joints

Design resistances n : 0,75 Θ : 50◦ K

( ) ( )

( ) ( )

1

0 1

0

1 2

0

10

2

0,5 1 0,5

1,5 1 1,5

+ =ìï³ í

× -b × = × -ïî

£ × -b × = × -

t t tg

b b b

g b b b

0/ ,55 0 250, e h £- £

Check range of validity:

b0

t0h0

+e

g

b1

t1

N1,Rd

Q

b1

t1

N1,Rd

Q

h1h1

e

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 N1,Rd

* a** N1,Rd* a**

mm mm kg/m cm2 mm mm kg/m kN mm kN mm40 5,0 5,3 36,5 CFF 6 42,6 CFF 7

5,0 14,7 18,7 60 5,0 8,4 115 CFF 6 135 CFF 780 5,0 11,6 – – – – – –40 6,3 6,3 74,0 CFF 7 86,3 CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 234 CFF 9 273 CFF 1080 8,0 17,5 – – – – – –40 6,3 6,3 144 CFF 7 168 CFF 8

12,5 33,0 42,1 60 8,0 12,5 458 CFF 9 534 CFF 1080 10,0 21,1 – – – – – –60 6,3 10,3 63,3 CFF 7 73,9 CFF 8

6,3 28,1 35,8 90 6,3 16,2 200 CFF 7 234 CFF 8120 6,3 22,2 – – – – – –60 8,0 12,5 177 CFF 9 206 CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 560 CFF 10 654 CFF 10120 12,5 40,9 – – – – – –60 8,0 12,5 358 CFF 9 418 CFF 10

20,0 78,3 99,7 90 10,0 24,3 1135 CFF 10 1323 CFF 10120 12,5 40,9 – – – – – –80 6,3 14,2 – – – – – –

6,3 38,0 48,4 120 6,3 22,2 231 CFF 7 – – –160 6,3 30,1 – – – – – –80 10,0 21,1 204 CFF 10 238 CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 647 CFF 13 755 CFF 13160 12,5 56,6 – – – – – –80 10,0 21,1 413 CFF 10 482 CFF 10

20,0 109,7 139,7 120 12,5 40,9 1310 CFF 13 1528 CFF 13160 20,0 84,6 – – – – – –100 8,0 22,6 – – – – – –

8,0 60,3 76,8 150 8,0 35,1 370 CFF 9 – – –200 8,0 47,7 – – – – – –100 12,5 33,0 228 CFF 13 266 CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 724 CFF 13 844 CFF 13200 12,5 72,3 – – – – – –100 12,5 33,0 462 CFF 13 539 CFF 13

20,0 141,1 179,7 150 20,0 78,3 1465 CFF 20 1709 CFF 20200 20,0 109,7 – – – – – –120 8,0 27,6 179 CFF 9 209 CFF 10

10,0 90,2 114,9 180 8,0 42,7 567 CFF 9 661 CFF 10250 8,0 60,3 – – – – – –120 12,5 40,9 362 CFF 13 423 CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1148 CFF 13 1339 CFF 13250 12,5 91,9 – – – – – –120 12,5 40,9 507 CFF 13 591 CFF 13

20,0 172,5 219,7 180 20,0 97,1 1605 CFF 20 1872 CFF 20250 20,0 141,1 – – – – – –

* Additional check of chord resistance N0,Rd required, see page 16 ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles48◦ < Θ ≤ 55◦

Chord stress ratioCompression: 0,5 < n ≤ 1

Failure modesCFF: Chord face failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 29

Wel

ded

K g

ap

join

ts

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 35 24.01.13 10:32

Page 37: Design Tools for Hollow Section Joints with MSH Sections in

30

Design tools for hollow section joints

Design resistances n : all Θ : all K

b0

t0h0

b1

t1

N1,Rd

Q

N1,Rd

Q

qp

b1

t1

h1h1

+ee

b1

t1

N1,Rd

Q

N1,Rd

Q

qp

b1

t1

h1h1

e

0,25

0,60

q

p

³ì= í

£î

0/ ,55 0 250, e h £- £

Check range ofvalidity:

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 N1,Rd a* N1,Rd a*

mm mm kg/m cm2 mm mm kg/m kN mm kN mm40 5,0 5,3 142 BF 6 165 BF 7

5,0 14,7 18,7 60 5,0 8,4 213 BF 6 248 BF 780 5,0 11,6 266 BF 6 310 BF 740 6,3 6,3 212 BF 7 247 BF 8

100 8,0 22,6 28,8 60 8,0 12,5 386 BF 9 450 BF 1080 8,0 17,5 545 BF 9 635 BF 1040 6,3 6,3 212 BF 7 247 BF 8

12,5 33,0 42,1 60 8,0 12,5 420 BF 9 490 BF 1080 10,0 21,1 710 BF 10 828 BF 1060 6,3 10,3 268 BF 7 312 BF 8

6,3 28,1 35,8 90 6,3 16,2 370 BF 7 431 BF 8120 6,3 22,2 465 BF 7 543 BF 860 8,0 12,5 420 BF 9 490 BF 10

150 12,5 52,7 67,1 90 10,0 24,3 816 BF 10 952 BF 10120 12,5 40,9 1286 BF 13 1500 BF 1360 8,0 12,5 420 BF 9 490 BF 10

20,0 78,3 99,7 90 10,0 24,3 816 BF 10 952 BF 10120 12,5 40,9 1375 BF 13 1604 BF 1380 6,3 14,2 319 BF 7 – – –

6,3 38,0 48,4 120 6,3 22,2 437 BF 7 – – –160 6,3 30,1 555 BF 7 – – –80 10,0 21,1 647 BF 10 755 BF 10

200 12,5 72,3 92,1 120 12,5 40,9 1175 BF 13 1371 BF 13160 12,5 56,6 1486 BF 13 1733 BF 1380 10,0 21,1 710 BF 10 828 BF 10

20,0 109,7 139,7 120 12,5 40,9 1375 BF 13 1604 BF 13160 20,0 84,6 2840 BF 20 3312 BF 20100 8,0 22,6 511 BF 9 – – –

8,0 60,3 76,8 150 8,0 35,1 698 BF 9 – – –200 8,0 47,7 886 BF 9 – – –100 12,5 33,0 887 BF 13 1035 BF 13

250 12,5 91,9 117,1 150 12,5 52,7 1331 BF 13 1552 BF 13200 12,5 72,3 1664 BF 13 1940 BF 13100 12,5 33,0 1109 BF 13 1293 BF 13

20,0 141,1 179,7 150 20,0 78,3 2414 BF 20 2815 BF 20200 20,0 109,7 3408 BF 20 3974 BF 20120 8,0 27,6 619 BF 9 722 BF 10

10,0 90,2 114,9 180 8,0 42,7 860 BF 9 1003 BF 10250 8,0 60,3 1142 BF 9 – – –120 12,5 40,9 1206 BF 13 1407 BF 13

300 16,0 140,5 179,0 180 12,5 64,4 1676 BF 13 1955 BF 13250 12,5 91,9 2199 BF 13 2565 BF 13120 12,5 40,9 1375 BF 13 1604 BF 13

20,0 172,5 219,7 180 20,0 97,1 2840 BF 20 3312 BF 20250 20,0 141,1 3810 BF 20 4443 BF 20

* t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles30◦ ≤ Θ ≤ 65◦

Chord stress ratio−1 ≤ n ≤ 1

Failure modesBF: Brace failure

30 VALLOUREC & MANNESMANN TUBES

Wel

ded

K o

verla

pjo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 36 24.01.13 10:32

Page 38: Design Tools for Hollow Section Joints with MSH Sections in

31

Design tools for hollow section joints

Design resistances n : all Θ : all N

b1

t1

h1

N2,Rd

eq

p

N1,Rd

Q

+e

b1 t1

h1

b0

t0h0

b1

t1

h1

N2,Rd

qp

N1,Rd

Q

b1 t1

h1

e

0,25

0,60

q

p

³ì= í

£î

0/ ,55 0 250, e h £- £

Check range ofvalidity:

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure mode Weld Design Failure mode Weld

dimensions dimensions resistance for brace size resistance for brace sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 N1,Rd N2,Rd 1 2 a* N1,Rd N2,Rd 1 2 a*

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 142 142 BF BF 6 165 165 BF BF 7

5,0 14,7 18,7 60 5,0 8,4 213 213 BF BF 6 248 248 BF BF 780 5,0 11,6 266 266 BF BF 6 310 310 BF BF 740 6,3 6,3 212 212 BF BF 7 247 247 BF BF 8

100 8,0 22,6 28,8 60 8,0 12,5 386 386 BF BF 9 450 450 BF BF 1080 8,0 17,5 545 545 BF BF 9 635 635 BF BF 1040 6,3 6,3 212 212 BF BF 7 247 247 BF BF 8

12,5 33,0 42,1 60 8,0 12,5 420 420 BF BF 9 490 490 BF BF 1080 10,0 21,1 710 710 BF BF 10 828 828 BF BF 1060 6,3 10,3 268 268 BF BF 7 312 312 BF BF 8

6,3 28,1 35,8 90 6,3 16,2 370 370 BF BF 7 431 431 BF BF 8120 6,3 22,2 465 465 BF BF 7 543 543 BF BF 860 8,0 12,5 420 420 BF BF 9 490 490 BF BF 10

150 12,5 52,7 67,1 90 10,0 24,3 816 816 BF BF 10 952 952 BF BF 10120 12,5 40,9 1286 1286 BF BF 13 1500 1500 BF BF 1360 8,0 12,5 420 420 BF BF 9 490 490 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 816 816 BF BF 10 952 952 BF BF 10120 12,5 40,9 1375 1375 BF BF 13 1604 1604 BF BF 1380 6,3 14,2 319 319 BF BF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 437 437 BF BF 7 – – – – –160 6,3 30,1 555 555 BF BF 7 – – – – –80 10,0 21,1 647 647 BF BF 10 755 755 BF BF 10

200 12,5 72,3 92,1 120 12,5 40,9 1175 1175 BF BF 13 1371 1371 BF BF 13160 12,5 56,6 1486 1486 BF BF 13 1733 1733 BF BF 1380 10,0 21,1 710 710 BF BF 10 828 828 BF BF 10

20,0 109,7 139,7 120 12,5 40,9 1375 1375 BF BF 13 1604 1604 BF BF 13160 20,0 84,6 2840 2840 BF BF 20 3312 3312 BF BF 20100 8,0 22,6 511 511 BF BF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 698 698 BF BF 9 – – – – –200 8,0 47,7 886 886 BF BF 9 – – – – –100 12,5 33,0 887 887 BF BF 13 1035 1035 BF BF 13

250 12,5 91,9 117,1 150 12,5 52,7 1331 1331 BF BF 13 1552 1552 BF BF 13200 12,5 72,3 1664 1664 BF BF 13 1940 1940 BF BF 13100 12,5 33,0 1109 1109 BF BF 13 1293 1293 BF BF 13

20,0 141,1 179,7 150 20,0 78,3 2414 2414 BF BF 20 2815 2815 BF BF 20200 20,0 109,7 3408 3408 BF BF 20 3974 3974 BF BF 20120 8,0 27,6 619 619 BF BF 9 722 722 BF BF 10

10,0 90,2 114,9 180 8,0 42,7 860 860 BF BF 9 1003 1003 BF BF 10250 8,0 60,3 1142 1142 BF BF 9 – – – – –120 12,5 40,9 1206 1206 BF BF 13 1407 1407 BF BF 13

300 16,0 140,5 179,0 180 12,5 64,4 1676 1676 BF BF 13 1955 1955 BF BF 13250 12,5 91,9 2199 2199 BF BF 13 2565 2565 BF BF 13120 12,5 40,9 1375 1375 BF BF 13 1604 1604 BF BF 13

20,0 172,5 219,7 180 20,0 97,1 2840 2840 BF BF 20 3312 3312 BF BF 20250 20,0 141,1 3810 3810 BF BF 20 4443 4443 BF BF 20

* t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles30◦ ≤ Θ ≤ 60◦

Chord stress ratio−1 ≤ n ≤ 1

Failure modesBF: Brace failure

Edition December 2011 31

Wel

ded

N o

verla

pjo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 37 24.01.13 10:32

Page 39: Design Tools for Hollow Section Joints with MSH Sections in

32

Design tools for hollow section joints

Design resistances n : 0 Θ : 30◦ X

b1

t1Nt,1,Rd

h1

Qb0

t0h0

Nt,1,Rd

b1

t1Nc,1,Rd

h1

Q

Nc,1,Rd

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd

* Nt,1,Rd* C ** T ** a *** Nc,1,Rd

* Nt,1,Rd* C ** T ** a ***

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 108 108 CFF CFF 6 126 126 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 166 166 CFF CFF 6 194 194 CFF CFF 780 5,0 11,6 327 327 CFF CFF 6 382 382 CFF CFF 740 6,3 6,3 278 278 CFF CFF 7 324 324 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 426 426 CFF CFF 9 497 497 CFF CFF 1080 8,0 17,5 547 547 CSF CSF 9 638 638 CSF CSF 1040 6,3 6,3 301 301 BF BF 7 351 351 BF BF 8

12,5 33,0 42,1 60 8,0 12,5 590 590 BF BF 9 688 688 BF BF 1080 10,0 21,1 855 855 CSF CSF 10 997 997 CSF CSF 1060 6,3 10,3 172 172 CFF CFF 7 201 201 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 264 264 CFF CFF 7 308 308 CFF CFF 8120 6,3 22,2 520 520 CFF CFF 7 607 607 CFF CFF 860 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

150 12,5 52,7 67,1 90 10,0 24,3 1042 1042 CFF CFF 10 1215 1215 CFF CFF 10120 12,5 40,9 1283 1283 CSF CSF 13 1496 1496 CSF CSF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 172 172 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 264 264 CFF CFF 7 – – – – –160 6,3 30,1 520 520 CFF CFF 7 – – – – –80 10,0 21,1 680 680 CFF CFF 10 793 793 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 1042 1042 CFF CFF 13 1215 1215 CFF CFF 13160 12,5 56,6 1710 1710 CSF CSF 13 1995 1995 CSF CSF 1380 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 10

20,0 109,7 139,7 120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 13160 20,0 84,6 2737 2737 CSF CSF 20 3192 3192 CSF CSF 20100 8,0 22,6 278 278 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 426 426 CFF CFF 9 – – – – –200 8,0 47,7 839 839 CFF CFF 9 – – – – –100 12,5 33,0 680 680 CFF CFF 13 793 793 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 1042 1042 CFF CFF 13 1215 1215 CFF CFF 13200 12,5 72,3 2049 2049 CFF CFF 13 2390 2390 CFF CFF 13100 12,5 33,0 1553 1553 BF BF 13 1811 1811 BF BF 13

20,0 141,1 179,7 150 20,0 78,3 2668 2668 CFF CFF 20 3112 3112 CFF CFF 20200 20,0 109,7 3421 3421 CSF CSF 20 3990 3990 CSF CSF 20120 8,0 27,6 435 435 CFF CFF 9 507 507 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 667 667 CFF CFF 9 778 778 CFF CFF 10250 8,0 60,3 1558 1558 CFF CFF 9 – – – – –120 12,5 40,9 1114 1114 CFF CFF 13 1299 1299 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1707 1707 CFF CFF 13 1991 1991 CFF CFF 13250 12,5 91,9 3511 3511 BF BF 13 4095 4095 BF BF 13120 12,5 40,9 1741 1741 CFF CFF 13 2030 2030 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 2668 2668 CFF CFF 20 3112 3112 CFF CFF 20250 20,0 141,1 4456 4456 CSF CSF 20 5196 5196 CSF CSF 20

* Additional check of chord resistance N0,Rd possibly required, see page 16 ** C: Brace under compression; T: Brace in tension*** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles30◦ ≤ Θ ≤ 37◦

Chord stress ratioTension: −1 ≤ n ≤ 0

Failure modesCFF: Chord face failureCWF: Chord web failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

32 VALLOUREC & MANNESMANN TUBES

Wel

ded

X jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 38 24.01.13 10:32

Page 40: Design Tools for Hollow Section Joints with MSH Sections in

33

Design tools for hollow section joints

Design resistances n : 0,25 Θ : 30◦ X

b1

t1Nt,1,Rd

h1

Qb0

t0h0

Nt,1,Rd

b1

t1Nc,1,Rd

h1

Q

Nc,1,Rd

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd

* Nt,1,Rd* C ** T ** a *** Nc,1,Rd

* Nt,1,Rd* C ** T ** a ***

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 87,0 87,0 CFF CFF 6 101 101 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 161 161 CFF CFF 6 188 188 CFF CFF 780 5,0 11,6 327 327 CFF CFF 6 382 382 CFF CFF 740 6,3 6,3 222 222 CFF CFF 7 259 259 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 412 412 CFF CFF 9 481 481 CFF CFF 1080 8,0 17,5 547 547 CSF CSF 9 638 638 CSF CSF 1040 6,3 6,3 301 301 BF BF 7 351 351 BF BF 8

12,5 33,0 42,1 60 8,0 12,5 590 590 BF BF 9 688 688 BF BF 1080 10,0 21,1 855 855 CSF CSF 10 997 997 CSF CSF 1060 6,3 10,3 138 138 CFF CFF 7 161 161 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 255 255 CFF CFF 7 298 298 CFF CFF 8120 6,3 22,2 520 520 CFF CFF 7 607 607 CFF CFF 860 8,0 12,5 544 544 CFF CFF 9 634 634 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 1007 1007 CFF CFF 10 1175 1175 CFF CFF 10120 12,5 40,9 1283 1283 CSF CSF 13 1496 1496 CSF CSF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 138 138 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 255 255 CFF CFF 7 – – – – –160 6,3 30,1 520 520 CFF CFF 7 – – – – –80 10,0 21,1 544 544 CFF CFF 10 634 634 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 1007 1007 CFF CFF 13 1175 1175 CFF CFF 13160 12,5 56,6 1710 1710 CSF CSF 13 1995 1995 CSF CSF 1380 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 10

20,0 109,7 139,7 120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 13160 20,0 84,6 2737 2737 CSF CSF 20 3192 3192 CSF CSF 20100 8,0 22,6 222 222 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 412 412 CFF CFF 9 – – – – –200 8,0 47,7 839 839 CFF CFF 9 – – – – –100 12,5 33,0 544 544 CFF CFF 13 634 634 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 1007 1007 CFF CFF 13 1175 1175 CFF CFF 13200 12,5 72,3 2049 2049 CFF CFF 13 2390 2390 CFF CFF 13100 12,5 33,0 1392 1392 CFF CFF 13 1624 1624 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 2579 2579 CFF CFF 20 3008 3008 CFF CFF 20200 20,0 109,7 3421 3421 CSF CSF 20 3990 3990 CSF CSF 20120 8,0 27,6 348 348 CFF CFF 9 406 406 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 644 644 CFF CFF 9 752 752 CFF CFF 10250 8,0 60,3 1558 1558 CFF CFF 9 – – – – –120 12,5 40,9 891 891 CFF CFF 13 1039 1039 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1650 1650 CFF CFF 13 1925 1925 CFF CFF 13250 12,5 91,9 3511 3511 BF BF 13 4095 4095 BF BF 13120 12,5 40,9 1392 1392 CFF CFF 13 1624 1624 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 2579 2579 CFF CFF 20 3008 3008 CFF CFF 20250 20,0 141,1 4456 4456 CSF CSF 20 5196 5196 CSF CSF 20

* Additional check of chord resistance N0,Rd possibly required, see page 16 ** C: Brace under compression; T: Brace in tension*** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles30◦ ≤ Θ ≤ 37◦

Chord stress ratioCompression: 0 < n ≤ 0,5

Failure modesCFF: Chord face failureCWF: Chord web failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 33

Wel

ded

X jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 39 24.01.13 10:32

Page 41: Design Tools for Hollow Section Joints with MSH Sections in

34

Design tools for hollow section joints

Design resistances n : 0,75 Θ : 30◦ X

b1

t1Nt,1,Rd

h1

Qb0

t0h0

Nt,1,Rd

b1

t1Nc,1,Rd

h1

Q

Nc,1,Rd

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd

* Nt,1,Rd* C ** T ** a *** Nc,1,Rd

* Nt,1,Rd* C ** T ** a ***

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 32,6 32,6 CFF CFF 6 38,0 38,0 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 105 105 CFF CFF 6 123 123 CFF CFF 780 5,0 11,6 262 262 CFF CFF 6 305 305 CFF CFF 740 6,3 6,3 83,5 83,5 CFF CFF 7 97,4 97,4 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 270 270 CFF CFF 9 315 315 CFF CFF 1080 8,0 17,5 547 547 CSF CSF 9 638 638 CSF CSF 1040 6,3 6,3 204 204 CFF CFF 7 237 237 CFF CFF 8

12,5 33,0 42,1 60 8,0 12,5 590 590 BF BF 9 688 688 BF BF 1080 10,0 21,1 855 855 CSF CSF 10 997 997 CSF CSF 1060 6,3 10,3 51,8 51,8 CFF CFF 7 60,4 60,4 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 167 167 CFF CFF 7 195 195 CFF CFF 8120 6,3 22,2 416 416 CFF CFF 7 485 485 CFF CFF 860 8,0 12,5 204 204 CFF CFF 9 237 237 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 660 660 CFF CFF 10 769 769 CFF CFF 10120 12,5 40,9 1283 1283 CSF CSF 13 1496 1496 CSF CSF 1360 8,0 12,5 522 522 CFF CFF 9 609 609 CFF CFF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 51,8 51,8 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 167 167 CFF CFF 7 – – – – –160 6,3 30,1 416 416 CFF CFF 7 – – – – –80 10,0 21,1 204 204 CFF CFF 10 237 237 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 660 660 CFF CFF 13 769 769 CFF CFF 13160 12,5 56,6 1639 1639 CFF CFF 13 1912 1912 CFF CFF 1380 10,0 21,1 522 522 CFF CFF 10 609 609 CFF CFF 10

20,0 109,7 139,7 120 12,5 40,9 1690 1690 CFF CFF 13 1970 1970 CFF CFF 13160 20,0 84,6 2737 2737 CSF CSF 20 3192 3192 CSF CSF 20100 8,0 22,6 83,5 83,5 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 270 270 CFF CFF 9 – – – – –200 8,0 47,7 671 671 CFF CFF 9 – – – – –100 12,5 33,0 204 204 CFF CFF 13 237 237 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 660 660 CFF CFF 13 769 769 CFF CFF 13200 12,5 72,3 1639 1639 CFF CFF 13 1912 1912 CFF CFF 13100 12,5 33,0 522 522 CFF CFF 13 609 609 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1690 1690 CFF CFF 20 1970 1970 CFF CFF 20200 20,0 109,7 3421 3421 CSF CSF 20 3990 3990 CSF CSF 20120 8,0 27,6 130 130 CFF CFF 9 152 152 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 422 422 CFF CFF 9 492 492 CFF CFF 10250 8,0 60,3 1277 1277 CFF CFF 9 – – – – –120 12,5 40,9 334 334 CFF CFF 13 389 389 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1081 1081 CFF CFF 13 1261 1261 CFF CFF 13250 12,5 91,9 3270 3270 CFF CFF 13 3814 3814 CFF CFF 13120 12,5 40,9 522 522 CFF CFF 13 609 609 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1690 1690 CFF CFF 20 1970 1970 CFF CFF 20250 20,0 141,1 4456 4456 CSF CSF 20 5196 5196 CSF CSF 20

* Additional check of chord resistance N0,Rd possibly required, see page 16 ** C: Brace under compression; T: Brace in tension*** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles30◦ ≤ Θ ≤ 37◦

Chord stress ratioCompression: 0,5 < n ≤ 1

Failure modesCFF: Chord face failureCWF: Chord web failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

34 VALLOUREC & MANNESMANN TUBES

Wel

ded

X jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 40 24.01.13 10:32

Page 42: Design Tools for Hollow Section Joints with MSH Sections in

35

Design tools for hollow section joints

Design resistances n : 0 Θ : 40◦ X

b1

t1Nt,1,Rd

h1

Qb0

t0h0

Nt,1,Rd

b1

t1Nc,1,Rd

h1

Q

Nc,1,Rd

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd

* Nt,1,Rd* C ** T ** a *** Nc,1,Rd

* Nt,1,Rd* C ** T ** a ***

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 92,6 92,6 CFF CFF 6 108 108 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 139 139 CFF CFF 6 162 162 CFF CFF 780 5,0 11,6 269 269 CFF CFF 6 313 313 CFF CFF 740 6,3 6,3 237 237 CFF CFF 7 276 276 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 357 357 CFF CFF 9 416 416 CFF CFF 1080 8,0 17,5 688 688 CFF CFF 9 803 803 CFF CFF 1040 6,3 6,3 301 301 BF BF 7 351 351 BF BF 8

12,5 33,0 42,1 60 8,0 12,5 590 590 BF BF 9 688 688 BF BF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 147 147 CFF CFF 7 171 171 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 221 221 CFF CFF 7 258 258 CFF CFF 8120 6,3 22,2 427 427 CFF CFF 7 498 498 CFF CFF 860 8,0 12,5 579 579 CFF CFF 9 675 675 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 872 872 CFF CFF 10 1017 1017 CFF CFF 10120 12,5 40,9 1681 1681 CFF CFF 13 1960 1960 CFF CFF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 147 147 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 221 221 CFF CFF 7 – – – – –160 6,3 30,1 427 427 CFF CFF 7 – – – – –80 10,0 21,1 579 579 CFF CFF 10 675 675 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 872 872 CFF CFF 13 1017 1017 CFF CFF 13160 12,5 56,6 1681 1681 CFF CFF 13 1960 1960 CFF CFF 1380 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 10

20,0 109,7 139,7 120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 13160 20,0 84,6 3976 3976 BF BF 20 4636 4636 BF BF 20100 8,0 22,6 237 237 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 357 357 CFF CFF 9 – – – – –200 8,0 47,7 688 688 CFF CFF 9 – – – – –100 12,5 33,0 579 579 CFF CFF 13 675 675 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 872 872 CFF CFF 13 1017 1017 CFF CFF 13200 12,5 72,3 1681 1681 CFF CFF 13 1960 1960 CFF CFF 13100 12,5 33,0 1482 1482 CFF CFF 13 1728 1728 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 2232 2232 CFF CFF 20 2603 2603 CFF CFF 20200 20,0 109,7 4304 4304 CFF CFF 20 5020 5020 CFF CFF 20120 8,0 27,6 370 370 CFF CFF 9 432 432 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 558 558 CFF CFF 9 650 650 CFF CFF 10250 8,0 60,3 1273 1273 CFF CFF 9 – – – – –120 12,5 40,9 948 948 CFF CFF 13 1106 1106 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1428 1428 CFF CFF 13 1666 1666 CFF CFF 13250 12,5 91,9 3259 3259 CFF CFF 13 3801 3801 CFF CFF 13120 12,5 40,9 1482 1482 CFF CFF 13 1728 1728 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 2232 2232 CFF CFF 20 2603 2603 CFF CFF 20250 20,0 141,1 5093 5093 CFF CFF 20 5939 5939 CFF CFF 20

* Additional check of chord resistance N0,Rd possibly required, see page 16 ** C: Brace under compression; T: Brace in tension*** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles37◦ < Θ ≤ 43◦

Chord stress ratioTension: −1 ≤ n ≤ 0

Failure modesCFF: Chord face failureCWF: Chord web failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 35

Wel

ded

X jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 41 24.01.13 10:32

Page 43: Design Tools for Hollow Section Joints with MSH Sections in

36

Design tools for hollow section joints

Design resistances n : 0,25 Θ : 40◦ X

b1

t1Nt,1,Rd

h1

Qb0

t0h0

Nt,1,Rd

b1

t1Nc,1,Rd

h1

Q

Nc,1,Rd

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd

* Nt,1,Rd* C ** T ** a *** Nc,1,Rd

* Nt,1,Rd* C ** T ** a ***

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 74,1 74,1 CFF CFF 6 86,4 86,4 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 134 134 CFF CFF 6 157 157 CFF CFF 780 5,0 11,6 269 269 CFF CFF 6 313 313 CFF CFF 740 6,3 6,3 189 189 CFF CFF 7 221 221 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 345 345 CFF CFF 9 402 402 CFF CFF 1080 8,0 17,5 688 688 CFF CFF 9 803 803 CFF CFF 1040 6,3 6,3 301 301 BF BF 7 351 351 BF BF 8

12,5 33,0 42,1 60 8,0 12,5 590 590 BF BF 9 688 688 BF BF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 117 117 CFF CFF 7 137 137 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 214 214 CFF CFF 7 249 249 CFF CFF 8120 6,3 22,2 427 427 CFF CFF 7 498 498 CFF CFF 860 8,0 12,5 463 463 CFF CFF 9 540 540 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 843 843 CFF CFF 10 983 983 CFF CFF 10120 12,5 40,9 1681 1681 CFF CFF 13 1960 1960 CFF CFF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 117 117 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 214 214 CFF CFF 7 – – – – –160 6,3 30,1 427 427 CFF CFF 7 – – – – –80 10,0 21,1 463 463 CFF CFF 10 540 540 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 843 843 CFF CFF 13 983 983 CFF CFF 13160 12,5 56,6 1681 1681 CFF CFF 13 1960 1960 CFF CFF 1380 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 10

20,0 109,7 139,7 120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 13160 20,0 84,6 3976 3976 BF BF 20 4636 4636 BF BF 20100 8,0 22,6 189 189 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 345 345 CFF CFF 9 – – – – –200 8,0 47,7 688 688 CFF CFF 9 – – – – –100 12,5 33,0 463 463 CFF CFF 13 540 540 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 843 843 CFF CFF 13 983 983 CFF CFF 13200 12,5 72,3 1681 1681 CFF CFF 13 1960 1960 CFF CFF 13100 12,5 33,0 1185 1185 CFF CFF 13 1382 1382 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 2158 2158 CFF CFF 20 2517 2517 CFF CFF 20200 20,0 109,7 4304 4304 CFF CFF 20 5020 5020 CFF CFF 20120 8,0 27,6 296 296 CFF CFF 9 345 345 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 539 539 CFF CFF 9 629 629 CFF CFF 10250 8,0 60,3 1273 1273 CFF CFF 9 – – – – –120 12,5 40,9 758 758 CFF CFF 13 885 885 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1381 1381 CFF CFF 13 1610 1610 CFF CFF 13250 12,5 91,9 3259 3259 CFF CFF 13 3801 3801 CFF CFF 13120 12,5 40,9 1185 1185 CFF CFF 13 1382 1382 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 2158 2158 CFF CFF 20 2517 2517 CFF CFF 20250 20,0 141,1 5093 5093 CFF CFF 20 5939 5939 CFF CFF 20

* Additional check of chord resistance N0,Rd possibly required, see page 16 ** C: Brace under compression; T: Brace in tension*** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles37◦ < Θ ≤ 43◦

Chord stress ratioCompression: 0 < n ≤ 0,5

Failure modesCFF: Chord face failureCWF: Chord web failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

36 VALLOUREC & MANNESMANN TUBES

Wel

ded

X jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 42 24.01.13 10:32

Page 44: Design Tools for Hollow Section Joints with MSH Sections in

37

Design tools for hollow section joints

Design resistances n : 0,75 Θ : 40◦ X

b1

t1Nt,1,Rd

h1

Qb0

t0h0

Nt,1,Rd

b1

t1Nc,1,Rd

h1

Q

Nc,1,Rd

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd

* Nt,1,Rd* C ** T ** a *** Nc,1,Rd

* Nt,1,Rd* C ** T ** a ***

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 27,7 27,7 CFF CFF 6 32,4 32,4 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 88,3 88,3 CFF CFF 6 103 103 CFF CFF 780 5,0 11,6 215 215 CFF CFF 6 251 251 CFF CFF 740 6,3 6,3 71,1 71,1 CFF CFF 7 82,9 82,9 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 226 226 CFF CFF 9 263 263 CFF CFF 1080 8,0 17,5 550 550 CFF CFF 9 642 642 CFF CFF 1040 6,3 6,3 173 173 CFF CFF 7 202 202 CFF CFF 8

12,5 33,0 42,1 60 8,0 12,5 552 552 CFF CFF 9 644 644 CFF CFF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 44,1 44,1 CFF CFF 7 51,4 51,4 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 140 140 CFF CFF 7 163 163 CFF CFF 8120 6,3 22,2 341 341 CFF CFF 7 398 398 CFF CFF 860 8,0 12,5 173 173 CFF CFF 9 202 202 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 552 552 CFF CFF 10 644 644 CFF CFF 10120 12,5 40,9 1345 1345 CFF CFF 13 1568 1568 CFF CFF 1360 8,0 12,5 444 444 CFF CFF 9 518 518 CFF CFF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 44,1 44,1 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 140 140 CFF CFF 7 – – – – –160 6,3 30,1 341 341 CFF CFF 7 – – – – –80 10,0 21,1 173 173 CFF CFF 10 202 202 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 552 552 CFF CFF 13 644 644 CFF CFF 13160 12,5 56,6 1345 1345 CFF CFF 13 1568 1568 CFF CFF 1380 10,0 21,1 444 444 CFF CFF 10 518 518 CFF CFF 10

