93
Design of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite Structures Design Manual February 2001

Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

Embed Size (px)

Citation preview

Page 1: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

Design of Simply-SupportedComposite Beams withLarge Web Penetrations

Design Booklet DB1.3

OneSteel Market MillsComposite Structures Design Manual

February 2001

Page 2: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–ii Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

Published by

OneSteel Manufacturing Pty LimitedABN 42 004 651 325

Produced by the

Centre for Construction Technology & ResearchUniversity of Western Sydney

Contributors

Dr. Mark Patrick *Centre for Construction Technology & Research

Dr. Cameron Chick *Dr. Daya Dayawansa *Dr. Chong Chee Goh *

Mr. Rodney Wilkie ** Formerly BHP Melbourne Research Laboratories

Reviewed by

Dr. Brian UyThe University of New South Wales

Edition 1.0 - April 1999Edition 2.0 - February 2001

DisclaimerWhile every effort has been made and all reasonable care taken toensure the accuracy of the material contained herein, thecontributors, editors and publishers of this booklet shall not be heldliable or responsible in any way whatsoever, and expressly disclaimany liability or responsibility for any loss or damage, cost orexpenses, howsoever incurred by any person whether the user ofthe booklet or otherwise including without limitation, loss or damage,costs or expenses incurred as a result of or in connection with thereliance, whether whole or partial by any person as a foresaid uponany part of the contents of this booklet. Should expert assistance berequired, the services of a competent person should be sought.

Page 3: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–iiiDesign of Simply-Supported Composite Beams with Large Web Penetrations

ForewordOneSteel is a leading manufacturer of steel long products in Australia after its spin-off from BHP PtyLtd on the 1st November 2000. It manufactures a wide range of steel products, including structural,rail, rod, bar, wire, pipe and tube products and markets welded beams.

OneSteel is committed to providing to design engineers, technical information and design tools toassist with the use, design and specification of its products. This design booklet “Design of Simply-Supported Beams with Large Web Penetrations” was the third design booklet of the CompositeStructures Design Manual, which is now being completed and maintained by OneSteel.

The initial development work required to produce the design booklets was carried out at BHPMelbourne Research Laboratories before its closure in May 1998. OneSteel Market Mills is fundingthe University of Western Sydney’s Centre for Construction Technology and Research in continuingthe research and development work to publish this and future booklets.

The Composite Structures Design Manual refers specifically to the range of long productsthat are manufactured by OneSteel and plate products that continue to be manufactured byBHP. It is strongly recommended that OneSteel sections and reinforcement and BHP plateproducts are specified for construction when any of the design models in the design bookletsare used, as the models and design formulae including product tolerances, mechanicalproperties and chemical composition have been validated by detailed structural testing usingonly OneSteel and BHP products.

To ensure that the Designer’s intent is met, it is recommended that a note to this effect beincluded in the design documentation.

Page 4: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–iv Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

ContentsPreface ............................................................................................................. iv

1. SCOPE AND GENERAL1.1 Scope ..................................................................................................... 11.2 General................................................................................................... 1

2. TERMINOLOGY..........................................................................................................................33. DESIGN CONCEPTS

3.1 Strength Design...................................................................................... 43.2 Deflection Calculation............................................................................. 7

4. DESIGN MODELS4.1 General................................................................................................... 94.2 Strength Design Model ........................................................................... 94.3 Deflection Design Model........................................................................ 12

5. DESIGN APPROACH5.1 General................................................................................................... 135.2 Overall Design Approach........................................................................ 135.3 Strength Design...................................................................................... 135.4 Deflection Calculation............................................................................. 15

6. DESIGN RULES6.1 General................................................................................................... 166.2 Application .............................................................................................. 166.3 Strength Design...................................................................................... 186.4 Design Moment and Shear Capacities - Composite Beams .................. 186.5 Design Moment and Shear Capacities - Bare Steel Beams................... 206.6 Stability Considerations .......................................................................... 216.7 Detailing.................................................................................................. 216.8 Deflection Calculation............................................................................. 23

7. AIDS FOR STRENGTH DESIGN7.1 General................................................................................................... 267.2 WEBPENTM Spreadsheet Program ........................................................ 267.3 Design Capacity Tables.......................................................................... 27

8. WORKED EXAMPLES8.1 General................................................................................................... 288.2 Beam and Penetration Data ................................................................... 288.3 Example 1 .............................................................................................. 298.4 Example 2 .............................................................................................. 32

9. REFERENCES ..................................................................................................... 39

APPENDICESA. Nominal Moment Capacity - Composite Beam ...................................... 40B. Nominal Moment Capacity - Bare Steel beam ....................................... 44C. Design Capacity Tables.......................................................................... 46D. Notation .................................................................................................. 85

Page 5: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–vDesign of Simply-Supported Composite Beams with Large Web Penetrations

PrefaceThis design booklet forms part of a suite of booklets covering the design of simply-supported andcontinuous composite beams, composite slabs, composite columns, steel and compositeconnections and related topics. The booklets are part of the OneSteel Market Mills’ CompositeStructures Design Manual which has been produced to foster composite steel-frame buildingconstruction in Australia to ensure cost-competitive building solutions for specifiers, builders anddevelopers.

The additional design information necessary to allow large web penetrations to be incorporated intosimply-supported bare steel and composite beams is presented in this booklet. Design issues withrespect to strength and deflection control are addressed. The non-composite bare steel state arisesduring construction prior to the concrete hardening.

Large rectangular and circular penetrations are often made in the steel web of composite beams forthe passage of horizontal building services. This allows the plenum height to be reduced when usingeconomical, standard UB and WB steel sections. However, large penetrations weaken a compositebeam locally and reduce its overall flexural stiffness, and therefore their effect must be considered indesign.

Neither the Steel Structures Standard AS 4100 nor the Composite Beam Standard AS 2327.1contains design provisions for large web penetrations. The rules provided in the booklet for designingbare steel beams with large penetrations are compatible with AS 4100. For the composite state, therules are compatible with AS 2327.1, and have been proposed as an acceptable method of design tobe referred to in Amendment No. 1 of this Standard expected to be published this year.

Information is also given to assist design engineers to understand the engineering principles onwhich the design methods are based. This includes:

(a) explanatory information on important concepts and models;

(b) the limits of application of the methods; and

(c) worked examples.

Design capacity tables are given in Appendix C to simplify the strength design process. Theinformation provided can be used to design for either the bare steel or composite states. The tablescover a range of situations involving 300PLUS® UB and WB steel sections supporting a compositeslab and incorporating large web penetrations. A spreadsheet program named WEBPENTM isavailable to assist with the strength design calculations.

Although these design aids are intended to make the design process more efficient, it is essentialthat the user obtain a clear understanding of the basis of the design rules and the design approachby working through this document and the relevant parts of associated design Standards such as AS4100 and AS 2327.1.

Page 6: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite
Page 7: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–1Design of Simply-Supported Composite Beams with Large Web Penetrations

1. SCOPE AND GENERAL1.1 ScopeThe additional design information necessary to allow large web penetrations to be incorporated intosimply-supported bare steel and composite beams is presented in this booklet. Design issues withrespect to strength and deflection control are addressed. The steel beam must be a doubly-symmetric I-section.

The overall beam design for the bare steel and composite states is assumed to have been carriedout in accordance with AS 4100 [1] and AS 2327.1 [2], respectively.

The penetrations may be (see Fig. 1.1):

• rectangular or circular in shape (within the specified limitations);

• unreinforced, or reinforced (in accordance with the specified details) ; and

• concentric or eccentric to the centroid of the steel section.

The application of the strength design method is defined by the conditions given in Section 6.2.

(a) Circular unreinforced (b) Rectangular unreinforced

(c) Circular reinforced (d) Rectangular reinforced

Figure 1.1 Acceptable Types of Web Penetrations

This document should be read in conjunction with the design booklet Design of Simply-SupportedComposite Beams for Strength, DB1.1 [3] and AS 2327.1, noting that some relevant material fromthese documents has not been duplicated herein.

In accordance with Clause 5.2.3.1 of AS 2327.1, the effect of holing of the steel beam due to a webpenetration may be ignored provided the greatest internal dimension of the penetration is not greaterthan 0.1 times the clear depth of the web. It follows that penetrations larger than this should beconsidered as large, and their effect determined in accordance with the information provided in thisdocument.

1.2 General

The strength design method presented herein is based on a method recommended by an ASCETask Committee [4]. The method has been verified with some experimentally-based investigationsconducted in Australia, and modified to suit Australian design practice and conform to relevantAustralian Standards. Further details about the development of the strength design method can befound elsewhere [5,6].

Page 8: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–2 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

The deflection design method has been developed from work originally presented by Tse andDayawansa [7]. Further information about this method can be found in [5].

Large rectangular and circular penetrations are often made in the steel web of composite beams forthe passage of horizontal building services. This allows the plenum height to be reduced when usingeconomical, standard UB and WB steel sections. However, large web penetrations weaken acomposite beam locally and reduce its overall flexural stiffness. Neither the Steel StructuresStandard AS 4100 nor the Composite Beam Standard AS 2327.1 contains design provisions forlarge web penetrations.

The strength design method was adopted after a detailed review of four proposed methods, viz.ASCE Task Committee [4], Redwood and Cho [8], Lawson [9] and Oehlers and Bradford [10]. Themethod adopted for Australian design practice, proposed by ASCE Task Committee [4], has beenmodified to conform to the relevant Australian Standards. The suitability of the modified method hasbeen verified on the basis of an Australian experimental program. A reliability analysis has beenconducted using the results of the experimental program and other experimental data available fromoverseas literature, to determine an appropriate value for the strength factor, φ [11]. In this regard,consideration has also been given to the improved performance of a composite beam that can bederived by placing DECKMESH™ [12] in the region of a penetration [13]. Accordingly, it isrecommended herein that this reinforcing product is used in the region of each web penetration whenthe profiled steel sheeting is deemed perpendicular to the steel beam. (Note: this product is notsuitable to be used in situations when the sheeting is parallel to the steel beam – refer to designbooklet DB1.2 for further guidance.)

The cost implications of choosing between reinforced or unreinforced web penetrations is animportant consideration during the design stage, noting that the intention of using penetrations is notonly to obtain an acceptable floor-to-floor height, but also a more cost-effective structure. For thispurpose, it is recommended that a rational method of costing steelwork is used which takes intoaccount the specific labour and material costs involved in fabricating the penetrations including anysteel plate reinforcement [14].

Page 9: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–3Design of Simply-Supported Composite Beams with Large Web Penetrations

2. TERMINOLOGYSome important terminology used in this booklet is summarised in this section. Reference shouldalso be made to Section 2 of DB1.1 and Clause 1.4.3 of AS 2327.1 for additional terminology.

Bottom T-SectionThe portion of the steel beam cross-section lying below the penetration.

High Moment End (HME)The end of a penetration subjected to the higher primary bending moment.

Low Moment End (LME)The end of a penetration subjected to the lower primary bending moment.

Primary Bending MomentThe bending moment at a beam cross-section due to overall bending action ignoring secondaryeffects (see Fig. 3.2).

Rigid ArmA part of a beam assumed to be rigid in the model used for deflection calculations.

Secondary Bending MomentThe additional bending moment induced in the top and bottom T-sections as a result of Vierendeelaction over the length of the penetration (see Fig. 3.2).

Steel T-SectionThe bottom T-section or the top T-section, excluding the concrete flange in the case of a compositebeam.

Top T-SectionThe portion of the steel beam cross-section lying above the penetration, inclusive of the concreteflange in the case of a composite beam.

Vierendeel ActionThe development of secondary bending moments in the top and bottom T-sections due to thepresence of vertical shear force across the penetration.

Web Penetration ReinforcementSteel plates or flat bars continuously welded to one or both sides of the web of the steel beam, asclose as practicable to the top and bottom horizontal edges of the penetration.

Page 10: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–4 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

3. DESIGN CONCEPTS3.1 Strength Design

Behaviour in the Region of a Web PenetrationA large rectangular or circular penetration made in the steel web of a simply-supported steel orcomposite beam weakens the beam locally by reducing both the moment and shear capacities. Thisreduction in strength can be partly overcome by welding steel plates or flat bars to the web along thehorizontal edges of the penetration as reinforcement. However, the economics of using webpenetration reinforcement needs careful consideration.

In the absence of vertical shear force, the moment capacity of a beam cross-section at a large webpenetration is reduced as a direct result of the loss of steel web area. Vertical shear force at thepenetration gives rise to a more complex state of equilibrium as a result of Vierendeel actionoccurring over the length of the penetration. This action causes additional secondary moments todevelop in the top and bottom T-sections. Its effect becomes more pronounced as the penetrationlength increases and as the shear-to-moment ratio increases, which explains why both of thesefactors need to be controlled during design.

The main features that become visible in the region of a web penetration at ultimate load are shownin Fig. 3.1. The most-highly stressed areas are located at the high- and low-moment ends of thepenetration, denoted HME and LME, respectively. These features are briefly explained as follows.

The secondary moments may be sufficiently large to cause the slab to crack perpendicular to thesteel beam, both in the top face at the LME and the bottom face at the HME. The combined effectsof flexure, shear and Vierendeel action can lead to yielding in the top and bottom T-sections, andplastic hinges can form at their ends.

In many cases, large differential vertical deflection between the two ends of the penetration occurswhen a major diagonal crack forms in the concrete slab directly above the penetration. This crackcan lead to a sudden drop in the load-carrying capacity of the composite beam, significantly reducingits ductility [13]. Large tensile forces develop in the shear connectors at the HME region of thepenetration [15], particularly prior to the onset of the diagonal crack. The likelihood of diagonalcracking in the slab can be influenced by a number of factors, such as: the moment-shear ratio; thegeometry of the profiled steel sheeting; the orientation of sheeting ribs; and the slab reinforcement.

Support

Steel yielding Bottom T-Section

Concretecracking

Diagonalcracking

Top T-Section

Concretecrushing

LMEHME

Primarybendingmoments

Shearforce

Figure 3.1 Behaviour at Ultimate Load

Page 11: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–5Design of Simply-Supported Composite Beams with Large Web Penetrations

When the sheeting ribs are orientated perpendicular to the longitudinal axis of the steel beam, thediagonal crack initiates at the top of the ribs and rapidly propagates through the cover slab causingfailure. Tests show that the behaviour of a composite beam with the sheeting laid perpendicular tothe steel beam can be significantly improved if the width of this crack is controlled using special steelreinforcement in the concrete slab [13]. This steel reinforcement was originally developed to preventrib shearing failure in composite edge beams [16,17,19], and is now commercially available asDECKMESH [12].

Primary and Secondary Bending MomentsThe existence of primary and secondary bending moments in the region of a large web penetration isillustrated in Figure 3.2.

Primary bendingmoments

M*HM*L

Top T-Section

Bottom T-SectionHMELME

(a) Primary bending moments on beam at web penetration

Secondary bendingmoments

(b) Secondary bending moments on T-Sections

Top T-Section

HME

LME

V*b

V*b

V*t

V*t

Bottom T-Section

Vierendeel deformationin T-Sections

Figure 3.2 Primary and Secondary Bending Moments in the Region of a Web Penetration

Effect of Web Penetrations on Maximum Compressive Force in Concrete FlangeIn a simply-supported composite beam, the maximum compressive force that can develop in theconcrete flange at any particular cross-section can be governed by various factors such as thestrength and distribution of the shear connectors, the tensile capacity of the steel section, thecompressive strength of the concrete, etc. When a web penetration is incorporated in the steelbeam, this can reduce the compressive force that can develop in the concrete flange at some of theother cross-sections of the composite beam, as shown in Fig. 3.3 (where it is assumed that theshear connector distribution remains unchanged after the introduction of the web penetration, andthat they are uniformly spaced). Design rules to cater for this situation are given in Clause 6.6 of AS2327.1.

Design Moment CapacityThe design moment capacity at the web penetration is calculated at the HME, in accordance with therequirements of AS 2327.1, while accounting for:

(a) the depth of the penetration;

Page 12: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–6 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

(b) any horizontal reinforcement at the top and bottom edges of the penetration; and

(c) the degree of shear connection ( β ) at the HME of the penetration.

The effect of vertical shear force is ignored, and therefore, so are secondary bending momentsarising from Vierendeel action.

Case (a) Force in concrete flange is not affected by web penetration (i.e. F = nHfds ≤=Fcc)

Case (b) Force in concrete flange is affected by web penetration (i.e. F = nHfds >=Fcc)

nH shear connectors

Maximum momentcross-section

Force in concreteflange Fcc

Fcc

F = (nH)afds

Force in concreteflange Fcc

Beam with noweb penetration

Beam withweb penetrationFcc

Assumptions:(a) fds corresponds to (nH)a in Case (a) and (nH)b in Case (b)(b) Shear connectors are uniformily distributed

F = (nH)bfds

Beam with noweb penetration

Beam withweb penetration

x

x

Figure 3.3 Influence of Web Penetration on Maximum Compressive Force in Concrete Flange

Design Vertical Shear CapacityIn the case of composite beams without large web penetrations designed in accordance withAS 2327.1, it is assumed that the shear force is resisted by the steel beam alone when calculatingthe design vertical shear capacity. This simplifying assumption is considered too conservative atcross-sections within a web penetration when a significant portion of the steel web has beenremoved. It is assumed that the concrete slab also contributes to the design shear capacity of thecomposite beam, if the combined design shear capacity of the top and bottom steel T-sections isinsufficient to resist the design vertical shear force.

The model used to determine the nominal vertical shear capacity of a composite beam in the regionof a web penetration is presented in Section 4.2.

Moment-Shear Interaction

Page 13: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–7Design of Simply-Supported Composite Beams with Large Web Penetrations

In accordance with the strength design method given in AS 2327.1, the nominal moment capacity ofa cross-section of a composite beam without a web penetration is assumed to be affected by shearwhen the shear ratio, γ , is greater than 0.5 (see Clause 6.4 of AS 2327.1). In this case, the nominalmoment capacity is assumed to reduce linearly with the shear ratio until the entire steel web is fullyutilised resisting shear, and hence makes no contribution to moment capacity. When γ =10. , theonly contribution to the moment capacity from the steel section is due to the steel flanges. Theresulting tri-linear moment-shear interaction curve is shown in Fig. D3.2 of AS 2327.1.

It should be noted that a different moment-shear interaction relationship, defined by a continuouscubic equation, as shown in Fig. 4.1, is adopted in the web penetration design method. This samemoment-shear interaction equation is used by ASCE Task Committee [4], Redwood and Cho [8] andOehlers and Bradford [10].

Penetration ReinforcementThere are numerous ways of reinforcing web penetrations to minimise the loss of strength andstiffness that can arise due to their presence. Some of these reinforcing arrangements are shown inFig. 3.4. However, the strength design formulae given in Section 6 have been derived assuming thesteel plate or flat bar reinforcement is continuously welded to the web, as close as practicable to thetop and bottom horizontal edges of the penetration. Therefore, only the reinforcement arrangementsshown in Fig. 3.4(a) are valid for use with this document.

3.2 Deflection CalculationThe method given in this booklet can be used to calculate the total deflection of a simply-supportedbare steel or composite beam incorporating a large web penetration.

Basis of Calculation for Composite BeamThe method requires the following two deflection components to be calculated and added together toobtain the total deflection of a composite beam:

(a) total deflection of the beam with no web penetration, calculated in accordance with thesimplified method given in AS 2327.1; plus the

(b) additional deflection due to the presence of the web penetration.

The simplified method given in AS 2327.1 accounts for the effects of long- and short-term loadingand partial shear connection. The additional deflection component due to the presence of thepenetration can be calculated for both long- and short-term loading conditions. The second momentsof area of the T-sections required for this calculation are determined ignoring the effects of partialshear connection.

In calculating the additional deflection component in (b), the bending, shear and Vierendeeldeformations within the length of the penetration are taken into account, and the remaining parts ofthe beam on either side of the penetration are assumed to be two rigid arms. These rigid arms areassumed to undergo no deformation, but their rotations contribute to the deflection of the beam.

The method assumes linear elastic behaviour and hence does not account for deflections due toplastic or buckling deformations in any part of the beam. Concrete shrinkage and creep effects areaccounted for separately.

The additional deflection for a beam with multiple penetrations can be obtained by summing theadditional elastic deflections due to the individual penetrations.

Page 14: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–8 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

(a) Horizontal reinforcement welded to web

(b) Horizontal and vertical reinforcement welded to web

(c) Penetration edge reinforced with flats

(d) T-Sections strengthened

(e) Diagonal reinforcement

Note: The design method is applicable for penetrations with reinforcement arrangement (a) only.

Figure 3.4 Arrangements of Web Penetration Reinforcement

Page 15: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–9Design of Simply-Supported Composite Beams with Large Web Penetrations

4. DESIGN MODELS4.1 GeneralThe design models used in the strength and deflection design methods and their limits of applicationare briefly explained in this section. The limits of application arise mainly from the parameter rangescovered in experimental and theoretical studies undertaken to verify the models. This may explainsomewhat arbitrary nature of some of the limits of application. Nevertheless, the limits encompass arange sufficiently wide for most practical applications. These limits are described in detail inSection 6.

4.2 Strength Design Model

Strength Design CriterionThe strength design criterion for a web penetration in a bare steel or composite simply-supportedbeam is represented as the following cubic moment-shear interaction equation,

* *MM

VVφ φb u

� � +�

��

��

3 3

≤ 1.0 (4.1)

where, M * and V * are the design bending moment and shear force, respectively, at the mid-lengthof the penetration; φMb is the design moment capacity of the beam cross-section at HME of the

penetration; and φVu is the design shear capacity for the segment of beam over the length of thepenetration.A value of 0.9 has been chosen for the capacity factor, φ, in Eq. 4.1 based on the findings of areliability analysis on the experimental results [11]. This value is the same as that used for bendingand shear strength, in AS 4100 for bare steel beams and in AS 2327.1 for composite beams.

The curve described by Eq. 4.1 is shown graphically in Fig. 4.1, and the design combinations of

( )M V* *, falling within the shaded area represent satisfactory designs which satisfy the criterion.

00

1.0

1.0 A

B

M*φMb

+

3 3≤ 1.0Region where

Q

M*φMb

V*φVu

V*φVu

P - Corresponding to a satisfactory designQ - Corresponding to an unsatisfactory design

P

Figure 4.1 Moment-Shear Interaction Model

Page 16: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–10 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

When the design bending moment, M * , and design shear force, V * , at the mid-length of thepenetration have been calculated, the next step of the strength design calculation is to determine thevalues of φMb and φVu at the penetration.

Design Moment CapacityThe design moment capacity, φMb , at a penetration is calculated at the HME in accordance withAS 2327.1 using rectangular stress block theory. In this calculation, the shear force at the cross-section is assumed to be zero. The degree of shear connection, β , at the cross-section is calculatedusing Clause 6.6 of AS 2327.1 and accounting for the reduced steel section due to the penetration.

Design Shear CapacityThe design shear capacity, φVu , at a web penetration is calculated as the sum of the contributionsfrom the top and bottom steel webs and the concrete flange. In this calculation, the effect of overallbending at the cross-section is ignored, while the flexural stresses in the top and bottom T-sectionscaused by Vierendeel action due to shear are determined.

The following assumptions are made in the calculation:

(a) the net axial force in the top and bottom T-sections is zero;

(b) a simplified version of the von Mises yield criterion is used to account for the interactionbetween shear and bending stresses;

(c) the plastic neutral axes of the top and bottom T-sections due to Vierendeel action lie in theirrespective steel flanges; and

(d) a width of 3Dc of the concrete flange contributes to the shear capacity of the top T-section, ifthe shear capacity of the steel web of the top T-section is fully utilised.

These assumptions greatly simplify the design model while not significantly affecting the accuracy ofthe calculation.

Limits of Applicability of the Strength Design ModelThe strength design model is primarily formulated for rectangular web penetrations in a simply-supported bare steel or composite beam. Circular web penetrations are designed by converting thecircular penetration into an equivalent rectangular penetration. Web penetration size, shape andlocation limits are given in Section 6.2.

Reinforcement

Reinforcement

(a) Single-sided reinforcement (b) Double-sided reinforcement

x

x

Section x-x

Figure 4.2 Web Penetration Reinforcement Arrangements

Page 17: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–11Design of Simply-Supported Composite Beams with Large Web Penetrations

Web penetrations may be either unreinforced or reinforced, and possibly eccentric to the centroid ofthe steel beam section. It is assumed that any web penetration reinforcement is continuously weldedas close as practicable to the top and bottom horizontal edges of the penetration. In addition, thereinforcement shall be rectangular in cross-section and shall not exceed the dimensions specified inSection 6.7. Acceptable reinforcement arrangements are shown in Fig. 4.2 for a rectangularpenetration.

P

a L0 b

L

RA RB

Top T-Section

Bottom T-Section Rigid arms

Pθ'L

θ'L θ'H θ'H

P

δ's

a bL

L0

(c) Shear deformation and induced discontinuity

(d) Additional deflection due to shear

PθL

θL θH θH

(a) Idealised beam model for calculation of additional deflections

(b) Additional deflection due to bending

Figure 4.3 Deflections of the Beam

Page 18: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–12 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

The steel section shall be compact or non-compact in accordance with the requirements ofAS 2327.1. Slenderness limitations have been imposed in the region of the web penetration to avoidbuckling of the webs of the T-sections and overall buckling of the top T-section in compression.These limitations are given in Section 6.6. As the resistance of bare steel and composite beams tolateral and flexural-torsional buckling may be lowered with the introduction of a web penetration, theeffect of reduced lateral and flexural-torsional buckling loads also needs to be considered in design.

The strength design method is not applicable to beams subjected to significant load fluctuations,which may lead to fatigue.

4.3 Deflection Design Model

Deflection Component Without a Web PenetrationThe deflection of the beam without a penetration is determined by the simplified method specified inAppendix B of AS 2327.1. This method is based on elastic bending theory, and uses the effectivesecond moments of area of the beam, which accounts for partial shear connection.

Additional Deflection Components due to Web PenetrationThe additional deflection components due to bending and shear deformations at the web penetrationare determined using a model where only the top and bottom T-sections at the penetration areassumed to undergo deformation. The remaining parts of the beam on both sides of the penetrationare assumed to be rigid (see Fig. 4.3(c)). These rigid arms, which are connected to each end of thepenetration, rotate in order to maintain compatibility with the local deformations at the penetration, asshown in Fig. 4.3.

