Design of a compact AFM scanner Compact, high speed and high accuracy AFM scanner K. J. Kamp June 26, 2013 Committee: Prof. Ir. R.H. Munnig Schmidt Dr

Embed Size (px)

Citation preview

  • Slide 1
  • Design of a compact AFM scanner Compact, high speed and high accuracy AFM scanner K. J. Kamp June 26, 2013 Committee: Prof. Ir. R.H. Munnig Schmidt Dr. Ir. S. Kuiper Dr. Ir. J. L. Herder Dr. Ir. J. F. L. Goosen
  • Slide 2
  • Outline Introduction to Atomic Force Microscopes (AFM) Research questions Requirements and specifications Concept 1 Concept 2 Detailed Design Conclusion K. J. Kamp Design of a compact AFM scanner 2
  • Slide 3
  • Introduction K. J. Kamp Design of a compact AFM scanner 3 Introduction Research Questions Requirements specifications Concept 1 Concept 2 Detailed Design Conclusion
  • Slide 4
  • Introduction The atomic force microscope (AFM) Basic operation principle Probe tip attached to a cantilever is scanned over a sample Cantilever deflects due to the atomic forces The cantilever deflection measures the surface topography K. J. Kamp A compact AFM scanner 4
  • Slide 5
  • Introduction The AFM scanner Lateral scanning Triangular pattern Constant tip speed K. J. Kamp A compact AFM scanner 5
  • Slide 6
  • Introduction The AFM scanner Vertical scanning Feedback loop Cantilever deflection signal minimal The probe tip tracks the topography K. J. Kamp A compact AFM scanner 6 DOI wafer AFM measurement
  • Slide 7
  • Introduction K. J. Kamp A compact AFM scanner 7 AFM system specifications Surface area (x,y)< 15mm x 15mm Measurement range (x,y,z)> 10 x 10 x 2 microns Imaging time < 1 s Measurement uncertainty < 1 nm
  • Slide 8
  • Introduction Concept 1:The tripod scanner K. J. Kamp A compact AFM scanner 8 Actuator 1 Actuator 2 Actuator 3 u1u1 u2u2 u3u3 y z Sensor x Top View
  • Slide 9
  • Research Questions K. J. Kamp A compact AFM scanner 9 Introduction Research Questions Requirements specifications Concept 1 Concept 2 Detailed Design Conclusion
  • Slide 10
  • Research questions 1.How do the specifications of the AFM system translate to the requirements of the AFM scanner? 2.Does the first scanner concept meet the requirements? 3.Does the second scanner concept meet the requirements? 4.Is the second scanner concept valid as a real world design? K. J. Kamp A compact AFM scanner 10
  • Slide 11
  • Requirements K. J. Kamp A compact AFM scanner 11 Introduction Research Questions Requirements specifications Concept 1 Concept 2 Detailed Design Conclusion
  • Slide 12
  • Requirements K. J. Kamp A compact AFM scanner 12 Research question 1: How do the specifications of the AFM system translate to the requirements of the AFM scanner? Measurement uncertainty < 1 nm Translate to scanner roll angles Imaging time < 1 s Translate to scanner resonance frequencies
  • Slide 13
  • Requirements Measurement uncertainty to roll angle Misalignment sensors and probe tip: 0,5 mm Scanner will rotate (roll angle) This causes an Abbe error (measurement uncertainty) K. J. Kamp A compact AFM scanner 13
  • Slide 14
  • Requirements Abbe error Platform roll angle Sensor offset Abbe error: e abbe = tan() Assumptions: = 0,5 mm e abbe < 1,0 nm < 2 microrad K. J. Kamp A compact AFM scanner 14
  • Slide 15
  • Requirements Imaging time to resonance frequencies Lateral resonance frequency > 10 kHz Triangular wave frequency content Vertical resonance frequency > 30 kHz Tracking error, scanning speed K. J. Kamp A compact AFM scanner 15
  • Slide 16
  • Concept 1 K. J. Kamp A compact AFM scanner 16 Introduction Research Questions Requirements specifications Concept 1 Concept 2 Detailed Design Conclusion
  • Slide 17
  • Concept 1 Analysis of the tripod concept 1.Kinematicsrelated to scanner stroke 2.Staticsrelated to scanner roll angles (Abbe error) 3.Dynamicsrelated to scanner resonance frequencies Design of a compact AFM scanner 17