20,0 109,7 139,7 120 12,5 40,9 1414 1414 CFF CFF 13 1649 1649 CFF CFF 13160 20,0 84,6 3443 3443 CFF CFF 20 4016 4016 CFF CFF 20100 8,0 22,6 71,1 71,1 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 226 226 CFF CFF 9 – – – – –200 8,0 47,7 550 550 CFF CFF 9 – – – – –100 12,5 33,0 173 173 CFF CFF 13 202 202 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 552 552 CFF CFF 13 644 644 CFF CFF 13200 12,5 72,3 1345 1345 CFF CFF 13 1568 1568 CFF CFF 13100 12,5 33,0 444 444 CFF CFF 13 518 518 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1414 1414 CFF CFF 20 1649 1649 CFF CFF 20200 20,0 109,7 3443 3443 CFF CFF 20 4016 4016 CFF CFF 20120 8,0 27,6 111 111 CFF CFF 9 129 129 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 353 353 CFF CFF 9 412 412 CFF CFF 10250 8,0 60,3 1044 1044 CFF CFF 9 – – – – –120 12,5 40,9 284 284 CFF CFF 13 331 331 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 905 905 CFF CFF 13 1055 1055 CFF CFF 13250 12,5 91,9 2672 2672 CFF CFF 13 3117 3117 CFF CFF 13120 12,5 40,9 444 444 CFF CFF 13 518 518 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1414 1414 CFF CFF 20 1649 1649 CFF CFF 20250 20,0 141,1 4176 4176 CFF CFF 20 4870 4870 CFF CFF 20

* Additional check of chord resistance N0,Rd possibly required, see page 16 ** C: Brace under compression; T: Brace in tension*** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles37◦ < Θ ≤ 43◦

Chord stress ratioCompression: 0,5 < n ≤ 1

Failure modesCFF: Chord face failureCWF: Chord web failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 37

Wel

ded

X jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 43 24.01.13 10:32

Page 45: Design Tools for Hollow Section Joints with MSH Sections in

38

Design tools for hollow section joints

Design resistances n : 0 Θ : 45◦ X

b1

t1Nt,1,Rd

h1

Qb0

t0h0

Nt,1,Rd

b1

t1Nc,1,Rd

h1

Q

Nc,1,Rd

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd

* Nt,1,Rd* C ** T ** a *** Nc,1,Rd

* Nt,1,Rd* C ** T ** a ***

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 83,0 83,0 CFF CFF 6 96,9 96,9 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 123 123 CFF CFF 6 144 144 CFF CFF 780 5,0 11,6 235 235 CFF CFF 6 274 274 CFF CFF 740 6,3 6,3 212 212 CFF CFF 7 248 248 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 316 316 CFF CFF 9 369 369 CFF CFF 1080 8,0 17,5 602 602 CFF CFF 9 702 702 CFF CFF 1040 6,3 6,3 301 301 BF BF 7 351 351 BF BF 8

12,5 33,0 42,1 60 8,0 12,5 590 590 BF BF 9 688 688 BF BF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 131 131 CFF CFF 7 153 153 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 196 196 CFF CFF 7 229 229 CFF CFF 8120 6,3 22,2 373 373 CFF CFF 7 435 435 CFF CFF 860 8,0 12,5 519 519 CFF CFF 9 605 605 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 773 773 CFF CFF 10 901 901 CFF CFF 10120 12,5 40,9 1471 1471 CFF CFF 13 1715 1715 CFF CFF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 131 131 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 196 196 CFF CFF 7 – – – – –160 6,3 30,1 373 373 CFF CFF 7 – – – – –80 10,0 21,1 519 519 CFF CFF 10 605 605 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 773 773 CFF CFF 13 901 901 CFF CFF 13160 12,5 56,6 1471 1471 CFF CFF 13 1715 1715 CFF CFF 1380 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 10

20,0 109,7 139,7 120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 13160 20,0 84,6 3766 3766 CFF CFF 20 4391 4391 CFF CFF 20100 8,0 22,6 212 212 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 316 316 CFF CFF 9 – – – – –200 8,0 47,7 602 602 CFF CFF 9 – – – – –100 12,5 33,0 519 519 CFF CFF 13 605 605 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 773 773 CFF CFF 13 901 901 CFF CFF 13200 12,5 72,3 1471 1471 CFF CFF 13 1715 1715 CFF CFF 13100 12,5 33,0 1329 1329 CFF CFF 13 1550 1550 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1979 1979 CFF CFF 20 2308 2308 CFF CFF 20200 20,0 109,7 3766 3766 CFF CFF 20 4391 4391 CFF CFF 20120 8,0 27,6 332 332 CFF CFF 9 387 387 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 494 494 CFF CFF 9 577 577 CFF CFF 10250 8,0 60,3 1110 1110 CFF CFF 9 – – – – –120 12,5 40,9 850 850 CFF CFF 13 992 992 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1267 1267 CFF CFF 13 1477 1477 CFF CFF 13250 12,5 91,9 2843 2843 CFF CFF 13 3316 3316 CFF CFF 13120 12,5 40,9 1329 1329 CFF CFF 13 1550 1550 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1979 1979 CFF CFF 20 2308 2308 CFF CFF 20250 20,0 141,1 4443 4443 CFF CFF 20 5181 5181 CFF CFF 20

* Additional check of chord resistance N0,Rd possibly required, see page 16 ** C: Brace under compression; T: Brace in tension*** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles43◦ < Θ ≤ 48◦

Chord stress ratioTension: −1 ≤ n ≤ 0

Failure modesCFF: Chord face failureCWF: Chord web failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

38 VALLOUREC & MANNESMANN TUBES

Wel

ded

X jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 44 24.01.13 10:32

Page 46: Design Tools for Hollow Section Joints with MSH Sections in

39

Design tools for hollow section joints

Design resistances n : 0,25 Θ : 45◦ X

b1

t1Nt,1,Rd

h1

Qb0

t0h0

Nt,1,Rd

b1

t1Nc,1,Rd

h1

Q

Nc,1,Rd

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd

* Nt,1,Rd* C ** T ** a *** Nc,1,Rd

* Nt,1,Rd* C ** T ** a ***

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 66,4 66,4 CFF CFF 6 77,5 77,5 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 119 119 CFF CFF 6 139 139 CFF CFF 780 5,0 11,6 235 235 CFF CFF 6 274 274 CFF CFF 740 6,3 6,3 170 170 CFF CFF 7 198 198 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 306 306 CFF CFF 9 357 357 CFF CFF 1080 8,0 17,5 602 602 CFF CFF 9 702 702 CFF CFF 1040 6,3 6,3 301 301 BF BF 7 351 351 BF BF 8

12,5 33,0 42,1 60 8,0 12,5 590 590 BF BF 9 688 688 BF BF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 105 105 CFF CFF 7 123 123 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 189 189 CFF CFF 7 221 221 CFF CFF 8120 6,3 22,2 373 373 CFF CFF 7 435 435 CFF CFF 860 8,0 12,5 415 415 CFF CFF 9 484 484 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 747 747 CFF CFF 10 871 871 CFF CFF 10120 12,5 40,9 1471 1471 CFF CFF 13 1715 1715 CFF CFF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 105 105 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 189 189 CFF CFF 7 – – – – –160 6,3 30,1 373 373 CFF CFF 7 – – – – –80 10,0 21,1 415 415 CFF CFF 10 484 484 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 747 747 CFF CFF 13 871 871 CFF CFF 13160 12,5 56,6 1471 1471 CFF CFF 13 1715 1715 CFF CFF 1380 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 10

20,0 109,7 139,7 120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 13160 20,0 84,6 3766 3766 CFF CFF 20 4391 4391 CFF CFF 20100 8,0 22,6 170 170 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 306 306 CFF CFF 9 – – – – –200 8,0 47,7 602 602 CFF CFF 9 – – – – –100 12,5 33,0 415 415 CFF CFF 13 484 484 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 747 747 CFF CFF 13 871 871 CFF CFF 13200 12,5 72,3 1471 1471 CFF CFF 13 1715 1715 CFF CFF 13100 12,5 33,0 1063 1063 CFF CFF 13 1240 1240 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1913 1913 CFF CFF 20 2231 2231 CFF CFF 20200 20,0 109,7 3766 3766 CFF CFF 20 4391 4391 CFF CFF 20120 8,0 27,6 265 265 CFF CFF 9 310 310 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 478 478 CFF CFF 9 557 557 CFF CFF 10250 8,0 60,3 1110 1110 CFF CFF 9 – – – – –120 12,5 40,9 680 680 CFF CFF 13 793 793 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1224 1224 CFF CFF 13 1428 1428 CFF CFF 13250 12,5 91,9 2843 2843 CFF CFF 13 3316 3316 CFF CFF 13120 12,5 40,9 1063 1063 CFF CFF 13 1240 1240 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1913 1913 CFF CFF 20 2231 2231 CFF CFF 20250 20,0 141,1 4443 4443 CFF CFF 20 5181 5181 CFF CFF 20

* Additional check of chord resistance N0,Rd possibly required, see page 16 ** C: Brace under compression; T: Brace in tension*** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles43◦ < Θ ≤ 48◦

Chord stress ratioCompression: 0 < n ≤ 0,5

Failure modesCFF: Chord face failureCWF: Chord web failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 39

Wel

ded

X jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 45 24.01.13 10:32

Page 47: Design Tools for Hollow Section Joints with MSH Sections in

40

Design tools for hollow section joints

Design resistances n : 0,75 Θ : 45◦ X

b1

t1Nt,1,Rd

h1

Qb0

t0h0

Nt,1,Rd

b1

t1Nc,1,Rd

h1

Q

Nc,1,Rd

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd

* Nt,1,Rd* C ** T ** a *** Nc,1,Rd

* Nt,1,Rd* C ** T ** a ***

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 24,9 24,9 CFF CFF 6 29,0 29,0 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 78,3 78,3 CFF CFF 6 91,3 91,3 CFF CFF 780 5,0 11,6 188 188 CFF CFF 6 219 219 CFF CFF 740 6,3 6,3 63,8 63,8 CFF CFF 7 74,4 74,4 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 200 200 CFF CFF 9 233 233 CFF CFF 1080 8,0 17,5 482 482 CFF CFF 9 562 562 CFF CFF 1040 6,3 6,3 155 155 CFF CFF 7 181 181 CFF CFF 8

12,5 33,0 42,1 60 8,0 12,5 489 489 CFF CFF 9 571 571 CFF CFF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 39,5 39,5 CFF CFF 7 46,1 46,1 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 124 124 CFF CFF 7 145 145 CFF CFF 8120 6,3 22,2 298 298 CFF CFF 7 348 348 CFF CFF 860 8,0 12,5 155 155 CFF CFF 9 181 181 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 489 489 CFF CFF 10 571 571 CFF CFF 10120 12,5 40,9 1176 1176 CFF CFF 13 1372 1372 CFF CFF 1360 8,0 12,5 398 398 CFF CFF 9 465 465 CFF CFF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 39,5 39,5 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 124 124 CFF CFF 7 – – – – –160 6,3 30,1 298 298 CFF CFF 7 – – – – –80 10,0 21,1 155 155 CFF CFF 10 181 181 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 489 489 CFF CFF 13 571 571 CFF CFF 13160 12,5 56,6 1176 1176 CFF CFF 13 1372 1372 CFF CFF 1380 10,0 21,1 398 398 CFF CFF 10 465 465 CFF CFF 10

20,0 109,7 139,7 120 12,5 40,9 1253 1253 CFF CFF 13 1462 1462 CFF CFF 13160 20,0 84,6 3012 3012 CFF CFF 20 3513 3513 CFF CFF 20100 8,0 22,6 63,8 63,8 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 200 200 CFF CFF 9 – – – – –200 8,0 47,7 482 482 CFF CFF 9 – – – – –100 12,5 33,0 155 155 CFF CFF 13 181 181 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 489 489 CFF CFF 13 571 571 CFF CFF 13200 12,5 72,3 1176 1176 CFF CFF 13 1372 1372 CFF CFF 13100 12,5 33,0 398 398 CFF CFF 13 465 465 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1253 1253 CFF CFF 20 1462 1462 CFF CFF 20200 20,0 109,7 3012 3012 CFF CFF 20 3513 3513 CFF CFF 20120 8,0 27,6 99,7 99,7 CFF CFF 9 116 116 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 313 313 CFF CFF 9 365 365 CFF CFF 10250 8,0 60,3 910 910 CFF CFF 9 – – – – –120 12,5 40,9 255 255 CFF CFF 13 297 297 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 802 802 CFF CFF 13 935 935 CFF CFF 13250 12,5 91,9 2331 2331 CFF CFF 13 2719 2719 CFF CFF 13120 12,5 40,9 398 398 CFF CFF 13 465 465 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1253 1253 CFF CFF 20 1462 1462 CFF CFF 20250 20,0 141,1 3643 3643 CFF CFF 20 4249 4249 CFF CFF 20

* Additional check of chord resistance N0,Rd possibly required, see page 16 ** C: Brace under compression; T: Brace in tension*** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles43◦ < Θ ≤ 48◦

Chord stress ratioCompression: 0,5 < n ≤ 1

Failure modesCFF: Chord face failureCWF: Chord web failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

40 VALLOUREC & MANNESMANN TUBES

Wel

ded

X jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 46 24.01.13 10:32

Page 48: Design Tools for Hollow Section Joints with MSH Sections in

41

Design tools for hollow section joints

Design resistances n : 0 Θ : 50◦ X

b1

t1Nt,1,Rd

h1

Qb0

t0h0

Nt,1,Rd

b1

t1Nc,1,Rd

h1

Q

Nc,1,Rd

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd

* Nt,1,Rd* C ** T ** a *** Nc,1,Rd

* Nt,1,Rd* C ** T ** a ***

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 73,5 73,5 CFF CFF 6 85,8 85,8 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 108 108 CFF CFF 6 126 126 CFF CFF 780 5,0 11,6 202 202 CFF CFF 6 236 236 CFF CFF 740 6,3 6,3 188 188 CFF CFF 7 219 219 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 276 276 CFF CFF 9 323 323 CFF CFF 1080 8,0 17,5 518 518 CFF CFF 9 605 605 CFF CFF 1040 6,3 6,3 301 301 BF BF 7 351 351 BF BF 8

12,5 33,0 42,1 60 8,0 12,5 590 590 BF BF 9 688 688 BF BF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 116 116 CFF CFF 7 136 136 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 171 171 CFF CFF 7 200 200 CFF CFF 8120 6,3 22,2 321 321 CFF CFF 7 375 375 CFF CFF 860 8,0 12,5 459 459 CFF CFF 9 536 536 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 676 676 CFF CFF 10 788 788 CFF CFF 10120 12,5 40,9 1266 1266 CFF CFF 13 1477 1477 CFF CFF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 116 116 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 171 171 CFF CFF 7 – – – – –160 6,3 30,1 321 321 CFF CFF 7 – – – – –80 10,0 21,1 459 459 CFF CFF 10 536 536 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 676 676 CFF CFF 13 788 788 CFF CFF 13160 12,5 56,6 1266 1266 CFF CFF 13 1477 1477 CFF CFF 1380 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 10

20,0 109,7 139,7 120 12,5 40,9 1731 1731 CFF CFF 13 2018 2018 CFF CFF 13160 20,0 84,6 3243 3243 CFF CFF 20 3782 3782 CFF CFF 20100 8,0 22,6 188 188 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 276 276 CFF CFF 9 – – – – –200 8,0 47,7 518 518 CFF CFF 9 – – – – –100 12,5 33,0 459 459 CFF CFF 13 536 536 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 676 676 CFF CFF 13 788 788 CFF CFF 13200 12,5 72,3 1266 1266 CFF CFF 13 1477 1477 CFF CFF 13100 12,5 33,0 1177 1177 CFF CFF 13 1373 1373 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1731 1731 CFF CFF 20 2018 2018 CFF CFF 20200 20,0 109,7 3243 3243 CFF CFF 20 3782 3782 CFF CFF 20120 8,0 27,6 294 294 CFF CFF 9 343 343 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 432 432 CFF CFF 9 504 504 CFF CFF 10250 8,0 60,3 953 953 CFF CFF 9 – – – – –120 12,5 40,9 753 753 CFF CFF 13 878 878 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1107 1107 CFF CFF 13 1292 1292 CFF CFF 13250 12,5 91,9 2441 2441 CFF CFF 13 2847 2847 CFF CFF 13120 12,5 40,9 1177 1177 CFF CFF 13 1373 1373 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1731 1731 CFF CFF 20 2018 2018 CFF CFF 20250 20,0 141,1 3814 3814 CFF CFF 20 4448 4448 CFF CFF 20

* Additional check of chord resistance N0,Rd possibly required, see page 16 ** C: Brace under compression; T: Brace in tension*** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles48◦ < Θ ≤ 55◦

Chord stress ratioTension: −1 ≤ n ≤ 0

Failure modesCFF: Chord face failureCWF: Chord web failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 41

Wel

ded

X jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 47 24.01.13 10:32

Page 49: Design Tools for Hollow Section Joints with MSH Sections in

42

Design tools for hollow section joints

Design resistances n : 0,25 Θ : 50◦ X

b1

t1Nt,1,Rd

h1

Qb0

t0h0

Nt,1,Rd

b1

t1Nc,1,Rd

h1

Q

Nc,1,Rd

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd

* Nt,1,Rd* C ** T ** a *** Nc,1,Rd

* Nt,1,Rd* C ** T ** a ***

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 58,8 58,8 CFF CFF 6 68,6 68,6 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 104 104 CFF CFF 6 121 121 CFF CFF 780 5,0 11,6 202 202 CFF CFF 6 236 236 CFF CFF 740 6,3 6,3 150 150 CFF CFF 7 175 175 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 267 267 CFF CFF 9 312 312 CFF CFF 1080 8,0 17,5 518 518 CFF CFF 9 605 605 CFF CFF 1040 6,3 6,3 301 301 BF BF 7 351 351 BF BF 8

12,5 33,0 42,1 60 8,0 12,5 590 590 BF BF 9 688 688 BF BF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 93,4 93,4 CFF CFF 7 108 108 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 166 166 CFF CFF 7 193 193 CFF CFF 8120 6,3 22,2 321 321 CFF CFF 7 375 375 CFF CFF 860 8,0 12,5 367 367 CFF CFF 9 429 429 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 653 653 CFF CFF 10 762 762 CFF CFF 10120 12,5 40,9 1266 1266 CFF CFF 13 1477 1477 CFF CFF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 93,4 93,4 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 166 166 CFF CFF 7 – – – – –160 6,3 30,1 321 321 CFF CFF 7 – – – – –80 10,0 21,1 367 367 CFF CFF 10 429 429 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 653 653 CFF CFF 13 762 762 CFF CFF 13160 12,5 56,6 1266 1266 CFF CFF 13 1477 1477 CFF CFF 1380 10,0 21,1 941 941 CFF CFF 10 1098 1098 CFF CFF 10

20,0 109,7 139,7 120 12,5 40,9 1673 1673 CFF CFF 13 1951 1951 CFF CFF 13160 20,0 84,6 3243 3243 CFF CFF 20 3782 3782 CFF CFF 20100 8,0 22,6 150 150 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 267 267 CFF CFF 9 – – – – –200 8,0 47,7 518 518 CFF CFF 9 – – – – –100 12,5 33,0 367 367 CFF CFF 13 429 429 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 653 653 CFF CFF 13 762 762 CFF CFF 13200 12,5 72,3 1266 1266 CFF CFF 13 1477 1477 CFF CFF 13100 12,5 33,0 941 941 CFF CFF 13 1098 1098 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1673 1673 CFF CFF 20 1951 1951 CFF CFF 20200 20,0 109,7 3243 3243 CFF CFF 20 3782 3782 CFF CFF 20120 8,0 27,6 235 235 CFF CFF 9 274 274 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 418 418 CFF CFF 9 487 487 CFF CFF 10250 8,0 60,3 953 953 CFF CFF 9 – – – – –120 12,5 40,9 602 602 CFF CFF 13 702 702 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1071 1071 CFF CFF 13 1249 1249 CFF CFF 13250 12,5 91,9 2441 2441 CFF CFF 13 2847 2847 CFF CFF 13120 12,5 40,9 941 941 CFF CFF 13 1098 1098 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1673 1673 CFF CFF 20 1951 1951 CFF CFF 20250 20,0 141,1 3814 3814 CFF CFF 20 4448 4448 CFF CFF 20

* Additional check of chord resistance N0,Rd possibly required, see page 16 ** C: Brace under compression; T: Brace in tension*** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles48◦ < Θ ≤ 55◦

Chord stress ratioCompression: 0 < n ≤ 0,5

Failure modesCFF: Chord face failureCWF: Chord web failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

42 VALLOUREC & MANNESMANN TUBES

Wel

ded

X jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 48 24.01.13 10:32

Page 50: Design Tools for Hollow Section Joints with MSH Sections in

43

Design tools for hollow section joints

Design resistances n : 0,75 Θ : 50◦ X

b1

t1Nt,1,Rd

h1

Qb0

t0h0

Nt,1,Rd

b1

t1Nc,1,Rd

h1

Q

Nc,1,Rd

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd

* Nt,1,Rd* C ** T ** a *** Nc,1,Rd

* Nt,1,Rd* C ** T ** a ***

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 22,0 22,0 CFF CFF 6 25,7 25,7 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 68,5 68,5 CFF CFF 6 79,9 79,9 CFF CFF 780 5,0 11,6 162 162 CFF CFF 6 189 189 CFF CFF 740 6,3 6,3 56,5 56,5 CFF CFF 7 65,9 65,9 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 175 175 CFF CFF 9 204 204 CFF CFF 1080 8,0 17,5 415 415 CFF CFF 9 484 484 CFF CFF 1040 6,3 6,3 137 137 CFF CFF 7 160 160 CFF CFF 8

12,5 33,0 42,1 60 8,0 12,5 428 428 CFF CFF 9 499 499 CFF CFF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 35,0 35,0 CFF CFF 7 40,8 40,8 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 108 108 CFF CFF 7 126 126 CFF CFF 8120 6,3 22,2 257 257 CFF CFF 7 300 300 CFF CFF 860 8,0 12,5 137 137 CFF CFF 9 160 160 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 428 428 CFF CFF 10 499 499 CFF CFF 10120 12,5 40,9 1013 1013 CFF CFF 13 1182 1182 CFF CFF 1360 8,0 12,5 353 353 CFF CFF 9 411 411 CFF CFF 10

20,0 78,3 99,7 90 10,0 24,3 1096 1096 CFF CFF 10 1278 1278 CFF CFF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 35,0 35,0 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 108 108 CFF CFF 7 – – – – –160 6,3 30,1 257 257 CFF CFF 7 – – – – –80 10,0 21,1 137 137 CFF CFF 10 160 160 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 428 428 CFF CFF 13 499 499 CFF CFF 13160 12,5 56,6 1013 1013 CFF CFF 13 1182 1182 CFF CFF 1380 10,0 21,1 353 353 CFF CFF 10 411 411 CFF CFF 10

20,0 109,7 139,7 120 12,5 40,9 1096 1096 CFF CFF 13 1278 1278 CFF CFF 13160 20,0 84,6 2594 2594 CFF CFF 20 3026 3026 CFF CFF 20100 8,0 22,6 56,5 56,5 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 175 175 CFF CFF 9 – – – – –200 8,0 47,7 415 415 CFF CFF 9 – – – – –100 12,5 33,0 137 137 CFF CFF 13 160 160 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 428 428 CFF CFF 13 499 499 CFF CFF 13200 12,5 72,3 1013 1013 CFF CFF 13 1182 1182 CFF CFF 13100 12,5 33,0 353 353 CFF CFF 13 411 411 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1096 1096 CFF CFF 20 1278 1278 CFF CFF 20200 20,0 109,7 2594 2594 CFF CFF 20 3026 3026 CFF CFF 20120 8,0 27,6 88,3 88,3 CFF CFF 9 102 102 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 274 274 CFF CFF 9 319 319 CFF CFF 10250 8,0 60,3 782 782 CFF CFF 9 – – – – –120 12,5 40,9 226 226 CFF CFF 13 263 263 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 701 701 CFF CFF 13 818 818 CFF CFF 13250 12,5 91,9 2001 2001 CFF CFF 13 2334 2334 CFF CFF 13120 12,5 40,9 353 353 CFF CFF 13 411 411 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1096 1096 CFF CFF 20 1278 1278 CFF CFF 20250 20,0 141,1 3128 3128 CFF CFF 20 3647 3647 CFF CFF 20

* Additional check of chord resistance N0,Rd possibly required, see page 16 ** C: Brace under compression; T: Brace in tension*** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles48◦ < Θ ≤ 55◦

Chord stress ratioCompression: 0,5 < n ≤ 1

Failure modesCFF: Chord face failureCWF: Chord web failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 43

Wel

ded

X jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 49 24.01.13 10:32

Page 51: Design Tools for Hollow Section Joints with MSH Sections in

44

Design tools for hollow section joints

Design resistances n : 0 Θ : 60◦ X

b1

t1Nt,1,Rd

h1

Qb0

t0h0

Nt,1,Rd

b1

t1Nc,1,Rd

h1

Q

Nc,1,Rd

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd

* Nt,1,Rd* C ** T ** a *** Nc,1,Rd

* Nt,1,Rd* C ** T ** a ***

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 64,9 64,9 CFF CFF 6 75,7 75,7 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 94,3 94,3 CFF CFF 6 110 110 CFF CFF 780 5,0 11,6 174 174 CFF CFF 6 202 202 CFF CFF 740 6,3 6,3 166 166 CFF CFF 7 193 193 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 241 241 CFF CFF 9 281 281 CFF CFF 1080 8,0 17,5 445 445 CFF CFF 9 519 519 CFF CFF 1040 6,3 6,3 301 301 BF BF 7 351 351 BF BF 8

12,5 33,0 42,1 60 8,0 12,5 589 589 CFF CFF 9 687 687 CFF CFF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 103 103 CFF CFF 7 120 120 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 149 149 CFF CFF 7 174 174 CFF CFF 8120 6,3 22,2 276 276 CFF CFF 7 322 322 CFF CFF 860 8,0 12,5 406 406 CFF CFF 9 473 473 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 589 589 CFF CFF 10 687 687 CFF CFF 10120 12,5 40,9 1087 1087 CFF CFF 13 1268 1268 CFF CFF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 103 103 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 149 149 CFF CFF 7 – – – – –160 6,3 30,1 276 276 CFF CFF 7 – – – – –80 10,0 21,1 406 406 CFF CFF 10 473 473 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 589 589 CFF CFF 13 687 687 CFF CFF 13160 12,5 56,6 1087 1087 CFF CFF 13 1268 1268 CFF CFF 1380 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 10

20,0 109,7 139,7 120 12,5 40,9 1509 1509 CFF CFF 13 1760 1760 CFF CFF 13160 20,0 84,6 2784 2784 CFF CFF 20 3247 3247 CFF CFF 20100 8,0 22,6 166 166 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 241 241 CFF CFF 9 – – – – –200 8,0 47,7 445 445 CFF CFF 9 – – – – –100 12,5 33,0 406 406 CFF CFF 13 473 473 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 589 589 CFF CFF 13 687 687 CFF CFF 13200 12,5 72,3 1087 1087 CFF CFF 13 1268 1268 CFF CFF 13100 12,5 33,0 1039 1039 CFF CFF 13 1212 1212 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1509 1509 CFF CFF 20 1760 1760 CFF CFF 20200 20,0 109,7 2784 2784 CFF CFF 20 3247 3247 CFF CFF 20120 8,0 27,6 259 259 CFF CFF 9 303 303 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 377 377 CFF CFF 9 440 440 CFF CFF 10250 8,0 60,3 815 815 CFF CFF 9 – – – – –120 12,5 40,9 665 665 CFF CFF 13 775 775 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 966 966 CFF CFF 13 1126 1126 CFF CFF 13250 12,5 91,9 2088 2088 CFF CFF 13 2436 2436 CFF CFF 13120 12,5 40,9 1039 1039 CFF CFF 13 1212 1212 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1509 1509 CFF CFF 20 1760 1760 CFF CFF 20250 20,0 141,1 3263 3263 CFF CFF 20 3806 3806 CFF CFF 20

* Additional check of chord resistance N0,Rd possibly required, see page 16 ** C: Brace under compression; T: Brace in tension*** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles55◦ < Θ ≤ 65◦

Chord stress ratioTension: −1 ≤ n ≤ 0

Failure modesCFF: Chord face failureCWF: Chord web failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

44 VALLOUREC & MANNESMANN TUBES

Wel

ded

X jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 50 24.01.13 10:32

Page 52: Design Tools for Hollow Section Joints with MSH Sections in

45

Design tools for hollow section joints

Design resistances n : 0,25 Θ : 60◦ X

b1

t1Nt,1,Rd

h1

Qb0

t0h0

Nt,1,Rd

b1

t1Nc,1,Rd

h1

Q

Nc,1,Rd

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd

* Nt,1,Rd* C ** T ** a *** Nc,1,Rd

* Nt,1,Rd* C ** T ** a ***

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 51,9 51,9 CFF CFF 6 60,6 60,6 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 91,2 91,2 CFF CFF 6 106 106 CFF CFF 780 5,0 11,6 174 174 CFF CFF 6 202 202 CFF CFF 740 6,3 6,3 133 133 CFF CFF 7 155 155 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 233 233 CFF CFF 9 272 272 CFF CFF 1080 8,0 17,5 445 445 CFF CFF 9 519 519 CFF CFF 1040 6,3 6,3 301 301 BF BF 7 351 351 BF BF 8

12,5 33,0 42,1 60 8,0 12,5 570 570 CFF CFF 9 664 664 CFF CFF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 82,5 82,5 CFF CFF 7 96,2 96,2 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 144 144 CFF CFF 7 168 168 CFF CFF 8120 6,3 22,2 276 276 CFF CFF 7 322 322 CFF CFF 860 8,0 12,5 324 324 CFF CFF 9 378 378 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 570 570 CFF CFF 10 664 664 CFF CFF 10120 12,5 40,9 1087 1087 CFF CFF 13 1268 1268 CFF CFF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 82,5 82,5 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 144 144 CFF CFF 7 – – – – –160 6,3 30,1 276 276 CFF CFF 7 – – – – –80 10,0 21,1 324 324 CFF CFF 10 378 378 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 570 570 CFF CFF 13 664 664 CFF CFF 13160 12,5 56,6 1087 1087 CFF CFF 13 1268 1268 CFF CFF 1380 10,0 21,1 831 831 CFF CFF 10 969 969 CFF CFF 10

20,0 109,7 139,7 120 12,5 40,9 1459 1459 CFF CFF 13 1701 1701 CFF CFF 13160 20,0 84,6 2784 2784 CFF CFF 20 3247 3247 CFF CFF 20100 8,0 22,6 133 133 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 233 233 CFF CFF 9 – – – – –200 8,0 47,7 445 445 CFF CFF 9 – – – – –100 12,5 33,0 324 324 CFF CFF 13 378 378 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 570 570 CFF CFF 13 664 664 CFF CFF 13200 12,5 72,3 1087 1087 CFF CFF 13 1268 1268 CFF CFF 13100 12,5 33,0 831 831 CFF CFF 13 969 969 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1459 1459 CFF CFF 20 1701 1701 CFF CFF 20200 20,0 109,7 2784 2784 CFF CFF 20 3247 3247 CFF CFF 20120 8,0 27,6 207 207 CFF CFF 9 242 242 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 364 364 CFF CFF 9 425 425 CFF CFF 10250 8,0 60,3 815 815 CFF CFF 9 – – – – –120 12,5 40,9 532 532 CFF CFF 13 620 620 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 933 933 CFF CFF 13 1089 1089 CFF CFF 13250 12,5 91,9 2088 2088 CFF CFF 13 2436 2436 CFF CFF 13120 12,5 40,9 831 831 CFF CFF 13 969 969 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1459 1459 CFF CFF 20 1701 1701 CFF CFF 20250 20,0 141,1 3263 3263 CFF CFF 20 3806 3806 CFF CFF 20

* Additional check of chord resistance N0,Rd possibly required, see page 16 ** C: Brace under compression; T: Brace in tension*** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles55◦ < Θ ≤ 65◦

Chord stress ratioCompression: 0 < n ≤ 0,5

Failure modesCFF: Chord face failureCWF: Chord web failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 45

Wel

ded

X jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 51 24.01.13 10:32

Page 53: Design Tools for Hollow Section Joints with MSH Sections in

46

Design tools for hollow section joints

Design resistances n : 0,75 Θ : 60◦ X

b1

t1Nt,1,Rd

h1

Qb0

t0h0

Nt,1,Rd

b1

t1Nc,1,Rd

h1

Q

Nc,1,Rd

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd

* Nt,1,Rd* C ** T ** a *** Nc,1,Rd

* Nt,1,Rd* C ** T ** a ***

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 19,4 19,4 CFF CFF 6 22,7 22,7 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 59,7 59,7 CFF CFF 6 69,6 69,6 CFF CFF 780 5,0 11,6 139 139 CFF CFF 6 162 162 CFF CFF 740 6,3 6,3 49,9 49,9 CFF CFF 7 58,1 58,1 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 152 152 CFF CFF 9 178 178 CFF CFF 1080 8,0 17,5 356 356 CFF CFF 9 415 415 CFF CFF 1040 6,3 6,3 121 121 CFF CFF 7 142 142 CFF CFF 8