Page 19: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–13Design of Simply-Supported Composite Beams with Large Web Penetrations

5. DESIGN APPROACH5.1 GeneralThe purpose of this section is to explain the design approach adopted in this booklet. Rules for thestrength and deflection design of simply-supported bare steel and composite beams incorporatinglarge web penetrations are covered in Section 6. The restrictions applicable to the strength designmethod are given in Section 6.2.

The overall design approach covering strength and deflection design is illustrated in Fig. 5.1 as aflowchart.

5.2 Overall Design Approach It is assumed in the overall design approach that a preliminary design of the beam without webpenetrations has been completed prior to the web penetration design. Therefore, the basicparameters such as relevant material properties, the size of the steel beam, dimensions of theconcrete slab, distribution of shear connectors, etc., are all assumed to be known. It is also assumedthat the deflection of the beam without web penetrations has been calculated and that any specificdeflection criteria are known.

The aim of the web penetration design procedure is to determine whether the proposed webpenetration can be placed at the preferred location without violating the strength and deflectiondesign criteria. An unreinforced penetration is initially tried with the aim of minimising cost.

If the design criteria are not satisfied for a trial size and location of the web penetration, the optionsavailable to the designer for improving the design include:

(a) changing the location of penetration;

(b) changing the steel beam size; or

(c) adding penetration reinforcement.

The parts of the overall design approach that are covered by the strength and deflection designmethods provided herein are shown below the horizontal dashed line in Fig. 5.1.

5.3 Strength Design The aim of the strength design procedure presented in this section is to ensure that the strengthdesign criterion given by Eq. 4.1 is not violated in the region of the web penetration.

When multiple web penetrations are made in a beam, the method can be used to design eachpenetration separately provided the geometric restrictions in relation to the spacing of the webpenetrations are satisfied.

The main steps of the strength design procedure are described in the following sub-sections.

Size and Location of Web Penetration

The size and location of the web penetration shall satisfy the geometric constraints given in Section6.2. These represent the limits of applicability of the strength design method.

Design Action Effects

The design action effects, M * and V * , are calculated at the mid-length of the web penetration.

Strength Design CriterionThe strength design criterion for a web penetration is represented by the cubic moment-shearinteraction equation given as Eq. 4.1. Therefore, once M * and V * are known, the strength designmethod simply consists of calculating the design moment and shear capacities, φMb and φVu , andchecking that Eq. 4.1 is satisfied.

Page 20: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–14 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

Start

Strength design ofbeam without web penetration

Calculation of deflectionof beam without web penetration

Choose the size of theweb penetration

No

Yes

Strength designcalculation

Yes

No

Stop

Geometricconstraints

satisfied?

Choose the location of the web penetration

Strengthdesign criterion

satisfied?

Calculate additional deflectiondue to web penetration

NoDeflectiondesign criteria

satisfied?

Yes

Design complete

Calculate M* & V*

NoStability &detailing criteria

satisfied?

Yes

No

Changelocation of web

penetration?

Yes

No

Addpenetration

reinforcement?

Yes

Change steelsection

Addreinforcement

Design of beamwithout web penetration

Web penetrationdesign

Figure 5.1 Flowchart of the Overall Design Approach

Design Moment CapacityThe design moment capacity, φMb , is calculated at the HME using rectangular stress block theorygiven in AS 2327.1, while accounting for the height of the web penetration, any web penetrationreinforcement present and the degree of shear connection β at the HME.

Page 21: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–15Design of Simply-Supported Composite Beams with Large Web Penetrations

In the calculation of φMb , it is necessary to know the compressive force in the concrete flange at theHME, FcH , which depends on the distribution of shear connectors along the beam, previouslydetermined for the strength design of the beam without any web penetrations.The shear force, V * , at the cross-section is assumed to be zero for this calculation. Hence the valueof φMb represents the point “A” on the moment-shear interaction curve shown in Fig. 4.1.Design Shear CapacityThe design shear capacity, φVu , is determined as the summation of the nominal shear capacities ofthe top and bottom T-sections, Vt and Vb , respectively, times the capacity factor, φ. Although theoverall bending moment at the penetration is assumed to be zero for this calculation, Vierendeelaction due to vertical shear force acting across the penetration is accounted for which gives rise tosecondary bending moments. The value of φVu represents the point “B” on the moment-shearinteraction curve shown in Fig. 4.1.

5.4 Deflection CalculationThe total deflection is calculated as the sum of three components (as shown in Fig. 5.2), viz:

(a) deflection of beam without a web penetration, calculated in accordance with the requirementsof AS 2327.1 (Fig. 5.2(a));

(b) deflection due to secondary bending within the length of the penetration (Fig. 5.2(b)); and(c) deflection due to shear deformation within the length of the web penetration (Fig. 5.2(c)).

The design method has been formulated assuming only one web penetration in the beam. However,deflections from multiple penetrations may be superimposed as linear elastic behaviour is assumed.

(a) Bending deflection of beam with no penetration

P

a L0 b

x

L

δg(x)

δH(x)

θHθL

θ'L (b) Additional bending deflection (from rigid-arm model)

(c) Additional shear deflection (from rigid-arm model)

(d) Total deflection of beam

δv(x)

θ'H

δt(x)

Figure 5.2 Deflection Components of Beam

Page 22: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–16 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

6. DESIGN RULES6.1 GeneralThe design rules for the strength and deflection design of simply-supported bare steel and compositebeams incorporating large web penetrations are presented in this section. The web penetrations maybe circular or rectangular in shape, unreinforced or reinforced, and located either concentrically oreccentrically to the centroid of the steel section.

The restrictions applicable to the strength design rules are given in Section 6.2.

The strength design objectives and criteria are given in Section 6.3.

The design rules for calculating the design moment and shear capacities, φMb and φVu , forcomposite beams are given in Section 6.4.

The design rules for calculating φMb and φVu for bare steel beams, a special case of the moregeneral method applicable to composite beams, are given in Section 6.5.

The stability considerations applicable to the strength design are given in Section 6.6, and thedetailing requirements are given in Section 6.7.

Design rules for calculating the additional vertical deflection due to a web penetration are given inSection 6.8.

6.2 ApplicationThe proposed size and location of the web penetration must be checked prior to performing thedesign calculations to ensure compliance with the requirements of the strength design method givenin this section. In addition, the size and location of penetrations may also be governed by the stabilityconsiderations given in Section 6.6.

Circular Penetrations

The design formulae presented are for rectangular penetrations. However, circular penetrations canbe designed using the same formulae by assuming that a circular penetration of diameter D isequivalent to a rectangular penetration of the following dimensions.

(a) L0 = 0 45. D .

(b) For unreinforced circular penetrations:

h0 = D for the calculation of Mb ; and

h0 = 0 9. D for the calculation of Vu .

(c) For reinforced circular penetrations:

h0 = D for the calculation of Mb and Vu .

Steel Section

The steel section shall be a doubly symmetric I-section. The design methods are only applicable ifthe steel beam plate elements are compact or non-compact in accordance with the requirements ofAS 2327.1. Only the effective portion of any non-compact plate elements shall be used in thestrength and deflection calculations. The steel section shall also conform to the stabilityconsiderations given in Section 6.6.

Profiled Steel Sheeting

The profiled steel sheeting shall conform to the requirements of AS 2327.1. For the purposes ofdesign, the sheeting shall be considered to be parallel to the steel beam (i.e. λ = 10. ) if the angle

Page 23: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–17Design of Simply-Supported Composite Beams with Large Web Penetrations

between the beam and the sheeting ribs is less than or equal to 15 degrees. Otherwise it shall beconsidered perpendicular (i.e. λ = 0 0. ).

Size of Rectangular and Circular Penetrations

Acceptable geometry for a beam incorporating web penetrations is given in Fig. 6.1. The location anddimensions of web penetrations shall be such that:

(a) ( )L h0 0 3 0/ .≤

(b) h D0 0 7≤ . s

(c) s Dt s≥ 015.

(d) For bare steel beams, s Db s≥ 015. ; and

for composite beams, s Db s≥ 012.

(e) ( / )L s0 12t ≤ and ( / )L s0 12b ≤

(f) For bare steel beams, ( / / )L h h D0 0 06+ s ≤ 5.6; and

for composite beams, ( / / )L h h D0 0 06+ s ≤ 6.0

a ≥=Ds L0

Ds h0 ≤=0.7Ds

st ≥=0.15Ds

sb ≥=0.15Ds (bare steel)sb ≥=0.12Ds (composite)

L0/h0 ≤ 3

e

P

+ve e

Centroidal axisof steel beam

Mid-height ofpenetration

L0/sb ≤ 12

L0/st ≤ 12

Figure 6.1 Beam Geometry

Proximity to Concentrated Loads and Supports

The distance from the nearer end of the penetration to the edge of a support shall be not less thanthe overall depth of the beam, Ds . When a beam with a web penetration is subjected to aconcentrated load, the following requirements shall also be satisfied.

(a) No concentrated load shall be located within the length of a web penetration.(b) Bearing stiffeners shall be provided at the loading point when a concentrated load is applied;

- closer than Ds 2 to the nearer edge of the penetration unless,

dt

f1250w

yw� � ≤ 70 and b t

tff w

f

yf−� �

2 250≤ 9 (6.1)

- closer than Ds from the nearer edge of the penetration unless,

dt

f1250w

yw�

��

�� ≤ 87 and b t

tff w

f

yf−�

��

��

2 250≤ 11 (6.2)

The design of bearing stiffeners shall be in accordance with the requirements of Clause 5.14 of AS 4100.

Page 24: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–18 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

6.3 Strength Design

Design ObjectivesThe objective of the strength design method is to ensure that the strength design criterion is notviolated in the region of the web penetration. It is also necessary to check that the beam issufficiently strong to resist any local instability of the steel beam plate elements around thepenetration, which can cause lateral buckling of the top T-section or flexural-torsional buckling of thebeam. The latter two modes of buckling apply only to bare steel beams.

Strength Design CriterionThe strength design criterion is given in the form of a cubic moment-shear interaction equation:

* *MM

VVφ φb u

� � +�

��

��

3 3

≤ 1.0 (6.3)

where, M * and V * are the design action effects at the mid-length of the penetration; and φMb andφVu are the design moment and shear capacities at the penetration, respectively. The value of φshall be taken as 0.9.

6.4 Design Moment and Shear Capacities - Composite Beams

Design Moment CapacityThe design moment capacity, φMb , at the HME of the web penetration is calculated usingrectangular stress block theory in accordance with AS 2327.1. The design moment capacity of thenet section at the penetration, including any web penetration reinforcement, shall not exceed that ofthe composite cross-section without the web penetration.

The formulae needed to calculate φMb are given in Appendix A. The calculation procedure is brieflydescribed below.

(a) Calculate the compressive force in the concrete flange, FcH , and the degree of shearconnection, β , using Para. A2.

(b) Determine the depth of the compressive zone in the concrete flange, dc , and the forcecomponents in the cross-section using Para. A3.2.

(c) Determine the design moment capacity, φMb , using the appropriate case given in Para. A3,depending on the depth of the compressive zone in the cross-section, dh .

The formulae given in Appendix A are based on the following assumptions:(a) the composite beam cross-section is comprised of a concrete flange and a doubly-symmetric

steel I-section;(b) penetrations may be either reinforced or unreinforced;(c) the reinforcement, if any, above and below the penetration are of the same dimensions and

are located horizontally as close as practicable to the edges of the penetration; and(d) sheeting ribs are deemed to be either perpendicular or parallel to the steel beam.

Design Shear CapacityThe design shear capacity in the region of a web penetration in a composite beam is given as:

φVu = φ( )V Vt b+ (6.4)where Vt and Vb are the nominal shear capacities of the top and bottom T-sections, respectively. Thenominal shear capacity, Vu , shall satisfy the conditions given in Eqs 6.37 or 6.41, as applicable.

The nominal shear capacity of the bottom T-section, Vb , is calculated as follows:

Page 25: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–19Design of Simply-Supported Composite Beams with Large Web Penetrations

Vb = 6

3+

+≤

µ

νb

bpb pbV V (6.5)

where, µb = 2F dV s

r r

pb b(6.6)

sb = ( )D h es − +0 02 (6.7)

νb =Ls

0

b(6.8)

sb = sb , or (6.9)= ( )s A bb r f− 2 [when the penetration is reinforced and

6

31

+

+≤

µ

νb

b

]

Vpb = 0 6. f s tyw b w (6.10)The nominal shear capacity of the top T-section, Vt , is calculated as follows:

Vt =6

3+

+

µ

νt

tptV ≤ V f Apt c vc+ 0 29. ' (6.11)

where, µ t = 2F d F d F d

V sr r ctH ctH ctL ctL

pt t

+ − (6.12)

s t = ( )D h es − −0 02 (6.13)

ν t =Ls

0

t(6.14)

s t = s t , or (6.15)= ( )s A bt r f− 2 [when the penetration is reinforced and

63

1+

+≤

µ

νt

t

]

Vpt = 0.6 yw t wf s t (6.16)Fr = f Ayr r (6.17)

FctH = min.( , , ( ))F n f F F FHc ds tf tw r+ + (6.18)The distance dctH from the top of the steel cross-section to the line of action of FctH is determinedas:

dctH = DFf bcctH

c'

cf1.7− (6.19)

FctL = ( )F n n fctH H L ds− − (6.20)where, fds is calculated in accordance with AS 2327.1 based on nH shear connectors.The distance from the top of the steel section to the line of action of FctL is determined as:

dctL = ( )1− +λ hFf brctL

c'

cf1.7 (6.21)

If 6

3+

+

µ

νt

t

> 1.0 in Eq. 6.11, then the nominal shear capacity of the top T-section, Vt , shall be

limited by the following condition:

FctH ≤ ( )f t b t A fyf f f w r yr− + (6.22)

Page 26: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–20 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

In this case, dctH , FctL , and dctL are all to be recalculated based on the value of FctH in Eq. 6.22,and µ t shall be recalculated from Eq. 6.12. The nominal shear capacity of the top T-section is thendetermined as:

Vt =µν

t

tptV (6.23)

but limited by,

Vpt ≤ Vt ≤ V f Apt c vc+ 0 29. ' (6.24)

where, Avc = ( )( )3 1D D hc c r− − λ (6.25)

6.5 Design Moment and Shear Capacities - Bare Steel BeamsThe design rules given in this section for bare steel beams have been derived using the moregeneral rules for composite beams given in Section 6.4.

Design Moment CapacityThe design moment capacity, φMb , at the HME of the penetration is based on the net section at the

penetration and determined using rectangular stress block theory. The value of φMb shall notexceed the design moment capacity of the steel section without the penetration.

The formulae presented in Appendix B for the calculation of φMb are only applicable when thefollowing requirements are satisfied:

(a) the steel beam is a doubly-symmetric I-section; and

(b) the reinforcement, if any, above and below the penetration is of the same dimensions and islocated as close as practicable to the horizontal edges of the penetration.

Design Shear CapacityThe design shear capacity, φVu , of a bare steel beam in the region of a web penetration isdetermined by evaluating the geometric parameters µ t , ν t , µb and νb for the top and bottom T-sections, and summing the components Vt and Vb , whereby;

φVu = φ( )V Vt b+ (6.26)where Vt and Vb are the nominal shear capacities of the top and bottom T-sections, respectively.

The nominal shear capacity of the bottom T-section shall be calculated as follows:

Vb =6

3+

+≤

µ

νb

bpb pbV V (6.27)

where, µb =2F dV s

r r

pb b; (6.28)

sb = ( )D h es − +0 02 (6.29)Vpb = 0 6. f s tyw b w (6.30)

Fr = f Ayr r (6.31)

and νb =Ls

0

b; (6.32)

sb = sb , or (6.33)= ( )s A bb r f− 2 [when the penetration is reinforced and

63

1+

+≤

µ

νb

b

]

Page 27: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–21Design of Simply-Supported Composite Beams with Large Web Penetrations

The nominal shear capacity of the top T-section, Vt , can be calculated using Eqs 6.27 to 6.33 withVt , µ t , ν t , Vpt and s t substituted for Vb , µb , νb , Vpb and sb , respectively.

6.6 Stability Considerations

Web BucklingThe strength design method is generally applicable to the design of web penetrations in beams forwhich,

dt

f1

250w

yw� � ≤ 87 (6.34)

More specifically,(a) for beams where,

dt

f1

250w

yw�

��

�� ≤ 70 (6.35)

then Lh

0

0≤ 3.0 (6.36)

and Vu ≤ 0 4. f t D Vyw w s c+ (6.37)

where, Vc = min.(Vpt ( / )µ υ − ≥1 0 , 0 29. f Ac'

vc ) (6.38) for composite beams, and

= 0 for bare steel beams.(b) for beams where,

70 < dt

f1

250w

yw�

��

�� ≤ 87 (6.39)

then Lh

0

0≤ 2.2 (6.40)

and Vu ≤ 0 27. f t Dyw w s (6.41)

Buckling of Top T-sections

For rectangular penetrations where M V D* */ ( )s > 20 and ν t > 4 , the top T-section of a bare steelbeam shall be designed as a compression member with an effective length equal to L0 , inaccordance with the requirements of AS 4100. Buckling is unlikely to occur in the top T-section of acomposite beam or in reinforced T-sections.

Flexural-Torsional Buckling

In the case of bare steel beams, the effect of the penetration on flexural-torsional buckling of themember shall be considered. No specific guidelines are provided in this document.

Note: Some guidance on buckling of beams with web penetrations can be found in [18].

6.7 Detailing

Spacing Between Multiple PenetrationsTo be treated as an individual penetration, the clear spacing, S , between multiple penetrations inboth composite and bare steel beams shall satisfy the following requirements.

Page 28: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–22 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

For rectangular penetrations:

S ≥

�����

�����

�����

φ

φ

u

u00

-1max

VVV

V

L,h. *

*

(6.42)

For circular penetrations:

S ≥

�����

�����

�����

φ

φ

u

u

-151

VVV

V

D,D..max *

*

(6.43)

where, Vu is the nominal shear capacity of the steel beam without a penetration and D is thediameter of the penetration.The spacing between multiple penetrations in composite beams shall also satisfy,

S ≥ [ ]max. ,L D0 2 s (6.44)When these criteria are not satisfied, the possible reduction in the strength of the member due tointeraction between penetrations shall be considered. However, no guidelines are provided in thisdocument for this assessment.

Penetration ReinforcementTypical reinforcement details are shown in Fig. 4.2. The reinforcement shall be provided inaccordance with the following requirements.

(a) The outstand of the reinforcement shall be compact in accordance with the requirements ofAS 4100.

(b) The reinforcement shall be continuously welded parallel and as close as practicable to thehorizontal edges of the penetration.

(c) The area of reinforcement along each edge of the penetration shall satisfy the condition:

Ar ≤ 0 3 0. t Lffwyw

yr�� �� (6.45)

(d) The reinforcement shall be extended beyond each end of the penetration by a distance notless than L0 4/ or ( . ) /0 87A tr w , whichever is greater.

(e) The design capacity of the weld within the length of the penetration shall not be less than twicethe nominal tensile capacity of the reinforcement.

(i.e. design capacity of weld ≥ × ×2 fyr cross-sectional area of one reinforcement plate or flat

bar.)(f) The design capacity of the weld beyond each end of the penetration shall not be less than the

nominal tensile capacity of the reinforcement.

(i.e. design capacity of weld ≥ ×fyr cross-section area of reinforcement.)

(g) Reinforcement shall be provided equally along the top and bottom horizontal edges of the webpenetration.

A single-side reinforcement arrangement shall not be used unless all of the following conditions aresatisfied:

Ar ≤Af

3(6.46)

Page 29: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - FebrDes

Lh

0

0≤ 2.5 (6.47)

st

ft

w

yw

250≤ 23 (6.48)

st

fb

w

yw

250≤ 23 (6.49)

and MV D

*

*s

≤ 20 at the mid-length of the penetration. (6.50)

Slab ReinforcementIt is recommended that DECKMESHTM be provided in region of the web penetration when thesheeting ribs are deemed perpendicular to the steel beam (see Fig. 6.2), to control the diagonalcracking shown in Fig. 3.1. Only one panel width (450 mm) is required.

L0 min. 600min. (600,a)

LME HME

beam

BHP DECKMESH

Figu

Corner RadiiThe corner radgreater.

6.8 Defle

GeneralThe total defle

where,

δg( )xδb( )x

δv ( )x

Shear Force C

The design shVt

* and Vb* , re

DECKMESH

Notes:(a) BHP DECKMESH is available in modules of length 600 mm(b) BHP DECKMESH is required only when sheeting ribs are deemed perpendicular to

Notes:(a) DECKMESH is available in modules of length 600 mm and width 450 mm.(b) DECKMESH is required only when sheeting ribs are deemed perpendicular to steel

beam

uary 2001 Simply-Supported Composite Beams DB1.3–23ign of Simply-Supported Composite Beams with Large Web Penetrations

re 6.2. DECKMESHTM Recommended in the Region of a Web Penetration.

ii of a rectangular penetration shall be not less than 2tw or 16 mm, whichever is

ction Calculation

ction δt ( )x at a point x (see Fig. 5.2) on the beam is expressed as:

δt ( )x = δ δ δg b v( ) ( ) ( )x x x+ + (6.51)

= deflection at point x of the beam without the penetration;= deflection at point x due to bending from Vierendeel action within the length of

the penetration; and= deflection at point x due to shear deformation within the length of the penetration.

arried by Top T-Section

ear force, V * , is assumed to be shared between the top and bottom T-sections as spectively. For bare steel and composite beams, Vt

* shall be determined as follows:

Page 30: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–24 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

(a) For concentric penetrations in bare steel beams:

Vt* = V *

2(6.52)

(b) For eccentric penetrations in bare steel beams:

Vt* = V

R

*

( )1+ (6.53)

where, R =

LEI

k LGt s

LEI

k LGt s

03

0

03

0

12

12

b

B

w b

t

T

w t

+

+

�����

�����

(6.54)

kT and kB are the appropriate shear coefficients for top and bottom T-sections. A value

for R of 1.2 is considered suitable for I-sections used in practice.

(c) For composite beams:

Vt* = V * (6.55)

Additional Bending Deflection

The additional deflection due to secondary bending occurs as a result of the rotations of the rigidarms as shown in Fig. 4.3(c) and 4.3(d).

To determine these rotations, the differential primary moment across the penetration and thesecondary moment due to Vierendeel action must first be determined.

The differential design bending moment, Md* , acting across the web penetration is calculated as:

Md* = M MH

*L*− (6.56)

where, MH* and ML

* are the design bending moments at the high and low moment ends, respectively.

The secondary moment induced by Vierendeel action across the web penetration is defined as:

Mse* = −

V Lt*

0

2(6.57)

where Vt* is the shear force carried by the top T-section, and is calculated using Eqns 6.52, 6.53 or

6.55, as appropriate.

Hence, the rotations at the low and high moment ends of the web penetration are given as:

θL = ( )( ) ( )M I L L b L M I L b L

EI I Lse*

d*

t

t

0 02

0 0 0 0

0

2 3 2 3 2

6

− + − +��

�� (6.58)

θH =( )

−+

��

�� −

M I M I L

EI Id*

t se*

0

tL

2

20

0θ (6.59)

where I0 is the second moment of area of the gross cross-section including the web penetration, It

is the second moment of area of the top T-section, and b Land are the dimensions shown in Fig. 4.3(a).

The additional bending deflection, δb , of the beam due to the web penetration is given as:

For x a≤ ;

δb( )x = xθL (6.60)

Page 31: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–25Design of Simply-Supported Composite Beams with Large Web Penetrations

For x a L≥ + 0 ;

δb( )x = ( )L x− θH (6.61)

Additional Shear DeflectionThe additional deflection due to shear deformation in the T-sections causes the rigid arms to rotateas shown in Fig. 4.3(c) and (d). These rotations, θL

' and θH' , are calculated as follows:

θL' =

23

0LbLδs

'(6.62)

θH' =

δθs

'

L'

b�� �� − (6.63)

where the additional shear deflection ignoring geometric continuity (see Fig. 4.3(c)) is given by:

δs' = kV L

Gs tt

t w

*0 (6.64)

The additional deflection, δv , of the beam due to the web penetration is given as:

For x a≤ ;

δv ( )x = xθL' (6.65)

For x a L≥ + 0 ;

δv ( )x = ( )L x− θH' (6.66)

Page 32: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–26 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

7. AIDS FOR STRENGTH DESIGN7.1 GeneralTo assist the design of penetrations in accordance with the method given in Section 6, a series ofdesign tables and a spreadsheet program named WEBPENTM are provided.Details about WEBPENTM are given in Section 7.2.

The major calculation effort in the strength design method is spent determining φMb and φVu at thepenetration. The design tables allow these values to be readily determined for a wide range ofsituations covering both bare steel and composite beams. These design tables are suitable for useduring the preliminary design stage as well as for final design. A brief description of the tables isgiven in Section 7.3 and the tables are given in Appendix C.

7.2 WEBPENTM Spreadsheet ProgramThe WEBPENTM spreadsheet program runs on Microsoft® EXCELTM Version 7. The design tablesgiven in Appendix C were generated using WEBPENTM.The input data required for the spreadsheet includes:

(a) Steel section data - chosen from an in-built section library that includes all relevant propertiesfor UB and WB sections.

(b) Concrete flange data: b D fcf c c'

cand, , .ρ

(c) Profiled steel sheeting data: rib height; and angle of sheeting ribs to steel beam longitudinalaxis.

(d) Geometry of the penetration: rectangular/circular, height/diameter, length and eccentricity.(e) Shear connector data: nominal shear capacity; number of shear connectors from the HME to

the nearer end of beam; and number of shear connectors within the length of the penetration.(f) Penetration reinforcement data: plate width; thickness; and nominal yield stress.

(g) Design action effect data: M * and V * values at the mid-length of the penetration.

For a given configuration with M * and V * values at the penetration having been determined, thespreadsheet will calculate the design capacities φMb and φVu and plot the design point in relation tothe moment-shear interaction curve, allowing the designer to determine whether or not the trialgeometry and location of the penetration is satisfactory. The designer can easily trial severalcombinations of penetration geometries and locations until a satisfactory solution is obtained. Atypical moment-shear interaction curve output from WEBPENTM is shown in Fig. 7.1.