12,5 33,0 42,1 60 8,0 12,5 373 373 CFF CFF 9 435 435 CFF CFF 1080 10,0 21,1 870 870 CFF CFF 10 1014 1014 CFF CFF 1060 6,3 10,3 30,9 30,9 CFF CFF 7 36,0 36,0 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 94,8 94,8 CFF CFF 7 110 110 CFF CFF 8120 6,3 22,2 221 221 CFF CFF 7 257 257 CFF CFF 860 8,0 12,5 121 121 CFF CFF 9 142 142 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 373 373 CFF CFF 10 435 435 CFF CFF 10120 12,5 40,9 870 870 CFF CFF 13 1014 1014 CFF CFF 1360 8,0 12,5 311 311 CFF CFF 9 363 363 CFF CFF 10

20,0 78,3 99,7 90 10,0 24,3 956 956 CFF CFF 10 1114 1114 CFF CFF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 30,9 30,9 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 94,8 94,8 CFF CFF 7 – – – – –160 6,3 30,1 221 221 CFF CFF 7 – – – – –80 10,0 21,1 121 121 CFF CFF 10 142 142 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 373 373 CFF CFF 13 435 435 CFF CFF 13160 12,5 56,6 870 870 CFF CFF 13 1014 1014 CFF CFF 1380 10,0 21,1 311 311 CFF CFF 10 363 363 CFF CFF 10

20,0 109,7 139,7 120 12,5 40,9 956 956 CFF CFF 13 1114 1114 CFF CFF 13160 20,0 84,6 2227 2227 CFF CFF 20 2597 2597 CFF CFF 20100 8,0 22,6 49,9 49,9 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 152 152 CFF CFF 9 – – – – –200 8,0 47,7 356 356 CFF CFF 9 – – – – –100 12,5 33,0 121 121 CFF CFF 13 142 142 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 373 373 CFF CFF 13 435 435 CFF CFF 13200 12,5 72,3 870 870 CFF CFF 13 1014 1014 CFF CFF 13100 12,5 33,0 311 311 CFF CFF 13 363 363 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 956 956 CFF CFF 20 1114 1114 CFF CFF 20200 20,0 109,7 2227 2227 CFF CFF 20 2597 2597 CFF CFF 20120 8,0 27,6 77,9 77,9 CFF CFF 9 90,9 90,9 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 239 239 CFF CFF 9 278 278 CFF CFF 10250 8,0 60,3 669 669 CFF CFF 9 – – – – –120 12,5 40,9 199 199 CFF CFF 13 232 232 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 611 611 CFF CFF 13 713 713 CFF CFF 13250 12,5 91,9 1712 1712 CFF CFF 13 1997 1997 CFF CFF 13120 12,5 40,9 311 311 CFF CFF 13 363 363 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 956 956 CFF CFF 20 1114 1114 CFF CFF 20250 20,0 141,1 2676 2676 CFF CFF 20 3121 3121 CFF CFF 20

* Additional check of chord resistance N0,Rd possibly required, see page 16 ** C: Brace under compression; T: Brace in tension*** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles55◦ < Θ ≤ 65◦

Chord stress ratioCompression: 0,5 < n ≤ 1

Failure modesCFF: Chord face failureCWF: Chord web failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

46 VALLOUREC & MANNESMANN TUBES

Wel

ded

X jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 52 24.01.13 10:32

Page 54: Design Tools for Hollow Section Joints with MSH Sections in

47

Design tools for hollow section joints

Design resistances n : 0 Θ : 90◦ X

QNt,1,Rd

Nt,1,Rd

b0

t0h0

QNc,1,Rd

Nc,1,Rd

b1 t1

h1

b1 t1

h1

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd

* Nt,1,Rd* C ** T ** a *** Nc,1,Rd

* Nt,1,Rd* C ** T ** a ***

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 57,6 57,6 CFF CFF 6 67,2 67,2 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 82,7 82,7 CFF CFF 6 96,5 96,5 CFF CFF 780 5,0 11,6 150 150 CFF CFF 6 175 175 CFF CFF 740 6,3 6,3 147 147 CFF CFF 7 172 172 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 211 211 CFF CFF 9 247 247 CFF CFF 1080 8,0 17,5 384 384 CFF CFF 9 448 448 CFF CFF 1040 6,3 6,3 301 301 BF BF 7 351 351 BF BF 8

12,5 33,0 42,1 60 8,0 12,5 517 517 CFF CFF 9 603 603 CFF CFF 1080 10,0 21,1 939 939 CFF CFF 10 1096 1096 CFF CFF 1060 6,3 10,3 91,5 91,5 CFF CFF 7 106 106 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 131 131 CFF CFF 7 153 153 CFF CFF 8120 6,3 22,2 238 238 CFF CFF 7 278 278 CFF CFF 860 8,0 12,5 360 360 CFF CFF 9 420 420 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 517 517 CFF CFF 10 603 603 CFF CFF 10120 12,5 40,9 939 939 CFF CFF 13 1096 1096 CFF CFF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 91,5 91,5 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 131 131 CFF CFF 7 – – – – –160 6,3 30,1 238 238 CFF CFF 7 – – – – –80 10,0 21,1 360 360 CFF CFF 10 420 420 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 517 517 CFF CFF 13 603 603 CFF CFF 13160 12,5 56,6 939 939 CFF CFF 13 1096 1096 CFF CFF 1380 10,0 21,1 922 922 CFF CFF 10 1075 1075 CFF CFF 10

20,0 109,7 139,7 120 12,5 40,9 1324 1324 CFF CFF 13 1544 1544 CFF CFF 13160 20,0 84,6 2406 2406 CFF CFF 20 2805 2805 CFF CFF 20100 8,0 22,6 147 147 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 211 211 CFF CFF 9 – – – – –200 8,0 47,7 384 384 CFF CFF 9 – – – – –100 12,5 33,0 360 360 CFF CFF 13 420 420 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 517 517 CFF CFF 13 603 603 CFF CFF 13200 12,5 72,3 939 939 CFF CFF 13 1096 1096 CFF CFF 13100 12,5 33,0 922 922 CFF CFF 13 1075 1075 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1324 1324 CFF CFF 20 1544 1544 CFF CFF 20200 20,0 109,7 2406 2406 CFF CFF 20 2805 2805 CFF CFF 20120 8,0 27,6 230 230 CFF CFF 9 268 268 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 331 331 CFF CFF 9 386 386 CFF CFF 10250 8,0 60,3 702 702 CFF CFF 9 – – – – –120 12,5 40,9 590 590 CFF CFF 13 688 688 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 847 847 CFF CFF 13 988 988 CFF CFF 13250 12,5 91,9 1799 1799 CFF CFF 13 2098 2098 CFF CFF 13120 12,5 40,9 922 922 CFF CFF 13 1075 1075 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1324 1324 CFF CFF 20 1544 1544 CFF CFF 20250 20,0 141,1 2811 2811 CFF CFF 20 3278 3278 CFF CFF 20

* Additional check of chord resistance N0,Rd possibly required, see page 16 ** C: Brace under compression; T: Brace in tension*** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles65◦ < Θ ≤ 90◦

Chord stress ratioTension: −1 ≤ n ≤ 0

Failure modesCFF: Chord face failureCWF: Chord web failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 47

Wel

ded

X jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 53 24.01.13 10:32

Page 55: Design Tools for Hollow Section Joints with MSH Sections in

48

Design tools for hollow section joints

Design resistances n : 0,25 Θ : 90◦ X

QNt,1,Rd

Nt,1,Rd

b0

t0h0

QNc,1,Rd

Nc,1,Rd

b1 t1

h1

b1 t1

h1

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd

* Nt,1,Rd* C ** T ** a *** Nc,1,Rd

* Nt,1,Rd* C ** T ** a ***

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 46,1 46,1 CFF CFF 6 53,7 53,7 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 79,9 79,9 CFF CFF 6 93,2 93,2 CFF CFF 780 5,0 11,6 150 150 CFF CFF 6 175 175 CFF CFF 740 6,3 6,3 118 118 CFF CFF 7 137 137 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 204 204 CFF CFF 9 238 238 CFF CFF 1080 8,0 17,5 384 384 CFF CFF 9 448 448 CFF CFF 1040 6,3 6,3 288 288 CFF CFF 7 336 336 CFF CFF 8

12,5 33,0 42,1 60 8,0 12,5 499 499 CFF CFF 9 583 583 CFF CFF 1080 10,0 21,1 939 939 CFF CFF 10 1096 1096 CFF CFF 1060 6,3 10,3 73,2 73,2 CFF CFF 7 85,4 85,4 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 127 127 CFF CFF 7 148 148 CFF CFF 8120 6,3 22,2 238 238 CFF CFF 7 278 278 CFF CFF 860 8,0 12,5 288 288 CFF CFF 9 336 336 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 499 499 CFF CFF 10 583 583 CFF CFF 10120 12,5 40,9 939 939 CFF CFF 13 1096 1096 CFF CFF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 73,2 73,2 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 127 127 CFF CFF 7 – – – – –160 6,3 30,1 238 238 CFF CFF 7 – – – – –80 10,0 21,1 288 288 CFF CFF 10 336 336 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 499 499 CFF CFF 13 583 583 CFF CFF 13160 12,5 56,6 939 939 CFF CFF 13 1096 1096 CFF CFF 1380 10,0 21,1 738 738 CFF CFF 10 860 860 CFF CFF 10

20,0 109,7 139,7 120 12,5 40,9 1279 1279 CFF CFF 13 1492 1492 CFF CFF 13160 20,0 84,6 2406 2406 CFF CFF 20 2805 2805 CFF CFF 20100 8,0 22,6 118 118 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 204 204 CFF CFF 9 – – – – –200 8,0 47,7 384 384 CFF CFF 9 – – – – –100 12,5 33,0 288 288 CFF CFF 13 336 336 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 499 499 CFF CFF 13 583 583 CFF CFF 13200 12,5 72,3 939 939 CFF CFF 13 1096 1096 CFF CFF 13100 12,5 33,0 738 738 CFF CFF 13 860 860 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1279 1279 CFF CFF 20 1492 1492 CFF CFF 20200 20,0 109,7 2406 2406 CFF CFF 20 2805 2805 CFF CFF 20120 8,0 27,6 184 184 CFF CFF 9 215 215 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 319 319 CFF CFF 9 373 373 CFF CFF 10250 8,0 60,3 702 702 CFF CFF 9 – – – – –120 12,5 40,9 472 472 CFF CFF 13 550 550 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 819 819 CFF CFF 13 955 955 CFF CFF 13250 12,5 91,9 1799 1799 CFF CFF 13 2098 2098 CFF CFF 13120 12,5 40,9 738 738 CFF CFF 13 860 860 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1279 1279 CFF CFF 20 1492 1492 CFF CFF 20250 20,0 141,1 2811 2811 CFF CFF 20 3278 3278 CFF CFF 20

* Additional check of chord resistance N0,Rd possibly required, see page 16 ** C: Brace under compression; T: Brace in tension*** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles65◦ < Θ ≤ 90◦

Chord stress ratioCompression: 0 < n ≤ 0,5

Failure modesCFF: Chord face failureCWF: Chord web failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

48 VALLOUREC & MANNESMANN TUBES

Wel

ded

X jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 54 24.01.13 10:32

Page 56: Design Tools for Hollow Section Joints with MSH Sections in

49

Design tools for hollow section joints

Design resistances n : 0,75 Θ : 90◦ X

QNt,1,Rd

Nt,1,Rd

b0

t0h0

QNc,1,Rd

Nc,1,Rd

b1 t1

h1

b1 t1

h1

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd

* Nt,1,Rd* C ** T ** a *** Nc,1,Rd

* Nt,1,Rd* C ** T ** a ***

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 17,2 17,2 CFF CFF 6 20,1 20,1 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 52,4 52,4 CFF CFF 6 61,1 61,1 CFF CFF 780 5,0 11,6 120 120 CFF CFF 6 140 140 CFF CFF 740 6,3 6,3 44,2 44,2 CFF CFF 7 51,6 51,6 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 134 134 CFF CFF 9 156 156 CFF CFF 1080 8,0 17,5 307 307 CFF CFF 9 359 359 CFF CFF 1040 6,3 6,3 108 108 CFF CFF 7 126 126 CFF CFF 8

12,5 33,0 42,1 60 8,0 12,5 327 327 CFF CFF 9 382 382 CFF CFF 1080 10,0 21,1 751 751 CFF CFF 10 876 876 CFF CFF 1060 6,3 10,3 27,4 27,4 CFF CFF 7 32,0 32,0 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 83,2 83,2 CFF CFF 7 97,0 97,0 CFF CFF 8120 6,3 22,2 190 190 CFF CFF 7 222 222 CFF CFF 860 8,0 12,5 108 108 CFF CFF 9 126 126 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 327 327 CFF CFF 10 382 382 CFF CFF 10120 12,5 40,9 751 751 CFF CFF 13 876 876 CFF CFF 1360 8,0 12,5 276 276 CFF CFF 9 322 322 CFF CFF 10

20,0 78,3 99,7 90 10,0 24,3 838 838 CFF CFF 10 977 977 CFF CFF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 27,4 27,4 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 83,2 83,2 CFF CFF 7 – – – – –160 6,3 30,1 190 190 CFF CFF 7 – – – – –80 10,0 21,1 108 108 CFF CFF 10 126 126 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 327 327 CFF CFF 13 382 382 CFF CFF 13160 12,5 56,6 751 751 CFF CFF 13 876 876 CFF CFF 1380 10,0 21,1 276 276 CFF CFF 10 322 322 CFF CFF 10

20,0 109,7 139,7 120 12,5 40,9 838 838 CFF CFF 13 977 977 CFF CFF 13160 20,0 84,6 1924 1924 CFF CFF 20 2244 2244 CFF CFF 20100 8,0 22,6 44,2 44,2 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 134 134 CFF CFF 9 – – – – –200 8,0 47,7 307 307 CFF CFF 9 – – – – –100 12,5 33,0 108 108 CFF CFF 13 126 126 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 327 327 CFF CFF 13 382 382 CFF CFF 13200 12,5 72,3 751 751 CFF CFF 13 876 876 CFF CFF 13100 12,5 33,0 276 276 CFF CFF 13 322 322 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 838 838 CFF CFF 20 977 977 CFF CFF 20200 20,0 109,7 1924 1924 CFF CFF 20 2244 2244 CFF CFF 20120 8,0 27,6 69,1 69,1 CFF CFF 9 80,6 80,6 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 209 209 CFF CFF 9 244 244 CFF CFF 10250 8,0 60,3 576 576 CFF CFF 9 – – – – –120 12,5 40,9 177 177 CFF CFF 13 206 206 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 536 536 CFF CFF 13 625 625 CFF CFF 13250 12,5 91,9 1475 1475 CFF CFF 13 1720 1720 CFF CFF 13120 12,5 40,9 276 276 CFF CFF 13 322 322 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 838 838 CFF CFF 20 977 977 CFF CFF 20250 20,0 141,1 2305 2305 CFF CFF 20 2688 2688 CFF CFF 20

* Additional check of chord resistance N0,Rd possibly required, see page 16 ** C: Brace under compression; T: Brace in tension*** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles65◦ < Θ ≤ 90◦

Chord stress ratioCompression: 0,5 < n ≤ 1

Failure modesCFF: Chord face failureCWF: Chord web failureCSF: Chord shear failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 49

Wel

ded

X jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 55 24.01.13 10:32

Page 57: Design Tools for Hollow Section Joints with MSH Sections in

50

Design tools for hollow section joints

Design resistances n : 0 Θ : 30◦ Y

b0

t0h0

b1

t1

Nt,1,Rd

Q

b1

t1

Nc,1,Rd

h1 h1

Q

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd Nt,1,Rd C * T * a ** Nc,1,Rd Nt,1,Rd C * T * a **

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 108 108 CFF CFF 6 126 126 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 166 166 CFF CFF 6 194 194 CFF CFF 780 5,0 11,6 327 327 CFF CFF 6 382 382 CFF CFF 740 6,3 6,3 278 278 CFF CFF 7 324 324 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 426 426 CFF CFF 9 497 497 CFF CFF 1080 8,0 17,5 727 727 BF BF 9 847 847 BF BF 1040 6,3 6,3 301 301 BF BF 7 351 351 BF BF 8

12,5 33,0 42,1 60 8,0 12,5 590 590 BF BF 9 688 688 BF BF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 172 172 CFF CFF 7 201 201 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 264 264 CFF CFF 7 308 308 CFF CFF 8120 6,3 22,2 520 520 CFF CFF 7 607 607 CFF CFF 860 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

150 12,5 52,7 67,1 90 10,0 24,3 1042 1042 CFF CFF 10 1215 1215 CFF CFF 10120 12,5 40,9 1730 1730 BF BF 13 2018 2018 BF BF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 172 172 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 264 264 CFF CFF 7 – – – – –160 6,3 30,1 520 520 CFF CFF 7 – – – – –80 10,0 21,1 680 680 CFF CFF 10 793 793 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 1042 1042 CFF CFF 13 1215 1215 CFF CFF 13160 12,5 56,6 2049 2049 CFF CFF 13 2390 2390 CFF CFF 1380 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 10

20,0 109,7 139,7 120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 13160 20,0 84,6 3976 3976 BF BF 20 4636 4636 BF BF 20100 8,0 22,6 278 278 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 426 426 CFF CFF 9 – – – – –200 8,0 47,7 839 839 CFF CFF 9 – – – – –100 12,5 33,0 680 680 CFF CFF 13 793 793 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 1042 1042 CFF CFF 13 1215 1215 CFF CFF 13200 12,5 72,3 2049 2049 CFF CFF 13 2390 2390 CFF CFF 13100 12,5 33,0 1553 1553 BF BF 13 1811 1811 BF BF 13

20,0 141,1 179,7 150 20,0 78,3 2668 2668 CFF CFF 20 3112 3112 CFF CFF 20200 20,0 109,7 4544 4544 BF BF 20 5299 5299 BF BF 20120 8,0 27,6 435 435 CFF CFF 9 507 507 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 667 667 CFF CFF 9 778 778 CFF CFF 10250 8,0 60,3 1558 1558 CFF CFF 9 – – – – –120 12,5 40,9 1114 1114 CFF CFF 13 1299 1299 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1707 1707 CFF CFF 13 1991 1991 CFF CFF 13250 12,5 91,9 3511 3511 BF BF 13 4095 4095 BF BF 13120 12,5 40,9 1741 1741 CFF CFF 13 2030 2030 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 2668 2668 CFF CFF 20 3112 3112 CFF CFF 20250 20,0 141,1 5348 5348 BF BF 20 6237 6237 BF BF 20

* C: Brace under compression; T: Brace in tension ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles30◦ ≤ Θ ≤ 37◦

Chord stress ratioTension: −1 ≤ n ≤ 0

Failure modesCFF: Chord face failureCWF: Chord web failurePSF: Punching shear failureBF: Brace failure

50 VALLOUREC & MANNESMANN TUBES

Wel

ded

Y jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 56 24.01.13 10:32

Page 58: Design Tools for Hollow Section Joints with MSH Sections in

51

Design tools for hollow section joints

Design resistances n : 0,25 Θ : 30◦ Y

b0

t0h0

b1

t1

Nt,1,Rd

Q

b1

t1

Nc,1,Rd

h1 h1

Q

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd Nt,1,Rd C * T * a ** Nc,1,Rd Nt,1,Rd C * T * a **

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 87,0 87,0 CFF CFF 6 101 101 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 161 161 CFF CFF 6 188 188 CFF CFF 780 5,0 11,6 327 327 CFF CFF 6 382 382 CFF CFF 740 6,3 6,3 222 222 CFF CFF 7 259 259 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 412 412 CFF CFF 9 481 481 CFF CFF 1080 8,0 17,5 727 727 BF BF 9 847 847 BF BF 1040 6,3 6,3 301 301 BF BF 7 351 351 BF BF 8

12,5 33,0 42,1 60 8,0 12,5 590 590 BF BF 9 688 688 BF BF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 138 138 CFF CFF 7 161 161 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 255 255 CFF CFF 7 298 298 CFF CFF 8120 6,3 22,2 520 520 CFF CFF 7 607 607 CFF CFF 860 8,0 12,5 544 544 CFF CFF 9 634 634 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 1007 1007 CFF CFF 10 1175 1175 CFF CFF 10120 12,5 40,9 1730 1730 BF BF 13 2018 2018 BF BF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 138 138 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 255 255 CFF CFF 7 – – – – –160 6,3 30,1 520 520 CFF CFF 7 – – – – –80 10,0 21,1 544 544 CFF CFF 10 634 634 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 1007 1007 CFF CFF 13 1175 1175 CFF CFF 13160 12,5 56,6 2049 2049 CFF CFF 13 2390 2390 CFF CFF 1380 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 10

20,0 109,7 139,7 120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 13160 20,0 84,6 3976 3976 BF BF 20 4636 4636 BF BF 20100 8,0 22,6 222 222 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 412 412 CFF CFF 9 – – – – –200 8,0 47,7 839 839 CFF CFF 9 – – – – –100 12,5 33,0 544 544 CFF CFF 13 634 634 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 1007 1007 CFF CFF 13 1175 1175 CFF CFF 13200 12,5 72,3 2049 2049 CFF CFF 13 2390 2390 CFF CFF 13100 12,5 33,0 1392 1392 CFF CFF 13 1624 1624 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 2579 2579 CFF CFF 20 3008 3008 CFF CFF 20200 20,0 109,7 4544 4544 BF BF 20 5299 5299 BF BF 20120 8,0 27,6 348 348 CFF CFF 9 406 406 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 644 644 CFF CFF 9 752 752 CFF CFF 10250 8,0 60,3 1558 1558 CFF CFF 9 – – – – –120 12,5 40,9 891 891 CFF CFF 13 1039 1039 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1650 1650 CFF CFF 13 1925 1925 CFF CFF 13250 12,5 91,9 3511 3511 BF BF 13 4095 4095 BF BF 13120 12,5 40,9 1392 1392 CFF CFF 13 1624 1624 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 2579 2579 CFF CFF 20 3008 3008 CFF CFF 20250 20,0 141,1 5348 5348 BF BF 20 6237 6237 BF BF 20

* C: Brace under compression; T: Brace in tension ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles30◦ ≤ Θ ≤ 37◦

Chord stress ratioCompression: 0 < n ≤ 0,5

Failure modesCFF: Chord face failureCWF: Chord web failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 51

Wel

ded

Y jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 57 24.01.13 10:32

Page 59: Design Tools for Hollow Section Joints with MSH Sections in

52

Design tools for hollow section joints

Design resistances n : 0,75 Θ : 30◦ Y

b0

t0h0

b1

t1

Nt,1,Rd

Q

b1

t1

Nc,1,Rd

h1 h1

Q

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd Nt,1,Rd C * T * a ** Nc,1,Rd Nt,1,Rd C * T * a **

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 32,6 32,6 CFF CFF 6 38,0 38,0 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 105 105 CFF CFF 6 123 123 CFF CFF 780 5,0 11,6 262 262 CFF CFF 6 305 305 CFF CFF 740 6,3 6,3 83,5 83,5 CFF CFF 7 97,4 97,4 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 270 270 CFF CFF 9 315 315 CFF CFF 1080 8,0 17,5 671 671 CFF CFF 9 783 783 CFF CFF 1040 6,3 6,3 204 204 CFF CFF 7 237 237 CFF CFF 8

12,5 33,0 42,1 60 8,0 12,5 590 590 BF BF 9 688 688 BF BF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 51,8 51,8 CFF CFF 7 60,4 60,4 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 167 167 CFF CFF 7 195 195 CFF CFF 8120 6,3 22,2 416 416 CFF CFF 7 485 485 CFF CFF 860 8,0 12,5 204 204 CFF CFF 9 237 237 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 660 660 CFF CFF 10 769 769 CFF CFF 10120 12,5 40,9 1639 1639 CFF CFF 13 1912 1912 CFF CFF 1360 8,0 12,5 522 522 CFF CFF 9 609 609 CFF CFF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 51,8 51,8 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 167 167 CFF CFF 7 – – – – –160 6,3 30,1 416 416 CFF CFF 7 – – – – –80 10,0 21,1 204 204 CFF CFF 10 237 237 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 660 660 CFF CFF 13 769 769 CFF CFF 13160 12,5 56,6 1639 1639 CFF CFF 13 1912 1912 CFF CFF 1380 10,0 21,1 522 522 CFF CFF 10 609 609 CFF CFF 10

20,0 109,7 139,7 120 12,5 40,9 1690 1690 CFF CFF 13 1970 1970 CFF CFF 13160 20,0 84,6 3976 3976 BF BF 20 4636 4636 BF BF 20100 8,0 22,6 83,5 83,5 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 270 270 CFF CFF 9 – – – – –200 8,0 47,7 671 671 CFF CFF 9 – – – – –100 12,5 33,0 204 204 CFF CFF 13 237 237 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 660 660 CFF CFF 13 769 769 CFF CFF 13200 12,5 72,3 1639 1639 CFF CFF 13 1912 1912 CFF CFF 13100 12,5 33,0 522 522 CFF CFF 13 609 609 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1690 1690 CFF CFF 20 1970 1970 CFF CFF 20200 20,0 109,7 4197 4197 CFF CFF 20 4895 4895 CFF CFF 20120 8,0 27,6 130 130 CFF CFF 9 152 152 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 422 422 CFF CFF 9 492 492 CFF CFF 10250 8,0 60,3 1277 1277 CFF CFF 9 – – – – –120 12,5 40,9 334 334 CFF CFF 13 389 389 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1081 1081 CFF CFF 13 1261 1261 CFF CFF 13250 12,5 91,9 3270 3270 CFF CFF 13 3814 3814 CFF CFF 13120 12,5 40,9 522 522 CFF CFF 13 609 609 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1690 1690 CFF CFF 20 1970 1970 CFF CFF 20250 20,0 141,1 5110 5110 CFF CFF 20 5960 5960 CFF CFF 20

* C: Brace under compression; T: Brace in tension ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles30◦ ≤ Θ ≤ 37◦

Chord stress ratioCompression: 0,5 < n ≤ 1

Failure modesCFF: Chord face failureCWF: Chord web failurePSF: Punching shear failureBF: Brace failure

52 VALLOUREC & MANNESMANN TUBES

Wel

ded

Y jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 58 24.01.13 10:32

Page 60: Design Tools for Hollow Section Joints with MSH Sections in

53

Design tools for hollow section joints

Design resistances n : 0 Θ : 40◦ Y

b0

t0h0

b1

t1

Nt,1,Rd

Q

b1

t1

Nc,1,Rd

h1 h1

Q

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd Nt,1,Rd C * T * a ** Nc,1,Rd Nt,1,Rd C * T * a **

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 92,6 92,6 CFF CFF 6 108 108 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 139 139 CFF CFF 6 162 162 CFF CFF 780 5,0 11,6 269 269 CFF CFF 6 313 313 CFF CFF 740 6,3 6,3 237 237 CFF CFF 7 276 276 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 357 357 CFF CFF 9 416 416 CFF CFF 1080 8,0 17,5 688 688 CFF CFF 9 803 803 CFF CFF 1040 6,3 6,3 301 301 BF BF 7 351 351 BF BF 8

12,5 33,0 42,1 60 8,0 12,5 590 590 BF BF 9 688 688 BF BF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 147 147 CFF CFF 7 171 171 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 221 221 CFF CFF 7 258 258 CFF CFF 8120 6,3 22,2 427 427 CFF CFF 7 498 498 CFF CFF 860 8,0 12,5 579 579 CFF CFF 9 675 675 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 872 872 CFF CFF 10 1017 1017 CFF CFF 10120 12,5 40,9 1681 1681 CFF CFF 13 1960 1960 CFF CFF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 147 147 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 221 221 CFF CFF 7 – – – – –160 6,3 30,1 427 427 CFF CFF 7 – – – – –80 10,0 21,1 579 579 CFF CFF 10 675 675 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 872 872 CFF CFF 13 1017 1017 CFF CFF 13160 12,5 56,6 1681 1681 CFF CFF 13 1960 1960 CFF CFF 1380 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 10

20,0 109,7 139,7 120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 13160 20,0 84,6 3976 3976 BF BF 20 4636 4636 BF BF 20100 8,0 22,6 237 237 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 357 357 CFF CFF 9 – – – – –200 8,0 47,7 688 688 CFF CFF 9 – – – – –100 12,5 33,0 579 579 CFF CFF 13 675 675 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 872 872 CFF CFF 13 1017 1017 CFF CFF 13200 12,5 72,3 1681 1681 CFF CFF 13 1960 1960 CFF CFF 13100 12,5 33,0 1482 1482 CFF CFF 13 1728 1728 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 2232 2232 CFF CFF 20 2603 2603 CFF CFF 20200 20,0 109,7 4304 4304 CFF CFF 20 5020 5020 CFF CFF 20120 8,0 27,6 370 370 CFF CFF 9 432 432 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 558 558 CFF CFF 9 650 650 CFF CFF 10250 8,0 60,3 1273 1273 CFF CFF 9 – – – – –120 12,5 40,9 948 948 CFF CFF 13 1106 1106 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1428 1428 CFF CFF 13 1666 1666 CFF CFF 13250 12,5 91,9 3259 3259 CFF CFF 13 3801 3801 CFF CFF 13120 12,5 40,9 1482 1482 CFF CFF 13 1728 1728 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 2232 2232 CFF CFF 20 2603 2603 CFF CFF 20250 20,0 141,1 5093 5093 CFF CFF 20 5939 5939 CFF CFF 20

* C: Brace under compression; T: Brace in tension ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles37◦ < Θ ≤ 43◦

Chord stress ratioTension: −1 ≤ n ≤ 0

Failure modesCFF: Chord face failureCWF: Chord web failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 53

Wel

ded

Y jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 59 24.01.13 10:32

Page 61: Design Tools for Hollow Section Joints with MSH Sections in

54

Design tools for hollow section joints

Design resistances n : 0,25 Θ : 40◦ Y

b0

t0h0

b1

t1

Nt,1,Rd

Q

b1

t1

Nc,1,Rd

h1 h1

Q

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd Nt,1,Rd C * T * a ** Nc,1,Rd Nt,1,Rd C * T * a **

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 74,1 74,1 CFF CFF 6 86,4 86,4 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 134 134 CFF CFF 6 157 157 CFF CFF 780 5,0 11,6 269 269 CFF CFF 6 313 313 CFF CFF 740 6,3 6,3 189 189 CFF CFF 7 221 221 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 345 345 CFF CFF 9 402 402 CFF CFF 1080 8,0 17,5 688 688 CFF CFF 9 803 803 CFF CFF 1040 6,3 6,3 301 301 BF BF 7 351 351 BF BF 8

12,5 33,0 42,1 60 8,0 12,5 590 590 BF BF 9 688 688 BF BF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 117 117 CFF CFF 7 137 137 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 214 214 CFF CFF 7 249 249 CFF CFF 8120 6,3 22,2 427 427 CFF CFF 7 498 498 CFF CFF 860 8,0 12,5 463 463 CFF CFF 9 540 540 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 843 843 CFF CFF 10 983 983 CFF CFF 10120 12,5 40,9 1681 1681 CFF CFF 13 1960 1960 CFF CFF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 117 117 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 214 214 CFF CFF 7 – – – – –160 6,3 30,1 427 427 CFF CFF 7 – – – – –80 10,0 21,1 463 463 CFF CFF 10 540 540 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 843 843 CFF CFF 13 983 983 CFF CFF 13160 12,5 56,6 1681 1681 CFF CFF 13 1960 1960 CFF CFF 1380 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 10

20,0 109,7 139,7 120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 13160 20,0 84,6 3976 3976 BF BF 20 4636 4636 BF BF 20100 8,0 22,6 189 189 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 345 345 CFF CFF 9 – – – – –200 8,0 47,7 688 688 CFF CFF 9 – – – – –100 12,5 33,0 463 463 CFF CFF 13 540 540 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 843 843 CFF CFF 13 983 983 CFF CFF 13200 12,5 72,3 1681 1681 CFF CFF 13 1960 1960 CFF CFF 13100 12,5 33,0 1185 1185 CFF CFF 13 1382 1382 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 2158 2158 CFF CFF 20 2517 2517 CFF CFF 20200 20,0 109,7 4304 4304 CFF CFF 20 5020 5020 CFF CFF 20120 8,0 27,6 296 296 CFF CFF 9 345 345 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 539 539 CFF CFF 9 629 629 CFF CFF 10250 8,0 60,3 1273 1273 CFF CFF 9 – – – – –120 12,5 40,9 758 758 CFF CFF 13 885 885 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1381 1381 CFF CFF 13 1610 1610 CFF CFF 13250 12,5 91,9 3259 3259 CFF CFF 13 3801 3801 CFF CFF 13120 12,5 40,9 1185 1185 CFF CFF 13 1382 1382 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 2158 2158 CFF CFF 20 2517 2517 CFF CFF 20250 20,0 141,1 5093 5093 CFF CFF 20 5939 5939 CFF CFF 20

* C: Brace under compression; T: Brace in tension ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles37◦ < Θ ≤ 43◦

Chord stress ratioCompression: 0 < n ≤ 0,5

Failure modesCFF: Chord face failureCWF: Chord web failurePSF: Punching shear failureBF: Brace failure

54 VALLOUREC & MANNESMANN TUBES

Wel

ded

Y jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 60 24.01.13 10:32

Page 62: Design Tools for Hollow Section Joints with MSH Sections in

55

Design tools for hollow section joints

Design resistances n : 0,75 Θ : 40◦ Y

b0

t0h0

b1

t1

Nt,1,Rd

Q

b1

t1

Nc,1,Rd

h1 h1

Q

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd Nt,1,Rd C * T * a ** Nc,1,Rd Nt,1,Rd C * T * a **

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 27,7 27,7 CFF CFF 6 32,4 32,4 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 88,3 88,3 CFF CFF 6 103 103 CFF CFF 780 5,0 11,6 215 215 CFF CFF 6 251 251 CFF CFF 740 6,3 6,3 71,1 71,1 CFF CFF 7 82,9 82,9 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 226 226 CFF CFF 9 263 263 CFF CFF 1080 8,0 17,5 550 550 CFF CFF 9 642 642 CFF CFF 1040 6,3 6,3 173 173 CFF CFF 7 202 202 CFF CFF 8

12,5 33,0 42,1 60 8,0 12,5 552 552 CFF CFF 9 644 644 CFF CFF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 44,1 44,1 CFF CFF 7 51,4 51,4 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 140 140 CFF CFF 7 163 163 CFF CFF 8120 6,3 22,2 341 341 CFF CFF 7 398 398 CFF CFF 860 8,0 12,5 173 173 CFF CFF 9 202 202 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 552 552 CFF CFF 10 644 644 CFF CFF 10120 12,5 40,9 1345 1345 CFF CFF 13 1568 1568 CFF CFF 1360 8,0 12,5 444 444 CFF CFF 9 518 518 CFF CFF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 44,1 44,1 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 140 140 CFF CFF 7 – – – – –160 6,3 30,1 341 341 CFF CFF 7 – – – – –80 10,0 21,1 173 173 CFF CFF 10 202 202 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 552 552 CFF CFF 13 644 644 CFF CFF 13160 12,5 56,6 1345 1345 CFF CFF 13 1568 1568 CFF CFF 1380 10,0 21,1 444 444 CFF CFF 10 518 518 CFF CFF 10

20,0 109,7 139,7 120 12,5 40,9 1414 1414 CFF CFF 13 1649 1649 CFF CFF 13160 20,0 84,6 3443 3443 CFF CFF 20 4016 4016 CFF CFF 20100 8,0 22,6 71,1 71,1 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 226 226 CFF CFF 9 – – – – –200 8,0 47,7 550 550 CFF CFF 9 – – – – –100 12,5 33,0 173 173 CFF CFF 13 202 202 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 552 552 CFF CFF 13 644 644 CFF CFF 13200 12,5 72,3 1345 1345 CFF CFF 13 1568 1568 CFF CFF 13100 12,5 33,0 444 444 CFF CFF 13 518 518 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1414 1414 CFF CFF 20 1649 1649 CFF CFF 20200 20,0 109,7 3443 3443 CFF CFF 20 4016 4016 CFF CFF 20120 8,0 27,6 111 111 CFF CFF 9 129 129 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 353 353 CFF CFF 9 412 412 CFF CFF 10250 8,0 60,3 1044 1044 CFF CFF 9 – – – – –120 12,5 40,9 284 284 CFF CFF 13 331 331 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 905 905 CFF CFF 13 1055 1055 CFF CFF 13250 12,5 91,9 2672 2672 CFF CFF 13 3117 3117 CFF CFF 13120 12,5 40,9 444 444 CFF CFF 13 518 518 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1414 1414 CFF CFF 20 1649 1649 CFF CFF 20250 20,0 141,1 4176 4176 CFF CFF 20 4870 4870 CFF CFF 20

* C: Brace under compression; T: Brace in tension ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles37◦ < Θ ≤ 43◦

Chord stress ratioCompression: 0,5 < n ≤ 1

Failure modesCFF: Chord face failureCWF: Chord web failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 55

Wel

ded

Y jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 61 24.01.13 10:32

Page 63: Design Tools for Hollow Section Joints with MSH Sections in

56

Design tools for hollow section joints

Design resistances n : 0 Θ : 45◦ Y

b0

t0h0

b1

t1

Nt,1,Rd

Q

b1

t1

Nc,1,Rd

h1 h1

Q

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd Nt,1,Rd C * T * a ** Nc,1,Rd Nt,1,Rd C * T * a **

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 83,0 83,0 CFF CFF 6 96,9 96,9 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 123 123 CFF CFF 6 144 144 CFF CFF 780 5,0 11,6 235 235 CFF CFF 6 274 274 CFF CFF 740 6,3 6,3 212 212 CFF CFF 7 248 248 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 316 316 CFF CFF 9 369 369 CFF CFF 1080 8,0 17,5 602 602 CFF CFF 9 702 702 CFF CFF 1040 6,3 6,3 301 301 BF BF 7 351 351 BF BF 8

12,5 33,0 42,1 60 8,0 12,5 590 590 BF BF 9 688 688 BF BF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 131 131 CFF CFF 7 153 153 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 196 196 CFF CFF 7 229 229 CFF CFF 8120 6,3 22,2 373 373 CFF CFF 7 435 435 CFF CFF 860 8,0 12,5 519 519 CFF CFF 9 605 605 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 773 773 CFF CFF 10 901 901 CFF CFF 10120 12,5 40,9 1471 1471 CFF CFF 13 1715 1715 CFF CFF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 131 131 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 196 196 CFF CFF 7 – – – – –160 6,3 30,1 373 373 CFF CFF 7 – – – – –80 10,0 21,1 519 519 CFF CFF 10 605 605 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 773 773 CFF CFF 13 901 901 CFF CFF 13160 12,5 56,6 1471 1471 CFF CFF 13 1715 1715 CFF CFF 1380 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 10

20,0 109,7 139,7 120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 13160 20,0 84,6 3766 3766 CFF CFF 20 4391 4391 CFF CFF 20100 8,0 22,6 212 212 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 316 316 CFF CFF 9 – – – – –200 8,0 47,7 602 602 CFF CFF 9 – – – – –100 12,5 33,0 519 519 CFF CFF 13 605 605 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 773 773 CFF CFF 13 901 901 CFF CFF 13200 12,5 72,3 1471 1471 CFF CFF 13 1715 1715 CFF CFF 13100 12,5 33,0 1329 1329 CFF CFF 13 1550 1550 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1979 1979 CFF CFF 20 2308 2308 CFF CFF 20200 20,0 109,7 3766 3766 CFF CFF 20 4391 4391 CFF CFF 20120 8,0 27,6 332 332 CFF CFF 9 387 387 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 494 494 CFF CFF 9 577 577 CFF CFF 10250 8,0 60,3 1110 1110 CFF CFF 9 – – – – –120 12,5 40,9 850 850 CFF CFF 13 992 992 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1267 1267 CFF CFF 13 1477 1477 CFF CFF 13250 12,5 91,9 2843 2843 CFF CFF 13 3316 3316 CFF CFF 13120 12,5 40,9 1329 1329 CFF CFF 13 1550 1550 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1979 1979 CFF CFF 20 2308 2308 CFF CFF 20250 20,0 141,1 4443 4443 CFF CFF 20 5181 5181 CFF CFF 20

* C: Brace under compression; T: Brace in tension ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles43◦ < Θ ≤ 48◦

Chord stress ratioTension: −1 ≤ n ≤ 0

Failure modesCFF: Chord face failureCWF: Chord web failurePSF: Punching shear failureBF: Brace failure

56 VALLOUREC & MANNESMANN TUBES

Wel

ded

Y jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 62 24.01.13 10:32

Page 64: Design Tools for Hollow Section Joints with MSH Sections in

57

Design tools for hollow section joints

Design resistances n : 0,25 Θ : 45◦ Y

b0

t0h0

b1

t1

Nt,1,Rd

Q

b1

t1

Nc,1,Rd

h1 h1

Q

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd Nt,1,Rd C * T * a ** Nc,1,Rd Nt,1,Rd C * T * a **

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 66,4 66,4 CFF CFF 6 77,5 77,5 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 119 119 CFF CFF 6 139 139 CFF CFF 780 5,0 11,6 235 235 CFF CFF 6 274 274 CFF CFF 740 6,3 6,3 170 170 CFF CFF 7 198 198 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 306 306 CFF CFF 9 357 357 CFF CFF 1080 8,0 17,5 602 602 CFF CFF 9 702 702 CFF CFF 1040 6,3 6,3 301 301 BF BF 7 351 351 BF BF 8

12,5 33,0 42,1 60 8,0 12,5 590 590 BF BF 9 688 688 BF BF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 105 105 CFF CFF 7 123 123 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 189 189 CFF CFF 7 221 221 CFF CFF 8120 6,3 22,2 373 373 CFF CFF 7 435 435 CFF CFF 860 8,0 12,5 415 415 CFF CFF 9 484 484 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 747 747 CFF CFF 10 871 871 CFF CFF 10120 12,5 40,9 1471 1471 CFF CFF 13 1715 1715 CFF CFF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 105 105 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 189 189 CFF CFF 7 – – – – –160 6,3 30,1 373 373 CFF CFF 7 – – – – –80 10,0 21,1 415 415 CFF CFF 10 484 484 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 747 747 CFF CFF 13 871 871 CFF CFF 13160 12,5 56,6 1471 1471 CFF CFF 13 1715 1715 CFF CFF 1380 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 10

20,0 109,7 139,7 120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 13160 20,0 84,6 3766 3766 CFF CFF 20 4391 4391 CFF CFF 20100 8,0 22,6 170 170 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 306 306 CFF CFF 9 – – – – –200 8,0 47,7 602 602 CFF CFF 9 – – – – –100 12,5 33,0 415 415 CFF CFF 13 484 484 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 747 747 CFF CFF 13 871 871 CFF CFF 13200 12,5 72,3 1471 1471 CFF CFF 13 1715 1715 CFF CFF 13100 12,5 33,0 1063 1063 CFF CFF 13 1240 1240 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1913 1913 CFF CFF 20 2231 2231 CFF CFF 20200 20,0 109,7 3766 3766 CFF CFF 20 4391 4391 CFF CFF 20120 8,0 27,6 265 265 CFF CFF 9 310 310 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 478 478 CFF CFF 9 557 557 CFF CFF 10250 8,0 60,3 1110 1110 CFF CFF 9 – – – – –120 12,5 40,9 680 680 CFF CFF 13 793 793 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1224 1224 CFF CFF 13 1428 1428 CFF CFF 13250 12,5 91,9 2843 2843 CFF CFF 13 3316 3316 CFF CFF 13120 12,5 40,9 1063 1063 CFF CFF 13 1240 1240 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1913 1913 CFF CFF 20 2231 2231 CFF CFF 20250 20,0 141,1 4443 4443 CFF CFF 20 5181 5181 CFF CFF 20

* C: Brace under compression; T: Brace in tension ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles43◦ < Θ ≤ 48◦

Chord stress ratioCompression: 0 < n ≤ 0,5

Failure modesCFF: Chord face failureCWF: Chord web failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 57

Wel

ded

Y jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 63 24.01.13 10:32

Page 65: Design Tools for Hollow Section Joints with MSH Sections in

58

Design tools for hollow section joints

Design resistances n : 0,75 Θ : 45◦ Y

b0

t0h0

b1

t1

Nt,1,Rd

Q

b1

t1

Nc,1,Rd

h1 h1

Q

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd Nt,1,Rd C * T * a ** Nc,1,Rd Nt,1,Rd C * T * a **

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 24,9 24,9 CFF CFF 6 29,0 29,0 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 78,3 78,3 CFF CFF 6 91,3 91,3 CFF CFF 780 5,0 11,6 188 188 CFF CFF 6 219 219 CFF CFF 740 6,3 6,3 63,8 63,8 CFF CFF 7 74,4 74,4 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 200 200 CFF CFF 9 233 233 CFF CFF 1080 8,0 17,5 482 482 CFF CFF 9 562 562 CFF CFF 1040 6,3 6,3 155 155 CFF CFF 7 181 181 CFF CFF 8

12,5 33,0 42,1 60 8,0 12,5 489 489 CFF CFF 9 571 571 CFF CFF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 39,5 39,5 CFF CFF 7 46,1 46,1 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 124 124 CFF CFF 7 145 145 CFF CFF 8120 6,3 22,2 298 298 CFF CFF 7 348 348 CFF CFF 860 8,0 12,5 155 155 CFF CFF 9 181 181 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 489 489 CFF CFF 10 571 571 CFF CFF 10120 12,5 40,9 1176 1176 CFF CFF 13 1372 1372 CFF CFF 1360 8,0 12,5 398 398 CFF CFF 9 465 465 CFF CFF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 39,5 39,5 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 124 124 CFF CFF 7 – – – – –160 6,3 30,1 298 298 CFF CFF 7 – – – – –80 10,0 21,1 155 155 CFF CFF 10 181 181 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 489 489 CFF CFF 13 571 571 CFF CFF 13160 12,5 56,6 1176 1176 CFF CFF 13 1372 1372 CFF CFF 1380 10,0 21,1 398 398 CFF CFF 10 465 465 CFF CFF 10

20,0 109,7 139,7 120 12,5 40,9 1253 1253 CFF CFF 13 1462 1462 CFF CFF 13160 20,0 84,6 3012 3012 CFF CFF 20 3513 3513 CFF CFF 20100 8,0 22,6 63,8 63,8 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 200 200 CFF CFF 9 – – – – –200 8,0 47,7 482 482 CFF CFF 9 – – – – –100 12,5 33,0 155 155 CFF CFF 13 181 181 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 489 489 CFF CFF 13 571 571 CFF CFF 13200 12,5 72,3 1176 1176 CFF CFF 13 1372 1372 CFF CFF 13100 12,5 33,0 398 398 CFF CFF 13 465 465 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1253 1253 CFF CFF 20 1462 1462 CFF CFF 20200 20,0 109,7 3012 3012 CFF CFF 20 3513 3513 CFF CFF 20120 8,0 27,6 99,7 99,7 CFF CFF 9 116 116 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 313 313 CFF CFF 9 365 365 CFF CFF 10250 8,0 60,3 910 910 CFF CFF 9 – – – – –120 12,5 40,9 255 255 CFF CFF 13 297 297 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 802 802 CFF CFF 13 935 935 CFF CFF 13250 12,5 91,9 2331 2331 CFF CFF 13 2719 2719 CFF CFF 13120 12,5 40,9 398 398 CFF CFF 13 465 465 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1253 1253 CFF CFF 20 1462 1462 CFF CFF 20250 20,0 141,1 3643 3643 CFF CFF 20 4249 4249 CFF CFF 20

* C: Brace under compression; T: Brace in tension ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles43◦ < Θ ≤ 48◦

Chord stress ratioCompression: 0,5 < n ≤ 1

Failure modesCFF: Chord face failureCWF: Chord web failurePSF: Punching shear failureBF: Brace failure

58 VALLOUREC & MANNESMANN TUBES

Wel

ded

Y jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 64 24.01.13 10:32

Page 66: Design Tools for Hollow Section Joints with MSH Sections in

59

Design tools for hollow section joints

Design resistances n : 0 Θ : 50◦ Y

b0

t0h0

b1

t1

Nt,1,Rd

Q

b1

t1

Nc,1,Rd

h1 h1

Q

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd Nt,1,Rd C * T * a ** Nc,1,Rd Nt,1,Rd C * T * a **

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 73,5 73,5 CFF CFF 6 85,8 85,8 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 108 108 CFF CFF 6 126 126 CFF CFF 780 5,0 11,6 202 202 CFF CFF 6 236 236 CFF CFF 740 6,3 6,3 188 188 CFF CFF 7 219 219 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 276 276 CFF CFF 9 323 323 CFF CFF 1080 8,0 17,5 518 518 CFF CFF 9 605 605 CFF CFF 1040 6,3 6,3 301 301 BF BF 7 351 351 BF BF 8

12,5 33,0 42,1 60 8,0 12,5 590 590 BF BF 9 688 688 BF BF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 116 116 CFF CFF 7 136 136 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 171 171 CFF CFF 7 200 200 CFF CFF 8120 6,3 22,2 321 321 CFF CFF 7 375 375 CFF CFF 860 8,0 12,5 459 459 CFF CFF 9 536 536 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 676 676 CFF CFF 10 788 788 CFF CFF 10120 12,5 40,9 1266 1266 CFF CFF 13 1477 1477 CFF CFF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 116 116 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 171 171 CFF CFF 7 – – – – –160 6,3 30,1 321 321 CFF CFF 7 – – – – –80 10,0 21,1 459 459 CFF CFF 10 536 536 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 676 676 CFF CFF 13 788 788 CFF CFF 13160 12,5 56,6 1266 1266 CFF CFF 13 1477 1477 CFF CFF 1380 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 10

20,0 109,7 139,7 120 12,5 40,9 1731 1731 CFF CFF 13 2018 2018 CFF CFF 13160 20,0 84,6 3243 3243 CFF CFF 20 3782 3782 CFF CFF 20100 8,0 22,6 188 188 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 276 276 CFF CFF 9 – – – – –200 8,0 47,7 518 518 CFF CFF 9 – – – – –100 12,5 33,0 459 459 CFF CFF 13 536 536 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 676 676 CFF CFF 13 788 788 CFF CFF 13200 12,5 72,3 1266 1266 CFF CFF 13 1477 1477 CFF CFF 13100 12,5 33,0 1177 1177 CFF CFF 13 1373 1373 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1731 1731 CFF CFF 20 2018 2018 CFF CFF 20200 20,0 109,7 3243 3243 CFF CFF 20 3782 3782 CFF CFF 20120 8,0 27,6 294 294 CFF CFF 9 343 343 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 432 432 CFF CFF 9 504 504 CFF CFF 10250 8,0 60,3 953 953 CFF CFF 9 – – – – –120 12,5 40,9 753 753 CFF CFF 13 878 878 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1107 1107 CFF CFF 13 1292 1292 CFF CFF 13250 12,5 91,9 2441 2441 CFF CFF 13 2847 2847 CFF CFF 13120 12,5 40,9 1177 1177 CFF CFF 13 1373 1373 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1731 1731 CFF CFF 20 2018 2018 CFF CFF 20250 20,0 141,1 3814 3814 CFF CFF 20 4448 4448 CFF CFF 20

* C: Brace under compression; T: Brace in tension ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles48◦ < Θ ≤ 55◦

Chord stress ratioTension: −1 ≤ n ≤ 0

Failure modesCFF: Chord face failureCWF: Chord web failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 59

Wel

ded

Y jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 65 24.01.13 10:32

Page 67: Design Tools for Hollow Section Joints with MSH Sections in

60

Design tools for hollow section joints

Design resistances n : 0,25 Θ : 50◦ Y

b0

t0h0

b1

t1

Nt,1,Rd

Q

b1

t1

Nc,1,Rd

h1 h1

Q

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd Nt,1,Rd C * T * a ** Nc,1,Rd Nt,1,Rd C * T * a **

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 58,8 58,8 CFF CFF 6 68,6 68,6 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 104 104 CFF CFF 6 121 121 CFF CFF 780 5,0 11,6 202 202 CFF CFF 6 236 236 CFF CFF 740 6,3 6,3 150 150 CFF CFF 7 175 175 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 267 267 CFF CFF 9 312 312 CFF CFF 1080 8,0 17,5 518 518 CFF CFF 9 605 605 CFF CFF 1040 6,3 6,3 301 301 BF BF 7 351 351 BF BF 8

12,5 33,0 42,1 60 8,0 12,5 590 590 BF BF 9 688 688 BF BF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 93,4 93,4 CFF CFF 7 108 108 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 166 166 CFF CFF 7 193 193 CFF CFF 8120 6,3 22,2 321 321 CFF CFF 7 375 375 CFF CFF 860 8,0 12,5 367 367 CFF CFF 9 429 429 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 653 653 CFF CFF 10 762 762 CFF CFF 10120 12,5 40,9 1266 1266 CFF CFF 13 1477 1477 CFF CFF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 93,4 93,4 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 166 166 CFF CFF 7 – – – – –160 6,3 30,1 321 321 CFF CFF 7 – – – – –80 10,0 21,1 367 367 CFF CFF 10 429 429 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 653 653 CFF CFF 13 762 762 CFF CFF 13160 12,5 56,6 1266 1266 CFF CFF 13 1477 1477 CFF CFF 1380 10,0 21,1 941 941 CFF CFF 10 1098 1098 CFF CFF 10

20,0 109,7 139,7 120 12,5 40,9 1673 1673 CFF CFF 13 1951 1951 CFF CFF 13160 20,0 84,6 3243 3243 CFF CFF 20 3782 3782 CFF CFF 20100 8,0 22,6 150 150 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 267 267 CFF CFF 9 – – – – –200 8,0 47,7 518 518 CFF CFF 9 – – – – –100 12,5 33,0 367 367 CFF CFF 13 429 429 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 653 653 CFF CFF 13 762 762 CFF CFF 13200 12,5 72,3 1266 1266 CFF CFF 13 1477 1477 CFF CFF 13100 12,5 33,0 941 941 CFF CFF 13 1098 1098 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1673 1673 CFF CFF 20 1951 1951 CFF CFF 20200 20,0 109,7 3243 3243 CFF CFF 20 3782 3782 CFF CFF 20120 8,0 27,6 235 235 CFF CFF 9 274 274 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 418 418 CFF CFF 9 487 487 CFF CFF 10250 8,0 60,3 953 953 CFF CFF 9 – – – – –120 12,5 40,9 602 602 CFF CFF 13 702 702 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 1071 1071 CFF CFF 13 1249 1249 CFF CFF 13250 12,5 91,9 2441 2441 CFF CFF 13 2847 2847 CFF CFF 13120 12,5 40,9 941 941 CFF CFF 13 1098 1098 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1673 1673 CFF CFF 20 1951 1951 CFF CFF 20250 20,0 141,1 3814 3814 CFF CFF 20 4448 4448 CFF CFF 20

* C: Brace under compression; T: Brace in tension ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles48◦ < Θ ≤ 55◦

Chord stress ratioCompression: 0 < n ≤ 0,5

Failure modesCFF: Chord face failureCWF: Chord web failurePSF: Punching shear failureBF: Brace failure

60 VALLOUREC & MANNESMANN TUBES

Wel

ded

Y jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 66 24.01.13 10:32

Page 68: Design Tools for Hollow Section Joints with MSH Sections in

61

Design tools for hollow section joints

Design resistances n : 0,75 Θ : 50◦ Y

b0

t0h0

b1

t1

Nt,1,Rd

Q

b1

t1

Nc,1,Rd

h1 h1

Q

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd Nt,1,Rd C * T * a ** Nc,1,Rd Nt,1,Rd C * T * a **

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 22,0 22,0 CFF CFF 6 25,7 25,7 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 68,5 68,5 CFF CFF 6 79,9 79,9 CFF CFF 780 5,0 11,6 162 162 CFF CFF 6 189 189 CFF CFF 740 6,3 6,3 56,5 56,5 CFF CFF 7 65,9 65,9 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 175 175 CFF CFF 9 204 204 CFF CFF 1080 8,0 17,5 415 415 CFF CFF 9 484 484 CFF CFF 1040 6,3 6,3 137 137 CFF CFF 7 160 160 CFF CFF 8

12,5 33,0 42,1 60 8,0 12,5 428 428 CFF CFF 9 499 499 CFF CFF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 35,0 35,0 CFF CFF 7 40,8 40,8 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 108 108 CFF CFF 7 126 126 CFF CFF 8120 6,3 22,2 257 257 CFF CFF 7 300 300 CFF CFF 860 8,0 12,5 137 137 CFF CFF 9 160 160 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 428 428 CFF CFF 10 499 499 CFF CFF 10120 12,5 40,9 1013 1013 CFF CFF 13 1182 1182 CFF CFF 1360 8,0 12,5 353 353 CFF CFF 9 411 411 CFF CFF 10

20,0 78,3 99,7 90 10,0 24,3 1096 1096 CFF CFF 10 1278 1278 CFF CFF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 35,0 35,0 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 108 108 CFF CFF 7 – – – – –160 6,3 30,1 257 257 CFF CFF 7 – – – – –80 10,0 21,1 137 137 CFF CFF 10 160 160 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 428 428 CFF CFF 13 499 499 CFF CFF 13160 12,5 56,6 1013 1013 CFF CFF 13 1182 1182 CFF CFF 1380 10,0 21,1 353 353 CFF CFF 10 411 411 CFF CFF 10

20,0 109,7 139,7 120 12,5 40,9 1096 1096 CFF CFF 13 1278 1278 CFF CFF 13160 20,0 84,6 2594 2594 CFF CFF 20 3026 3026 CFF CFF 20100 8,0 22,6 56,5 56,5 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 175 175 CFF CFF 9 – – – – –200 8,0 47,7 415 415 CFF CFF 9 – – – – –100 12,5 33,0 137 137 CFF CFF 13 160 160 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 428 428 CFF CFF 13 499 499 CFF CFF 13200 12,5 72,3 1013 1013 CFF CFF 13 1182 1182 CFF CFF 13100 12,5 33,0 353 353 CFF CFF 13 411 411 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1096 1096 CFF CFF 20 1278 1278 CFF CFF 20200 20,0 109,7 2594 2594 CFF CFF 20 3026 3026 CFF CFF 20120 8,0 27,6 88,3 88,3 CFF CFF 9 102 102 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 274 274 CFF CFF 9 319 319 CFF CFF 10250 8,0 60,3 782 782 CFF CFF 9 – – – – –120 12,5 40,9 226 226 CFF CFF 13 263 263 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 701 701 CFF CFF 13 818 818 CFF CFF 13250 12,5 91,9 2001 2001 CFF CFF 13 2334 2334 CFF CFF 13120 12,5 40,9 353 353 CFF CFF 13 411 411 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1096 1096 CFF CFF 20 1278 1278 CFF CFF 20250 20,0 141,1 3128 3128 CFF CFF 20 3647 3647 CFF CFF 20

* C: Brace under compression; T: Brace in tension ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles48◦ < Θ ≤ 55◦

Chord stress ratioCompression: 0,5 < n ≤ 1

Failure modesCFF: Chord face failureCWF: Chord web failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 61

Wel

ded

Y jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 67 24.01.13 10:32

Page 69: Design Tools for Hollow Section Joints with MSH Sections in

62

Design tools for hollow section joints

Design resistances n : 0 Θ : 60◦ Y

b0

t0h0

b1

t1

Nt,1,Rd

Q

b1

t1

Nc,1,Rd

h1 h1

Q

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd Nt,1,Rd C * T * a ** Nc,1,Rd Nt,1,Rd C * T * a **

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 64,9 64,9 CFF CFF 6 75,7 75,7 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 94,3 94,3 CFF CFF 6 110 110 CFF CFF 780 5,0 11,6 174 174 CFF CFF 6 202 202 CFF CFF 740 6,3 6,3 166 166 CFF CFF 7 193 193 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 241 241 CFF CFF 9 281 281 CFF CFF 1080 8,0 17,5 445 445 CFF CFF 9 519 519 CFF CFF 1040 6,3 6,3 301 301 BF BF 7 351 351 BF BF 8

12,5 33,0 42,1 60 8,0 12,5 589 589 CFF CFF 9 687 687 CFF CFF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 103 103 CFF CFF 7 120 120 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 149 149 CFF CFF 7 174 174 CFF CFF 8120 6,3 22,2 276 276 CFF CFF 7 322 322 CFF CFF 860 8,0 12,5 406 406 CFF CFF 9 473 473 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 589 589 CFF CFF 10 687 687 CFF CFF 10120 12,5 40,9 1087 1087 CFF CFF 13 1268 1268 CFF CFF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 103 103 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 149 149 CFF CFF 7 – – – – –160 6,3 30,1 276 276 CFF CFF 7 – – – – –80 10,0 21,1 406 406 CFF CFF 10 473 473 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 589 589 CFF CFF 13 687 687 CFF CFF 13160 12,5 56,6 1087 1087 CFF CFF 13 1268 1268 CFF CFF 1380 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 10

20,0 109,7 139,7 120 12,5 40,9 1509 1509 CFF CFF 13 1760 1760 CFF CFF 13160 20,0 84,6 2784 2784 CFF CFF 20 3247 3247 CFF CFF 20100 8,0 22,6 166 166 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 241 241 CFF CFF 9 – – – – –200 8,0 47,7 445 445 CFF CFF 9 – – – – –100 12,5 33,0 406 406 CFF CFF 13 473 473 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 589 589 CFF CFF 13 687 687 CFF CFF 13200 12,5 72,3 1087 1087 CFF CFF 13 1268 1268 CFF CFF 13100 12,5 33,0 1039 1039 CFF CFF 13 1212 1212 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1509 1509 CFF CFF 20 1760 1760 CFF CFF 20200 20,0 109,7 2784 2784 CFF CFF 20 3247 3247 CFF CFF 20120 8,0 27,6 259 259 CFF CFF 9 303 303 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 377 377 CFF CFF 9 440 440 CFF CFF 10250 8,0 60,3 815 815 CFF CFF 9 – – – – –120 12,5 40,9 665 665 CFF CFF 13 775 775 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 966 966 CFF CFF 13 1126 1126 CFF CFF 13250 12,5 91,9 2088 2088 CFF CFF 13 2436 2436 CFF CFF 13120 12,5 40,9 1039 1039 CFF CFF 13 1212 1212 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1509 1509 CFF CFF 20 1760 1760 CFF CFF 20250 20,0 141,1 3263 3263 CFF CFF 20 3806 3806 CFF CFF 20

* C: Brace under compression; T: Brace in tension ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles55◦ < Θ ≤ 65◦

Chord stress ratioTension: −1 ≤ n ≤ 0

Failure modesCFF: Chord face failureCWF: Chord web failurePSF: Punching shear failureBF: Brace failure

62 VALLOUREC & MANNESMANN TUBES

Wel

ded

Y jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 68 24.01.13 10:32

Page 70: Design Tools for Hollow Section Joints with MSH Sections in

63

Design tools for hollow section joints

Design resistances n : 0,25 Θ : 60◦ Y

b0

t0h0

b1

t1

Nt,1,Rd

Q

b1

t1

Nc,1,Rd

h1 h1

Q

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd Nt,1,Rd C * T * a ** Nc,1,Rd Nt,1,Rd C * T * a **

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 51,9 51,9 CFF CFF 6 60,6 60,6 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 91,2 91,2 CFF CFF 6 106 106 CFF CFF 780 5,0 11,6 174 174 CFF CFF 6 202 202 CFF CFF 740 6,3 6,3 133 133 CFF CFF 7 155 155 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 233 233 CFF CFF 9 272 272 CFF CFF 1080 8,0 17,5 445 445 CFF CFF 9 519 519 CFF CFF 1040 6,3 6,3 301 301 BF BF 7 351 351 BF BF 8

12,5 33,0 42,1 60 8,0 12,5 570 570 CFF CFF 9 664 664 CFF CFF 1080 10,0 21,1 994 994 BF BF 10 1159 1159 BF BF 1060 6,3 10,3 82,5 82,5 CFF CFF 7 96,2 96,2 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 144 144 CFF CFF 7 168 168 CFF CFF 8120 6,3 22,2 276 276 CFF CFF 7 322 322 CFF CFF 860 8,0 12,5 324 324 CFF CFF 9 378 378 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 570 570 CFF CFF 10 664 664 CFF CFF 10120 12,5 40,9 1087 1087 CFF CFF 13 1268 1268 CFF CFF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 82,5 82,5 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 144 144 CFF CFF 7 – – – – –160 6,3 30,1 276 276 CFF CFF 7 – – – – –80 10,0 21,1 324 324 CFF CFF 10 378 378 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 570 570 CFF CFF 13 664 664 CFF CFF 13160 12,5 56,6 1087 1087 CFF CFF 13 1268 1268 CFF CFF 1380 10,0 21,1 831 831 CFF CFF 10 969 969 CFF CFF 10

20,0 109,7 139,7 120 12,5 40,9 1459 1459 CFF CFF 13 1701 1701 CFF CFF 13160 20,0 84,6 2784 2784 CFF CFF 20 3247 3247 CFF CFF 20100 8,0 22,6 133 133 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 233 233 CFF CFF 9 – – – – –200 8,0 47,7 445 445 CFF CFF 9 – – – – –100 12,5 33,0 324 324 CFF CFF 13 378 378 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 570 570 CFF CFF 13 664 664 CFF CFF 13200 12,5 72,3 1087 1087 CFF CFF 13 1268 1268 CFF CFF 13100 12,5 33,0 831 831 CFF CFF 13 969 969 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1459 1459 CFF CFF 20 1701 1701 CFF CFF 20200 20,0 109,7 2784 2784 CFF CFF 20 3247 3247 CFF CFF 20120 8,0 27,6 207 207 CFF CFF 9 242 242 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 364 364 CFF CFF 9 425 425 CFF CFF 10250 8,0 60,3 815 815 CFF CFF 9 – – – – –120 12,5 40,9 532 532 CFF CFF 13 620 620 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 933 933 CFF CFF 13 1089 1089 CFF CFF 13250 12,5 91,9 2088 2088 CFF CFF 13 2436 2436 CFF CFF 13120 12,5 40,9 831 831 CFF CFF 13 969 969 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1459 1459 CFF CFF 20 1701 1701 CFF CFF 20250 20,0 141,1 3263 3263 CFF CFF 20 3806 3806 CFF CFF 20

* C: Brace under compression; T: Brace in tension ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles55◦ < Θ ≤ 65◦