Page 33: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–27Design of Simply-Supported Composite Beams with Large Web Penetrations

WEBPENTM RESULTS

0100200300400500600700800900

0 200 400 600 800

SHEAR FORCE (kN)

MO

MEN

T (k

Nm

)

Figure 7.1 Typical Output of WEBPENTM

7.3 Design Capacity TablesThe design capacity tables given in Appendix C can be used to calculate φMb and φVu for a widerange of bare steel and composite beams with concentric web penetrations of various proportions.The parametric range covered in the tables is given in Table 7.1. A detailed description of theparameters given in the tables and how the tables may be used to calculate φMb and φVu is given inParagraphs C2 and C3, respectively.

Table 7.1 Parametric Range of Design Capacity Tables

Parameter Range

Flange width ( bcf ) 1200, 1600 and 2100 mm

Concrete strength ( fc' ) Grades 25 and 32

Slab thickness ( Dc ) 120 mm

Direction of sheeting ribs Perpendicular ( λ = 10. ) andparallel ( λ = 0 ) to steel beam

Steel beam(300PLUS®)

700WB115 to 800WB192310UB32 to 610UB125

Penetration size Circular: h0 / Ds = 0.3, 0.5 & 0.7

Rectangular:

h0 / Ds = 0.3, 0.5 & 0.7; and

L0 / h0 = 1.0, 1.5 and 2.0

Page 34: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–28 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

8. WORKED EXAMPLES8.1 GeneralTwo worked examples are presented to demonstrate the strength and deflection design methodsgiven in Section 6. They involve the design of a web penetration in an unpropped simply-supportedcomposite beam for Construction Stage 3 (i.e. bare steel beam), and the in-service condition, asdefined in AS 2327.1:Example 1

Strength design of a bare steel beam with a rectangular web penetration for Construction Stage 3,using hand calculations and the design capacity tables given in Appendix C.Example 2

Strength and deflection design of a composite beam with a rectangular web penetration for the in-service condition, using hand calculations and the design capacity tables given in Appendix C.It is assumed that the composite beam without the penetration has been designed in accordancewith AS 2327.1.

8.2 Beam and Penetration DataThe beam data and the preferred size and location of the penetration are given in Table 8.1:

Table 8.1 Worked Example Geometry and Properties

Span ( L ) = 10.5 m

Spacing of secondary beams = 2.6 mSteel beam = 410UB53.7, 300PLUS®

( D b t ts f f wmm, mm, mm, mm,= = = =403 178 10 9 7 6. .d f f1 yw yfmm, MPa, MPa= = =381 320 320 )

Slab depth ( Dc ) = 120 mm (composite slab, hr = 55 mm)

Orientation of sheeting = Sheeting ribs perpendicular to the steel beam

Concrete strength ( ′fc ) = 25 MPa

Density of concrete = 25 kN/m3 (including allowance for reinforcement)Superimposed dead load = 0.3 kPa (services and ceilings)Reducible Live load = 4.0 kPaShear connectors = 19 mm diameterPenetration = Penetration centreline located at 3300 mm from the support

h0 = ( )225 0 56mm s= . D , L0 = ( )425 19mm 0= . h

Concentric with no reinforcement (see Fig. 8.1), therefore( )s s D ht b s mm= = − =0 2 89

The assumptions made in the calculations are as follows:(a) the steel and composite beams are assumed to be simply-supported during construction and

the in-service condition; and(b) the maximum ponding deflection of the profiled steel sheeting equals 10.4 mm.

Page 35: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–29Design of Simply-Supported Composite Beams with Large Web Penetrations

3088

L=10500

L0=425

h0=225

f'c= 25 MPa

410UB53.7, BHP-300PLUS

x

3300

6987

Dc=120

Figure 8.1 Beam Geometry

8.3 Example 1This worked example demonstrates the strength design procedure for a web penetration in a baresteel beam for Construction Stage 3, using hand calculations and design capacity tables given inAppendix C.

Calculation of Design Action Effects at Mid-Length of Web PenetrationThe minimum nominal loads for construction given in Paragraph F2 of AS 2327.1 are used.The effective span and tributary area are calculated in accordance with the requirements ofAS 2327.1.

Span ( )L = 10.5 mTributary area = 27.3 m2

Steel beam self-weight = 0.5 kN/mWeight of slab (including ponding) = (0.12 m + 0.7x2.6/250) x 25 kN/m3 x 2.6 m = 8.3 kN/m

Dead load (G) = 0.5+8.3 = 8.8 kN/mReducible Construction live load = ( ) ( ) ( )[ ]10 27 3 23 46 23 10 0 6 2 6. . / . . .− − − × − × = 2.4 kN/m

∴ Live load (Q) = 2.4 kN/mDesign load (W) = 1.25 x 8.81 + 1.5 x 2.4 = 14.6 kN/m

Support reaction = 76.6 kN

∴ At mid-length of web penetration:M * = 173 kNmV * = 28.4 kN

Preliminary CheckEnsure the conditions given in Section 6.2 are satisfied:

• ( )h D D0 225 0 7= ≤mm = 0.56 s s. � Satisfactory

• for bare steel beams: ( )L h h D0 0 06 5 2 5 6+ = ≤s . . Satisfactory in Construction Stage 3

• ( )s Dt smm mm= ≥ =89 0 15 60 5. . Satisfactory

• for bare steel beams: s Db smm= ≥89 015. Satisfactory in Construction Stage 3

• no concentrated loads are applied to the beam, thus loading does not restrict the position of theweb penetration Satisfactory

Page 36: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–30 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

• distance to nearest end support = 3088mm > sD Satisfactory

• the ratios L s0 t , L s0 b = 425/89 = 4.8 < 12 Satisfactory

• the slenderness of the web will also influence the maximum allowable length-to-height ratio of apenetration and the maximum nominal shear capacity of the member (see Section 6.6).

For 410UB53.7, dt

f1

250w

yw� � = 56.7 < 70

Therefore,Lh

0

0≤ 3.0; and

for bare steel beams, Vu ≤ 0 4. f t Dyw w s

Strength Design by Hand Calculation

Design Moment CapacityDetermine the depth of the compressive stress zone, dh , and nominal moment capacity, Mb , of thesteel cross-section at the HME of the web penetration, using the formulae given in Paragraph B2 ofAppendix B.

As the penetration is concentric and unreinforced, Ftw = Fbw (= A ftw yw = 190 kN) and Fr = 0. Inaddition Ftf = Fbf (= 621 kN) (as the 410UB53.7 section is compact in accordance with AS 2327.1).

Therefore, using Eqs B1 and B2 for Case1;

dh =( )t f s t F F F F

t fw yw t f r bw bf tf

w yw

+ + + + −22

=( )7 6 320 89 0 10 9 2 0 190 3 621 3 621 3

2 7 6 320. . .

.× × + + × + + −

× ×E E E

= 89.0 mmand

Mb = ( ) ( ) ( )F d t t f d t s dtf h f w yw h f t h− + − + −� �/ 2 22 2

( ) ( )( )+ + − − + − − +F D s s d F D d s tr s t b h bw s h b f2 2

( )+ − −F D d tbf s h f / 2

= ( ) ( )[ ]621 3 89 10 9 2 7 6 320 89 10 9 0 22 2E × − + × − +. / . .

( )( )+ + − − +0 190 3 403 89 89 10 9 2E .( )+ − −621 3 403 89 10 9 2E . /

= 303 kNm

Therefore, the design moment capacity of the cross-section at the penetration is; φMb = 273 kNm

Design Shear CapacityFrom Eq. 6.4,

φVu = φ( )V Vt b+Nominal shear capacity of the bottom T-section:

Using Eqs 6.27 to 6.33,

Vb = 63

++

≤µ

νb

bpb pbV V

Page 37: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–31Design of Simply-Supported Composite Beams with Large Web Penetrations

where, µb = 2F dV s

r r

pb b = 0 (since unreinforced)

νb =Ls

0

b = 425

89 = 4.78

and Vpb = 0 6. f s tyw b w = 0 6 320 89 7 6. .× × × = 130 kN

Therefore, Vb = 6 04 78 3

130 130++

× ≤.

kN

= 48.9 kN

Nominal shear capacity of the top T-section:

Using the same equations as for the bottom T-section calculations,

Vt = 48.9 kNThe design shear capacity is,

φVu = ( )φV Vt b+ = ( )0 9 48 9 48 9. . .× + = 88 kNTo satisfy the web buckling considerations given in Section 6.6,

Vu (=97.8 kN) ≤ 0 4. f t Dyw w s

≤ 0 4 320 7 6 403. .× × × = 392 kN O.KTo satisfy the considerations for buckling of the top T-section given in Section 6.6,

( )M V D* *s = 15.1 < 20 criterion satisfied

Moment-Shear InteractionApplying the moment-shear interaction relationship given in Eq. 6.3,

173273

28 488 0

3 3

� � + �

��

��

.

.= 0.29 ≤ 10. strength criterion satisfied

Strength Design using TablesSince h D0 s/ .= 0 56 for the penetration, determine φMb and φVu values by interpolating betweenthe values obtained from Table C26 for h D0 s/ .= 0 5 and Table C27 for h D0 s/ .= 0 7 .

Design Moment CapacityValues of the design moment capacity of a bare steel beam with a web penetration, φMb.0 , are givenin the fifth column of the tables. By interpolation, the design moment capacity are calculated as,

φMb = ( )269 0 56 0 50 7 0 5

269 255− −−� � × −. .

. . = 265 kNm

Design Shear CapacityValues of the design shear capacity of a bare steel beam with a web penetration are given in thecolumns with headings φVu.0 for different web penetration aspect ratios.

Since L h0 190 = . for the penetration, first interpolate between the columns corresponding toL h0 150 = . and L h0 2 00 = . in each table, and then interpolate between those values to determine

φVu.0 corresponding to h D0 0 56s = . .

Value of φVu.0 from Table C26 = ( )137 19 152 0 15

137 113− −−� � × −. .

. .= 118 kN

Value of φVu.0 from Table C27 = ( )45 19 152 0 15

45 35− −−� � × −. .

. . = 37.0 kN

Page 38: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–32 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

φVu = ( )118 0 7 0 560 7 0 5

118 37+ −−� � × −. .

. . = 93.6 kN

Moment-Shear InteractionApplying the moment-shear interaction relationship given in Eq. 6.3,

173265

28 493 6

3 3�

��

�� + �

��

��

.

.= 0.31 ≤ 10. strength criterion satisfied

8.4 Example 2This worked example demonstrates the strength design procedure for a web penetration in acomposite beam (described in Section 8.2) for the in-service condition, using hand calculations anddesign capacity tables given in Appendix C.

It is assumed that the composite beam without the penetration has already been designed inaccordance with AS 2327.1. The resulting shear connector distribution given in Fig. 8.2 shows thatthe number of 19 mm shear connectors from HME to the nearer end of the beam is 9 (i.e. nH = 9 ).

14

12

10

8

6

4

2

00 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 10500

LME HME

Position along the Beam

No.

of C

onne

ctor

s Recommended shear connectordistribution (from COMPBEAMTM)

nH= 9nL= 8

Figure 8.2 Shear Connector Distribution

Design Action Effects at Mid-Length of Web PenetrationThe effective span and tributary area are calculated in accordance with AS 2327.1.

Span ( )L = 10.5 mTributary area = 27.3 m2

Total dead load of beam (G) = 8 8 0 3 2 6. . .+ × = 9.6 kN/m

From Section 4 of AS 1170.1, the permissible live load reduction equals,75 35027 3

8%− =.

∴ Reducible live load (Q) = 4 x 0.92 x 2.6 = 9.6 kN/mDesign load (W) = 1.25 x 9.6 + 1.5 x 9.6 = 26.4 kN/m

Support reaction = 138.6 kN

Therefore, at mid-length of the web penetration: M * = 138 6 3 3 26 4 3 3 22. . . . /× − × = 314 kNm

V * = 138 6 26 4 3 3. . .− × = 51.4 kN

Preliminary CheckIn addition to the preliminary checks performed in Example 1 for the bare steel beam, the followingadditional checks must be made for the composite beam.

Page 39: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–33Design of Simply-Supported Composite Beams with Large Web Penetrations

Effective Width of Concrete Compression FlangeUsing Clause 5.2.2 of AS 2327.1,

bcf = ( )2 105008

26002

1782 8 120× + ×min. , ,

= 2098 mm

Web BucklingCheck for web buckling conditions given in Section 6.6:

For 410UB53.7, dt

f1

250w

yw� � = 56.7 < 70

Therefore, Lh

0

0≤ 3.0; and

Vu ≤ 0 4. f t Dyw w s + min.(Vpt t t( / )µ υ − ≥1 0 , 0 29. f Ac'

vc )

Compressive Force in Concrete Flange at HMEThe compressive force in the concrete at the HME of the web penetration, FcH , is calculated usingthe equations presented in Paragraph A2 of Appendix A.

The compressive capacity of the concrete flange, Fc , is calculated as follows:

Fc = Fc1 + Fc2

Fc1 = ( )0 85. f b D hc'

cf c r−

= ( )0 85 25 2098 120 55. × × × − = 2898 kN

Fc2 = 0 85. f b hc'

cf rλ= 0 85 25 2098 0 0 55. .× × × × = 0 kN

Therefore, Fc = 2898 kN

Since nH = 9,fds = φk fn vs

= 0 85 118 0189

89. . .× − � ��

��

�� × = 84.7 kN

Therefore, n fH ds = 9 84 7× . = 762 kN

From Eq. A7,

Fs = Afi yii

ne

=1

= ( )2 178 10 9 320 2 89 10 9 7 6 320× × × + × − × ×. . . = 1622 kNFrom Eq. A8,

FcH = min.( , , )F n f Fc H ds s

= min.( , , )2898 762 1622 = 762 kNFrom Eqs A10 and A9,

Fcc = min.( , )F Fc s

= min.( , )2898 1622 = 1622 kNβ = n f FH ds cc ≤ 1

= 762 / 1622 = 0.47

Page 40: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–34 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

Strength Design by Hand Calculation

Design Moment CapacityUse the formulae given in Para. A3.2.From previous calculations,

FcH = 762 kNFc = 2898 kNFs = 1622 kNFc1 = 2898 kNFr = 0 kN (penetration is unreinforced)

Since F FcH c≤ ,

dc = ( )F b fcH cf c'0 85. [Eq. A11]

= ( )762 3 0 85 2098 25E . × × = 17.1 mmSince top flange is compact,

Ftf = b t feff f yf = 178 10 9 320× ×. = 621 kN [Eq. A12]

Since ( )F F F Fs tf cH s− < ≤2 , Case 2 in Para. A3.2 is applicable.

From Eq. A20,dh = 128 mm

From Eq. A21,

Mb = 408 kNmTherefore, the design moment capacity of the composite cross-section at the penetration is:

φMb = 367 kNm

Design Shear CapacityFrom Eq. 6.4,

φVu = φ( )V Vt b+The nominal shear capacity of the bottom T-section, Vb , is the same as that calculated for the baresteel beam in Example 1.Therefore,

Vb = 48.9 kNThe nominal shear capacity of the top T-section, Vt , is calculated as:

Vt = 63

++

µν

t

tptV ≤ V f Apt c vc+ 0 29. ' [Eq. 6.11]

where, Vpt = 0.6 yw t wf s t [Eq. 6.16]= 0.6 × × ×320 89 7 6. = 130 kN

ν t =Ls

0

t = 425

89 = 4.78 [Eq. 6.14]

and µ t = 2F d F d F dV s

r r ctH ctH ctL ctL

pt t

+ − [Eq. 6.12]

FctH = min.( , , ( ))F n f F F FHc ds tf tw r+ + [Eq. 6.18]= min.( , , ( ))2898 762 621 190 0+ + = 762 kN

where, dctH = DFf bcctH

c'

cf1.7− = 120 762 103

− ×× ×1.7 25 2098

[Eq. 6.19]

= 111.5 mm

Page 41: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–35Design of Simply-Supported Composite Beams with Large Web Penetrations

FctL = ( )F n n fctH H L ds− − =762 10 1 84 7 103 3× − × ×. [Eq. 6.20]= 677.3 kN

dctL = ( )1− +λ hFf brctL

c'

cf1.7 = 55 677 3 10

2098

3+ ×

× ×.

1.7 25 [Eq. 6.21]

= 62.6 mm

Therefore, µ t = 0 762 10 1115 677 3 10 62 6130 89

3 3+ × × − × ××

. . . = 3.68

and Vt = 63

++

µν

t

tptV = 6 3 68

4 78 3130+

+×.

.= 122 kN

Check, Vt ≤ V f Apt c vc+ 0 29. ' = 130 0 29 25 23 4+ ×. .= 164 kN O.K

Therefore, Vt = 122 kNSubstituting the values of Vb and Vt in Eq. 6.4,

φVu = ( )φV Vt b+ = ( )0 9 122 48 9. .× + = 154 kNTo satisfy the web buckling conditions given by Eqs 6.37 and 6.38 in Section 6.6,

Vu (=171 kN) ≤ 0 4. f t Dyw w s + min.(Vpt ( / )µ ν − ≥1 0 , 0 29. f Ac'

vc )≤ 0 4 320 7 6 403. .× × × +min.(130 3 68 4 78 1 0( . / . )− ≥ ,

0 29 25 23 4. .× )≤ 392 kN O.K

To satisfy the condition for buckling of the top T-section given in Section 6.6,( )M V D* *

s = 15 < 20 criterion satisfied O.K

Moment-Shear InteractionSubstituting the calculated values of M * , V * , φMb and φVu in Eq. 6.3,

314367

514154

3 3

� � + �

��

��

. = 0.66 ≤ 10. strength criterion satisfied

Strength Design using TablesSince h D0 s/ .= 0 56 for the penetration, determine φMb and φVu values by interpolating the valuesobtained from Tables C26 and C27 that correspond to h D0 s/ .= 0 5 and h D0 s/ .= 0 7 , respectively.

Design Moment CapacityInterpolating between Tables C26 and C27 to calculate β �� Fcc and nmax �for the penetration withh D0 s/ .= 0 56 ,

β = ( )0 79 0 56 0 50 7 0 5

0 79 0 70. . .. .

. .− −−� � × − = 0.76

Fcc = ( )1710 0 56 0 50 7 0 5

1716 1527− −−� � × −. .

. . = 1653 kN

nmax = ( )19 0 56 0 50 7 0 5

19 17− −−� � × −. .

. . = 18

The number of studs to HME, nH = 9 OK since nH < nmax (see Fig. 3.3)

Page 42: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–36 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

From previous calculations,

FcH = 762 kN and β = 0.47Interpolating between Tables C26 and C27 to determine the design moment capacities φMb.0 andφMb.5 corresponding to h D0 s/ .= 0 56 ,

φMb.0 = ( )269 0 56 0 50 7 0 5

269 255− −−� � × −. .

. . = 265 kNm

φMb.5 = ( )385 0 56 0 50 7 0 5

385 341− −−� � × −. .

. . = 372 kNm

Now, interpolate between the values of φMb.0 and φMb.5 to determine φMb corresponding toβ = 0 46. ,

φMb = ( )265 0 46 0 00 5 0 0

372 265+ −−

��

�� × −. .

. . = 363 kNm

Design Shear CapacityFirst interpolate between the columns corresponding to L h0 150 = . and L h0 2 00 = . in Tables C26and C27 to determine φVu.0 and φVu.5 for L h0 190 = . ,

Value of φVu.0 from Table C26 = ( )137 19 152 0 15

137 113− −−� � × −. .

. .= 118 kN

Value of φVu.5 from Table C26 = ( )201 19 152 0 15

201 182− −−� � × −. .

. .= 185 kN

Value of φVu.0 from Table C27 = ( )45 19 152 0 15

45 35− −−� � × −. .

. . = 37.0 kN

Value of φVu.5 from Table C27 = ( )102 19 152 0 15

102 90− −−� � × −. .

. .= 96 kN

Secondly, interpolate between these values to determine the moment capacities φVu.0 and φVu.5

corresponding to h D0 s/ .= 0 56 ,

φVu.0 = ( )118 0 56 0 50 7 0 5

118 37− −−� � × −. .

. . = 94 kN

φVu.5 = ( )185 0 56 0 50 7 0 5

185 96− −−

��

�� × −. .

. . = 158 kN

Finally, interpolate between the values of φVu.0 and φVu.5 to determine the value of φVu

corresponding to β = 0 46. ,

φVu = ( )158 0 5 0 460 5 0 0

158 94− −−

��

�� × −. .

. . = 153 kN

Moment-Shear InteractionSubstituting the calculated values of M * , V * , φMb and φVu in Eq. 6.3,

314363

514153

3 3

� � + �

��

��

. = 0.68 ≤ 10. strength criterion satisfied

Deflection CalculationsIn this example, the additional deflection component calculated corresponds to short-term loadingduring the in-service condition. The design load, W , for short-term loading is given as:

W = G Qsup + ψs = 0 78 0 7 9 6. . .+ × = 7.5 kN/mThe design action effects at the web penetration resulting from the in-service loading are:

Page 43: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–37Design of Simply-Supported Composite Beams with Large Web Penetrations

V * = 14.6 kN (calculated at the mid-length of the penetration)

MH* = 92 kNm

ML* = 86 kNm

From Eqs 6.56 and 6.57,Md

* = M MH*

L*−

= 92-86 = 6 kNm

Mse* =

−V Lt*

0

2

= − ×14 6 0 4252

. . = -3.1 kNm

The second moment of area of the composite cross-section at the web penetration can be calculatedas,

I0 = 510 106×××× mm4

Similarly, the second moment of area of the top T-section can be calculated as,

I t = 30 90 106. ×××× mm4

The modular ratio used in these calculations was based on the short-term properties of the concretein accordance with AS 2327.1.

Additional Deflection due to BendingFrom Fig. 8.1,

a = 3088 mm and b = 6987 mmFrom Eq. 6.58,

θL =( )( ) ( )M I L L b L M I L b L

EI I Lse*

d*

t

t

0 02

0 0 0 0

0

2 3 2 3 26

− + − +��

��

=

( )( )( )

− × × − × × + ×

− × × × × + ×��

��

× × × ×

31 6 510 6 425 2 425 3 6987 2 425

6 6 30 9 6 425 3 6987 2 4256 2 5 510 6 30 9 6 10500

2.

..

E E

E EE E E

= 137 10 6×××× −−−− rad

θH =( )

−+�

��� −

M I M I L

EI Id*

t se*

0

tL

2

20

=( )

−× + × − × ×

× × ×− −6 6 30 9 6 2 31 6) 510 6 425

2 2 5 510 6 30 9 6137 6

E E E EE E E

E. ( .

.= 63 7 10 6. ×××× −−−− rad

Therefore, the additional bending deflections at the HME and at midspan are:

δb at the HME = 6987 63 7 10 6× × −. = 0.4 mmδb at midspan = 5250 63 7 10 6× × −. = 0.3 mm

Additional Shear DeflectionThe additional shear deflection is determined from the rotation at the HME resulting from the shearforce carried by the top T-section.

From Eq. 6.64, δs' =

kV LGs t

t

t w

0

Page 44: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–38 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

=( )

12 14 6 10 42580 10 89 7 6

3

3. .

.× × ×× × ×

= 0.1 mm

From Eq. 6.62, θL' =

2 0LbLδs

'

3

= 2 425 0146987 10500× ×

× ×.

3 = 541 10 9×××× −−−− rad

From Eq. 6.63, θH' =

δθs

'

Lb�� �� − '

= 0 146987

541 10 9.� � − × − = 19 5 10 6. ×××× −−−− rad

Thus, the additional shear deflections at the HME and at mid-span are:

δv at the HME = 6987 19 5 10 6× × −. = 0.1 mmδv at midspan = 5250 19 5 10 6× × −. = 0.1 mm

Total Additional DeflectionsThe total additional deflection of the beam at the in-service condition is the sum of the bending andshear components.

( )δ δb v+ at the HME = 0.4+0.1 = 0.5 mm

( )δ δb v+ at midspan = 0.3+0.1 = 0.4 mmFor this particular example, the additional deflections due to the penetration are not significant.

Page 45: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–39Design of Simply-Supported Composite Beams with Large Web Penetrations

9. REFERENCES

1. Standards Australia, Steel Structures, AS 4100-1990.

2. Standards Australia, Composite Structures, Part 1: Simply-Supported Beams, AS 2327.1-1996.

3. OneSteel Market Mills, Design of Simply Supported Composite Beams for Strength (To AustralianStandard AS 2327.1-1996), Composite Structures Design Manual DB1.1, 2nd Ed., February, 2001.

4. American Society of Civil Engineers, Task Committee on Design Criteria for CompositeStructures in Steel and Concrete, Proposed Specification for Structural Steel Beams with WebOpenings, Journal of Structural Engineering, ASCE, 118(12), 1992, pp. 3315-3349.

5. Chick, C.G., Dayawansa, P.H. and Patrick, M., Design of Composite Beams with Large SteelWeb Penetrations, 15th Aust. Conf. on the Mech. of Struct. and Mat., Melb., Australia, 1997,pp. 159-164.

6. Chick, C.G., Dayawansa, P.H. and Patrick, M., Strength Design of Simply-Supported CompositeBeams with Large Steel Web Penetrations, Aust. Struct. Engg. Conf., Auck., New Zealand, 1998,pp. 159-166.

7. Tse, D. and Dayawansa, P.H., Elastic Deflection of Steel and Composite Beams with WebPenetrations, The Structural Engineer, J. of the Inst. of Struct. Eng., 70(21), 1992, pp. 372-376.

8. Redwood, R.G. and Cho, S.H., Design of Steel and Composite Beams with Web Openings,J. Construct. Steel Research, 25, 1993, pp. 23-41.

9. Lawson. R.M., Design for Openings in the Webs of Composite Beams, CIRIA Special Publication51, CIRIA/SCI, London, 1987.

10. Oehlers, D.J. and Bradford, M.A., Composite Steel and Concrete Structural Members:Fundamental Behaviour, Pergamon, 1995.

11. Chick, C.G., Dayawansa, P.H. and Goh, C.C., Reliability Analysis to Determine φ-factor forStrength Design of Web Penetrations, BHP Melbourne Research Laboratories Report.

12. OneSteel Reinforcing, DECKMESHTM, September, 2000.

13. Patrick, M., The Application of Structural Steel Decking in Commercial and Residential Buildings,Malaysian Structural Steel Association Convention, (Paper 6), December, 1998.