Chord stress ratioCompression: 0 < n ≤ 0,5

Failure modesCFF: Chord face failureCWF: Chord web failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 63

Wel

ded

Y jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 69 24.01.13 10:33

Page 71: Design Tools for Hollow Section Joints with MSH Sections in

64

Design tools for hollow section joints

Design resistances n : 0,75 Θ : 60◦ Y

b0

t0h0

b1

t1

Nt,1,Rd

Q

b1

t1

Nc,1,Rd

h1 h1

Q

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd Nt,1,Rd C * T * a ** Nc,1,Rd Nt,1,Rd C * T * a **

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 19,4 19,4 CFF CFF 6 22,7 22,7 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 59,7 59,7 CFF CFF 6 69,6 69,6 CFF CFF 780 5,0 11,6 139 139 CFF CFF 6 162 162 CFF CFF 740 6,3 6,3 49,9 49,9 CFF CFF 7 58,1 58,1 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 152 152 CFF CFF 9 178 178 CFF CFF 1080 8,0 17,5 356 356 CFF CFF 9 415 415 CFF CFF 1040 6,3 6,3 121 121 CFF CFF 7 142 142 CFF CFF 8

12,5 33,0 42,1 60 8,0 12,5 373 373 CFF CFF 9 435 435 CFF CFF 1080 10,0 21,1 870 870 CFF CFF 10 1014 1014 CFF CFF 1060 6,3 10,3 30,9 30,9 CFF CFF 7 36,0 36,0 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 94,8 94,8 CFF CFF 7 110 110 CFF CFF 8120 6,3 22,2 221 221 CFF CFF 7 257 257 CFF CFF 860 8,0 12,5 121 121 CFF CFF 9 142 142 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 373 373 CFF CFF 10 435 435 CFF CFF 10120 12,5 40,9 870 870 CFF CFF 13 1014 1014 CFF CFF 1360 8,0 12,5 311 311 CFF CFF 9 363 363 CFF CFF 10

20,0 78,3 99,7 90 10,0 24,3 956 956 CFF CFF 10 1114 1114 CFF CFF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 30,9 30,9 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 94,8 94,8 CFF CFF 7 – – – – –160 6,3 30,1 221 221 CFF CFF 7 – – – – –80 10,0 21,1 121 121 CFF CFF 10 142 142 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 373 373 CFF CFF 13 435 435 CFF CFF 13160 12,5 56,6 870 870 CFF CFF 13 1014 1014 CFF CFF 1380 10,0 21,1 311 311 CFF CFF 10 363 363 CFF CFF 10

20,0 109,7 139,7 120 12,5 40,9 956 956 CFF CFF 13 1114 1114 CFF CFF 13160 20,0 84,6 2227 2227 CFF CFF 20 2597 2597 CFF CFF 20100 8,0 22,6 49,9 49,9 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 152 152 CFF CFF 9 – – – – –200 8,0 47,7 356 356 CFF CFF 9 – – – – –100 12,5 33,0 121 121 CFF CFF 13 142 142 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 373 373 CFF CFF 13 435 435 CFF CFF 13200 12,5 72,3 870 870 CFF CFF 13 1014 1014 CFF CFF 13100 12,5 33,0 311 311 CFF CFF 13 363 363 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 956 956 CFF CFF 20 1114 1114 CFF CFF 20200 20,0 109,7 2227 2227 CFF CFF 20 2597 2597 CFF CFF 20120 8,0 27,6 77,9 77,9 CFF CFF 9 90,9 90,9 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 239 239 CFF CFF 9 278 278 CFF CFF 10250 8,0 60,3 669 669 CFF CFF 9 – – – – –120 12,5 40,9 199 199 CFF CFF 13 232 232 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 611 611 CFF CFF 13 713 713 CFF CFF 13250 12,5 91,9 1712 1712 CFF CFF 13 1997 1997 CFF CFF 13120 12,5 40,9 311 311 CFF CFF 13 363 363 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 956 956 CFF CFF 20 1114 1114 CFF CFF 20250 20,0 141,1 2676 2676 CFF CFF 20 3121 3121 CFF CFF 20

* C: Brace under compression; T: Brace in tension ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles55◦ < Θ ≤ 65◦

Chord stress ratioCompression: 0,5 < n ≤ 1

Failure modesCFF: Chord face failureCWF: Chord web failurePSF: Punching shear failureBF: Brace failure

64 VALLOUREC & MANNESMANN TUBES

Wel

ded

Y jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 70 24.01.13 10:33

Page 72: Design Tools for Hollow Section Joints with MSH Sections in

65

Design tools for hollow section joints

Design resistances n : 0 Θ : 90◦ T / Y

b0

t0h0

Nc,1,Rd

Q

Nt,1,Rd

Q

b1 t1

h1

b1 t1

h1

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd Nt,1,Rd C * T * a ** Nc,1,Rd Nt,1,Rd C * T * a **

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 57,6 57,6 CFF CFF 6 67,2 67,2 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 82,7 82,7 CFF CFF 6 96,5 96,5 CFF CFF 780 5,0 11,6 150 150 CFF CFF 6 175 175 CFF CFF 740 6,3 6,3 147 147 CFF CFF 7 172 172 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 211 211 CFF CFF 9 247 247 CFF CFF 1080 8,0 17,5 384 384 CFF CFF 9 448 448 CFF CFF 1040 6,3 6,3 301 301 BF BF 7 351 351 BF BF 8

12,5 33,0 42,1 60 8,0 12,5 517 517 CFF CFF 9 603 603 CFF CFF 1080 10,0 21,1 939 939 CFF CFF 10 1096 1096 CFF CFF 1060 6,3 10,3 91,5 91,5 CFF CFF 7 106 106 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 131 131 CFF CFF 7 153 153 CFF CFF 8120 6,3 22,2 238 238 CFF CFF 7 278 278 CFF CFF 860 8,0 12,5 360 360 CFF CFF 9 420 420 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 517 517 CFF CFF 10 603 603 CFF CFF 10120 12,5 40,9 939 939 CFF CFF 13 1096 1096 CFF CFF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 91,5 91,5 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 131 131 CFF CFF 7 – – – – –160 6,3 30,1 238 238 CFF CFF 7 – – – – –80 10,0 21,1 360 360 CFF CFF 10 420 420 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 517 517 CFF CFF 13 603 603 CFF CFF 13160 12,5 56,6 939 939 CFF CFF 13 1096 1096 CFF CFF 1380 10,0 21,1 922 922 CFF CFF 10 1075 1075 CFF CFF 10

20,0 109,7 139,7 120 12,5 40,9 1324 1324 CFF CFF 13 1544 1544 CFF CFF 13160 20,0 84,6 2406 2406 CFF CFF 20 2805 2805 CFF CFF 20100 8,0 22,6 147 147 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 211 211 CFF CFF 9 – – – – –200 8,0 47,7 384 384 CFF CFF 9 – – – – –100 12,5 33,0 360 360 CFF CFF 13 420 420 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 517 517 CFF CFF 13 603 603 CFF CFF 13200 12,5 72,3 939 939 CFF CFF 13 1096 1096 CFF CFF 13100 12,5 33,0 922 922 CFF CFF 13 1075 1075 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1324 1324 CFF CFF 20 1544 1544 CFF CFF 20200 20,0 109,7 2406 2406 CFF CFF 20 2805 2805 CFF CFF 20120 8,0 27,6 230 230 CFF CFF 9 268 268 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 331 331 CFF CFF 9 386 386 CFF CFF 10250 8,0 60,3 702 702 CFF CFF 9 – – – – –120 12,5 40,9 590 590 CFF CFF 13 688 688 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 847 847 CFF CFF 13 988 988 CFF CFF 13250 12,5 91,9 1799 1799 CFF CFF 13 2098 2098 CFF CFF 13120 12,5 40,9 922 922 CFF CFF 13 1075 1075 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1324 1324 CFF CFF 20 1544 1544 CFF CFF 20250 20,0 141,1 2811 2811 CFF CFF 20 3278 3278 CFF CFF 20

* C: Brace under compression; T: Brace in tension ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles65◦ < Θ ≤ 90◦

Chord stress ratioTension: −1 ≤ n ≤ 0

Failure modesCFF: Chord face failureCWF: Chord web failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 65

Wel

ded

T jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 71 24.01.13 10:33

Page 73: Design Tools for Hollow Section Joints with MSH Sections in

66

Design tools for hollow section joints

Design resistances n : 0,25 Θ : 90◦ T / Y

b0

t0h0

Nc,1,Rd

Q

Nt,1,Rd

Q

b1 t1

h1

b1 t1

h1

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd Nt,1,Rd C * T * a ** Nc,1,Rd Nt,1,Rd C * T * a **

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 46,1 46,1 CFF CFF 6 53,7 53,7 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 79,9 79,9 CFF CFF 6 93,2 93,2 CFF CFF 780 5,0 11,6 150 150 CFF CFF 6 175 175 CFF CFF 740 6,3 6,3 118 118 CFF CFF 7 137 137 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 204 204 CFF CFF 9 238 238 CFF CFF 1080 8,0 17,5 384 384 CFF CFF 9 448 448 CFF CFF 1040 6,3 6,3 288 288 CFF CFF 7 336 336 CFF CFF 8

12,5 33,0 42,1 60 8,0 12,5 499 499 CFF CFF 9 583 583 CFF CFF 1080 10,0 21,1 939 939 CFF CFF 10 1096 1096 CFF CFF 1060 6,3 10,3 73,2 73,2 CFF CFF 7 85,4 85,4 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 127 127 CFF CFF 7 148 148 CFF CFF 8120 6,3 22,2 238 238 CFF CFF 7 278 278 CFF CFF 860 8,0 12,5 288 288 CFF CFF 9 336 336 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 499 499 CFF CFF 10 583 583 CFF CFF 10120 12,5 40,9 939 939 CFF CFF 13 1096 1096 CFF CFF 1360 8,0 12,5 590 590 BF BF 9 688 688 BF BF 10

20,0 78,3 99,7 90 10,0 24,3 1136 1136 BF BF 10 1324 1324 BF BF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 73,2 73,2 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 127 127 CFF CFF 7 – – – – –160 6,3 30,1 238 238 CFF CFF 7 – – – – –80 10,0 21,1 288 288 CFF CFF 10 336 336 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 499 499 CFF CFF 13 583 583 CFF CFF 13160 12,5 56,6 939 939 CFF CFF 13 1096 1096 CFF CFF 1380 10,0 21,1 738 738 CFF CFF 10 860 860 CFF CFF 10

20,0 109,7 139,7 120 12,5 40,9 1279 1279 CFF CFF 13 1492 1492 CFF CFF 13160 20,0 84,6 2406 2406 CFF CFF 20 2805 2805 CFF CFF 20100 8,0 22,6 118 118 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 204 204 CFF CFF 9 – – – – –200 8,0 47,7 384 384 CFF CFF 9 – – – – –100 12,5 33,0 288 288 CFF CFF 13 336 336 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 499 499 CFF CFF 13 583 583 CFF CFF 13200 12,5 72,3 939 939 CFF CFF 13 1096 1096 CFF CFF 13100 12,5 33,0 738 738 CFF CFF 13 860 860 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 1279 1279 CFF CFF 20 1492 1492 CFF CFF 20200 20,0 109,7 2406 2406 CFF CFF 20 2805 2805 CFF CFF 20120 8,0 27,6 184 184 CFF CFF 9 215 215 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 319 319 CFF CFF 9 373 373 CFF CFF 10250 8,0 60,3 702 702 CFF CFF 9 – – – – –120 12,5 40,9 472 472 CFF CFF 13 550 550 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 819 819 CFF CFF 13 955 955 CFF CFF 13250 12,5 91,9 1799 1799 CFF CFF 13 2098 2098 CFF CFF 13120 12,5 40,9 738 738 CFF CFF 13 860 860 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 1279 1279 CFF CFF 20 1492 1492 CFF CFF 20250 20,0 141,1 2811 2811 CFF CFF 20 3278 3278 CFF CFF 20

* C: Brace under compression; T: Brace in tension ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles65◦ < Θ ≤ 90◦

Chord stress ratioCompression: 0 < n ≤ 0,5

Failure modesCFF: Chord face failureCWF: Chord web failurePSF: Punching shear failureBF: Brace failure

66 VALLOUREC & MANNESMANN TUBES

Wel

ded

T jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 72 24.01.13 10:33

Page 74: Design Tools for Hollow Section Joints with MSH Sections in

67

Design tools for hollow section joints

Design resistances n : 0,75 Θ : 90◦ T / Y

b0

t0h0

Nc,1,Rd

Q

Nt,1,Rd

Q

b1 t1

h1

b1 t1

h1

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode size resistance mode sizeb0,h0 t0 m0 A0 b1,h1 t1 m1 Nc,1,Rd Nt,1,Rd C * T * a ** Nc,1,Rd Nt,1,Rd C * T * a **

mm mm kg/m cm2 mm mm kg/m kN kN mm kN kN mm40 5,0 5,3 17,2 17,2 CFF CFF 6 20,1 20,1 CFF CFF 7

5,0 14,7 18,7 60 5,0 8,4 52,4 52,4 CFF CFF 6 61,1 61,1 CFF CFF 780 5,0 11,6 120 120 CFF CFF 6 140 140 CFF CFF 740 6,3 6,3 44,2 44,2 CFF CFF 7 51,6 51,6 CFF CFF 8

100 8,0 22,6 28,8 60 8,0 12,5 134 134 CFF CFF 9 156 156 CFF CFF 1080 8,0 17,5 307 307 CFF CFF 9 359 359 CFF CFF 1040 6,3 6,3 108 108 CFF CFF 7 126 126 CFF CFF 8

12,5 33,0 42,1 60 8,0 12,5 327 327 CFF CFF 9 382 382 CFF CFF 1080 10,0 21,1 751 751 CFF CFF 10 876 876 CFF CFF 1060 6,3 10,3 27,4 27,4 CFF CFF 7 32,0 32,0 CFF CFF 8

6,3 28,1 35,8 90 6,3 16,2 83,2 83,2 CFF CFF 7 97,0 97,0 CFF CFF 8120 6,3 22,2 190 190 CFF CFF 7 222 222 CFF CFF 860 8,0 12,5 108 108 CFF CFF 9 126 126 CFF CFF 10

150 12,5 52,7 67,1 90 10,0 24,3 327 327 CFF CFF 10 382 382 CFF CFF 10120 12,5 40,9 751 751 CFF CFF 13 876 876 CFF CFF 1360 8,0 12,5 276 276 CFF CFF 9 322 322 CFF CFF 10

20,0 78,3 99,7 90 10,0 24,3 838 838 CFF CFF 10 977 977 CFF CFF 10120 12,5 40,9 1908 1908 BF BF 13 2225 2225 BF BF 1380 6,3 14,2 27,4 27,4 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 6,3 22,2 83,2 83,2 CFF CFF 7 – – – – –160 6,3 30,1 190 190 CFF CFF 7 – – – – –80 10,0 21,1 108 108 CFF CFF 10 126 126 CFF CFF 10

200 12,5 72,3 92,1 120 12,5 40,9 327 327 CFF CFF 13 382 382 CFF CFF 13160 12,5 56,6 751 751 CFF CFF 13 876 876 CFF CFF 1380 10,0 21,1 276 276 CFF CFF 10 322 322 CFF CFF 10

20,0 109,7 139,7 120 12,5 40,9 838 838 CFF CFF 13 977 977 CFF CFF 13160 20,0 84,6 1924 1924 CFF CFF 20 2244 2244 CFF CFF 20100 8,0 22,6 44,2 44,2 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 8,0 35,1 134 134 CFF CFF 9 – – – – –200 8,0 47,7 307 307 CFF CFF 9 – – – – –100 12,5 33,0 108 108 CFF CFF 13 126 126 CFF CFF 13

250 12,5 91,9 117,1 150 12,5 52,7 327 327 CFF CFF 13 382 382 CFF CFF 13200 12,5 72,3 751 751 CFF CFF 13 876 876 CFF CFF 13100 12,5 33,0 276 276 CFF CFF 13 322 322 CFF CFF 13

20,0 141,1 179,7 150 20,0 78,3 838 838 CFF CFF 20 977 977 CFF CFF 20200 20,0 109,7 1924 1924 CFF CFF 20 2244 2244 CFF CFF 20120 8,0 27,6 69,1 69,1 CFF CFF 9 80,6 80,6 CFF CFF 10

10,0 90,2 114,9 180 8,0 42,7 209 209 CFF CFF 9 244 244 CFF CFF 10250 8,0 60,3 576 576 CFF CFF 9 – – – – –120 12,5 40,9 177 177 CFF CFF 13 206 206 CFF CFF 13

300 16,0 140,5 179,0 180 12,5 64,4 536 536 CFF CFF 13 625 625 CFF CFF 13250 12,5 91,9 1475 1475 CFF CFF 13 1720 1720 CFF CFF 13120 12,5 40,9 276 276 CFF CFF 13 322 322 CFF CFF 13

20,0 172,5 219,7 180 20,0 97,1 838 838 CFF CFF 20 977 977 CFF CFF 20250 20,0 141,1 2305 2305 CFF CFF 20 2688 2688 CFF CFF 20

* C: Brace under compression; T: Brace in tension ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace angles65◦ < Θ ≤ 90◦

Chord stress ratioCompression: 0,5 < n ≤ 1

Failure modesCFF: Chord face failureCWF: Chord web failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 67

Wel

ded

T jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 73 24.01.13 10:33

Page 75: Design Tools for Hollow Section Joints with MSH Sections in

68

Design tools for hollow section joints

Design resistances n : 0 Θ : 90◦ T

b1 t1

h1

b1 t1

h1

t1

b1

h1h1 t1

b1

Q Q

b0

h0t0

b0

t0h0

Mip,1,Rd Mip,1,Rd Mop,1,Rd Mop,1,Rd

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode resistance modeb0 h0 t0 m0 A0 b1 h1 t1 m1 Mip,1,Rd Mop,1,Rd IPB * OPB * a ** Mip,1,Rd Mop,1,Rd IPB * OPB * a **

mm mm mm kg/m cm2 mm mm mm kg/m kNm kNm mm kNm kNm mm40 40 5,0 5,3 1,59 1,62 CFF CFF 6 1,86 1,89 CFF CFF 7

5,0 14,7 18,7 60 60 5,0 8,4 2,92 3,00 CFF CFF 6 3,41 3,50 CFF CFF 780 80 5,0 11,6 6,45 6,56 CFF CFF 6 7,53 7,65 CFF CFF 740 40 6,3 6,3 3,51 3,51 BF BF 7 4,10 4,10 BF BF 8

100 100 8,0 22,6 28,8 60 60 8,0 12,5 7,49 7,70 CFF CFF 9 8,73 8,98 CFF CFF 1080 80 8,0 17,5 16,5 16,8 CFF CFF 9 19,2 19,5 CFF CFF 1040 40 6,3 6,3 3,51 3,51 BF BF 7 4,10 4,10 BF BF 8

12,5 33,0 42,1 60 60 8,0 12,5 10,8 10,8 BF BF 9 12,6 12,6 BF BF 1080 80 10,0 21,1 24,6 24,6 BF BF 10 28,6 28,6 BF BF 1060 60 6,3 10,3 3,80 3,87 CFF CFF 7 4,43 4,51 CFF CFF 8

6,3 28,1 35,8 90 90 6,3 16,2 6,96 7,16 CFF CFF 7 8,12 8,35 CFF CFF 8120 120 6,3 22,2 15,3 15,6 CFF CFF 7 17,9 18,2 CFF CFF 860 60 8,0 12,5 10,8 10,8 BF BF 9 12,6 12,6 BF BF 10

150 150 12,5 52,7 67,1 90 90 10,0 24,3 27,4 28,2 CFF CFF 10 31,9 32,9 CFF CFF 10120 120 12,5 40,9 60,5 61,5 CFF CFF 13 70,6 71,7 CFF CFF 1360 60 8,0 12,5 10,8 10,8 BF BF 9 12,6 12,6 BF BF 10

20,0 78,3 99,7 90 90 10,0 24,3 32,4 32,4 BF BF 10 37,7 37,7 BF BF 10120 120 12,5 40,9 73,4 73,4 BF BF 13 85,6 85,6 BF BF 1380 80 6,3 14,2 5,07 5,16 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 120 6,3 22,2 9,29 9,55 CFF CFF 7 – – – – –160 160 6,3 30,1 20,5 20,8 CFF CFF 7 – – – – –80 80 10,0 21,1 19,9 20,3 CFF CFF 10 23,2 23,7 CFF CFF 10

200 200 12,5 72,3 92,1 120 120 12,5 40,9 36,5 37,6 CFF CFF 13 42,6 43,8 CFF CFF 13160 160 12,5 56,6 80,7 82,0 CFF CFF 13 94,1 95,6 CFF CFF 1380 80 10,0 21,1 24,6 24,6 BF BF 10 28,6 28,6 BF BF 10

20,0 109,7 139,7 120 120 12,5 40,9 73,4 73,4 BF BF 13 85,6 85,6 BF BF 13160 160 20,0 84,6 196 196 BF BF 20 229 229 BF BF 20100 100 8,0 22,6 10,2 10,4 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 150 8,0 35,1 18,7 19,2 CFF CFF 9 – – – – –200 200 8,0 47,7 41,3 42,0 CFF CFF 9 – – – – –100 100 12,5 33,0 24,9 25,4 CFF CFF 13 29,1 29,6 CFF CFF 13

250 250 12,5 91,9 117,1 150 150 12,5 52,7 45,7 47,0 CFF CFF 13 53,3 54,8 CFF CFF 13200 200 12,5 72,3 100 102 CFF CFF 13 117 119 CFF CFF 13100 100 12,5 33,0 48,0 48,0 BF BF 13 56,0 56,0 BF BF 13

20,0 141,1 179,7 150 150 20,0 78,3 117 120 CFF CFF 20 136 140 CFF CFF 20200 200 20,0 109,7 258 262 CFF CFF 20 301 306 CFF CFF 20120 120 8,0 27,6 19,1 19,5 CFF CFF 9 22,3 22,7 CFF CFF 10

10,0 90,2 114,9 180 180 8,0 42,7 35,1 36,1 CFF CFF 9 40,9 42,1 CFF CFF 10250 250 8,0 60,3 93,1 94,4 CFF CFF 9 – – – – –120 120 12,5 40,9 49,0 49,9 CFF CFF 13 57,2 58,2 CFF CFF 13

300 300 16,0 140,5 179,0 180 180 12,5 64,4 89,8 92,4 CFF CFF 13 104 107 CFF CFF 13250 250 12,5 91,9 238 241 CFF CFF 13 278 281 CFF CFF 13120 120 12,5 40,9 73,4 73,4 BF BF 13 85,6 85,6 BF BF 13

20,0 172,5 219,7 180 180 20,0 97,1 140 144 CFF CFF 20 163 168 CFF CFF 20250 250 20,0 141,1 372 377 CFF CFF 20 434 440 CFF CFF 20

* IPB: In-plane-bending; OPB: Out-of-plane-bending ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace anglesΘ = 90◦

Chord stress ratioTension: −1 ≤ n ≤ 0

Failure modesCFF: Chord face failureCWF: Chord web failureCDF: Chord distortional fail.BF: Brace failure

68 VALLOUREC & MANNESMANN TUBES

Wel

ded

T jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 74 24.01.13 10:33

Page 76: Design Tools for Hollow Section Joints with MSH Sections in

69

Design tools for hollow section joints

Design resistances n : 0,25 Θ : 90◦ T

b1 t1

h1

b1 t1

h1

t1

b1

h1h1 t1

b1

Q Q

b0

h0t0

b0

t0h0

Mip,1,Rd Mip,1,Rd Mop,1,Rd Mop,1,Rd

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode resistance modeb0 h0 t0 m0 A0 b1 h1 t1 m1 Mip,1,Rd Mop,1,Rd IPB * OPB * a ** Mip,1,Rd Mop,1,Rd IPB * OPB * a **

mm mm mm kg/m cm2 mm mm mm kg/m kNm kNm mm kNm kNm mm40 40 5,0 5,3 1,27 1,30 CFF CFF 6 1,48 1,51 CFF CFF 7

5,0 14,7 18,7 60 60 5,0 8,4 2,82 2,90 CFF CFF 6 3,29 3,39 CFF CFF 780 80 5,0 11,6 6,45 6,56 CFF CFF 6 7,53 7,65 CFF CFF 740 40 6,3 6,3 3,27 3,33 CFF CFF 7 3,81 3,88 CFF CFF 8

100 100 8,0 22,6 28,8 60 60 8,0 12,5 7,24 7,44 CFF CFF 9 8,44 8,68 CFF CFF 1080 80 8,0 17,5 16,5 16,8 CFF CFF 9 19,2 19,5 CFF CFF 1040 40 6,3 6,3 3,51 3,51 BF BF 7 4,10 4,10 BF BF 8

12,5 33,0 42,1 60 60 8,0 12,5 10,8 10,8 BF BF 9 12,6 12,6 BF BF 1080 80 10,0 21,1 24,6 24,6 BF BF 10 28,6 28,6 BF BF 1060 60 6,3 10,3 3,04 3,09 CFF CFF 7 3,54 3,61 CFF CFF 8

6,3 28,1 35,8 90 90 6,3 16,2 6,73 6,92 CFF CFF 7 7,85 8,07 CFF CFF 8120 120 6,3 22,2 15,3 15,6 CFF CFF 7 17,9 18,2 CFF CFF 860 60 8,0 12,5 10,8 10,8 BF BF 9 12,6 12,6 BF BF 10

150 150 12,5 52,7 67,1 90 90 10,0 24,3 26,5 27,2 CFF CFF 10 30,9 31,8 CFF CFF 10120 120 12,5 40,9 60,5 61,5 CFF CFF 13 70,6 71,7 CFF CFF 1360 60 8,0 12,5 10,8 10,8 BF BF 9 12,6 12,6 BF BF 10

20,0 78,3 99,7 90 90 10,0 24,3 32,4 32,4 BF BF 10 37,7 37,7 BF BF 10120 120 12,5 40,9 73,4 73,4 BF BF 13 85,6 85,6 BF BF 1380 80 6,3 14,2 4,05 4,13 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 120 6,3 22,2 8,98 9,23 CFF CFF 7 – – – – –160 160 6,3 30,1 20,5 20,8 CFF CFF 7 – – – – –80 80 10,0 21,1 15,9 16,2 CFF CFF 10 18,6 18,9 CFF CFF 10

200 200 12,5 72,3 92,1 120 120 12,5 40,9 35,3 36,3 CFF CFF 13 41,2 42,4 CFF CFF 13160 160 12,5 56,6 80,7 82,0 CFF CFF 13 94,1 95,6 CFF CFF 1380 80 10,0 21,1 24,6 24,6 BF BF 10 28,6 28,6 BF BF 10

20,0 109,7 139,7 120 120 12,5 40,9 73,4 73,4 BF BF 13 85,6 85,6 BF BF 13160 160 20,0 84,6 196 196 BF BF 20 229 229 BF BF 20100 100 8,0 22,6 8,17 8,32 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 150 8,0 35,1 18,1 18,6 CFF CFF 9 – – – – –200 200 8,0 47,7 41,3 42,0 CFF CFF 9 – – – – –100 100 12,5 33,0 19,9 20,3 CFF CFF 13 23,2 23,7 CFF CFF 13

250 250 12,5 91,9 117,1 150 150 12,5 52,7 44,2 45,4 CFF CFF 13 51,5 53,0 CFF CFF 13200 200 12,5 72,3 100 102 CFF CFF 13 117 119 CFF CFF 13100 100 12,5 33,0 48,0 48,0 BF BF 13 56,0 56,0 BF BF 13

20,0 141,1 179,7 150 150 20,0 78,3 113 116 CFF CFF 20 131 135 CFF CFF 20200 200 20,0 109,7 258 262 CFF CFF 20 301 306 CFF CFF 20120 120 8,0 27,6 15,3 15,6 CFF CFF 9 17,8 18,2 CFF CFF 10

10,0 90,2 114,9 180 180 8,0 42,7 33,9 34,9 CFF CFF 9 39,5 40,7 CFF CFF 10250 250 8,0 60,3 93,1 94,4 CFF CFF 9 – – – – –120 120 12,5 40,9 39,2 39,9 CFF CFF 13 45,7 46,6 CFF CFF 13

300 300 16,0 140,5 179,0 180 180 12,5 64,4 86,9 89,3 CFF CFF 13 101 104 CFF CFF 13250 250 12,5 91,9 238 241 CFF CFF 13 278 281 CFF CFF 13120 120 12,5 40,9 61,3 62,4 CFF CFF 13 71,5 72,8 CFF CFF 13

20,0 172,5 219,7 180 180 20,0 97,1 135 139 CFF CFF 20 158 162 CFF CFF 20250 250 20,0 141,1 372 377 CFF CFF 20 434 440 CFF CFF 20

* IPB: In-plane-bending; OPB: Out-of-plane-bending ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace anglesΘ = 90◦

Chord stress ratioCompression: 0 < n ≤ 0,5

Failure modesCFF: Chord face failureCWF: Chord web failureCDF: Chord distortional fail.BF: Brace failure

Edition December 2011 69

Wel

ded

T jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 75 24.01.13 10:33

Page 77: Design Tools for Hollow Section Joints with MSH Sections in

70

Design tools for hollow section joints

Design resistances n : 0,75 Θ : 90◦ T

b1 t1

h1

b1 t1

h1

t1

b1

h1h1 t1

b1

Q Q

b0

h0t0

b0

t0h0

Mip,1,Rd Mip,1,Rd Mop,1,Rd Mop,1,Rd

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode resistance modeb0 h0 t0 m0 A0 b1 h1 t1 m1 Mip,1,Rd Mop,1,Rd IPB * OPB * a ** Mip,1,Rd Mop,1,Rd IPB * OPB * a **

mm mm mm kg/m cm2 mm mm mm kg/m kNm kNm mm kNm kNm mm40 40 5,0 5,3 0,47 0,48 CFF CFF 6 0,55 0,56 CFF CFF 7

5,0 14,7 18,7 60 60 5,0 8,4 1,85 1,90 CFF CFF 6 2,16 2,22 CFF CFF 780 80 5,0 11,6 5,16 5,25 CFF CFF 6 6,02 6,12 CFF CFF 740 40 6,3 6,3 1,22 1,24 CFF CFF 7 1,43 1,45 CFF CFF 8

100 100 8,0 22,6 28,8 60 60 8,0 12,5 4,74 4,87 CFF CFF 9 5,53 5,69 CFF CFF 1080 80 8,0 17,5 13,2 13,4 CFF CFF 9 15,4 15,6 CFF CFF 1040 40 6,3 6,3 2,99 3,05 CFF CFF 7 3,49 3,55 CFF CFF 8

12,5 33,0 42,1 60 60 8,0 12,5 10,8 10,8 BF BF 9 12,6 12,6 BF BF 1080 80 10,0 21,1 24,6 24,6 BF BF 10 28,6 28,6 BF BF 1060 60 6,3 10,3 1,14 1,16 CFF CFF 7 1,33 1,35 CFF CFF 8

6,3 28,1 35,8 90 90 6,3 16,2 4,41 4,53 CFF CFF 7 5,14 5,29 CFF CFF 8120 120 6,3 22,2 12,3 12,5 CFF CFF 7 14,3 14,5 CFF CFF 860 60 8,0 12,5 4,49 4,57 CFF CFF 9 5,23 5,33 CFF CFF 10

150 150 12,5 52,7 67,1 90 90 10,0 24,3 17,3 17,8 CFF CFF 10 20,2 20,8 CFF CFF 10120 120 12,5 40,9 48,4 49,2 CFF CFF 13 56,4 57,4 CFF CFF 1360 60 8,0 12,5 10,8 10,8 BF BF 9 12,6 12,6 BF BF 10

20,0 78,3 99,7 90 90 10,0 24,3 32,4 32,4 BF BF 10 37,7 37,7 BF BF 10120 120 12,5 40,9 73,4 73,4 BF BF 13 85,6 85,6 BF BF 1380 80 6,3 14,2 1,52 1,54 CFF CFF 7 – – – – –

6,3 38,0 48,4 120 120 6,3 22,2 5,88 6,05 CFF CFF 7 – – – – –160 160 6,3 30,1 16,4 16,6 CFF CFF 7 – – – – –80 80 10,0 21,1 5,98 6,10 CFF CFF 10 6,98 7,11 CFF CFF 10

200 200 12,5 72,3 92,1 120 120 12,5 40,9 23,1 23,8 CFF CFF 13 27,0 27,7 CFF CFF 13160 160 12,5 56,6 64,5 65,6 CFF CFF 13 75,3 76,5 CFF CFF 1380 80 10,0 21,1 15,3 15,6 CFF CFF 10 17,8 18,2 CFF CFF 10

20,0 109,7 139,7 120 120 12,5 40,9 59,3 60,9 CFF CFF 13 69,1 71,1 CFF CFF 13160 160 20,0 84,6 165 168 CFF CFF 20 192 195 CFF CFF 20100 100 8,0 22,6 3,06 3,12 CFF CFF 9 – – – – –

8,0 60,3 76,8 150 150 8,0 35,1 11,8 12,1 CFF CFF 9 – – – – –200 200 8,0 47,7 33,0 33,6 CFF CFF 9 – – – – –100 100 12,5 33,0 7,48 7,62 CFF CFF 13 8,73 8,89 CFF CFF 13

250 250 12,5 91,9 117,1 150 150 12,5 52,7 28,9 29,7 CFF CFF 13 33,7 34,7 CFF CFF 13200 200 12,5 72,3 80,7 82,0 CFF CFF 13 94,1 95,6 CFF CFF 13100 100 12,5 33,0 19,1 19,5 CFF CFF 13 22,3 22,7 CFF CFF 13

20,0 141,1 179,7 150 150 20,0 78,3 74,1 76,2 CFF CFF 20 86,4 88,9 CFF CFF 20200 200 20,0 109,7 206 210 CFF CFF 20 241 244 CFF CFF 20120 120 8,0 27,6 5,74 5,85 CFF CFF 9 6,70 6,82 CFF CFF 10

10,0 90,2 114,9 180 180 8,0 42,7 22,2 22,8 CFF CFF 9 25,9 26,6 CFF CFF 10250 250 8,0 60,3 76,4 77,4 CFF CFF 9 – – – – –120 120 12,5 40,9 14,7 14,9 CFF CFF 13 17,1 17,4 CFF CFF 13

300 300 16,0 140,5 179,0 180 180 12,5 64,4 56,9 58,5 CFF CFF 13 66,3 68,2 CFF CFF 13250 250 12,5 91,9 195 198 CFF CFF 13 228 231 CFF CFF 13120 120 12,5 40,9 22,9 23,4 CFF CFF 13 26,8 27,3 CFF CFF 13

20,0 172,5 219,7 180 180 20,0 97,1 88,9 91,4 CFF CFF 20 103 106 CFF CFF 20250 250 20,0 141,1 305 309 CFF CFF 20 356 361 CFF CFF 20

* IPB: In-plane-bending; OPB: Out-of-plane-bending ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace anglesΘ = 90◦

Chord stress ratioCompression: 0,5 < n ≤ 1

Failure modesCFF: Chord face failureCWF: Chord web failureCDF: Chord distortional fail.BF: Brace failure

70 VALLOUREC & MANNESMANN TUBES

Wel

ded

T jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 76 24.01.13 10:33

Page 78: Design Tools for Hollow Section Joints with MSH Sections in

71

Design tools for hollow section joints

Design resistances n : 0 Θ : 90◦ T

b1 t1

h1

b1 t1

h1

t1

b1

h1h1 t1

b1

Q Q

b0

h0t0

b0

t0h0

Mip,1,Rd Mip,1,Rd Mop,1,Rd Mop,1,Rd

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode resistance modeb0 h0 t0 m0 A0 b1 h1 t1 m1 Mip,1,Rd Mop,1,Rd IPB * OPB * a ** Mip,1,Rd Mop,1,Rd IPB * OPB * a **

mm mm mm kg/m cm2 mm mm mm kg/m kNm kNm mm kNm kNm mm60 40 5,0 6,9 1,74 2,23 CFF CFF 6 2,02 2,60 CFF CFF 7

5,0 18,6 23,7 90 50 5,0 10,0 2,43 3,80 CFF CFF 6 2,84 4,43 CFF CFF 7100 60 5,0 11,6 3,14 4,76 CFF CFF 6 3,67 5,56 CFF CFF 760 40 5,0 6,9 3,77 5,71 BF CFF 6 4,39 6,66 BF CFF 7

150 100 8,0 28,9 36,8 90 50 8,0 15,0 6,24 9,73 CFF CFF 9 7,28 11,3 CFF CFF 10100 60 8,0 17,5 8,06 12,2 CFF CFF 9 9,40 14,2 CFF CFF 1060 40 5,0 6,9 4,31 5,82 BF BF 6 5,03 6,78 BF BF 7

12,5 42,8 54,6 90 50 8,0 15,0 11,6 18,2 BF BF 9 13,6 21,2 BF BF 10100 60 8,0 17,5 16,7 24,4 BF BF 9 19,4 28,4 BF BF 1080 40 6,3 10,3 2,40 4,50 BF CFF 7 – – – – –

6,3 28,1 35,8 120 60 6,3 16,2 4,71 7,86 CFF CFF 7 – – – – –180 100 6,3 26,1 19,3 30,3 CWF CDF 7 – – – – –80 40 6,3 10,3 6,53 11,0 BF BF 7 7,61 12,8 BF BF 8

200 100 12,5 52,7 67,1 120 60 10,0 24,3 18,1 30,9 BF CFF 10 21,2 36,1 BF CFF 10180 100 12,5 48,7 52,9 87,9 BF CDF 13 61,6 102 BF CDF 1380 40 6,3 10,3 6,53 11,0 BF BF 7 7,61 12,8 BF BF 8

20,0 78,3 99,7 120 60 10,0 24,3 22,8 38,7 BF BF 10 26,6 45,1 BF BF 10180 100 16,0 60,1 93,5 145 BF BF 16 109 170 BF BF 1680 40 6,3 10,3 3,28 7,21 BF CFF 7 3,83 8,41 BF CFF 8

8,0 40,2 51,2 120 60 6,3 16,2 7,36 11,9 CFF CFF 7 8,58 13,9 CFF CFF 8180 100 6,3 26,1 18,8 31,5 CFF CFF 7 21,9 36,8 CFF CFF 880 40 6,3 10,3 6,53 11,0 BF BF 7 7,61 12,8 BF BF 8

220 120 12,5 60,5 77,1 120 60 10,0 24,3 16,6 29,1 BF CFF 10 19,4 34,0 BF CFF 10180 100 12,5 48,7 45,9 77,0 CFF CFF 13 53,6 89,9 CFF CFF 1380 40 6,3 10,3 6,53 11,0 BF BF 7 7,61 12,8 BF BF 8

20,0 90,8 115,7 120 60 10,0 24,3 22,8 38,7 BF BF 10 26,6 45,1 BF BF 10180 100 16,0 60,1 93,5 145 BF BF 16 109 170 BF BF 1640 60 5,0 6,9 2,35 1,83 CFF CFF 6 2,74 2,13 CFF CFF 7

5,0 18,6 23,7 50 90 5,0 10,0 4,14 2,73 CFF CFF 6 4,82 3,18 CFF CFF 760 100 5,0 11,6 5,46 3,71 CFF CFF 6 6,37 4,33 CFF CFF 740 60 5,0 6,9 5,82 4,31 BF BF 6 6,78 5,03 BF BF 7

100 150 8,0 28,9 36,8 50 90 8,0 15,0 10,6 7,00 CFF CFF 9 12,3 8,16 CFF CFF 1060 100 8,0 17,5 14,0 9,52 CFF CFF 9 16,3 11,1 CFF CFF 1040 60 5,0 6,9 5,82 4,31 BF BF 6 6,78 5,03 BF BF 7

12,5 42,8 54,6 50 90 8,0 15,0 18,2 11,6 BF BF 9 21,2 13,6 BF BF 1060 100 8,0 17,5 24,4 16,7 BF BF 9 28,4 19,4 BF BF 1040 80 6,3 10,3 7,63 4,96 CFF CFF 7 8,90 5,79 CFF CFF 8

8,0 40,2 51,2 60 120 6,3 16,2 14,5 8,81 CFF CFF 7 16,9 10,2 CFF CFF 8100 180 6,3 26,1 58,2 34,1 CFF CFF 7 67,8 39,8 CFF CFF 840 80 6,3 10,3 11,0 6,53 BF BF 7 12,8 7,61 BF BF 8

120 220 12,5 60,5 77,1 60 120 10,0 24,3 35,4 21,5 CFF CFF 10 41,3 25,0 CFF CFF 10100 180 12,5 48,7 121 79,1 BF BF 13 142 92,2 BF BF 1340 80 6,3 10,3 11,0 6,53 BF BF 7 12,8 7,61 BF BF 8

20,0 90,8 115,7 60 120 10,0 24,3 38,7 22,8 BF BF 10 45,1 26,6 BF BF 10100 180 16,0 60,1 145 93,5 BF BF 16 170 109 BF BF 16

* IPB: In-plane-bending; OPB: Out-of-plane-bending ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace anglesΘ = 90◦

Chord stress ratioTension: −1 ≤ n ≤ 0

Failure modesCFF: Chord face failureCWF: Chord web failureCDF: Chord distortional fail.BF: Brace failure

Edition December 2011 71

Wel

ded

T jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 77 24.01.13 10:33

Page 79: Design Tools for Hollow Section Joints with MSH Sections in

72

Design tools for hollow section joints

Design resistances n : 0,25 Θ : 90◦ T

b1 t1

h1

b1 t1

h1

t1

b1

h1h1 t1

b1

Q Q

b0

h0t0

b0

t0h0

Mip,1,Rd Mip,1,Rd Mop,1,Rd Mop,1,Rd

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode resistance modeb0 h0 t0 m0 A0 b1 h1 t1 m1 Mip,1,Rd Mop,1,Rd IPB * OPB * a ** Mip,1,Rd Mop,1,Rd IPB * OPB * a **

mm mm mm kg/m cm2 mm mm mm kg/m kNm kNm mm kNm kNm mm60 40 5,0 6,9 1,39 1,78 CFF CFF 6 1,62 2,08 CFF CFF 7

5,0 18,6 23,7 90 50 5,0 10,0 2,35 3,67 CFF CFF 6 2,74 4,28 CFF CFF 7100 60 5,0 11,6 3,14 4,76 CFF CFF 6 3,67 5,56 CFF CFF 760 40 5,0 6,9 3,56 4,57 CFF CFF 6 4,15 5,33 CFF CFF 7

150 100 8,0 28,9 36,8 90 50 8,0 15,0 6,03 9,41 CFF CFF 9 7,03 10,9 CFF CFF 10100 60 8,0 17,5 8,06 12,2 CFF CFF 9 9,40 14,2 CFF CFF 1060 40 5,0 6,9 4,31 5,82 BF BF 6 5,03 6,78 BF BF 7

12,5 42,8 54,6 90 50 8,0 15,0 11,6 18,2 BF BF 9 13,6 21,2 BF BF 10100 60 8,0 17,5 16,7 24,4 BF BF 9 19,4 28,4 BF BF 1080 40 6,3 10,3 2,40 3,60 BF CFF 7 – – – – –

6,3 28,1 35,8 120 60 6,3 16,2 4,55 7,60 CFF CFF 7 – – – – –180 100 6,3 26,1 19,3 30,3 CWF CDF 7 – – – – –80 40 6,3 10,3 6,53 11,0 BF BF 7 7,61 12,8 BF BF 8

200 100 12,5 52,7 67,1 120 60 10,0 24,3 17,9 29,9 CFF CFF 10 20,9 34,9 CFF CFF 10180 100 12,5 48,7 52,9 87,9 BF CDF 13 61,6 102 BF CDF 1380 40 6,3 10,3 6,53 11,0 BF BF 7 7,61 12,8 BF BF 8

20,0 78,3 99,7 120 60 10,0 24,3 22,8 38,7 BF BF 10 26,6 45,1 BF BF 10180 100 16,0 60,1 93,5 145 BF BF 16 109 170 BF BF 1680 40 6,3 10,3 3,28 5,41 BF CFF 7 3,83 6,30 BF CFF 8

8,0 40,2 51,2 120 60 6,3 16,2 6,87 11,1 CFF CFF 7 8,01 13,0 CFF CFF 8180 100 6,3 26,1 18,8 31,5 CFF CFF 7 21,9 36,8 CFF CFF 880 40 6,3 10,3 6,53 11,0 BF BF 7 7,61 12,8 BF BF 8

220 120 12,5 60,5 77,1 120 60 10,0 24,3 16,6 27,2 BF CFF 10 19,4 31,7 BF CFF 10180 100 12,5 48,7 45,9 77,0 CFF CFF 13 53,6 89,9 CFF CFF 1380 40 6,3 10,3 6,53 11,0 BF BF 7 7,61 12,8 BF BF 8

20,0 90,8 115,7 120 60 10,0 24,3 22,8 38,7 BF BF 10 26,6 45,1 BF BF 10180 100 16,0 60,1 93,5 145 BF BF 16 109 170 BF BF 1640 60 5,0 6,9 1,88 1,46 CFF CFF 6 2,19 1,71 CFF CFF 7

5,0 18,6 23,7 50 90 5,0 10,0 3,72 2,46 CFF CFF 6 4,34 2,87 CFF CFF 760 100 5,0 11,6 5,28 3,59 CFF CFF 6 6,16 4,19 CFF CFF 740 60 5,0 6,9 4,81 3,75 CFF CFF 6 5,61 4,37 CFF CFF 7

100 150 8,0 28,9 36,8 50 90 8,0 15,0 9,54 6,30 CFF CFF 9 11,1 7,34 CFF CFF 1060 100 8,0 17,5 13,5 9,20 CFF CFF 9 15,7 10,7 CFF CFF 1040 60 5,0 6,9 5,82 4,31 BF BF 6 6,78 5,03 BF BF 7

12,5 42,8 54,6 50 90 8,0 15,0 18,2 11,6 BF BF 9 21,2 13,6 BF BF 1060 100 8,0 17,5 24,4 16,7 BF BF 9 28,4 19,4 BF BF 1040 80 6,3 10,3 5,34 3,47 CFF CFF 7 6,23 4,05 CFF CFF 8

8,0 40,2 51,2 60 120 6,3 16,2 13,0 7,93 CFF CFF 7 15,2 9,24 CFF CFF 8100 180 6,3 26,1 58,2 34,1 CFF CFF 7 67,8 39,8 CFF CFF 840 80 6,3 10,3 11,0 6,53 BF BF 7 12,8 7,61 BF BF 8

120 220 12,5 60,5 77,1 60 120 10,0 24,3 31,9 19,3 CFF CFF 10 37,2 22,5 CFF CFF 10100 180 12,5 48,7 121 79,1 BF BF 13 142 92,2 BF BF 1340 80 6,3 10,3 11,0 6,53 BF BF 7 12,8 7,61 BF BF 8

20,0 90,8 115,7 60 120 10,0 24,3 38,7 22,8 BF BF 10 45,1 26,6 BF BF 10100 180 16,0 60,1 145 93,5 BF BF 16 170 109 BF BF 16

* IPB: In-plane-bending; OPB: Out-of-plane-bending ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace anglesΘ = 90◦

Chord stress ratioCompression: 0 < n ≤ 0,5

Failure modesCFF: Chord face failureCWF: Chord web failureCDF: Chord distortional fail.BF: Brace failure

72 VALLOUREC & MANNESMANN TUBES

Wel

ded

T jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 78 24.01.13 10:33

Page 80: Design Tools for Hollow Section Joints with MSH Sections in

73

Design tools for hollow section joints

Design resistances n : 0,75 Θ : 90◦ T

b1 t1

h1

b1 t1

h1

t1

b1

h1h1 t1

b1

Q Q

b0

h0t0

b0

t0h0

Mip,1,Rd Mip,1,Rd Mop,1,Rd Mop,1,Rd

Hollow sections acc. to EN 10210 S 355 H S 460 NHChord Brace Design Failure Weld Design Failure Weld

dimensions dimensions resistance mode resistance modeb0 h0 t0 m0 A0 b1 h1 t1 m1 Mip,1,Rd Mop,1,Rd IPB * OPB * a ** Mip,1,Rd Mop,1,Rd IPB * OPB * a **

mm mm mm kg/m cm2 mm mm mm kg/m kNm kNm mm kNm kNm mm60 40 5,0 6,9 0,52 0,66 CFF CFF 6 0,60 0,78 CFF CFF 7

5,0 18,6 23,7 90 50 5,0 10,0 1,54 2,40 CFF CFF 6 1,80 2,80 CFF CFF 7100 60 5,0 11,6 2,20 3,33 CFF CFF 6 2,57 3,89 CFF CFF 760 40 5,0 6,9 1,33 1,71 CFF CFF 6 1,55 1,99 CFF CFF 7

150 100 8,0 28,9 36,8 90 50 8,0 15,0 3,95 6,16 CFF CFF 9 4,61 7,19 CFF CFF 10100 60 8,0 17,5 5,64 8,54 CFF CFF 9 6,58 9,96 CFF CFF 1060 40 5,0 6,9 3,26 4,18 CFF CFF 6 3,80 4,88 CFF CFF 7

12,5 42,8 54,6 90 50 8,0 15,0 9,65 15,0 CFF CFF 9 11,2 17,5 CFF CFF 10100 60 8,0 17,5 13,7 20,8 CFF CFF 9 16,0 24,3 CFF CFF 1080 40 6,3 10,3 0,91 1,35 CFF CFF 7 – – – – –

6,3 28,1 35,8 120 60 6,3 16,2 2,98 4,98 CFF CFF 7 – – – – –180 100 6,3 26,1 19,3 30,3 CWF CDF 7 – – – – –80 40 6,3 10,3 3,60 5,32 CFF CFF 7 4,20 6,20 CFF CFF 8

200 100 12,5 52,7 67,1 120 60 10,0 24,3 11,7 19,6 CFF CFF 10 13,7 22,8 CFF CFF 10180 100 12,5 48,7 52,9 87,9 BF CDF 13 61,6 102 BF CDF 1380 40 6,3 10,3 6,53 11,0 BF BF 7 7,61 12,8 BF BF 8

20,0 78,3 99,7 120 60 10,0 24,3 22,8 38,7 BF BF 10 26,6 45,1 BF BF 10180 100 16,0 60,1 93,5 145 BF BF 16 109 170 BF BF 1680 40 6,3 10,3 1,00 1,44 CFF CFF 7 1,17 1,68 CFF CFF 8

8,0 40,2 51,2 120 60 6,3 16,2 4,17 6,76 CFF CFF 7 4,86 7,89 CFF CFF 8180 100 6,3 26,1 15,2 25,6 CFF CFF 7 17,8 29,8 CFF CFF 880 40 6,3 10,3 2,45 3,52 CFF CFF 7 2,86 4,10 CFF CFF 8

220 120 12,5 60,5 77,1 120 60 10,0 24,3 10,1 16,5 CFF CFF 10 11,8 19,2 CFF CFF 10180 100 12,5 48,7 37,2 62,5 CFF CFF 13 43,4 72,9 CFF CFF 1380 40 6,3 10,3 6,29 9,01 CFF CFF 7 7,34 10,5 CFF CFF 8

20,0 90,8 115,7 120 60 10,0 24,3 22,8 38,7 BF BF 10 26,6 45,1 BF BF 10180 100 16,0 60,1 93,5 145 BF BF 16 109 170 BF BF 1640 60 5,0 6,9 0,70 0,55 CFF CFF 6 0,82 0,64 CFF CFF 7

5,0 18,6 23,7 50 90 5,0 10,0 2,07 1,36 CFF CFF 6 2,41 1,59 CFF CFF 760 100 5,0 11,6 3,46 2,35 CFF CFF 6 4,03 2,74 CFF CFF 740 60 5,0 6,9 1,80 1,40 CFF CFF 6 2,10 1,64 CFF CFF 7

100 150 8,0 28,9 36,8 50 90 8,0 15,0 5,30 3,50 CFF CFF 9 6,18 4,08 CFF CFF 1060 100 8,0 17,5 8,86 6,03 CFF CFF 9 10,3 7,03 CFF CFF 1040 60 5,0 6,9 4,40 3,43 CFF CFF 6 5,14 4,00 CFF CFF 7

12,5 42,8 54,6 50 90 8,0 15,0 12,9 8,54 CFF CFF 9 15,0 9,96 CFF CFF 1060 100 8,0 17,5 21,6 14,7 CFF CFF 9 25,2 17,1 CFF CFF 1040 80 6,3 10,3 0,76 0,49 CFF CFF 7 0,89 0,57 CFF CFF 8

8,0 40,2 51,2 60 120 6,3 16,2 7,26 4,40 CFF CFF 7 8,47 5,13 CFF CFF 8100 180 6,3 26,1 47,7 28,0 CFF CFF 7 55,6 32,6 CFF CFF 840 80 6,3 10,3 1,86 1,21 CFF CFF 7 2,17 1,41 CFF CFF 8

120 220 12,5 60,5 77,1 60 120 10,0 24,3 17,7 10,7 CFF CFF 10 20,6 12,5 CFF CFF 10100 180 12,5 48,7 116 68,3 CFF CFF 13 135 79,7 CFF CFF 1340 80 6,3 10,3 4,77 3,10 CFF CFF 7 5,56 3,61 CFF CFF 8

20,0 90,8 115,7 60 120 10,0 24,3 38,7 22,8 BF BF 10 45,1 26,6 BF BF 10100 180 16,0 60,1 145 93,5 BF BF 16 170 109 BF BF 16

* IPB: In-plane-bending; OPB: Out-of-plane-bending ** t1 ≤ 8 mm fillet welds, otherwise butt welds

Brace anglesΘ = 90◦

Chord stress ratioCompression: 0,5 < n ≤ 1

Failure modesCFF: Chord face failureCWF: Chord web failureCDF: Chord distortional fail.BF: Brace failure

Edition December 2011 73

Wel

ded

T jo

ints

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 79 24.01.13 10:33

Page 81: Design Tools for Hollow Section Joints with MSH Sections in

74

Design tools for hollow section joints

Design resistances n : 0 Θ : 90◦ T

N1,Rd

b0

t0h0

t1N1,Rd

t1

h1

t1

h1

Q Q

Hollow sections acc. to EN 10210 S 355 H* – S 355** S 460 NH* – S 355**

Chord Plate Design Failure Weld Design Failure Welddimensions dimensions resistance mode size resistance mode size

b0,h0 t0 m0 A0 h1 t1 m1 N1,Rd a N1,Rd amm mm kg/m cm2 mm mm kg/m kN mm kN mm

100 8,0 6,3 51,8 CFF 5 60,4 CFF 55,0 14,7 18,7 120 8,0 7,5 55,3 CFF 5 64,5 CFF 5

150 10,0 11,8 60,3 CFF 6 70,3 CFF 6100 8,0 6,3 132 CFF 5 154 CFF 5

100 8,0 22,6 28,8 120 8,0 7,5 141 CFF 5 165 CFF 5150 10,0 11,8 154 CFF 6 180 CFF 6100 8,0 6,3 284 BF 5 255 BF 5

12,5 33,0 42,1 120 10,0 9,4 343 CFF 6 383 BF 6150 12,0 14,1 374 CFF 7 436 CFF 7100 8,0 6,3 73,6 CFF 5 85,8 CFF 5

6,3 28,1 35,8 120 8,0 7,5 77,3 CFF 5 90,2 CFF 5150 10,0 11,8 82,6 CFF 6 96,3 CFF 6100 10,0 7,9 288 CFF 6 319 BF 6

150 12,5 52,7 67,1 120 12,0 11,3 301 CFF 7 351 CFF 7150 15,0 17,7 321 CFF 9 374 CFF 9100 15,0 11,8 532 BF 9 479 BF 9

20,0 78,3 99,7 120 20,0 18,8 755 CFF 12 766 BF 12150 25,0 29,4 802 CFF 15 935 CFF 15100 8,0 6,3 – – – – – –

6,3 38,0 48,4 150 10,0 11,8 – – – – – –200 12,0 18,8 – – – – – –100 10,0 7,8 271 CFF 6 316 CFF 6

200 12,5 72,3 92,1 150 15,0 17,7 296 CFF 9 345 CFF 9200 20,0 31,4 321 CFF 12 374 CFF 12100 15,0 11,8 532 BF 9 479 BF 9

20,0 109,7 139,7 150 20,0 23,6 751 CFF 12 876 CFF 12200 25,0 39,2 815 CFF 15 950 CFF 15150 8,0 9,4 – – – – – –

8,0 60,3 76,8 200 10,0 15,7 – – – – – –250 12,0 23,6 – – – – – –150 10,0 11,8 283 CFF 6 331 CFF 6

250 12,5 91,9 117,1 200 15,0 23,6 303 CFF 9 354 CFF 9250 20,0 39,2 323 CFF 12 377 CFF 12150 15,0 17,7 721 CFF 9 718 BF 9

20,0 141,1 179,7 200 20,0 31,4 772 CFF 12 900 CFF 12250 25,0 49,1 822 CFF 15 959 CFF 15100 10,0 7,8 163 CFF 6 190 CFF 6

10,0 90,2 114,9 200 15,0 23,6 185 CFF 9 216 CFF 9300 20,0 47,1 208 CFF 12 242 CFF 12100 10,0 7,8 354 BF 6 319 BF 6

300 16,0 140,5 179,0 200 15,0 23,6 475 CFF 9 554 CFF 9300 20,0 47,1 532 CFF 12 621 CFF 12100 15,0 11,8 532 BF 9 479 BF 9

20,0 172,5 219,7 200 20,0 31,4 738 CFF 12 860 CFF 12300 25,0 58,9 827 CFF 15 965 CFF 15

* Steel grade of chord ** Steel grade of longitudinal plate

AngleΘ = 90◦

Chord stress ratioTension: −1 ≤ n ≤ 0

Failure modesCFF: Chord face failureBF: Brace failure

74 VALLOUREC & MANNESMANN TUBES

guss

et p

late

s to

RH

S c

hord

s

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 80 24.01.13 10:33

Page 82: Design Tools for Hollow Section Joints with MSH Sections in

75

Design tools for hollow section joints

Design resistances n : 0,25 Θ : 90◦ T

N1,Rd

b0

t0h0

t1N1,Rd

t1

h1

t1

h1

Q Q

Hollow sections acc. to EN 10210 S 355 H* – S 355** S 460 NH* – S 355**

Chord Plate Design Failure Weld Design Failure Welddimensions dimensions resistance mode size resistance mode size

b0,h0 t0 m0 A0 h1 t1 m1 N1,Rd a N1,Rd amm mm kg/m cm2 mm mm kg/m kN mm kN mm

100 8,0 6,3 33,6 CFF 5 39,2 CFF 55,0 14,7 18,7 120 8,0 7,5 35,9 CFF 5 41,9 CFF 5

150 10,0 11,8 39,1 CFF 6 45,7 CFF 6100 8,0 6,3 86,1 CFF 5 100 CFF 5

100 8,0 22,6 28,8 120 8,0 7,5 92,1 CFF 5 107 CFF 5150 10,0 11,8 100 CFF 6 117 CFF 6100 8,0 6,3 210 CFF 5 245 CFF 5

12,5 33,0 42,1 120 10,0 9,4 223 CFF 6 260 CFF 6150 12,0 14,1 243 CFF 7 283 CFF 7100 8,0 6,3 47,8 CFF 5 55,8 CFF 5

6,3 28,1 35,8 120 8,0 7,5 50,2 CFF 5 58,6 CFF 5150 10,0 11,8 53,7 CFF 6 62,6 CFF 6100 10,0 7,9 187 CFF 6 218 CFF 6

150 12,5 52,7 67,1 120 12,0 11,3 196 CFF 7 228 CFF 7150 15,0 17,7 208 CFF 9 243 CFF 9100 15,0 11,8 473 CFF 9 479 BF 9

20,0 78,3 99,7 120 20,0 18,8 491 CFF 12 573 CFF 12150 25,0 29,4 521 CFF 15 608 CFF 15100 8,0 6,3 – – – – – –

6,3 38,0 48,4 150 10,0 11,8 – – – – – –200 12,0 18,8 – – – – – –100 10,0 7,8 176 CFF 6 205 CFF 6

200 12,5 72,3 92,1 150 15,0 17,7 192 CFF 9 224 CFF 9200 20,0 31,4 208 CFF 12 243 CFF 12100 15,0 11,8 447 CFF 9 479 BF 9

20,0 109,7 139,7 150 20,0 23,6 488 CFF 12 569 CFF 12200 25,0 39,2 529 CFF 15 618 CFF 15150 8,0 9,4 – – – – – –

8,0 60,3 76,8 200 10,0 15,7 – – – – – –250 12,0 23,6 – – – – – –150 10,0 11,8 184 CFF 6 215 CFF 6

250 12,5 91,9 117,1 200 15,0 23,6 197 CFF 9 230 CFF 9250 20,0 39,2 210 CFF 12 245 CFF 12150 15,0 17,7 468 CFF 9 546 CFF 9

20,0 141,1 179,7 200 20,0 31,4 501 CFF 12 585 CFF 12250 25,0 49,1 534 CFF 15 623 CFF 15100 10,0 7,8 106 CFF 6 123 CFF 6

10,0 90,2 114,9 200 15,0 23,6 120 CFF 9 140 CFF 9300 20,0 47,1 135 CFF 12 157 CFF 12100 10,0 7,8 271 CFF 6 316 CFF 6

300 16,0 140,5 179,0 200 15,0 23,6 309 CFF 9 360 CFF 9300 20,0 47,1 346 CFF 12 403 CFF 12100 15,0 11,8 421 CFF 9 479 BF 9

20,0 172,5 219,7 200 20,0 31,4 479 CFF 12 559 CFF 12300 25,0 58,9 538 CFF 15 627 CFF 15

* Steel grade of chord ** Steel grade of longitudinal plate

AngleΘ = 90◦

Chord stress ratioCompression: 0 < n ≤ 0,5

Failure modesCFF: Chord face failureBF: Brace failure

Edition December 2011 75

guss

et p

late

s to

RH

S c

hord

s

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 81 24.01.13 10:33

Page 83: Design Tools for Hollow Section Joints with MSH Sections in

76

Design tools for hollow section joints

Design resistances n : 0,65 Θ : 90◦ T

N1,Rd

b0

t0h0

t1N1,Rd

t1

h1

t1

h1

Q Q

Hollow sections acc. to EN 10210 S 355 H* – S 355** S 460 NH* – S 355**

Chord Plate Design Failure Weld Design Failure Welddimensions dimensions resistance mode size resistance mode size

b0,h0 t0 m0 A0 h1 t1 m1 N1,Rd a N1,Rd amm mm kg/m cm2 mm mm kg/m kN mm kN mm

100 8,0 6,3 16,8 CFF 5 19,6 CFF 55,0 14,7 18,7 120 8,0 7,5 17,9 CFF 5 20,9 CFF 5

150 10,0 11,8 19,5 CFF 6 22,8 CFF 6100 8,0 6,3 43,0 CFF 5 50,2 CFF 5

100 8,0 22,6 28,8 120 8,0 7,5 46,0 CFF 5 53,7 CFF 5150 10,0 11,8 50,1 CFF 6 58,5 CFF 6100 8,0 6,3 105 CFF 5 122 CFF 5

12,5 33,0 42,1 120 10,0 9,4 111 CFF 6 130 CFF 6150 12,0 14,1 121 CFF 7 141 CFF 7100 8,0 6,3 23,9 CFF 5 27,9 CFF 5

6,3 28,1 35,8 120 8,0 7,5 25,1 CFF 5 29,3 CFF 5150 10,0 11,8 26,8 CFF 6 31,3 CFF 6100 10,0 7,9 93,7 CFF 6 109 CFF 6

150 12,5 52,7 67,1 120 12,0 11,3 98,0 CFF 7 114 CFF 7150 15,0 17,7 104 CFF 9 121 CFF 9100 15,0 11,8 236 CFF 9 275 CFF 9

20,0 78,3 99,7 120 20,0 18,8 245 CFF 12 286 CFF 12150 25,0 29,4 260 CFF 15 304 CFF 15100 8,0 6,3 – – – – – –

6,3 38,0 48,4 150 10,0 11,8 – – – – – –200 12,0 18,8 – – – – – –100 10,0 7,8 88,3 CFF 6 102 CFF 6

200 12,5 72,3 92,1 150 15,0 17,7 96,3 CFF 9 112 CFF 9200 20,0 31,4 104 CFF 12 121 CFF 12100 15,0 11,8 223 CFF 9 260 CFF 9

20,0 109,7 139,7 150 20,0 23,6 244 CFF 12 284 CFF 12200 25,0 39,2 264 CFF 15 309 CFF 15150 8,0 9,4 – – – – – –

8,0 60,3 76,8 200 10,0 15,7 – – – – – –250 12,0 23,6 – – – – – –150 10,0 11,8 92,2 CFF 6 107 CFF 6

250 12,5 91,9 117,1 200 15,0 23,6 98,7 CFF 9 115 CFF 9250 20,0 39,2 105 CFF 12 122 CFF 12150 15,0 17,7 234 CFF 9 273 CFF 9

20,0 141,1 179,7 200 20,0 31,4 250 CFF 12 292 CFF 12250 25,0 49,1 267 CFF 15 311 CFF 15100 10,0 7,8 53,0 CFF 6 61,8 CFF 6

10,0 90,2 114,9 200 15,0 23,6 60,3 CFF 9 70,3 CFF 9300 20,0 47,1 67,6 CFF 12 78,9 CFF 12100 10,0 7,8 135 CFF 6 158 CFF 6

300 16,0 140,5 179,0 200 15,0 23,6 154 CFF 9 180 CFF 9300 20,0 47,1 173 CFF 12 201 CFF 12100 15,0 11,8 210 CFF 9 245 CFF 9