14. Watson, K.B., Dallas, S., van der Kreek, N. and Main, T., Costing of Steelwork from Feasibilitythrough to Completion, Steel Construction Journal, AISC, 30(2), 1996.

15. Patrick, M., Tse, D. and Wilkie, R., Combined Shear-Tension Testing of the Hilti HVB ShearConnector, Structural Steel PSSC ’95 4th Pacific Structural Steel Conference, Vol. 3, Steel-Concrete Composite Structures, Pergamon, 1995, pp. 203-210.

16. Patrick, M., Dayawansa, P.H. and Watson, K.B., A New Reinforcing Component for PreventingLongitudinal Shear Failure of Composite Edge Beams, Structural Steel PSSC ’95 4th PacificStructural Steel Conference, Vol. 3, Steel-Concrete Composite Structures, Pergamon, 1995,pp. 101-108.

17. Patrick, M., Dayawansa, P.H., Eadie, I., Watson, K.B. and van der Kreek, N., AustralianComposite Structures Standard AS 2327, Part 1: Simply-Supported Beams, Steel ConstructionJournal, AISC, 29(4), December, 1995, pp. 2-40.

18. Redwood, R.G. and Shrivastava, S.C., Design Recommendations for Steel Beams with WebHoles, Can. J. Civ. Engg., 7(4), 1980, pp. 642-650.

19. OneSteel Market Mills, Design of the Shear Connection of Simply Supported Composite Beams(To Australian Standard AS 2327.1-1996), Composite Structures Design Manual DB1.2, 1st Ed.,February, 2001.

Page 46: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–40 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

APPENDIX ANOMINAL MOMENT CAPACITY - COMPOSITE BEAM

A1 GeneralThe equations required to determine the nominal moment capacity, Mb , of a composite beam cross-section with a web penetration are presented in this appendix. It is assumed that at the penetrationthe steel beam is a doubly-symmetric I-section. The equations are derived using the cross-section atthe HME of the penetration and are based on rectangular stress block theory.

A2 Forces at the HME of Penetration

Compressive Capacity of Concrete FlangeThe design compressive capacity of the concrete flange, Fc , is given as:

Fc = F Fc c1 2+ (A1)

where, Fc1 = ( )0 85. f b D hc'

cf c r− (A2)

Fc2 = 0 85. f b hc'

cf rλ (A3)Fc1and Fc2 are the design compressive capacities of the concrete flange above and within the depthof the steel sheeting ribs, respectively. Parameter λ in Eq. A3 is dependent on the orientation of thesheeting ribs with respect to the longitudinal axis of the steel beam, expressed as a function of theacute angle θ between the sheeting ribs and the longitudinal axis of the steel beam.

λ = 10. for 0 15< ≤θ (A4)λ = 0 0. for θ >15 (A5)

Design Shear Capacity of Shear ConnectorsThe design shear capacity, fds , of a shear connector acting in a group of n connectors is given as:

fds = φk fn vs (A6)where, φ is the capacity factor for shear connectors, taken as 0.85 (see Table 3.1 of AS 2327), andthe load sharing factor, kn , is given by Eq. 8.3.4.(2) of AS 2327.1 as:

kn = 118 0 18. . /− nThe values of fvs are given in Section 8 of AS 2327.1.

Nominal Capacity of Steel Cross-sectionThe nominal tensile capacity of the steel section, Fs , is given as the sum of all the nominal tensilecapacities of the steel elements at the web penetration cross-section, i.e.:

Fs = Afi yii

ne

=1(A7)

where, Ai and fyi are the cross-sectional area and yield stress, respectively, of the componentscomprising the steel the top flange, the steel web at top T-section, the penetration reinforcement (ifpresent), the steel web at the bottom T-section and the steel bottom flange.

Maximum Compressive Force in Concrete FlangeThe maximum compressive force that can develop in the concrete flange at the HME of thepenetration, FcH , is given as:

FcH = min.( , , )F n f Fc H ds s (A8)

and the degree of shear connection at the HME of the penetration, β , is given as:

Page 47: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–41Design of Simply-Supported Composite Beams with Large Web Penetrations

β = min.( / , )n f FH ds cc 1 (A9)

where, F cc = min.( , )F Fc s (A10)

A3 Nominal Moment Capacity of Composite Beam Cross-Section

A3.1 Compression in Part of Steel BeamWhen part of the top flange, or part of the top flange and part of the web in the top and bottom steelT-sections of the steel beam are in compression, account shall be taken of the slenderness of eachof these plate elements either partially or fully in compression, in order to determine the effectiveportion of the steel beam. The effective portion of the steel beam shall be determined in accordancewith Clause 5.2.3 of AS 2327.1.

A3.2 Nominal Moment CapacityEquations are formulated to enable the calculation of nominal moment capacities based onrectangular stress block theory. The depth of the compressive stress block in the concrete flange,dc , measured from the top face of the concrete flange, is given as:

dc = ( )F b fcH cf c'0 85. (A11)

Depending on the magnitude of the compressive force FcH in the concrete flange, the nominal

moment capacity of the composite beam cross-section with a penetration, Mb , can be determinedusing the formula below.

The following force terms will be used:

Ftf = A ftf.eff yf (A12)Ftw = A ftw yw (A13)Fr = A fr yr (A14)

Fbw = A fbw yw (A15)Fbf = A ff yf (A16)

where, Atf.eff = b teff f (A17)and beff is the effective width of the top flange of the steel beam, noting that beff equals bf whenthe top flange is compact.

Case 1:

If ( )F F FcH c1 c2≤ + and F FcH s≥ , the plastic neutral axis of the composite cross-section is located inthe cover slab of the concrete flange. The depth of compressive zone, dh , and the nominal moment

capacity of the composite cross-section, Mb , are given by:

dh = ( )D h F Fc r cH c1− (A18)

Mb = ( ) ( )F d F D t dcH h tf c f h2 2+ + −/

( )( ) ( )+ − + + + − + −F D d s t F D d s stw c h t f r c h t b2 2 2

( )( )+ − + − +F D d D s tbw c h s b f 2

( )+ − + −F D d D tbf c h s f / 2 (A19)

Page 48: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–42 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

Case 2:

If ( )F F F Fs tf cH s− < ≤2 , the plastic neutral axis of the composite cross-section is located within thetop flange of the steel beam. The depth of compressive zone, dh , and the nominal moment capacity

of the composite cross-section, Mb , are given by:

dh = Dt b f F F F F F

b fcf eff yf tw r bw bf cH

eff yf+

+ + + + −22 (A20)

Mb = ( ) ( )F d d b f d DcH h c eff yf h c− + −2 22

/

( ) ( )( )+ + − + − + +b f D t d F D d s teff yf c f h tw c h t f2

2 2/

( )+ − + − +F D d s s Dc tr h b s2 2

( )( )+ − + − +F D d D s tbw c h s b f 2

( )+ − + −F D d D tbf c h s f 2 (A21)

Case 3:

If ( )( ) ( )F F F F F Fs tf tw cH s tf− + < ≤ −2 2 , the plastic neutral axis of the composite cross-section is

located within the top web of the steel beam. The depth of compressive zone, dh , and the nominal

moment capacity of the composite cross-section, Mb , are given by:

dh =( )f t D s t F F F F F

f tyw w c t f r bw bf tf cH

yw w

2 22

+ + + + + − −(A22)

Mb = ( ) ( )F d d F d D tcH h c tf h c f− + − −2 2/

( ) ( )[ ]+ − − + + −t f d D t D s dw yw h c f c t h2 2 2/

( )+ − + − +F D d s s Dr c h t b s2 2

( )( )+ − + − +F D d D s tbw c h s b f 2

( )+ + − −F D D d tbf c s h f / 2 (A23)

Case 4:

If ( )( ) ( )( )F F F F F F F Fs tf tw tr cH s tf tw− + + < ≤ − +2 2 , the plastic neutral axis of the composite cross-

section is located within the top stiffener of the steel beam. The depth of compressive zone, dh , and

the nominal moment capacity of the composite cross-section, Mb , are given by:

dh =( )f b D s t F F F F F F

f byr r c t r r bw bf cH tw tf

yr r

2 22

+ − + + + − − −

….(A24)Mb = ( ) ( )F d d F d D tcH h c tf h c f− + − −2 2/

( )( )+ − − +F d D s ttw h c t f 2

( ) ( )[ ]+ − − + + + −b f d D s t D s dr yr h c t r c t h2 2 2

( )+ + − − +F D D d s tr c s h b f 2

( )( )+ − + − +F D d D s tbw c h s b f 2

( )+ + − −F D D d tbf c s h f / 2 (A25)

Page 49: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–43Design of Simply-Supported Composite Beams with Large Web Penetrations

Case 5:

If ( )( ) ( )( )F F F F F F F F F Fts f tw tr br cH s tf tw tr− + + + < ≤ − + +2 2 , the plastic neutral axis of the compositecross-section is located within the bottom stiffener of the steel beam. The depth of compressivezone, dh , and the nominal moment capacity of the composite cross-section, Mb , are given by:

dh =[ ]f b D D s t F F F F F F

f byr r c s b r bw bf cH tw r tf

yr r

22

( )+ − + + + − − − −

….(A26)Mb = ( ) ( )F d d F d D tcH h c tf h c f− + − −2 2/

( )( ) ( )+ − − + + − − +F d D s t F d D s ttw h c t f r h c t r2 2

( ) ( )[ ]+ − − + + + − + −b f d D D s D D s t dr yr h c s b c s b r h2 2 2/

( )( )+ − + − +F D d D s tbw c h s b f 2

( )+ + − −F D D d tbf c s h f / 2 (A27)

Case 6:

If ( )( ) ( )( )F F F F F F F F F F F Fts f tw tr br bw cH s tf tw tr br− + + + + < ≤ − − − −2 2 , the plastic neutral axis of thecomposite cross-section is located within the bottom web of the steel beam. The depth ofcompressive zone, dh , and the nominal moment capacity of the composite cross-section, Mb , aregiven by:

dh =( )f t D D s t F F F F F

f tyw w c S b f bf r tw tf cH

yw w

2 2 22

+ − − + − − − −

….(A28)Mb = ( ) ( )F d d F d D tcH h c tf h c f− + − −2 2/

( )( ) ( )+ − − + + − − − +F d D s t F d D D s stw h c t f r h c s t b2 2 2

( ) ( )[ ]+ − − + + + − −t f d D D s D D t dw yw h c s b c s f h2 2 2/

( )+ + − −F D D d tbf c s h f / 2 (A29)

Page 50: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–44 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

APPENDIX BNOMINAL MOMENT CAPACITY - BARE STEEL BEAM

B1 GeneralThe simplified equations required to determine the nominal moment capacity of a bare steel beamwith a web penetration are presented in this appendix. The equations are derived based on thefollowing assumptions:

(a) the steel beam is a doubly-symmetrical I-section;

(b) the penetration may be either reinforced or unreinforced;

(c) the reinforcement above and below the penetration have the same dimensions; and

(d) the penetration reinforcement is located as close as practicable to the penetration edges.

In all cases, the nominal moment capacity of the bare steel section with web a penetration, Mb , shallnot exceed that of the bare steel section without the penetration, Ms .

B2 Nominal Moment Capacity of Bare Steel SectionAs discussed in Section A3.1, the effective portion of the steel beam shall be determined inaccordance with the requirements of Clause 5.2.3 of AS 2327.1. Depending on the sizes of the steelbeam and the web penetration, the nominal moment capacity of the bare steel section can bedetermined using the formulations below.

The force terms given by Eqs A12 to A16 of Appendix A will also be used.Case 1:

If F F Ftw r bw≥ +2 , the plastic neutral axis of the steel section is located within the steel web of the

top T-section. The depth of compressive zone, dh , and the nominal moment capacity, Mb , of the

steel section, Mb , are given by:

dh =( )t f s t F F F F

t fw yw t f r bw bf tf

w yw

+ + + + −22

(B1)

Mb = ( ) ( ) ( )F d t t f d t s dtf h f w yw h f t h− + − + −� �/ 2 22 2

( ) ( )( )+ + − − + − − +F D s s d F D d s tr s t b h bw s h b f2 2

( )+ − −F D d tbf s h f / 2 (B2)Case 2:

If F Ftw bw> and F F Ftw r bw< +2 , the plastic neutral axis of the steel section is located within the topreinforcement of the steel beam. The depth of compressive zone, dh , and the nominal moment

capacity of the steel section, Mb , are given by:

dh =( )b f s t F F F F F

b fr yr t r r bw bf tw tf

r yr

22

− + + + − −(B3)

Mb = ( ) ( )( )F d t F d s ttf h f tw h t f− + − +/ 2 2

( ) ( )+ − + + −� �b f d s t s dr yr h t r t h2 2

2/

( ) ( )( )+ − − + + − − +F D d s t F D d s tr s h b r bw s h b f2 2

( )+ − −F D d tbf s h f / 2 (B4)

Page 51: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–45Design of Simply-Supported Composite Beams with Large Web Penetrations

Case 3:

If F Ftw bw< and F F Ftw r bw+ >2 , the plastic neutral axis of the steel section, dh , is located within thebottom reinforcement of the steel beam. The depth of compressive zone, dh , and the nominal

moment capacity of the steel section, Mb , are given by:

dh =( )b f D s t F F F F F

b frr yr s b r bw bf tw tf

r yr

2 22

− + + + − − −(B5)

Mb = ( ) ( )( )F d t F d s ttf h f tw h t f− + − +/ 2 2

( )+ − +F d s tr h t r 2

( ) ( )+ − + + − + −� �b f d D s D s t dr yr h s b s b r h2 2

2/

( )( ) ( )+ − − + + − −F D d s t F D d tbw s h b f bf s h f2 2/ (B6)

Case 4:

If F F Ftw r bw+ <2 , the plastic neutral axis of the steel section is located within the bottom web of thesteel beam. The depth of compressive zone, dh , and the nominal moment capacity of the steel

section, Mb , are given by:

dh =( )t f D s t F F F F

t fw yw s b r bf tf tw r

w yw

2 22

− − + − − −(B7)

Mb = ( ) ( )( )F d t F d s ttf h f tw h t f− + − +/ 2 2

( )+ − − +F d D s sr h s t b2

( ) ( )+ − + + − −� �t f d D s D t dw yw h s b s f h2 2

2/

( )+ − −F D d tbf s h f / 2 (B8)

Page 52: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–46 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

APPENDIX C DESIGN CAPACITY TABLES

C1 GeneralThe design capacity tables given in this appendix can be used to calculate φMb and φVu at apenetration for a range of bare steel and composite beams with unreinforced web penetrations,placed concentric to the centroid of the steel beam cross-section. The values of φMb and φVu canthen be used in the moment-shear interaction equation (Eq. 6.3) to check that the strength designcriterion is satisfied.

The design shear capacities in the tables have been calculated assuming that the number of shearconnectors over the web penetration is equal to one. The parametric range covered in the tables isgiven in Table 7.1.

C2 TablesParameters in TablesThe parameters given in the design capacity tables are described below.

Column

No.

Parameter Description

2 βmax The maximum degree of shear connection that can be achieved at across-section with the web penetration, calculated with respect to thecross-section without the web penetration, i.e. βmax = Fcc / Fcc . If thevalue of β at the proposed location of the penetration is greater thanβmax , then the force in the concrete flange will be affected (see Fig. 3.3).

3 Fcc The force corresponding to βmax , i.e. F Fcc max cc= β . This is themaximum force that can be developed in the concrete flange at a cross-section with the web penetration.

4 nmax The number of 19 mm studs required to develop Fcc .

5 - 7 DesignMomentCapacities

The values of φMb.0 , φMb.5 and φMbc given are the design momentcapacities of the composite beam cross-section at the web penetration,calculated ignoring the effect of shear force, corresponding to β = 0.0,0.5 and 1.0, respectively. The design moment capacity of a bare steelbeam with the web penetration can be read directly from Column 5.

8 - 10 DesignShearCapacitiesfor CircularPenetrations

The values of φVu.0 , φVu.5 and φVuc given are the design shearcapacities of a composite beam cross-section at the circular penetration,calculated ignoring the effects of primary bending, corresponding to β =0.0, 0.5 and 1.0, respectively. These values have been calculatedassuming an equivalent rectangular penetration with L D0 0 45= . andh D0 0 9= . . The design shear capacity of a bare steel beam with the webpenetration can be read directly from Column 8.

11 - 19 DesignShearCapacitiesforRectangularPenetrations

The values of φVu.0 , φVu.5 and φVuc given are the design shearcapacities of a composite beam cross-section at the rectangularpenetration, calculated ignoring the effects of primary bending,corresponding to β = 0.0, 0.5 and 1.0, respectively. Three sets of valuesare given for L0 / h0 equal to 1.0, 1.5 and 2.0. The design shear capacityof a bare steel beam with the web penetration can be read directly fromColumns 11, 14 and 17, as appropriate.

Page 53: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–47Design of Simply-Supported Composite Beams with Large Web Penetrations

C3 How To Use TablesThe data required to use the tables are as follows, noting that Dc = 120 mm, hr = 55 mm and300PLUS® steel must be used.

(a) Beam cross-section data: steel section, bcf and λ .

(b) Concrete grade, fc' .

(c) Number of shear connectors, nH , from the end of the beam to HME, and the force n fH ds .The value of fds corresponding to nH can be calculated in accordance with Cl. 8.3.4 ofAS 2327.1.

(d) Shape of penetration: circular or rectangular.

(e) Size of the penetration: the ratios ( h D0 / s ) and ( L h0 0/ ) for rectangular penetrations or( D D/ s ) for circular penetrations.

Rectangular PenetrationsThe calculation steps for a composite beam with a rectangular penetration are as follows:

(a) Select the appropriate design table based on bcf , fc' , λ and h D0 / s or D D/ s .

(b) Read βmax from Column 2 of the table.

(c) If βmax = 10. , it indicates that F Fcc cc= and therefore the force in the concrete flange is notaffected by the web penetration.

(d) Read Fcc from the table.

(e) If n f FH ds cc> , then the force n fH ds is limited to Fcc (see Fig. 3.3(b)). The condition

n f FH ds cc≤ can also be satisfied by ensuring nH used in the calculations does not exceedthe value of nmax given in Column 4.

(f) Calculate β = ≤n f FH ds cc/ .10 .

(g) Calculate φMb corresponding to β by linear interpolation using φMb.0 , φMb.5 and φMbc , as

appropriate, which correspond to β = 0.0, 0.5 and 1.0, respectively.

(h) Select the columns of shear capacity data corresponding to the value of ( L h0 0/ ) for thepenetration. Interpolate between the columns for intermediate values of ( L h0 0/ ).

(i) Calculate φVu corresponding to β by linear interpolation using φVu.0 , φVu.5 and φVuc , as

appropriate, which correspond to β = 0.0, 0.5 and 1.0, respectively.

(j) Use the moment-shear interaction equation given in Eq. 6.3 and check whether or not thestrength criterion is satisfied. Reference should be made to Fig. 5.1 to consider the optionsavailable in the event that the design is unsatisfactory.

For bare steel beams, the value of β is taken as zero and the design moment and shear capacities

are directly read from the φMb.0 column, and the φVu.0 column corresponding to the values of( L h0 0/ ) for the penetration.

Circular PenetrationsFor circular penetrations, the same procedure described above is used except that the shearcapacity is calculated using the values of φVu.0 , φVu.5 and φVuc given in Columns 8-10 in the tables.

Page 54: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–48 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

INDEX TO DESIGN CAPACITY TABLES

Table No.bcf

(mm)fc

'

(MPa)λ

hD

0

s

or DDs

C1 1200 25 0.0 0.3C2 1200 25 0.0 0.5C3 1200 25 0.0 0.7C4 1200 25 1.0 0.3C5 1200 25 1.0 0.5C6 1200 25 1.0 0.7C7 1200 32 0.0 0.3C8 1200 32 0.0 0.5C9 1200 32 0.0 0.7

C10 1200 32 1.0 0.3C11 1200 32 1.0 0.5C12 1200 32 1.0 0.7C13 1600 25 0.0 0.3C14 1600 25 0.0 0.5C15 1600 25 0.0 0.7C16 1600 25 1.0 0.3C17 1600 25 1.0 0.5C18 1600 25 1.0 0.7C19 1600 32 0.0 0.3C20 1600 32 0.0 0.5C21 1600 32 0.0 0.7C22 1600 32 1.0 0.3C23 1600 32 1.0 0.5C24 1600 32 1.0 0.7C25 2100 25 0.0 0.3C26 2100 25 0.0 0.5C27 2100 25 0.0 0.7C28 2100 25 1.0 0.3C29 2100 25 1.0 0.5C30 2100 25 1.0 0.7C31 2100 32 0.0 0.3C32 2100 32 0.0 0.5C33 2100 32 0.0 0.7C34 2100 32 1.0 0.3C35 2100 32 1.0 0.5C36 2100 32 1.0 0.7

Page 55: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–49Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C1: bcf = 1200 mm, fc' = 25 MPa, λ = 0.0 ( i.e. sheeting ribs perpendicular to beam), h D0 s or D Ds = 0.3,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0

Section βmax Fcc(kN)

nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 1658 19 1864 2162 2379 591 591 591 591 591 591 591 591 591 591 591 591800WB168 1.00 1658 19 1587 1883 2076 587 587 587 587 587 587 587 587 587 587 587 587800WB146 1.00 1658 19 1405 1698 1870 580 580 580 580 580 580 580 580 580 580 580 580800WB122 1.00 1658 19 1107 1401 1546 574 574 574 574 574 574 574 574 574 574 574 574700WB173 1.00 1658 19 1475 1740 1902 519 519 519 519 519 519 519 519 519 519 519 519700WB150 1.00 1658 19 1244 1507 1658 515 515 515 515 515 515 515 515 515 515 515 515700WB130 1.00 1658 19 1100 1359 1492 507 507 507 507 507 507 507 507 507 507 507 507700WB115 1.00 1658 19 922 1182 1301 502 502 502 502 502 502 502 502 502 502 502 502610UB125 1.00 1658 19 840 1076 1188 757 757 757 757 757 757 670 716 685 587 627 600610UB113 1.00 1658 19 750 982 1080 707 707 707 707 707 707 626 671 641 548 588 561610UB101 1.00 1658 19 707 937 1030 707 707 707 707 707 707 627 672 642 549 589 562530UB 92.4 1.00 1658 19 576 782 860 603 633 603 603 603 603 534 586 562 467 513 492530UB 82.0 1.00 1658 19 502 703 770 562 592 579 562 562 562 498 550 539 436 482 472460UB 82.1 1.00 1658 19 447 627 696 505 535 535 505 505 505 447 499 493 392 444 432460UB 74.6 1.00 1658 19 404 579 642 461 492 492 461 461 461 408 456 456 358 410 405460UB 67.1 1.00 1658 19 360 528 587 428 458 458 428 428 428 379 423 423 332 385 385410UB 59.7 1.00 1658 19 291 439 496 351 382 382 351 382 382 311 347 347 272 328 328410UB 53.7 1.00 1658 19 269 413 470 340 370 370 340 370 370 301 336 336 263 317 317360UB 56.7 1.00 1658 19 245 381 435 318 349 349 318 349 349 282 315 323 247 297 297360UB 50.7 1.00 1658 19 217 347 399 288 319 319 288 319 319 255 296 302 223 269 269360UB 44.7 0.98 1619 18 192 318 371 269 300 300 269 300 300 238 282 287 209 251 251310UB 46.2 0.98 1619 18 175 285 345 228 259 259 228 259 259 202 256 256 177 236 240310UB 40.4 0.94 1527 17 160 260 317 206 236 236 206 236 236 182 234 234 159 222 222310UB 32.0 0.88 1111 13 113 198 242 182 212 212 182 212 212 161 210 210 141 191 193

Page 56: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–50 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C2: bcf = 1200 mm, fc' = 25 MPa, λ = 0.0 ( i.e. sheeting ribs perpendicular to beam), h D0 s or D Ds = 0.5,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 1658 19 1864 2134 2213 591 591 591 448 487 461 354 384 363 292 317 300800WB168 1.00 1658 19 1587 1827 1903 587 587 587 445 484 458 351 381 361 290 315 298800WB146 1.00 1658 19 1405 1626 1700 580 580 580 439 479 452 347 377 357 286 312 294800WB122 1.00 1658 19 1107 1305 1377 574 574 574 435 475 448 343 374 353 283 309 292700WB173 1.00 1658 19 1475 1710 1784 519 519 519 393 437 408 310 345 322 256 285 265700WB150 1.00 1658 19 1244 1455 1526 515 515 515 390 434 405 308 342 319 254 283 263700WB130 1.00 1658 19 1100 1294 1362 507 507 507 385 429 399 303 339 315 250 279 260700WB115 1.00 1658 19 922 1106 1172 502 502 502 380 425 395 300 335 312 248 277 257610UB125 1.00 1658 19 840 1007 1074 567 578 578 387 438 404 305 346 319 252 285 263610UB113 1.00 1658 19 750 909 973 529 540 540 361 413 388 285 326 306 235 269 252610UB101 1.00 1658 19 707 860 923 530 540 540 362 414 395 285 326 312 236 269 257530UB 92.4 1.00 1658 19 576 718 780 451 469 485 308 367 354 243 289 279 201 239 231530UB 82.0 1.00 1658 19 502 635 695 421 455 460 287 347 344 227 273 271 187 226 224460UB 82.1 1.00 1658 19 447 576 637 378 416 416 258 326 321 204 257 253 168 212 209460UB 74.6 1.00 1658 19 404 529 589 345 383 383 236 298 298 186 240 240 154 198 198460UB 67.1 1.00 1658 19 360 480 538 320 357 357 219 276 276 173 227 230 142 187 190410UB 59.7 1.00 1658 19 291 404 461 263 299 299 180 227 235 142 202 207 117 167 171410UB 53.7 1.00 1658 19 269 379 435 254 290 290 174 221 228 137 199 201 113 164 167360UB 56.7 1.00 1658 19 245 354 411 238 274 274 163 236 236 128 188 188 106 164 167360UB 50.7 0.98 1619 18 217 317 372 216 251 251 147 216 216 116 170 170 96 155 156360UB 44.7 0.87 1436 16 192 288 338 202 236 236 138 204 204 109 159 159 90 148 150310UB 46.2 0.92 1527 17 175 268 321 171 205 205 117 178 178 92 164 165 76 127 129310UB 40.4 0.83 1344 15 160 245 295 154 188 188 105 163 163 83 152 152 68 121 122310UB 32.0 0.85 1070 12 113 182 221 136 169 169 93 148 148 73 134 136 61 103 105