20,0 172,5 219,7 200 20,0 31,4 239 CFF 12 279 CFF 12300 25,0 58,9 269 CFF 15 313 CFF 15

* Steel grade of chord ** Steel grade of longitudinal plate

AngleΘ = 90◦

Chord stress ratioCompression: 0,5 < n ≤ 0,75

Failure modesCFF: Chord face failureBF: Brace failure

76 VALLOUREC & MANNESMANN TUBES

guss

et p

late

s to

RH

S c

hord

s

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 82 24.01.13 10:33

Page 84: Design Tools for Hollow Section Joints with MSH Sections in

77

Design tools for hollow section joints

Design resistances n : 0 Θ : 90◦ T

N1,Rd

b0

t0h0

b1

N1,Rd

b1

t1

b1

t1

Q Q

Hollow sections acc. to EN 10210 S 355 H* – S 355** S 460 NH* – S 355**

Chord Plate Design Failure Weld Design Failure Welddimensions dimensions resistance mode size resistance mode size

b0,h0 t0 m0 A0 b1 t1 m1 N1,Rd a N1,Rd amm mm kg/m cm2 mm mm kg/m kN mm kN mm

60 8,0 3,8 48,1 CFF 5 56,1 CFF 55,0 14,7 18,7 75 8,0 4,7 63,8 CFF 5 74,4 CFF 5

90 10,0 7,1 79,8 BF 6 93,1 BF 660 8,0 3,8 123 CFF 5 143 CFF 5

100 8,0 22,6 28,8 75 8,0 4,7 163 CFF 5 190 CFF 590 10,0 7,1 204 BF 6 238 BF 660 8,0 3,8 170 BF 5 153 BF 5

12,5 33,0 42,1 75 10,0 5,9 266 BF 6 239 BF 690 12,0 8,5 383 BF 7 345 BF 790 8,0 5,7 76,4 CFF 5 89,1 CFF 5

6,3 28,1 35,8 110 8,0 6,9 97,8 CFF 5 114 CFF 5130 10,0 10,2 122 BF 6 142 BF 690 10,0 7,1 300 CFF 6 287 BF 6

150 12,5 52,7 67,1 110 12,0 10,4 385 CFF 7 421 BF 7130 15,0 15,3 480 BF 9 560 BF 990 10,0 7,1 319 BF 6 287 BF 6

20,0 78,3 99,7 110 15,0 12,9 585 BF 9 526 BF 9130 20,0 20,4 923 BF 12 831 BF 12120 8,0 7,5 – – – – – –

6,3 38,0 48,4 150 8,0 9,4 – – – – – –180 10,0 14,1 – – – – – –120 10,0 9,4 300 CFF 6 350 CFF 6

200 12,5 72,3 92,1 150 12,0 14,1 398 CFF 7 465 CFF 7180 15,0 21,2 499 BF 9 582 BF 9120 10,0 9,4 426 BF 6 383 BF 6

20,0 109,7 139,7 150 15,0 17,7 798 BF 9 718 BF 9180 20,0 28,3 1278 BF 12 1150 BF 12140 8,0 8,8 – – – – – –

8,0 60,3 76,8 180 10,0 14,1 – – – – – –220 12,0 20,7 – – – – – –140 10,0 11,0 281 CFF 6 327 CFF 6

250 12,5 91,9 117,1 180 12,0 17,0 375 CFF 7 437 CFF 7220 15,0 25,9 488 BF 9 569 BF 9140 10,0 11,0 497 BF 6 447 BF 6

20,0 141,1 179,7 180 15,0 21,2 958 BF 9 862 BF 9220 20,0 34,5 1249 BF 12 1405 BF 12180 8,0 11,3 192 CFF 5 224 CFF 5

10,0 90,2 114,9 220 10,0 17,3 246 CFF 6 287 CFF 6270 12,0 25,4 319 BF 7 372 BF 7180 10,0 14,1 493 CFF 6 575 CFF 6

300 16,0 140,5 179,0 220 15,0 25,9 631 CFF 9 736 CFF 9270 20,0 42,4 817 BF 12 953 BF 12180 15,0 21,2 770 CFF 9 862 BF 9

20,0 172,5 219,7 220 20,0 34,5 986 CFF 12 1150 CFF 12270 25,0 53,0 1278 BF 15 1490 BF 15

* Steel grade of chord ** Steel grade of transverse plate

AngleΘ = 90◦

Chord stress ratioTension: −1 ≤ n ≤ 0

Failure modesCFF: Chord face failureCWF: Chord web failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 77

guss

et p

late

s to

RH

S c

hord

s

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 83 24.01.13 10:33

Page 85: Design Tools for Hollow Section Joints with MSH Sections in

78

Design tools for hollow section joints

Design resistances n : 0,25 Θ : 90◦ T

N1,Rd

b0

t0h0

b1

N1,Rd

b1

t1

b1

t1

Q Q

Hollow sections acc. to EN 10210 S 355 H* – S 355** S 460 NH* – S 355**

Chord Plate Design Failure Weld Design Failure Welddimensions dimensions resistance mode size resistance mode size

b0,h0 t0 m0 A0 b1 t1 m1 N1,Rd a N1,Rd amm mm kg/m cm2 mm mm kg/m kN mm kN mm

60 8,0 3,8 46,5 CFF 5 54,2 CFF 55,0 14,7 18,7 75 8,0 4,7 63,8 CFF 5 74,4 CFF 5

90 10,0 7,1 79,8 BF 6 93,1 BF 660 8,0 3,8 119 CFF 5 138 CFF 5

100 8,0 22,6 28,8 75 8,0 4,7 163 CFF 5 190 CFF 590 10,0 7,1 204 BF 6 238 BF 660 8,0 3,8 170 BF 5 153 BF 5

12,5 33,0 42,1 75 10,0 5,9 266 BF 6 239 BF 690 12,0 8,5 383 BF 7 345 BF 790 8,0 5,7 73,9 CFF 5 86,1 CFF 5

6,3 28,1 35,8 110 8,0 6,9 97,8 CFF 5 114 CFF 5130 10,0 10,2 122 BF 6 142 BF 690 10,0 7,1 290 CFF 6 287 BF 6

150 12,5 52,7 67,1 110 12,0 10,4 385 CFF 7 421 BF 7130 15,0 15,3 480 BF 9 560 BF 990 10,0 7,1 319 BF 6 287 BF 6

20,0 78,3 99,7 110 15,0 12,9 585 BF 9 526 BF 9130 20,0 20,4 923 BF 12 831 BF 12120 8,0 7,5 – – – – – –

6,3 38,0 48,4 150 8,0 9,4 – – – – – –180 10,0 14,1 – – – – – –120 10,0 9,4 290 CFF 6 339 CFF 6

200 12,5 72,3 92,1 150 12,0 14,1 398 CFF 7 465 CFF 7180 15,0 21,2 499 BF 9 582 BF 9120 10,0 9,4 426 BF 6 383 BF 6

20,0 109,7 139,7 150 15,0 17,7 798 BF 9 718 BF 9180 20,0 28,3 1278 BF 12 1150 BF 12140 8,0 8,8 – – – – – –

8,0 60,3 76,8 180 10,0 14,1 – – – – – –220 12,0 20,7 – – – – – –140 10,0 11,0 264 CFF 6 308 CFF 6

250 12,5 91,9 117,1 180 12,0 17,0 375 CFF 7 437 CFF 7220 15,0 25,9 488 BF 9 569 BF 9140 10,0 11,0 497 BF 6 447 BF 6

20,0 141,1 179,7 180 15,0 21,2 958 BF 9 862 BF 9220 20,0 34,5 1249 BF 12 1405 BF 12180 8,0 11,3 186 CFF 5 217 CFF 5

10,0 90,2 114,9 220 10,0 17,3 246 CFF 6 287 CFF 6270 12,0 25,4 319 BF 7 372 BF 7180 10,0 14,1 476 CFF 6 555 CFF 6

300 16,0 140,5 179,0 220 15,0 25,9 631 CFF 9 736 CFF 9270 20,0 42,4 817 BF 12 953 BF 12180 15,0 21,2 744 CFF 9 862 BF 9

20,0 172,5 219,7 220 20,0 34,5 986 CFF 12 1150 CFF 12270 25,0 53,0 1278 BF 15 1490 BF 15

* Steel grade of chord ** Steel grade of transverse plate

AngleΘ = 90◦

Chord stress ratioCompression: 0 < n ≤ 0,5

Failure modesCFF: Chord face failureCWF: Chord web failurePSF: Punching shear failureBF: Brace failure

78 VALLOUREC & MANNESMANN TUBES

guss

et p

late

s to

RH

S c

hord

s

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 84 24.01.13 10:33

Page 86: Design Tools for Hollow Section Joints with MSH Sections in

79

Design tools for hollow section joints

Design resistances n : 0,75 Θ : 90◦ T

N1,Rd

b0

t0h0

b1

N1,Rd

b1

t1

b1

t1

Q Q

Hollow sections acc. to EN 10210 S 355 H* – S 355** S 460 NH* – S 355**

Chord Plate Design Failure Weld Design Failure Welddimensions dimensions resistance mode size resistance mode size

b0,h0 t0 m0 A0 b1 t1 m1 N1,Rd a N1,Rd amm mm kg/m cm2 mm mm kg/m kN mm kN mm

60 8,0 3,8 30,4 CFF 5 35,5 CFF 55,0 14,7 18,7 75 8,0 4,7 48,9 CFF 5 57,0 CFF 5

90 10,0 7,1 79,8 BF 6 93,1 BF 660 8,0 3,8 78,0 CFF 5 91,0 CFF 5

100 8,0 22,6 28,8 75 8,0 4,7 125 CFF 5 146 CFF 590 10,0 7,1 204 BF 6 238 BF 660 8,0 3,8 170 BF 5 153 BF 5

12,5 33,0 42,1 75 10,0 5,9 266 BF 6 239 BF 690 12,0 8,5 383 BF 7 345 BF 790 8,0 5,7 48,4 CFF 5 56,4 CFF 5

6,3 28,1 35,8 110 8,0 6,9 73,8 CFF 5 86,1 CFF 5130 10,0 10,2 122 BF 6 142 BF 690 10,0 7,1 190 CFF 6 222 CFF 6

150 12,5 52,7 67,1 110 12,0 10,4 290 CFF 7 338 CFF 7130 15,0 15,3 480 BF 9 560 BF 990 10,0 7,1 319 BF 6 287 BF 6

20,0 78,3 99,7 110 15,0 12,9 585 BF 9 526 BF 9130 20,0 20,4 923 BF 12 831 BF 12120 8,0 7,5 – – – – – –

6,3 38,0 48,4 150 8,0 9,4 – – – – – –180 10,0 14,1 – – – – – –120 10,0 9,4 190 CFF 6 222 CFF 6

200 12,5 72,3 92,1 150 12,0 14,1 305 CFF 7 356 CFF 7180 15,0 21,2 499 BF 9 582 BF 9120 10,0 9,4 426 BF 6 383 BF 6

20,0 109,7 139,7 150 15,0 17,7 782 CFF 9 718 BF 9180 20,0 28,3 1278 BF 12 1150 BF 12140 8,0 8,8 – – – – – –

8,0 60,3 76,8 180 10,0 14,1 – – – – – –220 12,0 20,7 – – – – – –140 10,0 11,0 164 CFF 6 191 CFF 6

250 12,5 91,9 117,1 180 12,0 17,0 279 CFF 7 325 CFF 7220 15,0 25,9 488 BF 9 569 BF 9140 10,0 11,0 421 CFF 6 447 BF 6

20,0 141,1 179,7 180 15,0 21,2 715 CFF 9 834 CFF 9220 20,0 34,5 1249 BF 12 1405 BF 12180 8,0 11,3 121 CFF 5 142 CFF 5

10,0 90,2 114,9 220 10,0 17,3 186 CFF 6 216 CFF 6270 12,0 25,4 319 BF 7 372 BF 7180 10,0 14,1 312 CFF 6 364 CFF 6

300 16,0 140,5 179,0 220 15,0 25,9 476 CFF 9 555 CFF 9270 20,0 42,4 817 BF 12 953 BF 12180 15,0 21,2 487 CFF 9 569 CFF 9

20,0 172,5 219,7 220 20,0 34,5 744 CFF 12 867 CFF 12270 25,0 53,0 1278 BF 15 1490 BF 15

* Steel grade of chord ** Steel grade of transverse plate

AngleΘ = 90◦

Chord stress ratioCompression: 0,5 < n ≤ 1

Failure modesCFF: Chord face failureCWF: Chord web failurePSF: Punching shear failureBF: Brace failure

Edition December 2011 79

guss

et p

late

s to

RH

S c

hord

s

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 85 24.01.13 10:33

Page 87: Design Tools for Hollow Section Joints with MSH Sections in

80

Design tools for hollow section joints

Beam types Fin plate BC

Vj,Rd

db

twb

twb

Fin plate joints are here standardised for different beam types. Each beam type represents a group of hot rolled I or H sections.

The table below is used to select this beam type dependent on the beam section as input for the table „Design resistances“, see next page.

Beam sections and fin plates: S 355

Beamprofile Dimensions Beam Beamprofile Dimensions Beam Beamprofile Dimensions Typetwb db type twb db type twb dbmm mm mm mm mm mm

IPEa 120 3,8 93,4 1 IPEv 500 14,2 426,0 16 HEA 900 16,0 770,0 16IPEa 140 3,8 112,2 1 IPEv 550 17,1 467,6 17 HEA 1000 16,5 868,0 17IPEa 160 4,0 127,2 1 IPEv 600 18,0 514,0 17 HEB 100 6,0 56,0 -IPEa 180 4,3 146,0 5 HEAA 100 4,2 56,0 - HEB 120 6,5 74,0 -IPEa 200 4,5 159,0 5 HEAA 120 4,2 74,0 - HEB 140 7,0 92,0 -IPEa 220 5,0 177,6 6 HEAA 140 4,3 92,0 1 HEB 160 8,0 104,0 -IPEa 240 5,2 190,4 6 HEAA 160 4,5 104,0 1 HEB 180 8,5 122,0 -IPEa 270 5,5 219,6 6 HEAA 180 5,0 122,0 2 HEB 200 9,0 134,0 -IPEa 300 6,1 248,6 10 HEAA 200 5,5 134,0 6 HEB 220 9,5 152,0 8IPEa 330 6,5 271,0 11 HEAA 220 6,0 152,0 3 HEB 240 10,0 164,0 9IPEa 360 6,6 298,6 11 HEAA 240 6,5 164,0 4 HEB 260 10,0 177,0 9IPEa 400 7,0 331,0 11 HEAA 260 6,5 177,0 11 HEB 280 10,5 196,0 12IPEa 450 7,6 378,8 11 HEAA 280 7,0 196,0 11 HEB 300 11,0 208,0 12IPEa 500 8,4 426,0 14 HEAA 300 7,5 208,0 11 HEB 320 11,5 225,0 12IPEa 550 9,0 467,6 14 HEAA 320 8,0 225,0 14 HEB 340 12,0 243,0 12IPEa 600 9,8 514,0 14 HEAA 340 8,5 243,0 14 HEB 360 12,5 261,0 15IPE 80 3,8 59,6 - HEAA 360 9,0 261,0 14 HEB 400 13,5 298,0 16

IPE 100 4,1 74,6 - HEAA 400 9,5 298,0 14 HEB 450 14,0 344,0 16IPE 120 4,4 93,4 1 HEAA 450 10,0 344,0 15 HEB 500 14,5 390,0 16IPE 140 4,7 112,2 1 HEAA 500 10,5 390,0 15 HEB 550 15,0 438,0 16IPE 160 5,0 127,2 2 HEAA 550 11,5 438,0 15 HEB 600 15,5 486,0 16IPE 180 5,3 146,0 6 HEAA 600 12,0 486,0 15 HEB 650 16,0 534,0 16IPE 200 5,6 159,0 6 HEAA 650 12,5 534,0 15 HEB 700 17,0 582,0 17IPE 220 5,9 177,6 6 HEAA 700 13,0 582,0 16 HEB 800 17,5 674,0 17IPE 240 6,2 190,4 10 HEAA 800 14,0 674,0 16 HEB 900 18,5 770,0 17IPE 270 6,6 219,6 11 HEAA 900 15,0 770,0 16 HEB 1000 19,0 868,0 17IPE 300 7,1 248,6 11 HEAA 1000 16,0 868,0 16 HEM 100 12,0 56,0 -IPE 330 7,5 271,0 11 HEA 100 5,0 56,0 - HEM 120 12,5 74,0 -IPE 360 8,0 298,6 14 HEA 120 5,0 74,0 - HEM 140 13,0 92,0 -IPE 400 8,6 331,0 14 HEA 140 5,5 92,0 2 HEM 160 14,0 104,0 -IPE 450 9,4 378,8 14 HEA 160 6,0 104,0 2 HEM 180 14,5 122,0 -IPE 500 10,2 426,0 15 HEA 180 6,0 122,0 3 HEM 200 15,0 134,0 -IPE 550 11,1 467,6 15 HEA 200 6,5 134,0 4 HEM 220 15,5 152,0 -IPE 600 12,0 514,0 15 HEA 220 7,0 152,0 4 HEM 240 18,0 164,0 7

IPEo 180 6,0 146,0 3 HEA 240 7,5 164,0 4 HEM 260 18,0 177,0 7IPEo 200 6,2 159,0 3 HEA 260 7,5 177,0 11 HEM 280 18,5 196,0 7IPEo 220 6,6 177,6 11 HEA 280 8,0 196,0 8 HEM 300 21,0 208,0 13IPEo 240 7,0 190,4 11 HEA 300 8,5 208,0 8 HEM 320 21,0 225,0 13IPEo 270 7,5 219,6 11 HEA 320 9,0 225,0 14 HEM 340 21,0 243,0 13IPEo 300 8,0 248,6 14 HEA 340 9,5 243,0 14 HEM 360 21,0 261,0 13IPEo 330 8,5 271,0 14 HEA 360 10,0 261,0 15 HEM 400 21,0 298,0 17IPEo 360 9,2 298,6 14 HEA 400 11,0 298,0 15 HEM 450 21,0 344,0 17IPEo 400 9,7 331,0 14 HEA 450 11,5 344,0 15 HEM 500 21,0 390,0 17IPEo 450 11,0 378,8 15 HEA 500 12,0 390,0 15 HEM 550 21,0 438,0 17IPEo 500 12,0 426,0 15 HEA 550 12,5 438,0 15 HEM 600 21,0 486,0 17IPEo 550 12,7 467,6 15 HEA 600 13,0 486,0 16 HEM 650 21,0 534,0 17IPEo 600 15,0 514,0 16 HEA 650 13,5 534,0 16 HEM 700 21,0 582,0 17IPEv 400 10,6 331,0 15 HEA 700 14,5 582,0 16 HEM 800 21,0 674,0 17IPEv 450 12,4 378,8 15 HEA 800 15,0 674,0 16 HEM 900 21,0 770,0 17

80 VALLOUREC & MANNESMANN TUBES

Fin

pla

te jo

ints

to

RH

S c

olum

ns

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 86 24.01.13 10:33

Page 88: Design Tools for Hollow Section Joints with MSH Sections in

81

Design tools for hollow section joints

Design resistances Fin plate BC

hc

e1

e1

p1

e2

Vj,Rd

g

hp

tp

tc

e2

bp

a

bc

a

Columns: Hollow sections acc. to EN 10210, Beam type: see previous page S 355 H S 460 NHColumn Beam Fin plate Bolts Pattern gap Weld Design Failure Design Failure

type Class 10.9 size resistance mode resistance modebc,hc tc mc Ac hp bp tp n × size e1 p1 e2 g a Vj,Rd Vj,Rdmm mm kg/m cm2 mm mm mm mm mm mm mm mm kN kN

100 6,3 18,2 23,2

1 90 60 8,0 2×M12 25 40 25 10 5 29,6 BHB 29,6 BHB2 90 60 8,0 2×M12 25 40 25 10 5 38,9 BHB 38,9 BHB3 120 70 8,0 2×M16 35 50 30 10 5 52,1 BHB 52,1 BHB4 120 70 8,0 2×M16 35 50 30 10 5 56,5 BHB 56,5 BHB5 130 60 8,0 3×M12 25 40 25 10 5 62,6 BHB 62,6 BHB6 130 60 8,0 3×M12 25 40 25 10 5 72,9 BHB 72,9 BHB

100 8,0 22,6 28,8

1 90 60 8,0 2×M12 25 40 25 10 5 29,6 BHB 29,6 BHB2 90 60 8,0 2×M12 25 40 25 10 5 38,9 BHB 38,9 BHB3 120 70 8,0 2×M16 35 50 30 10 5 52,1 BHB 52,1 BHB4 120 70 8,0 2×M16 35 50 30 10 5 56,5 BHB 56,5 BHB5 130 60 8,0 3×M12 25 40 25 10 5 62,6 BHB 62,6 BHB6 130 60 8,0 3×M12 25 40 25 10 5 72,9 BHB 72,9 BHB

100 12,5 33,0 42,1

1 90 60 8,0 2×M12 25 40 25 10 5 29,6 BHB 29,6 BHB2 90 60 8,0 2×M12 25 40 25 10 5 38,9 BHB 38,9 BHB3 120 70 8,0 2×M16 35 50 30 10 5 52,1 BHB 52,1 BHB4 120 70 8,0 2×M16 35 50 30 10 5 56,5 BHB 56,5 BHB6 130 60 8,0 3×M12 25 40 25 10 5 72,9 BHB 72,9 BHB8 150 80 10,0 2×M20 40 70 35 10 6 115 BHB 115 BHB

150 8,0 35,1 44,8

3 120 70 8,0 2×M16 35 50 30 10 5 52,1 BHB 52,1 BHB4 120 70 8,0 2×M16 35 50 30 10 5 56,5 BHB 56,5 BHB5 130 60 8,0 3×M12 25 40 25 10 5 62,6 BHB 62,6 BHB6 130 60 8,0 3×M12 25 40 25 10 5 72,9 BHB 72,9 BHB9 150 80 10,0 2×M20 40 70 35 10 6 133 PHB 133 PHB11 170 70 8,0 3×M16 35 50 30 10 5 106 BHB 106 BHB

150 12,5 52,7 67,1

6 130 60 8,0 3×M12 25 40 25 10 5 72,9 BHB 72,9 BHB8 150 80 10,0 2×M20 40 70 35 10 6 115 BHB 115 BHB9 150 80 10,0 2×M20 40 70 35 10 6 133 PHB 133 PHB11 170 70 8,0 3×M16 35 50 30 10 5 106 BHB 106 BHB14 220 80 10,0 3×M20 40 70 35 10 6 214 BHB 214 BHB15 260 90 15,0 3×M24 50 80 40 10 9 315 BHB 315 BHB

150 20,0 78,3 99,7

7 160 100 20,0 2×M27 40 80 45 10 12 255 BHB 255 BHB8 150 80 10,0 2×M20 40 70 35 10 6 115 BHB 115 BHB9 150 80 10,0 2×M20 40 70 35 10 6 133 PHB 133 PHB11 170 70 8,0 3×M16 35 50 30 10 5 106 BHB 106 BHB14 220 80 10,0 3×M20 40 70 35 10 6 214 BHB 214 BHB15 260 90 15,0 3×M24 50 80 40 10 9 315 BHB 315 BHB

200 8,0 47,7 60,8

5 130 60 8,0 3×M12 25 40 25 10 5 62,6 BHB 62,6 BHB6 130 60 8,0 3×M12 25 40 25 10 5 72,9 BHB 72,9 BHB8 150 80 10,0 2×M20 40 70 35 10 6 115 BHB 115 BHB10 170 70 8,0 3×M16 35 50 30 10 5 99,7 BHB 99,7 BHB11 170 70 8,0 3×M16 35 50 30 10 5 106 BHB 106 BHB14 220 80 10,0 3×M20 40 70 35 10 6 214 BHB 214 BHB

200 12,5 72,3 92,18 150 80 10,0 2×M20 40 70 35 10 6 115 BHB 115 BHB9 150 80 10,0 2×M20 40 70 35 10 6 133 PHB 133 PHB10 170 70 8,0 3×M16 35 50 30 10 5 99,7 BHB 99,7 BHB

Failure modesPHB: Plate in hole bearingPSG: Plate - shear gross sectionPSN: Plate - shear net sectionPBT: Plate - block tearingPB: Plate in bendingBHB: Beam web in hole bearingBSG: Beam web - shear gross sectionBSN: Beam web - shear net sectionBBT: Beam web - block tearing

Edition December 2011 81

Fin

pla

te jo

ints

to

RH

S c

olum

ns

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 87 24.01.13 10:33

Page 89: Design Tools for Hollow Section Joints with MSH Sections in

82

Design tools for hollow section joints

Beam types Fin plate BC

Vj,Rd

db

twb

twb

Fin plate joints are here standardised for different beam types. Each beam type represents a group of hot rolled I or H sections.

The table below is used to select this beam type dependent on the beam section as input for the table „Design resistances“, see next page.

Beam sections and fin plates: S 355

Beamprofile Dimensions Beam Beamprofile Dimensions Beam Beamprofile Dimensions Typetwb db type twb db type twb dbmm mm mm mm mm mm

IPEa 120 3,8 93,4 1 IPEv 500 14,2 426,0 16 HEA 900 16,0 770,0 16IPEa 140 3,8 112,2 1 IPEv 550 17,1 467,6 17 HEA 1000 16,5 868,0 17IPEa 160 4,0 127,2 1 IPEv 600 18,0 514,0 17 HEB 100 6,0 56,0 -IPEa 180 4,3 146,0 5 HEAA 100 4,2 56,0 - HEB 120 6,5 74,0 -IPEa 200 4,5 159,0 5 HEAA 120 4,2 74,0 - HEB 140 7,0 92,0 -IPEa 220 5,0 177,6 6 HEAA 140 4,3 92,0 1 HEB 160 8,0 104,0 -IPEa 240 5,2 190,4 6 HEAA 160 4,5 104,0 1 HEB 180 8,5 122,0 -IPEa 270 5,5 219,6 6 HEAA 180 5,0 122,0 2 HEB 200 9,0 134,0 -IPEa 300 6,1 248,6 10 HEAA 200 5,5 134,0 6 HEB 220 9,5 152,0 8IPEa 330 6,5 271,0 11 HEAA 220 6,0 152,0 3 HEB 240 10,0 164,0 9IPEa 360 6,6 298,6 11 HEAA 240 6,5 164,0 4 HEB 260 10,0 177,0 9IPEa 400 7,0 331,0 11 HEAA 260 6,5 177,0 11 HEB 280 10,5 196,0 12IPEa 450 7,6 378,8 11 HEAA 280 7,0 196,0 11 HEB 300 11,0 208,0 12IPEa 500 8,4 426,0 14 HEAA 300 7,5 208,0 11 HEB 320 11,5 225,0 12IPEa 550 9,0 467,6 14 HEAA 320 8,0 225,0 14 HEB 340 12,0 243,0 12IPEa 600 9,8 514,0 14 HEAA 340 8,5 243,0 14 HEB 360 12,5 261,0 15IPE 80 3,8 59,6 - HEAA 360 9,0 261,0 14 HEB 400 13,5 298,0 16

IPE 100 4,1 74,6 - HEAA 400 9,5 298,0 14 HEB 450 14,0 344,0 16IPE 120 4,4 93,4 1 HEAA 450 10,0 344,0 15 HEB 500 14,5 390,0 16IPE 140 4,7 112,2 1 HEAA 500 10,5 390,0 15 HEB 550 15,0 438,0 16IPE 160 5,0 127,2 2 HEAA 550 11,5 438,0 15 HEB 600 15,5 486,0 16IPE 180 5,3 146,0 6 HEAA 600 12,0 486,0 15 HEB 650 16,0 534,0 16IPE 200 5,6 159,0 6 HEAA 650 12,5 534,0 15 HEB 700 17,0 582,0 17IPE 220 5,9 177,6 6 HEAA 700 13,0 582,0 16 HEB 800 17,5 674,0 17IPE 240 6,2 190,4 10 HEAA 800 14,0 674,0 16 HEB 900 18,5 770,0 17IPE 270 6,6 219,6 11 HEAA 900 15,0 770,0 16 HEB 1000 19,0 868,0 17IPE 300 7,1 248,6 11 HEAA 1000 16,0 868,0 16 HEM 100 12,0 56,0 -IPE 330 7,5 271,0 11 HEA 100 5,0 56,0 - HEM 120 12,5 74,0 -IPE 360 8,0 298,6 14 HEA 120 5,0 74,0 - HEM 140 13,0 92,0 -IPE 400 8,6 331,0 14 HEA 140 5,5 92,0 2 HEM 160 14,0 104,0 -IPE 450 9,4 378,8 14 HEA 160 6,0 104,0 2 HEM 180 14,5 122,0 -IPE 500 10,2 426,0 15 HEA 180 6,0 122,0 3 HEM 200 15,0 134,0 -IPE 550 11,1 467,6 15 HEA 200 6,5 134,0 4 HEM 220 15,5 152,0 -IPE 600 12,0 514,0 15 HEA 220 7,0 152,0 4 HEM 240 18,0 164,0 7

IPEo 180 6,0 146,0 3 HEA 240 7,5 164,0 4 HEM 260 18,0 177,0 7IPEo 200 6,2 159,0 3 HEA 260 7,5 177,0 11 HEM 280 18,5 196,0 7IPEo 220 6,6 177,6 11 HEA 280 8,0 196,0 8 HEM 300 21,0 208,0 13IPEo 240 7,0 190,4 11 HEA 300 8,5 208,0 8 HEM 320 21,0 225,0 13IPEo 270 7,5 219,6 11 HEA 320 9,0 225,0 14 HEM 340 21,0 243,0 13IPEo 300 8,0 248,6 14 HEA 340 9,5 243,0 14 HEM 360 21,0 261,0 13IPEo 330 8,5 271,0 14 HEA 360 10,0 261,0 15 HEM 400 21,0 298,0 17IPEo 360 9,2 298,6 14 HEA 400 11,0 298,0 15 HEM 450 21,0 344,0 17IPEo 400 9,7 331,0 14 HEA 450 11,5 344,0 15 HEM 500 21,0 390,0 17IPEo 450 11,0 378,8 15 HEA 500 12,0 390,0 15 HEM 550 21,0 438,0 17IPEo 500 12,0 426,0 15 HEA 550 12,5 438,0 15 HEM 600 21,0 486,0 17IPEo 550 12,7 467,6 15 HEA 600 13,0 486,0 16 HEM 650 21,0 534,0 17IPEo 600 15,0 514,0 16 HEA 650 13,5 534,0 16 HEM 700 21,0 582,0 17IPEv 400 10,6 331,0 15 HEA 700 14,5 582,0 16 HEM 800 21,0 674,0 17IPEv 450 12,4 378,8 15 HEA 800 15,0 674,0 16 HEM 900 21,0 770,0 17

82 VALLOUREC & MANNESMANN TUBES

Fin

pla

te jo

ints

to

RH

S c

olum

ns

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 88 24.01.13 10:33

Page 90: Design Tools for Hollow Section Joints with MSH Sections in

83

Design tools for hollow section joints

Design resistances Fin plate BC

hc

e1

e1

p1

e2

Vj,Rd

g

hp

tp

tc

e2

bp

a

bc

a

Columns: Hollow sections acc. to EN 10210, Beam type: see previous page S 355 H S 460 NHColumn Beam Fin plate Bolts Pattern gap Weld Design Failure Design Failure

type Class 10.9 size resistance mode resistance modebc,hc tc mc Ac hp bp tp n × size e1 p1 e2 g a Vj,Rd Vj,Rdmm mm kg/m cm2 mm mm mm mm mm mm mm mm kN kN

200 12,5 72,3 92,111 170 70 8,0 3×M16 35 50 30 10 5 106 BHB 106 BHB14 220 80 10,0 3×M20 40 70 35 10 6 214 BHB 214 BHB15 260 90 15,0 3×M24 50 80 40 10 9 315 BHB 315 BHB

200 20,0 109,7 139,7

10 170 70 8,0 3×M16 35 50 30 10 5 99,7 BHB 99,7 BHB11 170 70 8,0 3×M16 35 50 30 10 5 106 BHB 106 BHB12 180 90 15,0 2×M24 50 80 40 10 9 179 BHB 179 BHB14 220 80 10,0 3×M20 40 70 35 10 6 214 BHB 214 BHB15 260 90 15,0 3×M24 50 80 40 10 9 315 BHB 315 BHB16 260 90 15,0 3×M24 50 80 40 10 9 410 BHB 410 BHB

250 8,0 60,3 76,8

6 130 60 8,0 3×M12 25 40 25 10 5 72,9 BHB 72,9 BHB8 150 80 10,0 2×M20 40 70 35 10 6 115 BHB 115 BHB9 150 80 10,0 2×M20 40 70 35 10 6 133 PHB 133 PHB10 170 70 8,0 3×M16 35 50 30 10 5 99,7 BHB 99,7 BHB11 170 70 8,0 3×M16 35 50 30 10 5 106 BHB 106 BHB14 220 80 10,0 3×M20 40 70 35 10 6 214 BHB 214 BHB

250 12,5 91,9 117,1

8 150 80 10,0 2×M20 40 70 35 10 6 115 BHB 115 BHB9 150 80 10,0 2×M20 40 70 35 10 6 133 PHB 133 PHB10 170 70 8,0 3×M16 35 50 30 10 5 99,7 BHB 99,7 BHB11 170 70 8,0 3×M16 35 50 30 10 5 106 BHB 106 BHB14 220 80 10,0 3×M20 40 70 35 10 6 214 BHB 214 BHB15 260 90 15,0 3×M24 50 80 40 10 9 315 BHB 315 BHB