Page 57: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–51Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C3: bcf = 1200 mm, fc' = 25 MPa, λ = 0.0 ( i.e. sheeting ribs perpendicular to beam), h D0 s or D Ds = 0.7,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 1658 19 1843 1966 2037 292 348 311 157 194 169 115 142 124 91 112 98800WB168 1.00 1658 19 1539 1661 1729 290 346 309 156 193 168 114 141 123 90 111 97800WB146 1.00 1658 19 1342 1463 1528 287 343 305 154 191 166 113 140 122 89 111 96800WB122 1.00 1658 19 1008 1145 1207 284 341 317 152 190 174 112 139 128 88 110 101700WB173 1.00 1658 19 1464 1579 1650 256 308 277 138 180 152 101 132 111 80 104 88700WB150 1.00 1658 19 1210 1325 1393 254 305 276 136 179 151 100 131 110 79 103 87700WB130 1.00 1658 19 1054 1167 1231 251 301 272 135 177 149 99 130 109 78 103 86700WB115 1.00 1658 19 854 981 1042 248 298 290 133 176 161 97 129 118 77 102 93610UB125 1.00 1658 19 786 895 958 252 303 296 135 185 164 99 135 120 78 107 95610UB113 1.00 1658 19 697 804 865 236 283 283 126 176 166 93 129 122 73 102 96610UB101 1.00 1658 19 650 755 815 236 283 283 127 177 171 93 129 125 73 102 99530UB 92.4 1.00 1658 19 538 639 699 201 272 272 108 164 162 79 120 119 62 95 94530UB 82.0 1.00 1658 19 463 562 620 187 256 256 101 158 161 74 115 118 58 91 93460UB 82.1 1.00 1658 19 423 519 579 168 233 233 90 156 158 66 114 115 52 90 91460UB 74.6 1.00 1658 19 382 477 535 154 215 215 83 148 149 60 109 112 48 86 88460UB 67.1 1.00 1658 19 338 431 488 143 202 202 77 138 138 56 105 109 44 83 86410UB 59.7 0.98 1619 18 278 366 422 117 171 171 63 130 135 46 101 104 36 80 82410UB 53.7 0.92 1527 17 255 337 390 113 167 167 61 126 131 45 99 102 35 78 81360UB 56.7 0.98 1619 18 236 321 376 106 158 158 57 133 133 42 95 99 33 82 85360UB 50.7 0.87 1436 16 209 284 336 96 146 146 52 124 124 38 90 93 30 78 81360UB 44.7 0.76 1253 14 180 257 304 90 138 138 48 118 118 35 86 89 28 75 77310UB 46.2 0.81 1344 15 173 244 295 76 122 122 41 104 104 30 98 99 24 74 77310UB 40.4 0.77 1253 14 158 224 271 69 113 113 37 97 97 27 92 92 21 71 74310UB 32.0 0.78 979 11 104 163 199 61 103 103 33 89 89 24 80 83 19 60 62

Page 58: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–52 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C4: bcf = 1200 mm, fc' = 25 MPa, λ = 1.0 ( i.e. sheeting ribs parallel to beam), h D0 s or D Ds = 0.3,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 3060 34 1864 2327 2442 591 591 591 591 591 591 591 591 591 591 591 591800WB168 1.00 3060 34 1587 2047 2136 587 587 587 587 587 587 587 587 587 587 587 587800WB146 1.00 3060 34 1405 1859 1924 580 580 580 580 580 580 580 580 580 580 580 580800WB122 1.00 3060 34 1107 1537 1595 574 574 574 574 574 574 574 574 574 574 574 574700WB173 1.00 3060 34 1475 1893 1963 519 519 519 519 519 519 519 519 519 519 519 519700WB150 1.00 3060 34 1244 1649 1716 515 515 515 515 515 515 515 515 515 515 515 515700WB130 1.00 3060 34 1100 1484 1544 507 507 507 507 507 507 507 507 507 507 507 507700WB115 1.00 3060 34 922 1292 1348 502 502 502 502 502 502 502 502 502 502 502 502610UB125 1.00 3060 34 840 1179 1238 757 813 813 757 813 793 670 748 748 587 705 699610UB113 1.00 3060 34 750 1072 1126 707 763 763 707 763 763 626 698 698 548 659 659610UB101 1.00 3060 34 707 1021 1073 707 764 764 707 764 764 627 699 699 549 660 660530UB 92.4 1.00 3060 34 576 852 902 603 659 659 603 659 659 534 596 596 467 563 563530UB 82.0 0.92 2812 31 502 751 807 562 618 618 562 618 618 498 555 555 436 524 524460UB 82.1 0.92 2812 31 447 677 733 505 561 561 505 561 561 447 555 555 392 471 471460UB 74.6 0.88 2537 28 404 615 674 461 517 517 461 517 517 408 512 512 358 430 430460UB 67.1 0.87 2261 25 360 552 612 428 484 484 428 484 484 379 479 479 332 399 399410UB 59.7 0.90 2077 23 291 454 514 351 407 407 351 407 407 311 403 403 272 371 372410UB 53.7 0.87 1894 21 269 422 480 340 396 396 340 396 396 301 392 392 263 352 353360UB 56.7 0.91 1985 22 245 391 452 318 375 375 318 375 375 282 371 371 247 354 354360UB 50.7 0.87 1710 19 217 349 407 288 344 344 288 344 344 255 341 341 223 325 325360UB 44.7 0.90 1619 18 192 318 371 269 326 326 269 326 326 238 323 323 209 308 308310UB 46.2 0.91 1619 18 175 285 345 228 284 284 228 284 284 202 282 282 177 269 269310UB 40.4 0.94 1527 17 160 260 317 206 262 262 206 262 262 182 260 260 159 248 248310UB 32.0 0.88 1111 13 113 198 242 182 238 238 182 238 238 161 236 236 141 226 226

Page 59: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–53Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C5: bcf = 1200 mm, fc' = 25 MPa, λ = 1.0 ( i.e. sheeting ribs parallel to beam), h D0 s or D Ds = 0.5,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular δg L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 3060 34 1864 2203 2273 591 591 591 448 562 482 354 443 380 292 366 314800WB168 1.00 3060 34 1587 1894 1959 587 587 587 445 560 523 351 441 412 290 364 340800WB146 1.00 3060 34 1405 1691 1750 580 580 580 439 555 538 347 438 424 286 362 350800WB122 1.00 3060 34 1107 1369 1422 574 574 574 435 549 549 343 436 435 283 360 359700WB173 1.00 3060 34 1475 1775 1842 519 519 519 393 496 466 310 413 368 256 341 304700WB150 1.00 3060 34 1244 1517 1579 515 515 515 390 492 492 308 411 394 254 339 325700WB130 1.00 3060 34 1100 1354 1411 507 507 507 385 485 485 303 408 402 250 337 332700WB115 1.00 3060 34 922 1164 1215 502 502 502 380 480 480 300 406 406 248 335 335610UB125 1.00 3060 34 840 1065 1119 567 635 635 387 489 489 305 425 425 252 351 351610UB113 1.00 3060 34 750 965 1015 529 596 596 361 456 456 285 406 407 235 335 336610UB101 0.98 2996 33 707 912 963 530 597 597 362 457 457 285 407 408 236 336 337530UB 92.4 0.92 2812 31 576 761 817 451 517 517 308 426 427 243 356 356 201 312 313530UB 82.0 0.80 2445 27 502 665 724 421 486 486 287 391 392 227 332 332 187 295 296460UB 82.1 0.83 2537 28 447 610 668 378 442 442 258 382 382 204 304 304 168 281 281460UB 74.6 0.78 2261 25 404 553 613 345 409 409 236 354 354 186 283 284 154 256 256460UB 67.1 0.80 2077 23 360 494 553 320 383 383 219 333 333 173 261 262 142 238 238410UB 59.7 0.82 1894 21 291 410 468 263 325 325 180 283 283 142 258 259 117 199 200410UB 53.7 0.79 1710 19 269 380 436 254 316 316 174 276 276 137 245 245 113 189 189360UB 56.7 0.82 1802 20 245 357 414 238 300 300 163 262 262 128 245 245 106 210 210360UB 50.7 0.83 1619 18 217 317 372 216 276 276 147 242 242 116 227 227 96 192 192360UB 44.7 0.80 1436 16 192 288 338 202 262 262 138 230 230 109 216 216 90 179 179310UB 46.2 0.86 1527 17 175 268 321 171 231 231 117 204 204 92 191 191 76 183 183310UB 40.4 0.83 1344 15 160 245 295 154 213 213 105 189 189 83 178 178 68 171 171310UB 32.0 0.81 1024 12 113 182 221 136 195 195 93 174 174 73 164 164 61 151 151

Page 60: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–54 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C6: bcf = 1200 mm, fc' = 25 MPa, λ = 1.0 ( i.e. sheeting ribs parallel to beam), h D0 s or D Ds = 0.7,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 3060 34 1843 2028 2094 292 407 407 157 267 217 115 196 159 91 154 125800WB168 1.00 3060 34 1539 1720 1781 290 405 405 156 267 249 114 195 183 90 154 144800WB146 1.00 3060 34 1342 1520 1574 287 401 401 154 266 261 113 195 191 89 154 151800WB122 1.00 3060 34 1008 1199 1248 284 397 397 152 266 267 112 195 196 88 154 154700WB173 1.00 3060 34 1464 1641 1704 256 364 364 138 249 230 101 193 168 80 152 133700WB150 1.00 3060 34 1210 1384 1442 254 362 362 136 247 247 100 193 187 79 152 148700WB130 1.00 3060 34 1054 1223 1276 251 357 357 135 243 244 99 193 193 78 152 152700WB115 1.00 3060 34 854 1031 1082 248 354 354 133 240 240 97 192 194 77 152 153610UB125 1.00 3060 34 786 949 999 252 360 360 135 258 260 99 207 208 78 163 164610UB113 0.89 2720 30 697 846 902 236 339 339 126 245 246 93 199 200 73 157 158610UB101 0.86 2628 29 650 791 848 236 340 340 127 238 240 93 198 199 73 157 157530UB 92.4 0.80 2445 27 538 668 727 201 298 298 108 247 249 79 180 180 62 154 155530UB 82.0 0.68 2077 23 463 578 637 187 281 281 101 226 228 74 168 168 58 145 146460UB 82.1 0.74 2261 25 423 541 600 168 259 259 90 220 220 66 177 178 52 144 144460UB 74.6 0.69 1985 22 382 490 549 154 241 241 83 205 205 60 166 167 48 132 132460UB 67.1 0.69 1802 20 338 435 492 143 228 228 77 195 195 56 153 154 44 122 122410UB 59.7 0.70 1619 18 278 366 422 117 197 197 63 170 170 46 157 158 36 118 119410UB 53.7 0.70 1527 17 255 337 390 113 192 192 61 166 166 45 148 149 35 112 112360UB 56.7 0.74 1619 18 236 321 376 106 184 184 57 159 159 42 152 152 33 128 129360UB 50.7 0.73 1436 16 209 284 336 96 172 172 52 150 150 38 143 143 30 117 118360UB 44.7 0.70 1253 14 180 257 304 90 164 164 48 143 143 35 137 137 28 109 110310UB 46.2 0.75 1344 15 173 244 295 76 148 148 41 130 130 30 125 125 24 121 121310UB 40.4 0.77 1253 14 158 224 271 69 139 139 37 123 123 27 118 118 21 115 115310UB 32.0 0.78 979 11 104 163 199 61 129 129 33 115 115 24 111 111 19 95 96

Page 61: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–55Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C7: bcf = 1200 mm, fc' = 32 MPa, λ = 0.0 ( i.e. sheeting ribs perpendicular to beam), h D0 s or D Ds = 0.3,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 2122 24 1864 2230 2424 591 591 591 591 591 591 591 591 591 591 591 591800WB168 1.00 2122 24 1587 1950 2122 587 587 587 587 587 587 587 587 587 587 587 587800WB146 1.00 2122 24 1405 1764 1914 580 580 580 580 580 580 580 580 580 580 580 580800WB122 1.00 2122 24 1107 1467 1589 574 574 574 574 574 574 574 574 574 574 574 574700WB173 1.00 2122 24 1475 1798 1946 519 519 519 519 519 519 519 519 519 519 519 519700WB150 1.00 2122 24 1244 1565 1703 515 515 515 515 515 515 515 515 515 515 515 515700WB130 1.00 2122 24 1100 1416 1536 507 507 507 507 507 507 507 507 507 507 507 507700WB115 1.00 2122 24 922 1239 1343 502 502 502 502 502 502 502 502 502 502 502 502610UB125 1.00 2122 24 840 1128 1231 757 786 757 757 757 757 670 727 699 587 636 612610UB113 1.00 2122 24 750 1032 1122 707 741 707 707 707 707 626 683 667 548 598 584610UB101 1.00 2122 24 707 986 1071 707 742 707 707 707 707 627 684 672 549 599 589530UB 92.4 1.00 2122 24 576 821 901 603 637 637 603 603 603 534 596 592 467 524 519530UB 82.0 1.00 2122 24 502 733 810 562 596 596 562 562 562 498 555 555 436 493 493460UB 82.1 1.00 2122 24 447 658 735 505 539 539 505 505 505 447 499 499 392 457 457460UB 74.6 1.00 2122 24 404 605 681 461 496 496 461 476 483 408 456 456 358 424 426460UB 67.1 1.00 2122 24 360 552 625 428 462 462 428 459 462 379 423 423 332 399 399410UB 59.7 0.98 2077 23 291 458 529 351 386 386 351 386 386 311 347 347 272 328 328410UB 53.7 0.89 1894 21 269 426 494 340 374 374 340 374 374 301 336 336 263 317 317360UB 56.7 0.94 1985 22 245 394 466 318 353 353 318 353 353 282 335 340 247 297 297360UB 50.7 0.87 1710 19 217 351 418 288 323 323 288 323 323 255 310 315 223 269 269360UB 44.7 0.90 1619 18 192 320 381 269 304 304 269 304 304 238 293 298 209 251 251310UB 46.2 0.91 1619 18 175 287 355 228 263 263 228 263 263 202 260 260 177 247 247310UB 40.4 0.94 1527 17 160 261 326 206 240 240 206 240 240 182 238 238 159 226 226310UB 32.0 0.92 1161 13 113 199 247 182 216 216 182 216 216 161 214 214 141 196 199

Page 62: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–56 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C8: bcf = 1200 mm, fc' = 32 MPa, λ = 0.0 ( i.e. sheeting ribs perpendicular to beam), h D0 s or D Ds = 0.5,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 2122 24 1864 2167 2259 591 591 591 448 497 461 354 392 364 292 323 300800WB168 1.00 2122 24 1587 1859 1948 587 587 587 445 494 458 351 389 361 290 322 298800WB146 1.00 2122 24 1405 1658 1742 580 580 580 439 489 452 347 386 357 286 318 295800WB122 1.00 2122 24 1107 1337 1419 574 574 574 435 485 470 343 383 371 283 316 306700WB173 1.00 2122 24 1475 1739 1829 519 519 519 393 449 408 310 354 322 256 292 266700WB150 1.00 2122 24 1244 1483 1570 515 515 515 390 446 405 308 352 319 254 290 263700WB130 1.00 2122 24 1100 1322 1405 507 507 507 385 441 411 303 348 324 250 287 267700WB115 1.00 2122 24 922 1133 1213 502 502 502 380 437 425 300 345 335 248 285 277610UB125 1.00 2122 24 840 1033 1115 567 578 578 387 452 435 305 356 343 252 294 283610UB113 1.00 2122 24 750 934 1014 529 540 543 361 427 419 285 336 330 235 278 273610UB101 1.00 2122 24 707 885 963 530 540 542 362 428 423 285 337 334 236 278 275530UB 92.4 1.00 2122 24 576 743 819 451 495 495 308 383 381 243 302 301 201 249 248530UB 82.0 1.00 2122 24 502 659 734 421 464 464 287 362 363 227 286 287 187 236 237460UB 82.1 1.00 2122 24 447 601 676 378 420 420 258 326 326 204 272 273 168 224 225460UB 74.6 1.00 2122 24 404 553 626 345 387 387 236 298 298 186 254 256 154 210 212460UB 67.1 0.98 2077 23 360 498 568 320 361 361 219 276 276 173 241 243 142 199 201410UB 59.7 0.89 1894 21 291 414 481 263 303 303 180 245 250 142 208 208 117 179 180410UB 53.7 0.81 1710 19 269 383 447 254 294 294 174 236 240 137 201 201 113 174 176360UB 56.7 0.85 1802 20 245 360 426 238 278 278 163 240 240 128 188 188 106 175 177360UB 50.7 0.83 1619 18 217 319 381 216 255 255 147 221 221 116 170 170 96 160 160360UB 44.7 0.80 1436 16 192 290 345 202 240 240 138 208 208 109 159 161 90 150 150310UB 46.2 0.86 1527 17 175 270 329 171 209 209 117 182 182 92 169 169 76 134 136310UB 40.4 0.83 1344 15 160 246 302 154 192 192 105 167 167 83 156 156 68 127 128310UB 32.0 0.85 1070 12 113 183 224 136 173 173 93 152 152 73 138 139 61 106 107

Page 63: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–57Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C9: bcf = 1200 mm, fc' = 32 MPa, λ = 0.0 ( i.e. sheeting ribs perpendicular to beam), h D0 s or D Ds = 0.7,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 2122 24 1843 1993 2082 292 351 311 157 201 169 115 147 124 91 116 98800WB168 1.00 2122 24 1539 1687 1773 290 348 309 156 200 168 114 147 123 90 116 97800WB146 1.00 2122 24 1342 1488 1569 287 344 322 154 199 177 113 146 130 89 115 102800WB122 1.00 2122 24 1008 1170 1247 284 341 341 152 198 196 112 145 144 88 114 113700WB173 1.00 2122 24 1464 1606 1694 256 308 278 138 188 152 101 138 111 80 109 88700WB150 1.00 2122 24 1210 1351 1435 254 305 290 136 188 160 100 137 117 79 108 92700WB130 1.00 2122 24 1054 1192 1272 251 301 301 135 187 174 99 137 127 78 108 100700WB115 1.00 2122 24 854 1005 1082 248 298 298 133 186 185 97 136 135 77 108 107610UB125 1.00 2122 24 786 920 998 252 310 323 135 196 193 99 143 141 78 113 111610UB113 1.00 2122 24 697 828 905 236 304 317 126 188 189 93 137 138 73 108 109610UB101 1.00 2122 24 650 779 854 236 305 316 127 189 191 93 138 140 73 109 111530UB 92.4 1.00 2122 24 538 663 737 201 276 276 108 179 182 79 131 133 62 103 105530UB 82.0 1.00 2122 24 463 582 654 187 260 260 101 172 175 74 126 129 58 100 101460UB 82.1 1.00 2122 24 423 543 616 168 237 237 90 163 163 66 127 129 52 100 102460UB 74.6 0.94 1985 22 382 494 564 154 219 219 83 149 152 60 121 123 48 95 97460UB 67.1 0.85 1802 20 338 438 504 143 206 206 77 138 143 56 115 118 44 91 93410UB 59.7 0.76 1619 18 278 369 432 117 175 175 63 140 145 46 105 105 36 87 89410UB 53.7 0.72 1527 17 255 339 399 113 171 171 61 135 140 45 102 102 35 84 87360UB 56.7 0.76 1619 18 236 323 385 106 162 162 57 137 137 42 103 106 33 90 91360UB 50.7 0.73 1436 16 209 286 343 96 150 150 52 128 128 38 96 99 30 82 82360UB 44.7 0.70 1253 14 180 259 310 90 142 142 48 122 122 35 91 94 28 77 77310UB 46.2 0.75 1344 15 173 246 301 76 126 126 41 108 108 30 103 103 24 79 81310UB 40.4 0.77 1253 14 158 225 277 69 117 117 37 101 101 27 96 96 21 76 78310UB 32.0 0.78 979 11 104 164 201 61 107 107 33 93 93 24 83 85 19 62 64

Page 64: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–58 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C10: bcf = 1200 mm, fc' = 32 MPa, λ = 1.0 ( i.e. sheeting ribs parallel to beam), h D0 s or D Ds = 0.3,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 3917 43 1864 2412 2499 591 591 591 591 591 591 591 591 591 591 591 591800WB168 1.00 3917 43 1587 2110 2192 587 587 587 587 587 587 587 587 587 587 587 587800WB146 1.00 3917 43 1405 1903 1977 580 580 580 580 580 580 580 580 580 580 580 580800WB122 1.00 3917 43 1107 1578 1644 574 574 574 574 574 574 574 574 574 574 574 574700WB173 1.00 3917 43 1475 1935 2018 519 519 519 519 519 519 519 519 519 519 519 519700WB150 1.00 3917 43 1244 1692 1769 515 515 515 515 515 515 515 515 515 515 515 515700WB130 1.00 3917 43 1100 1525 1595 507 507 507 507 507 507 507 507 507 507 507 507700WB115 1.00 3917 43 922 1329 1395 502 502 502 502 502 502 502 502 502 502 502 502610UB125 1.00 3917 43 840 1220 1286 757 821 821 757 821 821 670 748 748 587 706 706610UB113 0.91 3549 39 750 1098 1171 707 770 770 707 770 770 626 698 698 548 659 659610UB101 0.86 3365 37 707 1042 1116 707 771 771 707 771 771 627 699 699 549 660 660530UB 92.4 0.86 3089 34 576 862 939 603 666 666 603 666 666 534 596 596 467 563 563530UB 82.0 0.88 2812 31 502 758 835 562 626 626 562 626 626 498 555 555 436 524 524460UB 82.1 0.88 2812 31 447 685 763 505 569 569 505 569 569 447 563 563 392 471 471460UB 74.6 0.88 2537 28 404 621 698 461 525 525 461 525 525 408 519 519 358 433 433460UB 67.1 0.87 2261 25 360 557 631 428 492 492 428 492 492 379 487 487 332 399 399410UB 59.7 0.90 2077 23 291 458 529 351 415 415 351 415 415 311 411 411 272 383 384410UB 53.7 0.87 1894 21 269 426 494 340 403 403 340 403 403 301 399 399 263 362 362360UB 56.7 0.91 1985 22 245 394 466 318 382 382 318 382 382 282 378 378 247 361 361360UB 50.7 0.87 1710 19 217 351 418 288 352 352 288 352 352 255 349 349 223 333 333360UB 44.7 0.90 1619 18 192 320 381 269 333 333 269 333 333 238 330 330 209 315 315310UB 46.2 0.91 1619 18 175 287 355 228 292 292 228 292 292 202 289 289 177 277 277310UB 40.4 0.94 1527 17 160 261 326 206 269 269 206 269 269 182 267 267 159 256 256310UB 32.0 0.92 1161 13 113 199 247 182 245 245 182 245 245 161 243 243 141 233 233

Page 65: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–59Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C11: bcf = 1200 mm, fc' = 32 MPa, λ = 1.0 ( i.e. sheeting ribs parallel to beam), h D0 s or D Ds = 0.5,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 3917 43 1864 2247 2330 591 591 591 448 566 565 354 467 445 292 386 368800WB168 1.00 3917 43 1587 1937 2013 587 587 587 445 561 561 351 466 460 290 384 380800WB146 1.00 3917 43 1405 1732 1801 580 580 580 439 555 555 347 463 462 286 382 382800WB122 0.91 3549 39 1107 1396 1466 574 574 574 435 549 549 343 459 460 283 379 379700WB173 1.00 3917 43 1475 1818 1897 519 519 519 393 504 505 310 440 428 256 363 354700WB150 1.00 3917 43 1244 1559 1631 515 515 515 390 497 498 308 439 438 254 362 361700WB130 1.00 3917 43 1100 1394 1459 507 507 507 385 485 485 303 436 437 250 360 361700WB115 0.91 3549 39 922 1185 1257 502 502 502 380 480 480 300 431 432 248 356 356610UB125 0.91 3549 39 840 1090 1163 567 642 642 387 495 496 305 448 448 252 375 376610UB113 0.81 3181 35 750 976 1053 529 604 604 361 462 463 285 418 418 235 356 356610UB101 0.77 2996 33 707 920 996 530 604 604 362 457 457 285 418 418 236 354 355530UB 92.4 0.78 2812 31 576 768 845 451 524 524 308 449 450 243 356 356 201 330 331530UB 82.0 0.77 2445 27 502 671 746 421 493 493 287 408 409 227 332 332 187 309 309460UB 82.1 0.80 2537 28 447 615 692 378 449 449 258 390 390 204 319 320 168 281 281460UB 74.6 0.78 2261 25 404 558 632 345 416 416 236 361 361 186 296 297 154 256 256460UB 67.1 0.80 2077 23 360 498 568 320 391 391 219 340 340 173 271 272 142 238 238410UB 59.7 0.82 1894 21 291 414 481 263 332 332 180 290 290 142 268 269 117 206 207410UB 53.7 0.79 1710 19 269 383 447 254 323 323 174 283 283 137 253 253 113 195 195360UB 56.7 0.82 1802 20 245 360 426 238 307 307 163 269 269 128 252 252 106 218 218360UB 50.7 0.83 1619 18 217 319 381 216 284 284 147 250 250 116 234 234 96 198 198360UB 44.7 0.80 1436 16 192 290 345 202 269 269 138 238 238 109 223 223 90 184 184310UB 46.2 0.86 1527 17 175 270 329 171 238 238 117 211 211 92 199 199 76 191 191310UB 40.4 0.83 1344 15 160 246 302 154 221 221 105 196 196 83 185 185 68 178 178310UB 32.0 0.85 1070 12 113 183 224 136 203 203 93 181 181 73 171 171 61 153 154

Page 66: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–60 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C12: bcf = 1200 mm, fc' = 32 MPa, λ = 1.0 ( i.e. sheeting ribs parallel to beam), h D0 s or D Ds = 0.7,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 3917 43 1843 2071 2149 292 415 415 157 283 283 115 217 208 91 172 164800WB168 1.00 3917 43 1539 1762 1832 290 412 412 156 281 281 114 217 217 90 172 171800WB146 1.00 3917 43 1342 1559 1623 287 408 408 154 278 278 113 217 218 89 171 172800WB122 0.79 3089 34 1008 1208 1282 284 404 404 152 275 275 112 211 212 88 166 167700WB173 1.00 3917 43 1464 1683 1757 256 372 372 138 288 289 101 218 214 80 172 169700WB150 1.00 3917 43 1210 1425 1491 254 369 369 136 284 285 100 218 219 79 172 173700WB130 0.91 3549 39 1054 1249 1320 251 365 365 135 274 275 99 217 218 78 171 172700WB115 0.79 3089 34 854 1039 1114 248 361 361 133 252 254 97 210 211 77 166 166610UB125 0.79 3089 34 786 958 1035 252 367 367 135 282 283 99 227 227 78 180 181610UB113 0.69 2720 30 697 853 930 236 347 347 126 263 265 93 212 212 73 171 171610UB101 0.67 2628 29 650 797 872 236 347 347 127 254 255 93 212 212 73 168 169530UB 92.4 0.68 2445 27 538 674 749 201 305 305 108 259 259 79 180 180 62 166 167530UB 82.0 0.65 2077 23 463 582 654 187 289 289 101 238 240 74 168 168 58 154 155460UB 82.1 0.71 2261 25 423 545 618 168 266 266 90 227 227 66 188 189 52 144 144460UB 74.6 0.69 1985 22 382 494 564 154 248 248 83 213 213 60 175 176 48 132 133460UB 67.1 0.69 1802 20 338 438 504 143 235 235 77 202 202 56 160 160 44 122 122410UB 59.7 0.70 1619 18 278 369 432 117 204 204 63 177 177 46 164 165 36 124 124410UB 53.7 0.70 1527 17 255 339 399 113 200 200 61 174 174 45 153 154 35 116 116360UB 56.7 0.74 1619 18 236 323 385 106 191 191 57 167 167 42 159 159 33 134 134360UB 50.7 0.73 1436 16 209 286 343 96 179 179 52 157 157 38 150 150 30 122 122360UB 44.7 0.70 1253 14 180 259 310 90 172 172 48 151 151 35 144 144 28 113 113310UB 46.2 0.75 1344 15 173 246 301 76 155 155 41 138 138 30 132 132 24 129 129310UB 40.4 0.77 1253 14 158 225 277 69 146 146 37 130 130 27 125 125 21 122 122310UB 32.0 0.78 979 11 104 164 201 61 137 137 33 123 123 24 118 118 19 97 97

Page 67: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–61Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C13: bcf = 1600 mm, fc' = 25 MPa, λ = 0.0 ( i.e. sheeting ribs perpendicular to beam), h D0 s or D Ds = 0.3,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 2210 25 1864 2242 2432 591 591 591 591 591 591 591 591 591 591 591 591800WB168 1.00 2210 25 1587 1962 2131 587 587 587 587 587 587 587 587 587 587 587 587800WB146 1.00 2210 25 1405 1776 1922 580 580 580 580 580 580 580 580 580 580 580 580800WB122 1.00 2210 25 1107 1479 1597 574 574 574 574 574 574 574 574 574 574 574 574700WB173 1.00 2210 25 1475 1808 1954 519 519 519 519 519 519 519 519 519 519 519 519700WB150 1.00 2210 25 1244 1575 1712 515 515 515 515 515 515 515 515 515 515 515 515700WB130 1.00 2210 25 1100 1426 1544 507 507 507 507 507 507 507 507 507 507 507 507700WB115 1.00 2210 25 922 1249 1350 502 502 502 502 502 502 502 502 502 502 502 502610UB125 1.00 2210 25 840 1137 1239 757 787 757 757 757 757 670 730 705 587 639 617610UB113 1.00 2210 25 750 1041 1130 707 737 707 707 707 707 626 686 672 548 600 588610UB101 1.00 2210 25 707 992 1078 707 738 716 707 707 707 627 687 677 549 602 593530UB 92.4 1.00 2210 25 576 826 908 603 633 633 603 603 603 534 596 596 467 527 523530UB 82.0 1.00 2210 25 502 738 817 562 592 592 562 562 562 498 555 555 436 496 496460UB 82.1 1.00 2210 25 447 662 743 505 535 535 505 508 505 447 499 499 392 461 460460UB 74.6 1.00 2210 25 404 610 688 461 492 492 461 490 492 408 456 456 358 427 429460UB 67.1 1.00 2210 25 360 556 632 428 458 458 428 458 458 379 423 423 332 399 399410UB 59.7 0.94 2077 23 291 459 531 351 382 382 351 382 382 311 347 347 272 328 328410UB 53.7 0.87 1894 21 269 426 496 340 370 370 340 370 370 301 336 336 263 317 317360UB 56.7 0.91 1985 22 245 395 468 318 349 349 318 349 349 282 338 342 247 297 297360UB 50.7 0.87 1710 19 217 351 420 288 319 319 288 319 319 255 312 315 223 269 269360UB 44.7 0.90 1619 18 192 320 382 269 300 300 269 300 300 238 295 297 209 251 251310UB 46.2 0.91 1619 18 175 287 357 228 259 259 228 259 259 202 256 256 177 243 243310UB 40.4 0.94 1527 17 160 262 327 206 236 236 206 236 236 182 234 234 159 222 222310UB 32.0 0.88 1111 13 113 199 247 182 212 212 182 212 212 161 210 210 141 196 198

Page 68: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–62 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C14: bcf = 1600 mm, fc' = 25 MPa, λ = 0.0 ( i.e. sheeting ribs perpendicular to beam), h D0 s or D Ds = 0.5,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 2210 25 1864 2172 2268 591 591 591 448 497 461 354 392 364 292 323 300800WB168 1.00 2210 25 1587 1864 1957 587 587 587 445 494 458 351 389 361 290 321 298800WB146 1.00 2210 25 1405 1663 1751 580 580 580 439 489 453 347 386 357 286 318 295800WB122 1.00 2210 25 1107 1343 1426 574 574 574 435 485 475 343 382 375 283 316 309700WB173 1.00 2210 25 1475 1744 1838 519 519 519 393 449 408 310 354 322 256 292 266700WB150 1.00 2210 25 1244 1488 1578 515 515 515 390 446 405 308 351 319 254 290 263700WB130 1.00 2210 25 1100 1326 1413 507 507 507 385 441 417 303 348 329 250 287 271700WB115 1.00 2210 25 922 1138 1220 502 502 502 380 437 429 300 345 339 248 285 280610UB125 1.00 2210 25 840 1038 1123 567 578 578 387 452 440 305 356 347 252 294 287610UB113 1.00 2210 25 750 939 1021 529 540 551 361 427 423 285 336 334 235 278 276610UB101 1.00 2210 25 707 890 970 530 540 549 362 428 427 285 337 337 236 279 278530UB 92.4 1.00 2210 25 576 747 827 451 491 491 308 383 385 243 302 304 201 250 251530UB 82.0 1.00 2210 25 502 664 741 421 460 460 287 363 363 227 287 290 187 237 239460UB 82.1 1.00 2210 25 447 605 683 378 416 416 258 326 326 204 274 276 168 226 228460UB 74.6 1.00 2210 25 404 558 633 345 383 383 236 298 298 186 257 259 154 212 214460UB 67.1 0.94 2077 23 360 498 571 320 357 357 219 276 276 173 243 245 142 201 202410UB 59.7 0.86 1894 21 291 414 483 263 299 299 180 247 252 142 208 208 117 180 182410UB 53.7 0.79 1710 19 269 383 448 254 290 290 174 237 242 137 201 201 113 175 177360UB 56.7 0.82 1802 20 245 361 428 238 274 274 163 236 236 128 188 188 106 177 177360UB 50.7 0.83 1619 18 217 320 382 216 251 251 147 216 216 116 170 172 96 160 160360UB 44.7 0.80 1436 16 192 290 346 202 236 236 138 204 204 109 160 162 90 150 150310UB 46.2 0.86 1527 17 175 270 330 171 205 205 117 178 178 92 165 165 76 135 137310UB 40.4 0.83 1344 15 160 247 303 154 188 188 105 163 163 83 152 152 68 128 129310UB 32.0 0.81 1024 12 113 183 225 136 169 169 93 148 148 73 138 138 61 107 107

Page 69: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–63Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C15: bcf = 1600 mm, fc' = 25 MPa, λ = 0.0 ( i.e. sheeting ribs perpendicular to beam), h D0 s or D Ds = 0.7,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 2210 25 1843 1999 2091 292 351 311 157 204 169 115 149 124 91 118 98800WB168 1.00 2210 25 1539 1692 1781 290 348 309 156 203 168 114 149 123 90 117 97800WB146 1.00 2210 25 1342 1493 1577 287 344 330 154 202 182 113 148 134 89 117 106800WB122 1.00 2210 25 1008 1174 1254 284 341 341 152 201 199 112 147 146 88 116 115700WB173 1.00 2210 25 1464 1611 1702 256 308 278 138 191 152 101 140 111 80 111 88700WB150 1.00 2210 25 1210 1356 1443 254 305 299 136 191 166 100 140 122 79 110 96700WB130 1.00 2210 25 1054 1197 1280 251 301 301 135 189 178 99 139 131 78 110 103700WB115 1.00 2210 25 854 1010 1089 248 298 305 133 189 188 97 138 138 77 109 109610UB125 1.00 2210 25 786 924 1006 252 317 330 135 198 197 99 145 144 78 115 114610UB113 1.00 2210 25 697 833 912 236 311 314 126 190 192 93 139 141 73 110 111610UB101 1.00 2210 25 650 784 861 236 311 314 127 191 194 93 140 142 73 111 112530UB 92.4 1.00 2210 25 538 667 744 201 272 272 108 182 185 79 133 135 62 105 107530UB 82.0 0.94 2077 23 463 583 656 187 256 256 101 174 178 74 128 130 58 101 103460UB 82.1 1.00 2210 25 423 546 621 168 233 233 90 163 163 66 129 131 52 102 104460UB 74.6 0.90 1985 22 382 494 566 154 215 215 83 149 153 60 123 125 48 97 99460UB 67.1 0.82 1802 20 338 439 506 143 202 202 77 140 145 56 116 119 44 92 94410UB 59.7 0.73 1619 18 278 369 433 117 171 171 63 142 144 46 105 105 36 88 90410UB 53.7 0.70 1527 17 255 340 400 113 167 167 61 136 140 45 102 102 35 85 87360UB 56.7 0.74 1619 18 236 324 386 106 158 158 57 133 133 42 104 107 33 91 91360UB 50.7 0.73 1436 16 209 286 344 96 146 146 52 124 124 38 96 100 30 82 82360UB 44.7 0.70 1253 14 180 259 310 90 138 138 48 118 118 35 91 95 28 77 77310UB 46.2 0.75 1344 15 173 246 302 76 122 122 41 104 104 30 99 99 24 80 82310UB 40.4 0.77 1253 14 158 225 278 69 113 113 37 97 97 27 92 92 21 76 78310UB 32.0 0.74 937 11 104 164 202 61 103 103 33 89 89 24 83 85 19 63 64

Page 70: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–64 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C16: bcf = 1600 mm, fc' = 25 MPa, λ = 1.0 ( i.e. sheeting ribs parallel to beam), h D0 s or D Ds = 0.3,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 4080 45 1864 2420 2509 591 591 591 591 591 591 591 591 591 591 591 591800WB168 1.00 4080 45 1587 2119 2202 587 587 587 587 587 587 587 587 587 587 587 587800WB146 1.00 4080 45 1405 1911 1987 580 580 580 580 580 580 580 580 580 580 580 580800WB122 1.00 4080 45 1107 1584 1653 574 574 574 574 574 574 574 574 574 574 574 574700WB173 1.00 4080 45 1475 1943 2027 519 519 519 519 519 519 519 519 519 519 519 519700WB150 1.00 4080 45 1244 1700 1779 515 515 515 515 515 515 515 515 515 515 515 515700WB130 1.00 4080 45 1100 1533 1604 507 507 507 507 507 507 507 507 507 507 507 507700WB115 0.96 3918 43 922 1331 1403 502 502 502 502 502 502 502 502 502 502 502 502610UB125 0.96 3918 43 840 1222 1295 757 813 813 757 813 813 670 748 748 587 706 706610UB113 0.87 3549 39 750 1100 1178 707 763 763 707 763 763 626 698 698 548 659 659610UB101 0.85 3365 37 707 1043 1122 707 764 764 707 764 764 627 699 699 549 660 660530UB 92.4 0.86 3089 34 576 863 944 603 659 659 603 659 659 534 599 599 467 563 563530UB 82.0 0.88 2812 31 502 759 839 562 618 618 562 618 618 498 555 555 436 524 524460UB 82.1 0.88 2812 31 447 686 767 505 561 561 505 561 561 447 555 555 392 471 471460UB 74.6 0.88 2537 28 404 622 701 461 517 517 461 517 517 408 512 512 358 435 435460UB 67.1 0.87 2261 25 360 558 634 428 484 484 428 484 484 379 479 479 332 399 399410UB 59.7 0.90 2077 23 291 459 531 351 407 407 351 407 407 311 403 403 272 384 384410UB 53.7 0.87 1894 21 269 426 496 340 396 396 340 396 396 301 392 392 263 363 364360UB 56.7 0.91 1985 22 245 395 468 318 375 375 318 375 375 282 371 371 247 354 354360UB 50.7 0.87 1710 19 217 351 420 288 344 344 288 344 344 255 341 341 223 325 325360UB 44.7 0.90 1619 18 192 320 382 269 326 326 269 326 326 238 323 323 209 308 308310UB 46.2 0.91 1619 18 175 287 357 228 284 284 228 284 284 202 282 282 177 269 269310UB 40.4 0.94 1527 17 160 262 327 206 262 262 206 262 262 182 260 260 159 248 248310UB 32.0 0.88 1111 13 113 199 247 182 238 238 182 238 238 161 236 236 141 226 226

Page 71: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–65Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C17: bcf = 1600 mm, fc' = 25 MPa, λ = 1.0 ( i.e. sheeting ribs parallel to beam), h D0 s or D Ds = 0.5,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 4080 45 1864 2255 2340 591 591 591 448 566 566 354 472 455 292 389 375800WB168 1.00 4080 45 1587 1945 2023 587 587 587 445 561 561 351 470 467 290 388 385800WB146 1.00 4080 45 1405 1740 1810 580 580 580 439 555 555 347 467 468 286 386 386800WB122 0.87 3549 39 1107 1397 1473 574 574 574 435 549 549 343 462 463 283 382 382700WB173 1.00 4080 45 1475 1826 1907 519 519 519 393 516 518 310 445 437 256 368 361700WB150 1.00 4080 45 1244 1567 1640 515 515 515 390 506 507 308 444 444 254 367 367700WB130 0.98 4010 44 1100 1398 1468 507 507 507 385 489 489 303 442 442 250 365 365700WB115 0.87 3549 39 922 1186 1263 502 502 502 380 480 480 300 435 435 248 359 359610UB125 0.87 3549 39 840 1091 1170 567 635 635 387 500 500 305 448 448 252 379 379610UB113 0.78 3181 35 750 978 1058 529 596 596 361 465 466 285 418 418 235 359 359610UB101 0.76 2996 33 707 921 1001 530 597 597 362 457 457 285 418 418 236 357 357530UB 92.4 0.78 2812 31 576 769 849 451 517 517 308 445 445 243 356 356 201 333 333530UB 82.0 0.77 2445 27 502 672 749 421 486 486 287 410 411 227 332 332 187 311 311460UB 82.1 0.80 2537 28 447 616 695 378 442 442 258 382 382 204 321 322 168 281 281460UB 74.6 0.78 2261 25 404 559 635 345 409 409 236 354 354 186 298 298 154 256 256460UB 67.1 0.80 2077 23 360 498 571 320 383 383 219 333 333 173 272 273 142 238 238410UB 59.7 0.82 1894 21 291 414 483 263 325 325 180 283 283 142 264 264 117 207 208410UB 53.7 0.79 1710 19 269 383 448 254 316 316 174 276 276 137 254 254 113 195 196360UB 56.7 0.82 1802 20 245 361 428 238 300 300 163 262 262 128 245 245 106 219 219360UB 50.7 0.83 1619 18 217 320 382 216 276 276 147 242 242 116 227 227 96 199 199360UB 44.7 0.80 1436 16 192 290 346 202 262 262 138 230 230 109 216 216 90 184 185310UB 46.2 0.86 1527 17 175 270 330 171 231 231 117 204 204 92 191 191 76 183 183310UB 40.4 0.83 1344 15 160 247 303 154 213 213 105 189 189 83 178 178 68 171 171310UB 32.0 0.81 1024 12 113 183 225 136 195 195 93 174 174 73 164 164 61 154 154

Page 72: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–66 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C18: bcf = 1600 mm, fc' = 25 MPa, λ = 1.0 ( i.e. sheeting ribs parallel to beam), h D0 s or D Ds = 0.7,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 4080 45 1843 2079 2159 292 407 407 157 283 283 115 222 215 91 175 170800WB168 1.00 4080 45 1539 1770 1841 290 405 405 156 281 281 114 222 222 90 175 175800WB146 0.98 4010 44 1342 1562 1631 287 401 401 154 278 278 113 221 222 89 175 175800WB122 0.76 3089 34 1008 1209 1287 284 397 397 152 275 275 112 213 214 88 168 169700WB173 1.00 4080 45 1464 1691 1767 256 364 364 138 297 298 101 223 221 80 176 174700WB150 0.98 4010 44 1210 1430 1500 254 362 362 136 290 291 100 223 224 79 176 176700WB130 0.87 3549 39 1054 1251 1327 251 357 357 135 278 280 99 220 221 78 174 174700WB115 0.76 3089 34 854 1041 1119 248 354 354 133 255 256 97 213 213 77 168 168610UB125 0.76 3089 34 786 959 1040 252 360 360 135 286 287 99 227 227 78 182 183610UB113 0.67 2720 30 697 854 934 236 339 339 126 266 267 93 212 212 73 173 173610UB101 0.66 2628 29 650 798 876 236 340 340 127 256 257 93 212 212 73 170 171530UB 92.4 0.68 2445 27 538 675 752 201 298 298 108 251 251 79 181 182 62 168 168530UB 82.0 0.65 2077 23 463 583 656 187 281 281 101 238 238 74 168 168 58 155 156460UB 82.1 0.71 2261 25 423 546 621 168 259 259 90 220 220 66 189 190 52 144 144460UB 74.6 0.69 1985 22 382 494 566 154 241 241 83 205 205 60 176 177 48 133 134460UB 67.1 0.69 1802 20 338 439 506 143 228 228 77 195 195 56 161 161 44 122 122410UB 59.7 0.70 1619 18 278 369 433 117 197 197 63 170 170 46 161 161 36 124 125410UB 53.7 0.70 1527 17 255 340 400 113 192 192 61 166 166 45 154 155 35 117 117360UB 56.7 0.74 1619 18 236 324 386 106 184 184 57 159 159 42 152 152 33 135 135360UB 50.7 0.73 1436 16 209 286 344 96 172 172 52 150 150 38 143 143 30 122 123360UB 44.7 0.70 1253 14 180 259 310 90 164 164 48 143 143 35 137 137 28 113 114310UB 46.2 0.75 1344 15 173 246 302 76 148 148 41 130 130 30 125 125 24 121 121310UB 40.4 0.77 1253 14 158 225 278 69 139 139 37 123 123 27 118 118 21 115 115310UB 32.0 0.74 937 11 104 164 202 61 129 129 33 115 115 24 111 111 19 97 98

Page 73: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–67Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C19: bcf = 1600 mm, fc' = 32 MPa, λ = 0.0 ( i.e. sheeting ribs perpendicular to beam), h D0 s or D Ds = 0.3,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 2829 32 1864 2319 2490 591 591 591 591 591 591 591 591 591 591 591 591800WB168 1.00 2829 32 1587 2038 2190 587 587 587 587 587 587 587 587 587 587 587 587800WB146 1.00 2829 32 1405 1851 1979 580 580 580 580 580 580 580 580 580 580 580 580800WB122 1.00 2829 32 1107 1540 1651 574 574 574 574 574 574 574 574 574 574 574 574700WB173 1.00 2829 32 1475 1897 2011 519 519 519 519 519 519 519 519 519 519 519 519700WB150 1.00 2829 32 1244 1654 1770 515 515 515 515 515 515 515 515 515 515 515 515700WB130 1.00 2829 32 1100 1490 1600 507 507 507 507 507 507 507 507 507 507 507 507700WB115 1.00 2829 32 922 1299 1404 502 502 502 502 502 502 502 502 502 502 502 502610UB125 1.00 2829 32 840 1185 1294 757 791 791 757 757 757 670 743 738 587 651 646610UB113 1.00 2829 32 750 1078 1183 707 741 741 707 707 707 626 698 698 548 612 612610UB101 1.00 2829 32 707 1028 1130 707 742 742 707 707 707 627 699 699 549 614 614530UB 92.4 1.00 2829 32 576 859 959 603 637 637 603 603 603 534 596 596 467 542 543530UB 82.0 0.99 2812 31 502 765 861 562 596 596 562 562 562 498 555 555 436 511 512460UB 82.1 0.99 2812 31 447 691 789 505 539 539 505 539 539 447 499 499 392 471 471460UB 74.6 0.90 2537 28 404 627 720 461 496 496 461 496 496 408 456 456 358 430 430460UB 67.1 0.87 2261 25 360 561 649 428 462 462 428 462 462 379 423 423 332 399 399410UB 59.7 0.90 2077 23 291 462 543 351 386 386 351 386 386 311 347 347 272 328 328410UB 53.7 0.87 1894 21 269 429 506 340 374 374 340 374 374 301 336 336 263 317 317360UB 56.7 0.91 1985 22 245 397 479 318 353 353 318 353 353 282 349 349 247 297 297360UB 50.7 0.87 1710 19 217 353 428 288 323 323 288 323 323 255 319 319 223 269 269360UB 44.7 0.90 1619 18 192 322 389 269 304 304 269 304 304 238 301 301 209 251 251310UB 46.2 0.91 1619 18 175 289 364 228 263 263 228 263 263 202 260 260 177 247 247310UB 40.4 0.94 1527 17 160 263 334 206 240 240 206 240 240 182 238 238 159 226 226310UB 32.0 0.92 1161 13 113 200 251 182 216 216 182 216 216 161 214 214 141 200 203

Page 74: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–68 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C20: bcf = 1600 mm, fc' = 32 MPa, λ = 0.0 ( i.e. sheeting ribs perpendicular to beam), h D0 s or D Ds = 0.5,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 2829 32 1864 2209 2327 591 591 591 448 508 461 354 401 364 292 331 300800WB168 1.00 2829 32 1587 1900 2014 587 587 587 445 505 481 351 398 379 290 329 313800WB146 1.00 2829 32 1405 1697 1806 580 580 580 439 501 489 347 395 386 286 326 318800WB122 1.00 2829 32 1107 1376 1479 574 574 574 435 497 498 343 392 393 283 324 324700WB173 1.00 2829 32 1475 1780 1897 519 519 519 393 462 424 310 364 334 256 301 276700WB150 1.00 2829 32 1244 1523 1635 515 515 515 390 460 445 308 363 351 254 299 290700WB130 1.00 2829 32 1100 1360 1467 507 507 507 385 456 450 303 359 355 250 297 293700WB115 1.00 2829 32 922 1171 1272 502 502 502 380 452 454 300 357 358 248 295 295610UB125 1.00 2829 32 840 1072 1176 567 613 613 387 469 469 305 370 370 252 306 306610UB113 1.00 2829 32 750 972 1073 529 574 574 361 445 447 285 351 352 235 290 291610UB101 1.00 2829 32 707 922 1021 530 575 575 362 446 448 285 352 353 236 291 292530UB 92.4 0.99 2812 31 576 775 871 451 495 495 308 389 389 243 318 320 201 263 264530UB 82.0 0.86 2445 27 502 676 765 421 464 464 287 363 363 227 301 302 187 248 249460UB 82.1 0.90 2537 28 447 621 713 378 420 420 258 326 326 204 290 291 168 239 240460UB 74.6 0.80 2261 25 404 562 649 345 387 387 236 298 298 186 270 271 154 223 224460UB 67.1 0.80 2077 23 360 501 582 320 361 361 219 276 276 173 253 253 142 209 210410UB 59.7 0.82 1894 21 291 416 492 263 303 303 180 258 261 142 208 208 117 188 189410UB 53.7 0.79 1710 19 269 385 457 254 294 294 174 246 250 137 201 201 113 182 183360UB 56.7 0.82 1802 20 245 363 436 238 278 278 163 240 240 128 190 192 106 177 177360UB 50.7 0.83 1619 18 217 322 389 216 255 255 147 221 221 116 175 177 96 160 160360UB 44.7 0.80 1436 16 192 292 352 202 240 240 138 208 208 109 164 167 90 150 150310UB 46.2 0.86 1527 17 175 271 336 171 209 209 117 182 182 92 169 169 76 140 142310UB 40.4 0.83 1344 15 160 248 308 154 192 192 105 167 167 83 156 156 68 132 133310UB 32.0 0.85 1070 12 113 184 227 136 173 173 93 152 152 73 141 142 61 109 110