250 20,0 141,1 179,7

11 170 70 8,0 3×M16 35 50 30 10 5 106 BHB 106 BHB12 180 90 15,0 2×M24 50 80 40 10 9 179 BHB 179 BHB13 200 100 15,0 2×M27 55 90 45 10 9 269 PHB 269 PHB14 220 80 10,0 3×M20 40 70 35 10 6 214 BHB 214 BHB15 260 90 15,0 3×M24 50 80 40 10 9 315 BHB 315 BHB16 260 90 15,0 3×M24 50 80 40 10 9 410 BHB 410 BHB

300 10,0 90,2 114,9

6 130 60 8,0 3×M12 25 40 25 10 5 72,9 BHB 72,9 BHB8 150 80 10,0 2×M20 40 70 35 10 6 115 BHB 115 BHB9 150 80 10,0 2×M20 40 70 35 10 6 133 PHB 133 PHB10 170 70 8,0 3×M16 35 50 30 10 5 99,7 BHB 99,7 BHB11 170 70 8,0 3×M16 35 50 30 10 5 106 BHB 106 BHB14 220 80 10,0 3×M20 40 70 35 10 6 214 BHB 214 BHB

300 16,0 140,5 179,0

10 170 70 8,0 3×M16 35 50 30 10 5 99,7 BHB 99,7 BHB11 170 70 8,0 3×M16 35 50 30 10 5 106 BHB 106 BHB12 180 90 15,0 2×M24 50 80 40 10 9 179 BHB 179 BHB13 200 100 15,0 2×M27 55 90 45 10 9 269 PHB 269 PHB14 220 80 10,0 3×M20 40 70 35 10 6 214 BHB 214 BHB15 260 90 15,0 3×M24 50 80 40 10 9 315 BHB 315 BHB

300 20,0 172,5 219,7

7 160 100 20,0 2×M27 40 80 45 10 12 255 BHB 255 BHB11 170 70 8,0 3×M16 35 50 30 10 5 106 BHB 106 BHB14 220 80 10,0 3×M20 40 70 35 10 6 214 BHB 214 BHB15 260 90 15,0 3×M24 50 80 40 10 9 315 BHB 315 BHB16 260 90 15,0 3×M24 50 80 40 10 9 410 BHB 410 BHB17 290 100 20,0 3×M27 55 90 45 10 12 577 BHB 577 BHB

Failure modesPHB: Plate in hole bearingPSG: Plate - shear gross sectionPSN: Plate - shear net sectionPBT: Plate - block tearingPB: Plate in bendingBHB: Beam web in hole bearingBSG: Beam web - shear gross sectionBSN: Beam web - shear net sectionBBT: Beam web - block tearing

Edition December 2011 83

Fin

pla

te jo

ints

to

RH

S c

olum

ns

Edition January 2013

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 89 24.01.13 10:33

Page 91: Design Tools for Hollow Section Joints with MSH Sections in

84

6 Worked examples

Design tools for hollow section joints

6.1 Introduction

L = 26,3

L/2 = 13,15 m

Lattice girder Vierendeel girder

1,7 m

3°45°45°

48,5°

Y

K

KT

Figure 6.1 – Global structure and investigated joints

L/H ≈ 15 H = 1,7 α = 3 ◦

• × • × • ×

Θ n

84 VALLOUREC & MANNESMANN TUBES

Abb. 6.1: Global structure and investigated joints

Design tools for hollow section joints

6.1 Introduction

L = 26,3

L/2 = 13,15 m

Lattice girder Vierendeel girder

1,7 m

3°45°45°

48,5°

Y

K

KT

Figure 6.1 – Global structure and investigated joints

L/H ≈ 15 H = 1,7 α = 3 ◦

• × • × • ×

Θ n

84 VALLOUREC & MANNESMANN TUBES

Design tools for hollow section joints

6.1 Introduction

L = 26,3

L/2 = 13,15 m

Lattice girder Vierendeel girder

1,7 m

3°45°45°

48,5°

Y

K

KT

Figure 6.1 – Global structure and investigated joints

L/H ≈ 15 H = 1,7 α = 3◦

• × • × • ×

Θ n

84 VALLOUREC & MANNESMANN TUBES

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 90 24.01.13 10:33

Page 92: Design Tools for Hollow Section Joints with MSH Sections in

85

Design tools for hollow section joints

6.2 General range of validity

fy = 3552 t ≤ 40 ε =√235/355 = 0,81 c/t ≤ 33ε = 26,7

c/t ≤ 38ε = 30,8

ct

=h0 −3 · t0

t0

=150−3 ·12,5

12,5= 9,0 ≤ 26,7 �

ct

=150−3 ·20,0

20,0= 4,5 ≤ 26,7 �

ct

=90−3 ·10,0

10,0= 6,0 ≤ 26,7 �

ε ε =

√235/460 = 0,71

c/t

2γ2γ2γ

2γ bi/ti ≤ 35 hi/ti ≤ 35

b0

t0=

h0

t0=

15012,5

= 12 ≤ 35 �

b0

t0=

h0

t0=

15020,0

= 7,5 ≤ 35 �

bi

ti=

hi

ti=

9010

= 9 ≤ 35 �

0,5 ≤ h0

b0=

hi

bi= 1,0 ≤ 2 �

Edition December 2011 85

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 91 24.01.13 10:33

Page 93: Design Tools for Hollow Section Joints with MSH Sections in

86

Design tools for hollow section joints

6.3 Y joint

Y j

oin

t Q

N1,Ed

N0r,Ed

b1 h1

t1

b0

h0 t0

Sections: S 355

Design loads:

Joint geometry:

Chord [b ´ h ´ t ] 150 ´ 150 ´ 12,5 mm0 0 0

Brace [b ´ h ´ t ] 90 ´ 90 ´ 10,0 mm1 1 1

Brace angle Q = 48,5° Welds a = 10 mm

Material:

Chord N = 557 kN0r,Ed

Brace N = 749 kN1,Ed

Connection:

6.3.1 Range of validity

βββ

β β = b1/b0 ≥ 0,25 b0 = 150 b1 = 90 β

b1

b0=

90150

= 0,60 ≥ 0,25 �

6.3.2 Design resistance and checks

6.3.2.1 Using design tables

M0,Ed n N0,Ed

n =σ0,Ed

fy0/γM5

=N0,Ed

A0 · fy0/1,0

=557

67,1 ·35,5= 0,23

n n σ0,Ed

A0 = 2 · t0 · (h0 +b0 −2 · t0)− (4−π) · (r2o − r2

i ) ro = 1,5 · t0 ri = t0

86 VALLOUREC & MANNESMANN TUBES

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 92 24.01.13 10:33

Page 94: Design Tools for Hollow Section Joints with MSH Sections in

87

Design tools for hollow section joints

• • Θ : 50 ◦ 48 ◦ < Θ ≤ 55 ◦• n : 0,25 0 < n ≤ 0,5

Nt,1,Rd

Nt,1,Rd = 653

N1,Ed Nt,1,Rd

N1,Ed

Nt,1,Rd=

749653

= 1,15 ≥ 1,00 �

Nt,1,Rd

6.3.2.2 Using design software

150 × 12,5 90×10 Nt,1,Rd

Nt,1,Rd = 765

N1,Ed

N1,Rd=

749765

= 0,98 ≤ 1,00 �

6.3.3 Welds

a = t1 = 10

Edition December 2011 87

Design Resistances, page 60

Design Resistances, page 60

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 93 24.01.13 10:33

Page 95: Design Tools for Hollow Section Joints with MSH Sections in

88

Design tools for hollow section joints

6.4 K joint with gap

g

Q1

+e e

K jo

int

wit

h g

ap

Sections: S 355

Design loads:

Chord [b ´ h ´ t ] 150 ´ 150 ´ 12,5 mm0 0 0

Braces [b ´ h ´ t ] 90 ´ 90 ´ 10,0 mm1 1 1

Brace angles Q = 48,5°Welds a = 10 mm1

Gap g = 40 mm

Chord N = 1056 kN0r,Ed

Braces N = 748 kN N = 746 kNl,Ed r,Ed

N0r,Ed

h0

b0

t0

h1 h1

b1

b1

Nl,Ed Nr,Ed

t1

t1 Joint geometry: Connection:

Material:

Q2

6.4.1 General remark

Θ = 48,5 ◦

6.4.2 Range of validity

βββ

β

β ≥ max

0,35

0,1+0,01 · b0

t0

⇒ β =2 ·b1

2 ·b0=

90150

= 0,60

≥ max

0,35

0,1+0,01 · 15012,5

= 0,22

= 0,35 �

β β

g

gb0

≥ 0,5 · (1−β ) gb0

≤ 1,5 · (1−β )

⇒ gb0

=40

150= 0,27

≥ 0,5 · (1−0,6) = 0,2 �

≤ 1,5 · (1−0,6) = 0,6 �

g g

g ≥ 2 · t1⇒ g = 40

≥ 2 ·10 = 20 �

88 VALLOUREC & MANNESMANN TUBES

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 94 24.01.13 10:33

Page 96: Design Tools for Hollow Section Joints with MSH Sections in

89

Design tools for hollow section joints

e

e =

(h1

sinΘ+g

)· sin2 Θ

sin(2 ·Θ)− h0

2

=

(90

sin48,5 ◦ +40)· sin2 48,5 ◦

sin(2 ·48,5 ◦)− 150

2= 15,5

e

e

−0,55 ≤ eh0

≤ 0,25

⇒−0,55 ≤ 15,5150

= 0,1 ≤ 0,25 �

6.4.3 Design resistances and checks

• • Θ : 50 ◦ 48 ◦ < Θ ≤ 55 ◦• n : 0 −1 ≤ n ≤ 0

N1,Rd =N2,Rd

N1,Rd = N2,Rd = 885

n ≤ 0

(∣∣Nl,Ed

∣∣ , ∣∣Nr,Ed∣∣)

N1,Rd≤ 1,00

(|748| , |746|)885

=748885

= 0,85 ≤ 1,00 �

6.4.4 Welds

a = t1 = t2 = 10

Edition December 2011 89

Design Resistances, page 27

Design Resistances, page 27

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 95 24.01.13 10:33

Page 97: Design Tools for Hollow Section Joints with MSH Sections in

90

Design tools for hollow section joints

6.5 K joint with overlap

QQ

qpe

K j

oin

t w

ith

overl

ap

+eh0

b0

t0 N0r,EdN0l,Ed

Nl,EdNr,Ed

h1 h1

b1

b1

Sections: S 355

Design loads:

Chord [b ´ h ´ t ] 150 ´ 150 ´ 12,5 mm0 0 0

Braces [b ´ h ´ t ] 90 ´ 90 ´ 10,0 mm1 1 1

Brace angles Q = 45° Welds a = 10 mmOverlap q = 40 mm

Chord N = 557 kN N = 1452 kN0l,Ed 0r,Ed

Braces N = 754 kN N = 532 kNl,Ed r,Ed

t1

t1

Joint geometry: Connection:

Material:

6.5.1 Range of validity

βββ

β

β ≥ max

0,35

0,1+0,01 · b0

t0

⇒ β =90150

= 0,60

≥ max

0,35

0,1+0,01 · 15012,5

= 0,22

= 0,35 �

λov

λov

≥ 25%

≤ λov,lim = 60%

⇒ λov =qp·100% =

qh1/sinΘ

·100%

=40

90/sin45 ◦ ·100%

= 31%

≥ 25%

≤ λov,lim = 60%�

λov,lim λov,lim

e g q

e =

(h1

sinΘ+g

)· sin2 Θ

sin(2 ·Θ)− h0

2

=

(90

sin45 ◦ −40)· sin2 45 ◦

sin(2 ·45◦)− 150

2= −31

e

90 VALLOUREC & MANNESMANN TUBES

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 96 24.01.13 10:33

Page 98: Design Tools for Hollow Section Joints with MSH Sections in

91

Design tools for hollow section joints

e

−0,55 ≤ eh0

≤ 0,25

⇒−0,55 ≤ −31150

=−0,21 ≤ 0,25 �

6.5.2 Design resistances and checks

M0,Ed n N0,Ed

n =σ0,Ed

fy0/γM5

=

(∣∣σ0l,Ed∣∣ , ∣∣σ0r,Ed

∣∣)fy0

/γM5

=

(∣∣N0l,Ed∣∣ , ∣∣N0r,Ed

∣∣)A0 · fy0

/1,0

=1452

67,1 ·35,5= 0,61

n n σ0,Ed

A0 ro = 1,5 · t0 ri = t0

• • Θ : all 30 ◦ ≤ Θ ≤ 65 ◦• n : all −1 ≤ n ≤ 1

N1,Rd =N2,Rd

N1,Rd = N2,Rd = 816

(∣∣N1,Ed

∣∣ , ∣∣N2,Ed∣∣)

N1,Rd≤ 1,00

754816

= 0,92 ≤ 1,00 �

Edition December 2011 91

Design tools for hollow section joints

e

−0,55 ≤ eh0

≤ 0,25

⇒−0,55 ≤ −31150

=−0,21 ≤ 0,25 �

6.5.2 Design resistances and checks

M0,Ed n N0,Ed

n =σ0,Ed

fy0/γM5

=

(∣∣σ0l,Ed∣∣ , ∣∣σ0r,Ed

∣∣)fy0

/γM5

=

(∣∣N0l,Ed∣∣ , ∣∣N0r,Ed

∣∣)A0 · fy0

/1,0

=1452

67,1 ·35,5= 0,61

n n σ0,Ed

A0 ro = 1,5 · t0 ri = t0

• • Θ : all 30 ◦ ≤ Θ ≤ 65 ◦• n : all −1 ≤ n ≤ 1

N1,Rd =N2,Rd

N1,Rd = N2,Rd = 816

(∣∣N1,Ed

∣∣ , ∣∣N2,Ed∣∣)

N1,Rd≤ 1,00

754816

= 0,92 ≤ 1,00 �

Edition December 2011 91

Design Resistances, page 30

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 97 24.01.13 10:33

Page 99: Design Tools for Hollow Section Joints with MSH Sections in

92

Design tools for hollow section joints

6.5.3 Welds

a = t1 = t2 = 10

6.6 T joint

Sections: S 355

Design loads:

Q

T j

oin

t

Chord [b ´ h ´ t ] 150 ´ 150 ´ 20,0 mm0 0 0

Brace [b ´ h ´ t ] 90 ´ 90 ´ 10,0 mm1 1 1

Brace angle Q = 90° Welds a = 10 mm

Chord N = 2293 kN N = 2313 kN0l,Ed 0r,Ed

M = 46,8 kNm M = 27,2 kNm0l,Ed 0r,Ed

Brace N = 54,0 kN1,Ed

M = 19,7 kNmip,1,Ed

h1

b1

t0

t1

h0

b0

N0r,EdN0l,Ed

M0l,Ed M0r,Ed

N1,Ed

Mip,1,Ed

Joint geometry: Connection:

Material:

6.6.1 Range of validity

βββ

β

b1

b0=

90150

= 0,60 ≥ 0,25 �

6.6.2 Design resistances and checks

n N0,Ed M0,Ed N0l,Ed M0l,Ed

n =σ0,Ed

fy0/γM5

=

(N0,Ed

A0 · fy0±

M0,Ed

Wel,0 · fy0

)/γM5

=

(2293

99,7 ·35,5± 46,8 ·100

363 ·35,5

)/1,0

=

1,01 ≈ 1,0

0,29

n n σ0,Ed

A0 Wel,0 ro = 1,5 · t0 ri = t0

92 VALLOUREC & MANNESMANN TUBES

Design Resistances, page 30

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 98 24.01.13 10:33

Page 100: Design Tools for Hollow Section Joints with MSH Sections in

93

Design tools for hollow section joints

• • Θ : 90 ◦ 65 ◦ < Θ ≤ 90 ◦• n : 0,75 0,5 < n ≤ 1,0

Nc,1,Rd Mip,1,Rd

Nc,1,Rd = 838

Mip,1,Rd = 44,4

N1,Ed

N1,Rd+

Mip,1,Ed

Mip,1,Rd≤ 1,00

54,0838

+19,744,4

= 0,51 ≤ 1,00 �

6.6.3 Welds

a = t1 = t2 = 10

Edition December 2011 93

Design Resistances, page 67 and page 70

Resistance tables, pages 67 and 70

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 99 24.01.13 10:33

Page 101: Design Tools for Hollow Section Joints with MSH Sections in

94

Select a language for the installation and click on „OK“ to continue. In the following, it is assumed that you have selected „English“. If you are using an older version of Windows which does not include the .NET Framework, you will be prompted to confirm the installation of .NET.

Click on „OK“ to install the .NET 2.0 SP2 Framework to-gether with CoP2. The Welcome window for the installation procedure appears. Click on „Cancel“ to abort the installation procedure.

7.1 System requirements

The software CoP2 V & M Edition has been designed for Windows1 operating systems. The software has been tested on Windows XP and Windows 7, both on 32-bit and 64-bit ver-sions. It runs also under Windows 2000 and Windows Vista, but this is not completely tested. The minimum requirements for the installation of the software are 1 GB memory and about 30 MB hard disk space.

The software requires the Microsoft® .NET Framework (2.0 SP2 or higher). If the .NET Framework is not yet installed, this will be done automatically during setup. In this case, in addition, about 300 MB hard disk space must be available for installation.

7.2 Installation

Administrator rights are required to install the software. After the installation, the software is available for all users of the PC. Insert the CoP2 V & M Edition CD in the CD/DVD drive. The starter window appears, enabling you to install the software on your hard drive. Click on the associated button to start the installation assistant. If you do not have administrator authorization, you can start the program straight from the CD. Please note: If the program doesn’t run automatically, choose the CD/DVD drive marked „CoP2 V & M Edition“ in Windows Explorer. In the root directory, double-click the program „start.exe“.

The following window appears:

7 Software – getting started

1 Windows is a registered trademark of Microsoft Corporation in the United States and other countries

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 100 24.01.13 10:33

Page 102: Design Tools for Hollow Section Joints with MSH Sections in

Click on „Next >“ to continue. The installation wizard will now guide you through the installation of CoP2. The follow-ing window shows the license agreement. Please scroll down the text box to read the complete agreement. Then you have to accept the license agreement. To to this click on„I accept the agreement“ and then click on „Next >“. On the following window you can specify the installation folder. Click „Next >“ to continue. The next window sum-marises all settings. If the settings are correct, click „Install“ to start the installation process or press „Cancel“ to terminate the installation procedure. After the installation has been finished, you must register your local installation of the software to get free updates. Note that this step can also be done later when using CoP2 V&M Edition. The last window will summarise the installa-tion results and it offers the option „Start CoP2 now“ to start CoP2 V&M Edition automatically when the installation is terminated. Then, press „Finish“ to exit the installation pro-cedure. The installation of the software is now completed. A link to launch the software is now available on your desktop.

95

7.3 You don’t have an installation CD?

The software is available from the web server of Feldmann + Weynand GmbH. In order to obtain the software, please register and download the setup file from:

www.fw-ing.com/cop2vme

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 101 24.01.13 10:33

Page 103: Design Tools for Hollow Section Joints with MSH Sections in

96

7.4 Getting started

To launch CoP2 V & M Edition, click on icon on your desktop, or select ‘Start - All Programs - Feldmann + Weynand - CoP2’. The program will start and each user must accept the license agreement and disclaimer.

At this moment, you may also select the language of the user interface. You may change the language of the user interface at any time by selecting the ‘Options - Language’ command from the ‘Tools’ menu. In the following paragraphs it is assumed that you have selected ‘English’ as the language for the user interface. Click ‘I agree’ to continue.

You now may create a new project by selecting the ‘New’ command from the ‘File’ menu. For a quick start it is proba-bly easier to open one of the example files which have been copied to your computer during installation. Select the ‘Open’ command from the ‘File’ menu and open an example file. CoP2 project files have the file extension ‘.cop’. The following figure shows the main window of CoP2.

The use of the program is easy. On the left side of the project window, you may enter all required input data. Several tab sheets are available to enter (a) general information about your project, (b) size and material of the members to be connected, (c) details concerning the connection and (d) the applied loading. The last tab sheet will display the calculation results.

In order to start the determination of the joint properties, press ‘F9’ or click on the ‘Start calculation’ icon on the tool bar. A data check will be done automatically prior to the calculation. After the calculation is completed, the ‘Results’ tab sheet will be shown. If the data check returns any error or warning, details will be displayed in the message area on the right side of the main window, just below the 3D drawing of your joint.

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 102 24.01.13 10:33

Page 104: Design Tools for Hollow Section Joints with MSH Sections in

97

Note: The determination of the joint properties and the design checks made by the software are fully in accordance with Eu-rocode 3 (EN1993-1-1[1] and EN1993-1-8[2]) including its published corrigenda. However, in the meantime some further errors have been detected in Eurocode 3 which are not yet officially published. However, as far as additional corrections are agreed by the relevant international Technical Committees (CIDECT, ECCS TC 10), those corrections have been already implemented in the software. It should also be noted,

that Eurocode 3 uses for the design of hollow section joints a different sign convention for internal forces (positive values for compression) than the general sign convention in Euro-code 3 (positive values for tension). The software follows the general sign convention of Eurocode, i.e. positive values for tension. Finally, please be aware that the free CoP2 V & M Edition only includes the German National Annexes [3, 4]. More National Annexes are only available in the full version. Please visit ‘http://cop.fw-ing.com’ for more information.

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 103 24.01.13 10:33

Page 105: Design Tools for Hollow Section Joints with MSH Sections in

98

mi Mass per unit length of a member

mpl Plastic moment resistance per unit length

Mip,i,Ed Design value of the in-plane internal moment in member i

Mip,i,Rd Design value of the resistance of a joint, expressed in terms of the in-plane internal moment in member i

Mop,i,Ed Design value of the out-of-plane internal moment in member i

Mop,i,Rd Design value of the resistance of a joint, expressed in terms of the out-of-plane internal moment in member i

n Stress ratio in a RHS chord or number of bolts

Ni Axial force in member i

Ni,Ed Design value of the internal axial force in member i

Ni,Rd Design axial resistance of hollow section joint

Nc,i,Rd Design compression resistance of a joint in member i

Nt,i,Rd Design tension resistance of a joint in member i

p Length of the projected contact area of the overlapping brace member onto the face of the chord, in the absence of the overlapped brace member

p1 Spacing between centres of bolts in a line in direction of load transfer

q Overlap of the brace members in a K or N joint

twb Thickness of beam web

V Shear force

Vj,Rd Design shear resistance

Wel,i Elastic section modulus of member i

ro, ri Outer and inner corner radii of a section (EN 10210-2: ro = 1,5 · to and ri = 1,0 · t0)

β Ratio of the mean diameter or width of the brace members, to that of the chord

ε Coefficient depending on fy

γ Ratio of the chord width or diameter to twice its wall thickness

BC Beam-to-column joint configuration

CHS Circular hollow section

IPB In-plane bending, i.e. bending in the plane build by brace and chord

OPB Out-of-plane bending, i.e. bending out of the plane build by brace and chord

RHS Rectangular hollow section, including square hollow sections

SHS Square hollow sections, in literature also used for: Structural hollow sections

a Throat thickness of a weld

A, Ai Cross-section area (of member i)

AV Shear area of a chord

be f f Effective width for brace failure

be,p Effective width for punching shear failure

hi, bi, ti Height, width, thickness of a section or plate

c Width or depth of a part of a cross section

c1 Empirical parameter for chord plastification of a CHS

db Clear depth of beam web

di Overall diameter of a CHS section

e Eccentricity of a joint

e1 End distance from centre of bolt hole to adjacent end of any part, measured in direction of load transfer

e2 Edge distance from centre of bolt hole to adjacent edge of any part, measured at right angles to direction of load transfer

fb Buckling strength of the chord side wall

fy, fy0 Yield strength (of a chord member)

g Gap between the brace members in a K- or N-joint or between beam and column

I Second moment of area

Le Empirical parameter (effective length) for chord plastification of CHS

8 Abbreviations & symbols

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 104 24.01.13 10:33

Page 106: Design Tools for Hollow Section Joints with MSH Sections in

σ0,Ed Maximum compressive stress in the chord at a joint

τ Ratio of the brace member thickness to the chord thickness

Note: Subscript i used to designate a member of a joint, i = 0 denoting a chord, i = 1 or 2 a brace member,i = c a column and i = p a plate.

99

γM5 Partial safety factor for resistance of joints in hollow section lattice girder

λοʋ Overlap ratio, expressed as a percentage (λοʋ = (q / p) · 100%)

λοʋ,lim Overlap ratio for which the shear between the braces and the chord facecan become critical

Θi Included angle between brace member i and the chord

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 105 24.01.13 10:33

Page 107: Design Tools for Hollow Section Joints with MSH Sections in

100

[12] JASPART, J.-P. and K. WEYNAND: Design of Joints in Steel and Composite Structures: Eurocode 3: Design of Steel Structures Part 1-8 – Design of Joints; Eurocode 4: Design of Composite Steel and Concrete Structures. Ernst & Sohn, Berlin, in prep.

[13] JASPART, J.-P., K. WEYNAND, C. PIETRAPER- TOSA, E. BUSSE and R. KLINKHAMMER: Development of a full consistent design approach for bolted and welded joints in building frames and trusses between steel members made of hollow and/or open sections: Application of the component method: CIDECT Report 5BP-4/05. No. 5BP-4/05 in CIDECT Report. CIDECT, August 2005.

[14] KUROBANE, Y., J. A. PACKER, J. WARDENIER and N. YEOMANS: Design Guide 9, Design guide for structural hollow section column connections. Construction with hollow steel sections.TÜV Verlag Rheinland GmbH, Köln, 2004.

[15] N.N.: Structural hollow sections (MSH) Circular - Square - Rectangular: Nominal dimensions, sectional properties, materials. No. V & M 3B0001B-8 in Tech-nical Information 1. V & M DEUTSCHLAND GmbH, Düsseldorf, 2003

[16] N.N.: PREON – The key component for hall construc- tion. No. V & M 3B0014B. V & M DEUTSCHLAND GmbH, Düsseldorf, 2008.

[17] PACKER, J. A., and J. E. HENDERSON: Hollow structural section connections and trusses: A design guide. Canadian Institute of Steel Constructions, Willowdale, Ontario, 2. ed., 1997.

[18] PACKER, J. A., J. WARDENIER, Y. KUROBANE, D. DUTTA and N. YEOMANS: Design Guide 3: For rectangular hollow section (RHS) joints under predo-minantly static loading. Construction with hollow steel sections. Verlag TÜV Rheinland GmbH, Köln, 1992.

[19] PACKER, J. A., J. WARDENIER, X. L. ZHAO, G. J. VAN DER VEGTE and Y. KUROBANE: Design Gui-de 3: For rectangular hollow section (RHS) joints under predominantly static loading. Construction with hollow steel sections. LSS Verlag, Dortmund, 2. ed., 2010.

[1] DIN: Eurocode 3: Design of steel structures – Part 1-1: General rules and rules for buildings; German version EN 1993-1-1:2005 + AC:2009, December 2010.

[2] DIN: Eurocode 3: Design of steel structures – Part 1-8: Design of joints; German version EN 1993-1-1:2005 + AC:2009, December 2010.

[3] DIN: National Annex – Nationally determined parame- ters – Eurocode 3: Design of steel structures – Part 1-1: General rules and rules for buildings, December 2010.

[4] DIN: National Annex – Nationally determined parame- ters – Eurocode 3: Design of steel structures – Part 1-8: Design of joints, December 2010.

[5] DIN: Cold formed welded structural hollow sections of non-alloy and fine grain steels – Part 1: Technical delive-ry conditions; German version EN 10219-1:2006:Part 1: Technical delivery conditions, July 2006.

[6] DIN: Cold formed welded structural hollow sections of non-alloy and fine grain steels – Part 2: Tolerances, dimensions and sectional properties; German version EN 10219-1:2006:Part 1: Technical delivery conditions, July 2006.

[7] DIN: Hot finished structural hollow sections of non-alloy and fine grain steels – Part 1: Technical delivery conditions; German version EN 10210-1:2006:Part 1: Technical delivery conditions, July 2006.

[8] DIN: Hot finished structural hollow sections of non-alloy and fine grain steels – Part 2: Tolerances, dimensions and sectional properties; German version EN 10210-1: 2006:Part 1:Technical delivery conditions, July 2006.

[9] HERION, S. and O. FLEISCHER: Bemessung und Nachweisführung von Hohlprofilknoten nach DIN EN 1993-1-8. Stahlbau, 79(11):835–843, 2010.

[10] HERION, S. and O. FLEISCHER: Berichtigung: Bemessung und Nachweisführung von Hohlprofilknoten nach DIN EN 1993-1-8. Stahlbau, 80(7):551–552, 2011.

[11] JASPART, J.-P., J.-F. DEMONCEAU, S. RENKIN and M. GUILLAUME: European Recommendations for the Design of Simple Joints in Steel Structures: Eurocode 3, Part 1 – 8: ECCS Technical Committee 10 Structural Connections, Bd. 126. 2009.

9 References

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 106 24.01.13 10:33

Page 108: Design Tools for Hollow Section Joints with MSH Sections in

[25] WARDENIER, J.: Hollow sections in structural applications. Bauwen met Stahl, Delft, The Nether-lands, 2001.

[26] WARDENIER, J., Y. KUROBANE, J. A. PACKER, D. DUTTA and N. YEOMANS: Design Guide 1: For circular hollow section (CHS) joints under predominantly static loading. Construction with hollow steel sections.Verlag TÜV Rheinland GmbH, Köln, 1991.

[27] WARDENIER, J., Y. KUROBANE, J. A. PACKER, G. J. VAN DER VEGTE and X. L. ZHAO: Design Guide 1: For circular hollow section (CHS) joints under predominantly static loading. LSS Verlag, Dortmund, 2. ed., 2008.

101

[20] PUTHLI, R.: Hohlprofilkonstruktionen aus Stahl nach DIN V ENV 1993 (EC3) und DIN 18800 (11.90). Werner Verlag, Düsseldorf, 1998.

[21] SEDLACEK, G., K. WEYNAND and S. OERDER: Typisierte Anschlüsse im Stahlhochbau. Stahlbau Verlags- und Service GmbH, Düsseldorf, 2000.

[22] SILVA, L. SIMÕES DA, R. SIMÕES and H. GERVÁSIO: Design of Steel Structures: Eurocode 3: Design of steel structures. Part 1 - 1: General rules and rules for buildings. Ernst & Sohn, Berlin, 2010.

[23] TOGO, T.: Experimental study on mechanical behaviour of tubular joints. PhD thesis, Osaka University, Osaka University, Osaka Japan, 1967.

[24] WARDENIER, J.: Hollow section joints. Delft University Press, Delft, The Netherlands, 1982.

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 107 24.01.13 10:33

Page 109: Design Tools for Hollow Section Joints with MSH Sections in

102

The design tools for hollow section joints are provided by:

V & M DEUTSCHLAND GmbHwww.vmtubes.com

The new European standard EN 1993-1-8 provides actual design rules for joints in steel structures between both open and hollow sections. To facilitate the use of hollow sections, VALLOUREC & MANNESMANN TUBES has launched an initiative to develop new design tools for the daily design practice resulting in the present publication. It will enable the engineer to perform design checks of joints connecting hollow sections in an easy, safe and economic manner.

With this publication both design resistance tables for standardised joints and design software for individual joint dimensions are provided. With these design tools it is possib-le to determine the structural characteristics of hollow section joints under static loading. Joints made in typical lattice girder steel constructions and simple frames made of hollow sections are covered.

The design tools are developed by Feldmann + Weynand GmbH, Aachen, Germany (F+W) in close cooperation with KoRoH GmbH, Karlsruhe, Germany (CCTH). The project is supported by V & M DEUTSCHLAND GmbH, Düsseldorf, Germany (V & M TUBES).

Design tools for hollow section joints

D01 B0035 B13 GB

VM_Typisierte Anschlüsse_Katalog_185x280_EN_2013.indd 108 24.01.13 10:33

Page 110: Design Tools for Hollow Section Joints with MSH Sections in

V & M DEUTSCHLAND GmbH

Theodorstr. 90

D-40472 Düsseldorf · Germany

www.vmtubes.com/msh

[email protected]

Vallourec Group

Desig

n Too

ls fo

r Holl

ow Se

ction

Joint

s with

MSH

Secti

ons

in a

cco

rdan

ce w

ith

EN

199

3 an

d E

N 1

0210

Design Tools for Hollow Section Joints with MSH Sections

in accordance with EN 1993 and EN 10210

Resistance Tables for Standardised Joints

CoP – Software for Individual Joint Dimensions

ISBN 978-3-9814698-1-3

K. W

eyna

nd, J

. Kuc

k, R

. Oer

der

, S. H

erio

n, O

. Fle

isch

er, M

. Rod

e

K. Weynand, J. Kuck, R. Oerder, S. Herion, O. Fleischer, M. Rode

010011011011010

010011011011010

010011011011010010011011011010

010011011011010010011011011010010011011011010010011011011010010011011011010

010011011011010

010011011011010

Design Tools for Hollow Section Joints with MSH Sections

CoP – Software for Individual Joint Dimensions in accordance with EN 1993 and EN 10210

010011011011010

010011011011010

010011011011010010011011011010

010011011011010010011011011010010011011011010

CoP – Software for Individual Joint Dimensions in accordance with EN 1993 and EN 10210

010011011011010

VM_CoP2_Einband_A4.indd 2 22.09.11 08:46