Page 75: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–69Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C21: bcf = 1600 mm, fc' = 32 MPa, λ = 0.0 ( i.e. sheeting ribs perpendicular to beam), h D0 s or D Ds = 0.7,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 2829 32 1843 2034 2149 292 351 330 157 215 182 115 157 133 91 124 105800WB168 1.00 2829 32 1539 1727 1837 290 348 348 156 214 203 114 157 148 90 124 117800WB146 1.00 2829 32 1342 1526 1631 287 344 344 154 213 210 113 156 154 89 123 122800WB122 1.00 2829 32 1008 1207 1305 284 341 341 152 213 216 112 156 158 88 123 125700WB173 1.00 2829 32 1464 1646 1759 256 332 308 138 205 181 101 150 133 80 118 105700WB150 1.00 2829 32 1210 1390 1498 254 334 339 136 204 199 100 150 146 79 118 115700WB130 1.00 2829 32 1054 1230 1332 251 336 336 135 204 204 99 149 149 78 118 118700WB115 1.00 2829 32 854 1042 1139 248 330 332 133 203 206 97 149 151 77 118 119610UB125 1.00 2829 32 786 957 1057 252 338 338 135 215 218 99 158 160 78 125 126610UB113 0.96 2720 30 697 859 955 236 318 318 126 207 209 93 151 153 73 120 121610UB101 0.93 2628 29 650 802 895 236 318 318 127 207 209 93 151 153 73 119 121530UB 92.4 0.86 2445 27 538 679 768 201 276 276 108 195 195 79 144 146 62 114 115530UB 82.0 0.73 2077 23 463 586 668 187 260 260 101 182 182 74 136 138 58 107 109460UB 82.1 0.80 2261 25 423 549 635 168 237 237 90 170 173 66 140 142 52 110 112460UB 74.6 0.70 1985 22 382 497 577 154 219 219 83 159 163 60 131 134 48 104 105460UB 67.1 0.69 1802 20 338 441 515 143 206 206 77 148 152 56 123 126 44 97 99410UB 59.7 0.70 1619 18 278 371 440 117 175 175 63 148 148 46 105 105 36 93 95410UB 53.7 0.70 1527 17 255 341 406 113 171 171 61 142 144 45 102 102 35 89 92360UB 56.7 0.74 1619 18 236 325 393 106 162 162 57 137 137 42 109 112 33 91 91360UB 50.7 0.73 1436 16 209 288 349 96 150 150 52 128 128 38 101 104 30 82 82360UB 44.7 0.70 1253 14 180 260 315 90 142 142 48 122 122 35 95 98 28 77 77310UB 46.2 0.75 1344 15 173 248 307 76 126 126 41 108 108 30 103 103 24 84 86310UB 40.4 0.77 1253 14 158 226 282 69 117 117 37 101 101 27 96 96 21 79 81310UB 32.0 0.78 979 11 104 165 204 61 107 107 33 93 93 24 85 88 19 64 66

Page 76: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–70 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C22: bcf = 1600 mm, fc' = 32 MPa, λ = 1.0 ( i.e. sheeting ribs parallel to beam), h D0 s or D Ds = 0.3,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 5222 58 1864 2475 2578 591 591 591 591 591 591 591 591 591 591 591 591800WB168 1.00 5222 58 1587 2175 2269 587 587 587 587 587 587 587 587 587 587 587 587800WB146 0.94 4933 54 1405 1955 2049 580 580 580 580 580 580 580 580 580 580 580 580800WB122 0.86 4102 45 1107 1596 1699 574 574 574 574 574 574 574 574 574 574 574 574700WB173 1.00 5222 58 1475 1996 2093 519 519 519 519 519 519 519 519 519 519 519 519700WB150 0.94 4933 54 1244 1744 1842 515 515 515 515 515 515 515 515 515 515 515 515700WB130 0.89 4471 49 1100 1557 1659 507 507 507 507 507 507 507 507 507 507 507 507700WB115 0.88 3918 43 922 1341 1444 502 502 502 502 502 502 502 502 502 502 502 502610UB125 0.86 3918 43 840 1233 1339 757 821 821 757 821 821 670 748 748 587 706 706610UB113 0.86 3549 39 750 1109 1214 707 770 770 707 770 770 626 698 698 548 659 659610UB101 0.85 3365 37 707 1051 1154 707 771 771 707 771 771 627 699 699 549 660 660530UB 92.4 0.86 3089 34 576 870 971 603 666 666 603 666 666 534 618 618 467 563 563530UB 82.0 0.88 2812 31 502 765 861 562 626 626 562 626 626 498 559 559 436 524 524460UB 82.1 0.88 2812 31 447 691 789 505 569 569 505 569 569 447 563 563 392 485 485460UB 74.6 0.88 2537 28 404 627 720 461 525 525 461 525 525 408 519 519 358 447 447460UB 67.1 0.87 2261 25 360 561 649 428 492 492 428 492 492 379 487 487 332 408 408410UB 59.7 0.90 2077 23 291 462 543 351 415 415 351 415 415 311 411 411 272 391 391410UB 53.7 0.87 1894 21 269 429 506 340 403 403 340 403 403 301 399 399 263 371 371360UB 56.7 0.91 1985 22 245 397 479 318 382 382 318 382 382 282 378 378 247 361 361360UB 50.7 0.87 1710 19 217 353 428 288 352 352 288 352 352 255 349 349 223 333 333360UB 44.7 0.90 1619 18 192 322 389 269 333 333 269 333 333 238 330 330 209 315 315310UB 46.2 0.91 1619 18 175 289 364 228 292 292 228 292 292 202 289 289 177 277 277310UB 40.4 0.94 1527 17 160 263 334 206 269 269 206 269 269 182 267 267 159 256 256310UB 32.0 0.92 1161 13 113 200 251 182 245 245 182 245 245 161 243 243 141 233 233

Page 77: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–71Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C23: bcf = 1600 mm, fc' = 32 MPa, λ = 1.0 ( i.e. sheeting ribs parallel to beam), h D0 s or D Ds = 0.5,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 5222 58 1864 2312 2409 591 591 591 448 574 574 354 504 503 292 416 416800WB168 0.96 5025 55 1587 1991 2086 587 587 587 445 561 561 351 502 502 290 415 415800WB146 0.86 4471 49 1405 1765 1865 580 580 580 439 555 555 347 496 496 286 409 410800WB122 0.75 3549 39 1107 1406 1509 574 574 574 435 549 549 343 481 481 283 397 397700WB173 1.00 5222 58 1475 1882 1973 519 519 519 393 519 519 310 455 455 256 398 398700WB150 0.86 4471 49 1244 1593 1696 515 515 515 390 515 515 308 451 451 254 393 394700WB130 0.80 4010 44 1100 1409 1513 507 507 507 385 507 507 303 445 445 250 386 386700WB115 0.80 3549 39 922 1195 1296 502 502 502 380 480 480 300 440 440 248 375 375610UB125 0.78 3549 39 840 1100 1205 567 642 642 387 525 525 305 448 448 252 398 398610UB113 0.77 3181 35 750 985 1086 529 604 604 361 485 485 285 418 418 235 374 374610UB101 0.76 2996 33 707 927 1026 530 604 604 362 468 469 285 418 418 236 371 371530UB 92.4 0.78 2812 31 576 775 871 451 524 524 308 453 453 243 356 356 201 335 335530UB 82.0 0.77 2445 27 502 676 765 421 493 493 287 423 423 227 332 332 187 313 313460UB 82.1 0.80 2537 28 447 621 713 378 449 449 258 390 390 204 333 333 168 281 281460UB 74.6 0.78 2261 25 404 562 649 345 416 416 236 361 361 186 307 308 154 256 256460UB 67.1 0.80 2077 23 360 501 582 320 391 391 219 340 340 173 280 280 142 238 238410UB 59.7 0.82 1894 21 291 416 492 263 332 332 180 290 290 142 271 271 117 213 213410UB 53.7 0.79 1710 19 269 385 457 254 323 323 174 283 283 137 260 260 113 200 200360UB 56.7 0.82 1802 20 245 363 436 238 307 307 163 269 269 128 252 252 106 225 225360UB 50.7 0.83 1619 18 217 322 389 216 284 284 147 250 250 116 234 234 96 203 203360UB 44.7 0.80 1436 16 192 292 352 202 269 269 138 238 238 109 223 223 90 188 188310UB 46.2 0.86 1527 17 175 271 336 171 238 238 117 211 211 92 199 199 76 191 191310UB 40.4 0.83 1344 15 160 248 308 154 221 221 105 196 196 83 185 185 68 178 178310UB 32.0 0.85 1070 12 113 184 227 136 203 203 93 181 181 73 171 171 61 156 156

Page 78: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–72 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C24: b c f

= 1600 mm, fc' = 32 MPa, λ = 1.0 ( i.e. sheeting ribs parallel to beam), h D0 s or D Ds = 0.7,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 5222 58 1843 2135 2224 292 415 415 157 328 329 115 251 251 91 198 198800WB168 0.86 4471 49 1539 1796 1897 290 412 412 156 311 312 114 247 248 90 195 196800WB146 0.77 4010 44 1342 1573 1676 287 408 408 154 294 295 113 242 242 89 191 191800WB122 0.65 3089 34 1008 1216 1314 284 404 404 152 275 275 112 226 226 88 178 179700WB173 0.93 4840 53 1464 1731 1828 256 372 372 138 312 312 101 235 235 80 201 201700WB150 0.77 4010 44 1210 1442 1546 254 369 369 136 310 310 100 228 228 79 195 195700WB130 0.70 3549 39 1054 1260 1363 251 365 365 135 302 303 99 225 225 78 189 189700WB115 0.70 3089 34 854 1047 1144 248 361 361 133 270 271 97 223 223 77 178 179610UB125 0.68 3089 34 786 966 1066 252 367 367 135 304 305 99 227 227 78 195 195610UB113 0.66 2720 30 697 859 955 236 347 347 126 280 281 93 212 212 73 182 183610UB101 0.66 2628 29 650 802 895 236 347 347 127 268 269 93 212 212 73 179 179530UB 92.4 0.68 2445 27 538 679 768 201 305 305 108 259 259 79 189 190 62 172 172530UB 82.0 0.65 2077 23 463 586 668 187 289 289 101 245 245 74 169 170 58 160 160460UB 82.1 0.71 2261 25 423 549 635 168 266 266 90 227 227 66 198 198 52 150 150460UB 74.6 0.69 1985 22 382 497 577 154 248 248 83 213 213 60 183 184 48 138 139460UB 67.1 0.69 1802 20 338 441 515 143 235 235 77 202 202 56 166 167 44 126 126410UB 59.7 0.70 1619 18 278 371 440 117 204 204 63 177 177 46 169 169 36 128 129410UB 53.7 0.70 1527 17 255 341 406 113 200 200 61 174 174 45 159 159 35 120 120360UB 56.7 0.74 1619 18 236 325 393 106 191 191 57 167 167 42 159 159 33 139 139360UB 50.7 0.73 1436 16 209 288 349 96 179 179 52 157 157 38 150 150 30 126 126360UB 44.7 0.70 1253 14 180 260 315 90 172 172 48 151 151 35 144 144 28 116 116310UB 46.2 0.75 1344 15 173 248 307 76 155 155 41 138 138 30 132 132 24 129 129310UB 40.4 0.77 1253 14 158 226 282 69 146 146 37 130 130 27 125 125 21 122 122310UB 32.0 0.78 979 11 104 165 204 61 137 137 33 123 123 24 118 118 19 99 99

Page 79: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–73Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C25: bcf = 2100 mm, fc' = 25 MPa, λ = 0.0 ( i.e. sheeting ribs perpendicular to beam), h D0 s or D Ds = 0.3,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 2901 32 1864 2327 2496 591 591 591 591 591 591 591 591 591 591 591 591800WB168 1.00 2901 32 1587 2046 2197 587 587 587 587 587 587 587 587 587 587 587 587800WB146 1.00 2901 32 1405 1859 1986 580 580 580 580 580 580 580 580 580 580 580 580800WB122 1.00 2901 32 1107 1545 1657 574 574 574 574 574 574 574 574 574 574 574 574700WB173 1.00 2901 32 1475 1901 2017 519 519 519 519 519 519 519 519 519 519 519 519700WB150 1.00 2901 32 1244 1658 1777 515 515 515 515 515 515 515 515 515 515 515 515700WB130 1.00 2901 32 1100 1494 1606 507 507 507 507 507 507 507 507 507 507 507 507700WB115 1.00 2901 32 922 1303 1410 502 502 502 502 502 502 502 502 502 502 502 502610UB125 1.00 2901 32 840 1189 1300 757 787 787 757 757 757 670 746 740 587 653 648610UB113 1.00 2901 32 750 1082 1189 707 737 737 707 707 707 626 698 698 548 615 614610UB101 1.00 2901 32 707 1032 1136 707 738 738 707 707 707 627 699 699 549 616 616530UB 92.4 1.00 2901 32 576 863 965 603 633 633 603 603 603 534 596 596 467 544 544530UB 82.0 0.97 2812 31 502 765 862 562 592 592 562 563 565 498 555 555 436 512 513460UB 82.1 0.97 2812 31 447 692 791 505 535 535 505 535 535 447 499 499 392 471 471460UB 74.6 0.88 2537 28 404 627 721 461 492 492 461 492 492 408 456 456 358 430 430460UB 67.1 0.87 2261 25 360 562 650 428 458 458 428 458 458 379 423 423 332 399 399410UB 59.7 0.90 2077 23 291 462 544 351 382 382 351 382 382 311 347 348 272 328 328410UB 53.7 0.87 1894 21 269 429 507 340 370 370 340 370 370 301 336 336 263 317 317360UB 56.7 0.91 1985 22 245 398 480 318 349 349 318 349 349 282 345 345 247 297 297360UB 50.7 0.87 1710 19 217 354 429 288 319 319 288 319 319 255 315 315 223 269 269360UB 44.7 0.90 1619 18 192 322 389 269 300 300 269 300 300 238 297 297 209 251 251310UB 46.2 0.91 1619 18 175 289 365 228 259 259 228 259 259 202 256 256 177 243 243310UB 40.4 0.94 1527 17 160 263 334 206 236 236 206 236 236 182 234 234 159 222 222310UB 32.0 0.88 1111 13 113 200 251 182 212 212 182 212 212 161 210 210 141 200 200

Page 80: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–74 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C26: bcf = 2100 mm, fc' = 25 MPa, λ = 0.0 ( i.e. sheeting ribs perpendicular to beam), h D0 s or D Ds = 0.5,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 2901 32 1864 2213 2334 591 591 591 448 512 461 354 404 364 292 334 300800WB168 1.00 2901 32 1587 1904 2021 587 587 587 445 509 485 351 402 382 290 332 316800WB146 1.00 2901 32 1405 1701 1812 580 580 580 439 505 492 347 398 388 286 329 320800WB122 1.00 2901 32 1107 1380 1485 574 574 574 435 501 500 343 395 394 283 326 326700WB173 1.00 2901 32 1475 1784 1903 519 519 519 393 466 429 310 368 338 256 304 279700WB150 1.00 2901 32 1244 1527 1641 515 515 515 390 464 449 308 366 354 254 302 292700WB130 1.00 2901 32 1100 1364 1473 507 507 507 385 459 453 303 362 357 250 299 295700WB115 1.00 2901 32 922 1175 1278 502 502 502 380 456 456 300 359 359 248 297 297610UB125 1.00 2901 32 840 1076 1182 567 609 609 387 472 472 305 373 372 252 308 307610UB113 1.00 2901 32 750 976 1078 529 570 570 361 447 449 285 353 354 235 291 292610UB101 1.00 2901 32 707 926 1026 530 571 571 362 449 450 285 354 355 236 292 293530UB 92.4 0.97 2812 31 576 775 873 451 491 491 308 389 389 243 320 321 201 264 265530UB 82.0 0.84 2445 27 502 676 767 421 460 460 287 363 363 227 302 303 187 249 250460UB 82.1 0.87 2537 28 447 621 714 378 416 416 258 326 326 204 291 292 168 240 241460UB 74.6 0.78 2261 25 404 563 650 345 383 383 236 298 298 186 271 272 154 224 225460UB 67.1 0.80 2077 23 360 502 583 320 357 357 219 276 276 173 253 253 142 209 211410UB 59.7 0.82 1894 21 291 417 493 263 299 299 180 257 257 142 208 208 117 188 190410UB 53.7 0.79 1710 19 269 385 457 254 290 290 174 247 250 137 201 201 113 182 184360UB 56.7 0.82 1802 20 245 363 437 238 274 274 163 236 236 128 191 193 106 177 177360UB 50.7 0.83 1619 18 217 322 390 216 251 251 147 216 216 116 175 178 96 160 160360UB 44.7 0.80 1436 16 192 292 352 202 236 236 138 204 204 109 165 167 90 150 150310UB 46.2 0.86 1527 17 175 272 337 171 205 205 117 178 178 92 165 165 76 140 142310UB 40.4 0.83 1344 15 160 248 309 154 188 188 105 163 163 83 152 152 68 132 134310UB 32.0 0.85 1070 12 113 184 228 136 169 169 93 148 148 73 138 138 61 109 110

Page 81: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–75Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C27: bcf = 2100 mm, fc' = 25 MPa, λ = 0.0 ( i.e. sheeting ribs perpendicular to beam), h D0 s or D Ds = 0.7,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 2901 32 1843 2038 2155 292 351 336 157 218 186 115 159 136 91 126 108800WB168 1.00 2901 32 1539 1731 1843 290 348 348 156 217 206 114 159 151 90 125 119800WB146 1.00 2901 32 1342 1530 1637 287 344 344 154 216 213 113 158 156 89 125 123800WB122 1.00 2901 32 1008 1210 1311 284 341 341 152 215 217 112 157 159 88 124 126700WB173 1.00 2901 32 1464 1650 1766 256 339 318 138 207 186 101 152 136 80 120 107700WB150 1.00 2901 32 1210 1394 1504 254 336 336 136 206 202 100 151 148 79 119 117700WB130 1.00 2901 32 1054 1233 1338 251 332 332 135 205 206 99 150 151 78 119 119700WB115 1.00 2901 32 854 1045 1145 248 328 328 133 205 208 97 150 152 77 119 120610UB125 1.00 2901 32 786 961 1063 252 334 334 135 217 220 99 159 161 78 126 127610UB113 0.94 2720 30 697 860 957 236 314 314 126 208 211 93 153 154 73 120 122610UB101 0.91 2628 29 650 803 896 236 314 314 127 208 211 93 152 154 73 120 122530UB 92.4 0.84 2445 27 538 679 770 201 272 272 108 195 195 79 145 147 62 115 116530UB 82.0 0.72 2077 23 463 586 669 187 256 256 101 182 182 74 137 139 58 108 110460UB 82.1 0.78 2261 25 423 550 636 168 233 233 90 171 174 66 141 143 52 111 113460UB 74.6 0.69 1985 22 382 497 578 154 215 215 83 160 164 60 132 134 48 104 106460UB 67.1 0.69 1802 20 338 441 515 143 202 202 77 149 153 56 124 126 44 98 100410UB 59.7 0.70 1619 18 278 371 441 117 171 171 63 144 144 46 105 106 36 93 95410UB 53.7 0.70 1527 17 255 341 407 113 167 167 61 140 140 45 102 102 35 90 92360UB 56.7 0.74 1619 18 236 326 394 106 158 158 57 133 133 42 110 113 33 91 91360UB 50.7 0.73 1436 16 209 288 350 96 146 146 52 124 124 38 101 104 30 82 82360UB 44.7 0.70 1253 14 180 260 315 90 138 138 48 118 118 35 95 98 28 77 77310UB 46.2 0.75 1344 15 173 248 308 76 122 122 41 104 104 30 99 99 24 84 86310UB 40.4 0.77 1253 14 158 227 283 69 113 113 37 97 97 27 92 92 21 80 82310UB 32.0 0.74 937 11 104 165 204 61 103 103 33 89 89 24 85 85 19 64 66

Page 82: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–76 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C28: bcf = 2100 mm, fc' = 25 MPa, λ = 1.0 ( i.e. sheeting ribs parallel to beam), h D0 s or D Ds = 0.3,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 5355 59 1864 2481 2585 591 591 591 591 591 591 591 591 591 591 591 591800WB168 1.00 5355 59 1587 2182 2277 587 587 587 587 587 587 587 587 587 587 587 587800WB146 0.92 4933 54 1405 1956 2056 580 580 580 580 580 580 580 580 580 580 580 580800WB122 0.86 4102 45 1107 1597 1703 574 574 574 574 574 574 574 574 574 574 574 574700WB173 1.00 5355 59 1475 2002 2100 519 519 519 519 519 519 519 519 519 519 519 519700WB150 0.92 4933 54 1244 1745 1848 515 515 515 515 515 515 515 515 515 515 515 515700WB130 0.89 4471 49 1100 1559 1664 507 507 507 507 507 507 507 507 507 507 507 507700WB115 0.88 3918 43 922 1342 1448 502 502 502 502 502 502 502 502 502 502 502 502610UB125 0.86 3918 43 840 1234 1343 757 813 813 757 813 813 670 748 748 587 706 706610UB113 0.86 3549 39 750 1109 1217 707 763 763 707 763 763 626 698 698 548 659 659610UB101 0.85 3365 37 707 1052 1157 707 764 764 707 764 764 627 699 699 549 660 660530UB 92.4 0.86 3089 34 576 871 973 603 659 659 603 659 659 534 619 620 467 563 563530UB 82.0 0.88 2812 31 502 765 862 562 618 618 562 618 618 498 560 561 436 524 524460UB 82.1 0.88 2812 31 447 692 791 505 561 561 505 561 561 447 555 555 392 486 486460UB 74.6 0.88 2537 28 404 627 721 461 517 517 461 517 517 408 512 512 358 448 448460UB 67.1 0.87 2261 25 360 562 650 428 484 484 428 484 484 379 479 479 332 409 409410UB 59.7 0.90 2077 23 291 462 544 351 407 407 351 407 407 311 403 403 272 384 384410UB 53.7 0.87 1894 21 269 429 507 340 396 396 340 396 396 301 392 392 263 371 372360UB 56.7 0.91 1985 22 245 398 480 318 375 375 318 375 375 282 371 371 247 354 354360UB 50.7 0.87 1710 19 217 354 429 288 344 344 288 344 344 255 341 341 223 325 325360UB 44.7 0.90 1619 18 192 322 389 269 326 326 269 326 326 238 323 323 209 308 308310UB 46.2 0.91 1619 18 175 289 365 228 284 284 228 284 284 202 282 282 177 269 269310UB 40.4 0.94 1527 17 160 263 334 206 262 262 206 262 262 182 260 260 159 248 248310UB 32.0 0.88 1111 13 113 200 251 182 238 238 182 238 238 161 236 236 141 226 226

Page 83: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–77Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C29: bcf = 2100 mm, fc' = 25 MPa, λ = 1.0 ( i.e. sheeting ribs parallel to beam), h D0 s or D Ds = 0.5,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 5355 59 1864 2319 2417 591 591 591 448 580 581 354 508 508 292 419 419800WB168 0.94 5025 55 1587 1992 2092 587 587 587 445 561 561 351 505 506 290 417 417800WB146 0.83 4471 49 1405 1766 1870 580 580 580 439 555 555 347 498 499 286 412 412800WB122 0.75 3549 39 1107 1407 1512 574 574 574 435 549 549 343 482 483 283 398 399700WB173 0.99 5302 58 1475 1885 1980 519 519 519 393 519 519 310 455 455 256 402 402700WB150 0.83 4471 49 1244 1595 1701 515 515 515 390 515 515 308 451 451 254 396 396700WB130 0.80 4010 44 1100 1410 1517 507 507 507 385 507 507 303 445 445 250 388 388700WB115 0.80 3549 39 922 1195 1299 502 502 502 380 480 480 300 440 440 248 376 376610UB125 0.78 3549 39 840 1101 1208 567 635 635 387 527 527 305 448 448 252 400 400610UB113 0.77 3181 35 750 985 1089 529 596 596 361 487 487 285 418 418 235 375 376610UB101 0.76 2996 33 707 928 1028 530 597 597 362 470 470 285 418 418 236 372 372530UB 92.4 0.78 2812 31 576 775 873 451 517 517 308 445 445 243 356 356 201 335 335530UB 82.0 0.77 2445 27 502 676 767 421 486 486 287 419 419 227 332 332 187 313 313460UB 82.1 0.80 2537 28 447 621 714 378 442 442 258 382 382 204 334 334 168 281 281460UB 74.6 0.78 2261 25 404 563 650 345 409 409 236 354 354 186 308 308 154 256 256460UB 67.1 0.80 2077 23 360 502 583 320 383 383 219 333 333 173 280 281 142 238 238410UB 59.7 0.82 1894 21 291 417 493 263 325 325 180 283 283 142 264 264 117 213 214410UB 53.7 0.79 1710 19 269 385 457 254 316 316 174 276 276 137 257 257 113 200 201360UB 56.7 0.82 1802 20 245 363 437 238 300 300 163 262 262 128 245 245 106 225 225360UB 50.7 0.83 1619 18 217 322 390 216 276 276 147 242 242 116 227 227 96 204 204360UB 44.7 0.80 1436 16 192 292 352 202 262 262 138 230 230 109 216 216 90 188 189310UB 46.2 0.86 1527 17 175 272 337 171 231 231 117 204 204 92 191 191 76 183 183310UB 40.4 0.83 1344 15 160 248 309 154 213 213 105 189 189 83 178 178 68 171 171310UB 32.0 0.81 1024 12 113 184 228 136 195 195 93 174 174 73 164 164 61 156 156

Page 84: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–78 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C30: bcf = 2100 mm, fc' = 25 MPa, λ = 1.0 ( i.e. sheeting ribs parallel to beam), h D0 s or D Ds = 0.7,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 0.99 5302 58 1843 2139 2231 292 407 407 157 332 333 115 254 255 91 201 201800WB168 0.83 4471 49 1539 1797 1902 290 405 405 156 314 315 114 250 250 90 197 197800WB146 0.75 4010 44 1342 1574 1680 287 401 401 154 297 298 113 243 244 89 192 193800WB122 0.65 3089 34 1008 1216 1316 284 397 397 152 275 275 112 227 227 88 179 179700WB173 0.90 4840 53 1464 1732 1834 256 364 364 138 305 305 101 238 238 80 203 204700WB150 0.75 4010 44 1210 1443 1550 254 362 362 136 303 303 100 228 228 79 197 197700WB130 0.70 3549 39 1054 1261 1366 251 357 357 135 299 299 99 225 225 78 190 190700WB115 0.70 3089 34 854 1047 1146 248 354 354 133 271 272 97 223 223 77 179 180610UB125 0.68 3089 34 786 967 1069 252 360 360 135 301 301 99 227 227 78 196 196610UB113 0.66 2720 30 697 860 957 236 339 339 126 281 282 93 212 212 73 183 184610UB101 0.66 2628 29 650 803 896 236 340 340 127 269 270 93 212 212 73 180 180530UB 92.4 0.68 2445 27 538 679 770 201 298 298 108 251 251 79 190 191 62 172 172530UB 82.0 0.65 2077 23 463 586 669 187 281 281 101 238 238 74 170 170 58 160 160460UB 82.1 0.71 2261 25 423 550 636 168 259 259 90 220 220 66 198 199 52 150 151460UB 74.6 0.69 1985 22 382 497 578 154 241 241 83 205 205 60 184 184 48 139 139460UB 67.1 0.69 1802 20 338 441 515 143 228 228 77 195 195 56 166 167 44 126 126410UB 59.7 0.70 1619 18 278 371 441 117 197 197 63 170 170 46 161 161 36 129 129410UB 53.7 0.70 1527 17 255 341 407 113 192 192 61 166 166 45 158 158 35 120 120360UB 56.7 0.74 1619 18 236 326 394 106 184 184 57 159 159 42 152 152 33 139 140360UB 50.7 0.73 1436 16 209 288 350 96 172 172 52 150 150 38 143 143 30 126 126360UB 44.7 0.70 1253 14 180 260 315 90 164 164 48 143 143 35 137 137 28 116 117310UB 46.2 0.75 1344 15 173 248 308 76 148 148 41 130 130 30 125 125 24 121 121310UB 40.4 0.77 1253 14 158 227 283 69 139 139 37 123 123 27 118 118 21 115 115310UB 32.0 0.78 979 11 104 165 204 61 129 129 33 115 115 24 111 111 19 99 99

Page 85: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–79Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C31: bcf = 2100 mm, fc' = 32 MPa, λ = 0.0 ( i.e. sheeting ribs perpendicular to beam), h D0 s or D Ds = 0.3,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 3713 41 1864 2423 2568 591 591 591 591 591 591 591 591 591 591 591 591800WB168 1.00 3713 41 1587 2123 2271 587 587 587 587 587 587 587 587 587 587 587 587800WB146 1.00 3713 41 1405 1916 2057 580 580 580 580 580 580 580 580 580 580 580 580800WB122 1.00 3713 41 1107 1592 1724 574 574 574 574 574 574 574 574 574 574 574 574700WB173 1.00 3713 41 1475 1946 2088 519 519 519 519 519 519 519 519 519 519 519 519700WB150 1.00 3713 41 1244 1705 1847 515 515 515 515 515 515 515 515 515 515 515 515700WB130 1.00 3713 41 1100 1538 1675 507 507 507 507 507 507 507 507 507 507 507 507700WB115 1.00 3713 41 922 1346 1476 502 502 502 502 502 502 502 502 502 502 502 502610UB125 1.00 3713 41 840 1234 1367 757 791 791 757 757 757 670 748 748 587 670 670610UB113 0.96 3549 39 750 1116 1244 707 741 741 707 707 707 626 698 698 548 631 631610UB101 0.91 3365 37 707 1058 1182 707 742 742 707 707 707 627 699 699 549 632 632530UB 92.4 0.86 3089 34 576 876 994 603 637 637 603 637 637 534 596 596 467 559 560530UB 82.0 0.88 2812 31 502 769 879 562 596 596 562 596 596 498 555 555 436 524 524460UB 82.1 0.88 2812 31 447 696 807 505 539 539 505 539 539 447 499 499 392 471 471460UB 74.6 0.88 2537 28 404 631 735 461 496 496 461 496 496 408 456 456 358 430 430460UB 67.1 0.87 2261 25 360 565 661 428 462 462 428 462 462 379 423 423 332 399 399410UB 59.7 0.90 2077 23 291 464 553 351 386 386 351 386 386 311 353 357 272 328 328410UB 53.7 0.87 1894 21 269 431 515 340 374 374 340 374 374 301 336 340 263 317 317360UB 56.7 0.91 1985 22 245 399 488 318 353 353 318 353 353 282 349 349 247 297 297360UB 50.7 0.87 1710 19 217 355 435 288 323 323 288 323 323 255 319 319 223 269 269360UB 44.7 0.90 1619 18 192 323 394 269 304 304 269 304 304 238 301 301 209 251 251310UB 46.2 0.91 1619 18 175 290 370 228 263 263 228 263 263 202 260 260 177 247 247310UB 40.4 0.94 1527 17 160 264 339 206 240 240 206 240 240 182 238 238 159 226 226310UB 32.0 0.92 1161 13 113 201 253 182 216 216 182 216 216 161 214 214 141 203 204

Page 86: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–80 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C32: bcf = 2100 mm, fc' = 32 MPa, λ = 0.0 ( i.e. sheeting ribs perpendicular to beam), h D0 s or D Ds = 0.5,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 3713 41 1864 2260 2409 591 591 591 448 527 508 354 416 401 292 343 331800WB168 1.00 3713 41 1587 1950 2092 587 587 587 445 525 519 351 414 410 290 341 338800WB146 1.00 3713 41 1405 1745 1881 580 580 580 439 520 520 347 410 410 286 339 338800WB122 0.96 3549 39 1107 1414 1539 574 574 574 435 516 518 343 407 408 283 336 337700WB173 1.00 3713 41 1475 1831 1976 519 519 519 393 484 473 310 382 373 256 315 308700WB150 1.00 3713 41 1244 1572 1711 515 515 515 390 482 480 308 380 379 254 314 313700WB130 1.00 3713 41 1100 1408 1540 507 507 507 385 477 478 303 376 377 250 311 312700WB115 0.96 3549 39 922 1202 1323 502 502 502 380 473 474 300 373 374 248 308 309610UB125 0.96 3549 39 840 1107 1234 567 613 613 387 489 489 305 389 390 252 321 322610UB113 0.86 3181 35 750 991 1110 529 574 574 361 456 456 285 367 368 235 303 304610UB101 0.81 2996 33 707 933 1048 530 575 575 362 457 457 285 367 368 236 303 303530UB 92.4 0.78 2812 31 576 779 889 451 495 495 308 389 389 243 332 333 201 274 275530UB 82.0 0.77 2445 27 502 679 780 421 464 464 287 363 363 227 311 312 187 257 258460UB 82.1 0.80 2537 28 447 624 727 378 420 420 258 326 326 204 299 299 168 250 251460UB 74.6 0.78 2261 25 404 565 661 345 387 387 236 298 301 186 273 273 154 231 232460UB 67.1 0.80 2077 23 360 504 592 320 361 361 219 276 278 173 253 253 142 216 217410UB 59.7 0.82 1894 21 291 418 500 263 303 303 180 261 261 142 208 208 117 194 195410UB 53.7 0.79 1710 19 269 387 464 254 294 294 174 254 254 137 201 201 113 187 189360UB 56.7 0.82 1802 20 245 365 444 238 278 278 163 240 240 128 197 199 106 177 177360UB 50.7 0.83 1619 18 217 323 395 216 255 255 147 221 221 116 180 182 96 160 160360UB 44.7 0.80 1436 16 192 293 357 202 240 240 138 208 208 109 169 171 90 150 150310UB 46.2 0.86 1527 17 175 273 341 171 209 209 117 182 182 92 169 169 76 144 146310UB 40.4 0.83 1344 15 160 249 313 154 192 192 105 167 167 83 156 156 68 136 137310UB 32.0 0.85 1070 12 113 184 230 136 173 173 93 152 152 73 142 142 61 110 112

Page 87: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–81Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C33: bcf = 2100 mm, fc' = 32 MPa, λ = 0.0 ( i.e. sheeting ribs perpendicular to beam), h D0 s or D Ds = 0.7,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 1.00 3713 41 1843 2084 2228 292 379 377 157 233 224 115 171 164 91 135 130800WB168 1.00 3713 41 1539 1775 1912 290 380 383 156 233 233 114 171 170 90 135 135800WB146 1.00 3713 41 1342 1573 1703 287 375 379 154 232 234 113 170 171 89 134 135800WB122 0.83 3089 34 1008 1221 1336 284 346 353 152 228 230 112 167 169 88 132 133700WB173 1.00 3713 41 1464 1696 1837 256 343 343 138 225 221 101 165 162 80 130 128700WB150 1.00 3713 41 1210 1438 1572 254 340 340 136 225 226 100 165 166 79 130 131700WB130 0.96 3549 39 1054 1268 1394 251 336 336 135 224 226 99 164 165 78 129 130700WB115 0.83 3089 34 854 1052 1164 248 332 332 133 219 221 97 160 162 77 127 128610UB125 0.83 3089 34 786 972 1089 252 338 338 135 234 236 99 171 173 78 135 136610UB113 0.73 2720 30 697 864 973 236 318 318 126 221 224 93 162 164 73 128 129610UB101 0.71 2628 29 650 806 911 236 318 318 127 220 222 93 161 163 73 127 128530UB 92.4 0.68 2445 27 538 682 782 201 276 276 108 195 195 79 154 156 62 121 123530UB 82.0 0.65 2077 23 463 589 679 187 260 260 101 182 182 74 143 145 58 113 115460UB 82.1 0.71 2261 25 423 552 646 168 237 237 90 180 184 66 149 151 52 117 119460UB 74.6 0.69 1985 22 382 499 587 154 219 219 83 168 172 60 138 138 48 109 111460UB 67.1 0.69 1802 20 338 443 522 143 206 206 77 155 159 56 128 128 44 102 104410UB 59.7 0.70 1619 18 278 373 447 117 175 175 63 148 148 46 106 109 36 97 99410UB 53.7 0.70 1527 17 255 342 412 113 171 171 61 144 144 45 102 104 35 93 95360UB 56.7 0.74 1619 18 236 327 399 106 162 162 57 137 137 42 114 117 33 91 91360UB 50.7 0.73 1436 16 209 289 354 96 150 150 52 128 128 38 104 108 30 82 82360UB 44.7 0.70 1253 14 180 261 318 90 142 142 48 122 122 35 98 101 28 77 77310UB 46.2 0.75 1344 15 173 249 312 76 126 126 41 108 108 30 103 103 24 87 89310UB 40.4 0.77 1253 14 158 227 286 69 117 117 37 101 101 27 96 96 21 82 84310UB 32.0 0.78 979 11 104 165 206 61 107 107 33 93 93 24 87 89 19 66 67

Page 88: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–82 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C34: bcf = 2100 mm, fc' = 32 MPa, λ = 1.0 ( i.e. sheeting ribs parallel to beam), h D0 s or D Ds = 0.3,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 0.92 6318 69 1864 2531 2669 591 591 591 591 591 591 591 591 591 591 591 591800WB168 0.88 5487 60 1587 2202 2342 587 587 587 587 587 587 587 587 587 587 587 587800WB146 0.87 4933 54 1405 1970 2109 580 580 580 580 580 580 580 580 580 580 580 580800WB122 0.86 4102 45 1107 1605 1738 574 574 574 574 574 574 574 574 574 574 574 574700WB173 0.91 5764 63 1475 2030 2177 519 519 519 519 519 519 519 519 519 519 519 519700WB150 0.89 4933 54 1244 1759 1901 515 515 515 515 515 515 515 515 515 515 515 515700WB130 0.89 4471 49 1100 1569 1707 507 507 507 507 507 507 507 507 507 507 507 507700WB115 0.88 3918 43 922 1350 1479 502 502 502 502 502 502 502 502 502 502 502 502610UB125 0.86 3918 43 840 1242 1376 757 821 821 757 821 821 670 748 748 587 706 706610UB113 0.86 3549 39 750 1116 1244 707 770 770 707 770 770 626 698 698 548 659 659610UB101 0.85 3365 37 707 1058 1182 707 771 771 707 771 771 627 699 699 549 660 660530UB 92.4 0.86 3089 34 576 876 994 603 666 666 603 666 666 534 634 634 467 563 563530UB 82.0 0.88 2812 31 502 769 879 562 626 626 562 626 626 498 571 571 436 524 524460UB 82.1 0.88 2812 31 447 696 807 505 569 569 505 569 569 447 563 563 392 497 497460UB 74.6 0.88 2537 28 404 631 735 461 525 525 461 525 525 408 519 519 358 457 457460UB 67.1 0.87 2261 25 360 565 661 428 492 492 428 492 492 379 487 487 332 415 416410UB 59.7 0.90 2077 23 291 464 553 351 415 415 351 415 415 311 411 411 272 391 391410UB 53.7 0.87 1894 21 269 431 515 340 403 403 340 403 403 301 399 399 263 377 377360UB 56.7 0.91 1985 22 245 399 488 318 382 382 318 382 382 282 378 378 247 361 361360UB 50.7 0.87 1710 19 217 355 435 288 352 352 288 352 352 255 349 349 223 333 333360UB 44.7 0.90 1619 18 192 323 394 269 333 333 269 333 333 238 330 330 209 315 315310UB 46.2 0.91 1619 18 175 290 370 228 292 292 228 292 292 202 289 289 177 277 277310UB 40.4 0.94 1527 17 160 264 339 206 269 269 206 269 269 182 267 267 159 256 256310UB 32.0 0.92 1161 13 113 201 253 182 245 245 182 245 245 161 243 243 141 233 233

Page 89: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–83Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C35: bcf = 2100 mm, fc' = 32 MPa, λ = 1.0 ( i.e. sheeting ribs parallel to beam), h D0 s or D Ds = 0.5,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 0.85 5856 64 1864 2352 2489 591 591 591 448 591 591 354 518 518 292 450 450800WB168 0.81 5025 55 1587 2006 2146 587 587 587 445 587 587 351 514 514 290 440 440800WB146 0.79 4471 49 1405 1777 1913 580 580 580 439 555 555 347 508 508 286 430 430800WB122 0.75 3549 39 1107 1414 1539 574 574 574 435 549 549 343 496 497 283 410 410700WB173 0.83 5302 58 1475 1900 2041 519 519 519 393 519 519 310 455 455 256 428 428700WB150 0.81 4471 49 1244 1606 1745 515 515 515 390 515 515 308 451 451 254 416 416700WB130 0.80 4010 44 1100 1419 1552 507 507 507 385 507 507 303 445 445 250 405 405700WB115 0.80 3549 39 922 1202 1323 502 502 502 380 493 494 300 440 440 248 388 388610UB125 0.78 3549 39 840 1107 1234 567 642 642 387 546 546 305 448 448 252 414 414610UB113 0.77 3181 35 750 991 1110 529 604 604 361 501 502 285 418 418 235 387 387610UB101 0.76 2996 33 707 933 1048 530 604 604 362 482 483 285 418 418 236 382 383530UB 92.4 0.78 2812 31 576 779 889 451 524 524 308 453 453 243 356 356 201 335 335530UB 82.0 0.77 2445 27 502 679 780 421 493 493 287 426 426 227 332 332 187 313 313460UB 82.1 0.80 2537 28 447 624 727 378 449 449 258 390 390 204 343 343 168 281 281460UB 74.6 0.78 2261 25 404 565 661 345 416 416 236 361 361 186 315 316 154 256 256460UB 67.1 0.80 2077 23 360 504 592 320 391 391 219 340 340 173 286 286 142 238 238410UB 59.7 0.82 1894 21 291 418 500 263 332 332 180 290 290 142 271 271 117 218 218410UB 53.7 0.79 1710 19 269 387 464 254 323 323 174 283 283 137 265 265 113 204 204360UB 56.7 0.82 1802 20 245 365 444 238 307 307 163 269 269 128 252 252 106 230 230360UB 50.7 0.83 1619 18 217 323 395 216 284 284 147 250 250 116 234 234 96 207 207360UB 44.7 0.80 1436 16 192 293 357 202 269 269 138 238 238 109 223 223 90 191 191310UB 46.2 0.86 1527 17 175 273 341 171 238 238 117 211 211 92 199 199 76 191 191310UB 40.4 0.83 1344 15 160 249 313 154 221 221 105 196 196 83 185 185 68 178 178310UB 32.0 0.85 1070 12 113 184 230 136 203 203 93 181 181 73 171 171 61 158 158

Page 90: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–84 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

TABLE C36: bcf = 2100 mm, fc' = 32 MPa, λ = 1.0 ( i.e. sheeting ribs parallel to beam), h D0 s or D Ds = 0.7,

Dc = 120 mm, hr = 55 mm, Steel Grade = 300PLUS®

Shear Connection Design Moment Design Shear Capacities (kN)Steel Limits Capacities (kNm) Circular L0/h0 = 1.0 L0/h0 = 1.5 L0/h0 = 2.0Section βmax Fcc

(kN)nmax φMb.0 φMb.5 φMbc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc φVu.0 φVu.5 φVuc

800WB192 0.77 5302 58 1843 2154 2293 292 415 415 157 347 347 115 262 262 91 223 223800WB168 0.72 4471 49 1539 1808 1946 290 412 412 156 339 340 114 260 260 90 213 213800WB146 0.71 4010 44 1342 1582 1714 287 408 408 154 316 316 113 257 257 89 204 205800WB122 0.65 3089 34 1008 1221 1336 284 404 404 152 275 275 112 236 237 88 186 187700WB173 0.76 4840 53 1464 1745 1885 256 372 372 138 312 312 101 262 262 80 220 220700WB150 0.72 4010 44 1210 1451 1586 254 369 369 136 310 310 100 237 237 79 211 211700WB130 0.70 3549 39 1054 1268 1394 251 365 365 135 307 307 99 225 225 78 201 202700WB115 0.70 3089 34 854 1052 1164 248 361 361 133 283 283 97 223 223 77 187 187610UB125 0.68 3089 34 786 972 1089 252 367 367 135 309 309 99 227 227 78 205 206610UB113 0.66 2720 30 697 864 973 236 347 347 126 292 292 93 212 212 73 191 191610UB101 0.66 2628 29 650 806 911 236 347 347 127 278 279 93 212 212 73 186 187530UB 92.4 0.68 2445 27 538 682 782 201 305 305 108 259 259 79 196 197 62 172 172530UB 82.0 0.65 2077 23 463 589 679 187 289 289 101 245 245 74 174 175 58 160 160460UB 82.1 0.71 2261 25 423 552 646 168 266 266 90 227 227 66 205 205 52 155 155460UB 74.6 0.69 1985 22 382 499 587 154 248 248 83 213 213 60 189 189 48 143 143460UB 67.1 0.69 1802 20 338 443 522 143 235 235 77 202 202 56 170 171 44 129 129410UB 59.7 0.70 1619 18 278 373 447 117 204 204 63 177 177 46 169 169 36 132 132410UB 53.7 0.70 1527 17 255 342 412 113 200 200 61 174 174 45 162 163 35 123 123360UB 56.7 0.74 1619 18 236 327 399 106 191 191 57 167 167 42 159 159 33 142 143360UB 50.7 0.73 1436 16 209 289 354 96 179 179 52 157 157 38 150 150 30 128 129360UB 44.7 0.70 1253 14 180 261 318 90 172 172 48 151 151 35 144 144 28 118 119310UB 46.2 0.75 1344 15 173 249 312 76 155 155 41 138 138 30 132 132 24 129 129310UB 40.4 0.77 1253 14 158 227 286 69 146 146 37 130 130 27 125 125 21 122 122310UB 32.0 0.78 979 11 104 165 206 61 137 137 33 123 123 24 118 118 19 100 100

Page 91: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–85Design of Simply-Supported Composite Beams with Large Web Penetrations

Appendix DNOTATION

The notation used in the booklet is the same as that used in AS 2327.1 where possible.

Abw = cross-sectional area of steel web of the bottom T-sectionAf = cross-sectional area of steel flangeAr = cross-sectional area of steel plate reinforcement along top or bottom edge of penetrationAtf.eff = cross-sectional area of steel top flange, based on beff or bf as appropriateAtw = cross-sectional area of steel web of the top T-sectionAvc = effective area of concrete slab for shear = ( )3 1D D hc c r− −( )λa = distance from LME to support, away from web penetration (see Fig. 5.2(a))b = distance from HME to support, away from web penetration (see Fig. 5.2(a))bcf = effective width of concrete slab compression flange, calculated in accordance with

AS 2327.1beff = effective width of steel beam top flangebf = width of steel beam top flangebr = width of penetration reinforcementD = diameter of circular penetrationDc = overall depth of concrete slabDs = overall depth of steel beamd1 = clear depth between steel beam flanges ignoring fillets or weldsdc = depth of the rectangular stress block in concrete slabdctH = distance from top of steel flange to line of action of FctH

dctL = distance from top of steel flange to line of action of FctL

dh = depth of compression zone in the cross-section measured from the top of the cross-sectiondr = distance from outside edge of steel flange to centroid of steel plate reinforcementE = Young’s modulus of steele = the vertical eccentricity of the web penetration with respect to the mid-height of the steel

cross-section (+ve when toward the concrete compression flange, see Fig. 6.1).Fbf = capacity of steel beam bottom flangeFbw = capacity of steel web of bottom T-sectionFc = compressive capacity of concrete flange (= Fc1 + Fc2 )Fcc = compressive force in concrete flange corresponding to complete shear connection for the

cross-section without web penetration at strength limit stateFc1 = compressive capacity of concrete cover slab within slab effective widthFc2 = compressive capacity of concrete between steel sheeting ribs within slab effective width

Fcc = compressive force in concrete flange corresponding to complete shear connection for thecross-section with web penetration at the strength limit state

FcH = force in concrete flange at HMEFctH = calculated value of compressive force in concrete slab at the HME of the penetration at

strength limit state, considering the area of top steel T-section only (see Eq. 6.18)FctL = calculated value of compressive force in concrete slab at low moment end of the

penetration corresponding to FctH (see Eq. 6.20)

Fr = capacity of steel plate reinforcement along one edge of penetration = f Ayr r ≤ ( ) /f t Lyw w 2 3Ftf = axial capacity of top steel flange (= b t feff f yf )Ftw = axial capacity of top steel web

Page 92: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

DB1.3–86 Simply-Supported Composite Beams Edition 2.0 - February 2001Design of Simply-Supported Composite Beams with Large Web Penetrations

Fs = tensile capacity of the steel cross-section with the web penetration

fc' = 28-day characteristic compressive cylinder strength of concrete

fds = design shear capacity of a shear connector in a set of nH connectors according toAS 2327.1

fvs = nominal shear capacity of a shear connectorfyf = yield strength of flange in steel beamfyi = yield strength of components in steel beams, either, flange, web or steel plate

reinforcementfyr = yield strength of steel plate reinforcementfyw = yield strength of web in steel beamG = nominal dead loadG = shear modulus of elasticityGsup = superimposed dead loadHME = high-moment end of penetrationh0 = height of penetrationhr = height of the steel ribs of profiled steel sheetingI0 = second moment of area of the gross cross-section including the web penetrationIb = second moment of area of the bottom T-sectionIt = second moment of area of the top T-sectionk = a shear coefficient for I-sections (=1.2)kB = shear coefficient for bottom T-section (=1.2)kn = load-sharing factor for shear connectorskT = shear coefficient for top T-section (=1.2)L = span of the beamLo = length of web penetrationLME = low-moment end of penetrationM * = design bending moment at mid-length of web penetrationMH

* = design bending moment at HME

ML* = design bending moment at the LME

Md* = differential design bending moment across the web penetration

Mse* = secondary moment induced by Vierendeel deformations across the web penetration (see

Fig. 3.2)Mb = nominal moment capacity at the HME of web penetration ignoring the effect of vertical

shear forceMb.0 , Mb.5 and Mbc = nominal moment capacity at the HME ignoring the effect of vertical shear

force, corresponding to β = 0.0, 0.5 and 1.0, respectivelyne = number of steel elements in a cross-section with a web penetrationnH = number of shear connectors between end of beam adjacent to penetration, at HMEnL = number of shear connectors between end of beam adjacent to penetration, at LME

nmax = number of 19 mm headed stud shear connectors required to develop the force Fcc

Q = live loadR = stiffness ratio for deflection calculations (see Eq. 6.54)S = clear spacing between multiple penetrationssb = depth of bottom T-sections t = depth of top steel T-section

sb = effective depth of bottom T-section, accounting for the movement in plastic neutral axiswhen the penetration is reinforced (see Eq. 6.10)

Page 93: Design of Simply-Supported Composite Beams with · PDF fileDesign of Simply-Supported Composite Beams with Large Web Penetrations Design Booklet DB1.3 OneSteel Market Mills Composite

OneSteel Market MillsComposite Structures Design Manual

Edition 2.0 - February 2001 Simply-Supported Composite Beams DB1.3–87Design of Simply-Supported Composite Beams with Large Web Penetrations

s t = effective depth of top steel T-section, accounting for the movement in plastic neutral axiswhen the penetration is reinforced (see Eq. 6.15)

t f = thickness of steel flangetr = thickness of steel plate reinforcementt w = thickness of steel webV * = design vertical shear force at mid-length of web penetrationVu = nominal shear capacity of the beam cross-section at the strength limit state

Vt* = design vertical shear force carried by the top T-section

Vpb = nominal shear capacity of steel web of the bottom T-section ignoring the effects of bendingVpt = nominal shear capacity of steel web of top T-section ignoring the effects of bendingVb = nominal shear capacity of bottom T-section including the effects of secondary momentsVc = contribution of concrete flange to shear capacityVt = nominal shear capacity of top T-section including the effects of secondary momentsVu = nominal vertical shear capacity of a beam cross-section without a penetration

Vu = nominal shear capacity of a beam cross-section with a penetration

Vu.0 , Vu.5 and Vuc = nominal shear capacity of composite beam cross-section at the penetration,

calculated ignoring the effects of primary bending moments, corresponding to β = 0.0, 0.5and 1.0, respectively

W = design loadx = distance to a beam cross-section from support

βmax = maximum degree of shear connection that can be achieved at cross-sections within the

length of a penetration, i.e. = FF

cc

cc

β = degree of shear connection calculated using Fcc , e.g. β = F FcH cc/ at HMEδb = additional deflection in the beam due to bending deformation at the web penetrationδb( )x = value of δb at a point on the beam distance x from supportδg = deflection of the beam calculated ignoring the effects of the penetrationδg( )x = value of δg at a point on the beam distance x from support

δs' = additional shear deflection ignoring geometric continuity (see Eq. 6.64)

δt = total deflection (see Eq. 6.51)δt ( )x = total deflection at a point on the beam distance x from support (see Eq. 6.51)δv = additional shear deflection due to a web penetrationδv( )x = value of δv at a point on the beam distance x from supportφ = capacity factor relevant to a strength limit stateλ = factor accounting for angle between sheeting ribs and steel beam - see Fig. 5.2.2.2(b)µb , µ t = dimensionless ratio relating secondary bending moment contributions of concrete and

web penetration reinforcement to the product of the plastic shear capacity and depth of thesteel T-section (see Eqs 6.6 and 6.12, respectively)

θ = acute angle between the steel ribs of a composite slab and longitudinal axis of steel beamθH , θL = rotations due to bending deformation at the HME and LME of penetration, respectively

θH' , θL

' = rotations due to shear deformation at the HME and LME of penetration, respectively

νb , ν t = aspect ratio L s0 / b and L s0 / t for bottom and top T-sections, respectively