  • Slide 18
  • Concept 1 Kinematics analysis Required stroke: 10 x 10 x 2 microns Relation is found between x, y, z (platform position) u1, u2, u3 (actuators) K. J. Kamp A compact AFM scanner 18 u1u1 u2u2 u3u3 y z x
  • Slide 19
  • Concept 1 Example Ten scan lines 10 x 10 microns Actuator displacement ~ 6 microns Mechanical amplification 10 / 6 = 1.66 K. J. Kamp A compact AFM scanner 19
  • Slide 20
  • Concept 1 Scanner roll angle Hinges are not perfect Lateral motion will cause the scanner to roll K. J. Kamp A compact AFM scanner 20 u1u1 u2u2 u3u3 y z x
  • Slide 21
  • Titel van de presentatie 21 Concept 1 2D Statics analytical model
  • Slide 22
  • Concept 1 Main cause of AFM scanner roll Stiffness ratio between longitudinal and lateral stiffness of a rod K. J. Kamp A compact AFM scanner 22 Normalized stiffness ratio []
  • Slide 23
  • Concept 1 Statics Flexure notch hinges Increase longitudinal to lateral stiffness ratio Decreases the roll angle K. J. Kamp A compact AFM scanner 23
  • Slide 24
  • Concept 1 Statics FEM analysis 3D FEM model K. J. Kamp A compact AFM scanner 24
  • Slide 25
  • Concept 1 Statics FEM results u 1 = 5 microns x = 5 microns = ~ 460 microrad K. J. Kamp A compact AFM scanner 25
  • Slide 26
  • Concept 1 Statics FEM results Roll angle is lower = ~ 360 microrad K. J. Kamp A compact AFM scanner 26
  • Slide 27
  • Concept 1 Statics FEM results Circular notch hinge Roll angle even lower = ~ 60 microrad K. J. Kamp A compact AFM scanner 27
  • Slide 28
  • Concept 1 Dynamics First four resonances: K. J. Kamp A compact AFM scanner 28
  • Slide 29
  • Concept 1 FEM Modal analysis Eigenmode results K. J. Kamp A compact AFM scanner 29 Lateral 9,3 kHz Roll 42 kHz Yaw 9,8 kHz Vertical 48 kHz
  • Slide 30
  • Summary Can the requirements be met? Trade-off low roll angle vs. high resonance frequencies Low roll angles require a high stiffness ratio (low lateral stiffness) High resonance frequencies require high stiffness overall Conclusion: The individual requirements can not all be met. Concept 1 is not feasible K. J. Kamp A compact AFM scanner 30 Concept 1
  • Slide 31
  • Concept 2 K. J. Kamp A compact AFM scanner 31 Introduction Research Questions Requirements specifications Concept 1 Concept 2 Detailed Design Conclusion
  • Slide 32
  • Concept 2 Orthogonal scanning concept Lateral motion K. J. Kamp A compact AFM scanner 32 Side view Top view Actuator Sensor Actuator Sensor Probe tip
  • Slide 33
  • Concept 2 Orthogonal scanning concept Vertical motion K. J. Kamp A compact AFM scanner 33 Side view Top view Actuator Sensor Actuator Sensor Probe tip
  • Slide 34
  • Concept 2 K. J. Kamp A compact AFM scanner 34 Kinematics Lateral stroke: mechanical amplification = lever ratio b to a x u lever a b
  • Slide 35
  • Concept 2 K. J. Kamp A compact AFM scanner 35 Statics analysis Analytical model adapted to the orthogonal concept L2L2 x z uxux K2K2 K2K2 L K1K1 uzuz uu uu uxux uzuz u lever
  • Slide 36
  • Concept 2 K. J. Kamp A compact AFM scanner 36 Analytical model and FEM analysis Pure lateral input (no lever) u x = 5 microns Analytical model: = 21,7 microrad FEM result = 22,9 microrad The roll angle is positive
  • Slide 37
  • Concept 2 K. J. Kamp A compact AFM scanner 37 Including the lever Input u x results in a positive roll angle Input u results in a negative roll angle uu a b uxux uzuz u lever uxux uu positivenegative
  • Slide 38
  • Concept 2 K. J. Kamp A compact AFM scanner 38 Analytical model and FEM results The length of the vertical rods is varied: The roll angle shifts from negative to positive Vertical rod length Analytical FEM 10 mm-82,1 rad-17,8 rad 6 mm-28,4 rad+19,5 rad 3 mm+123,1 rad+73,2 rad
  • Slide 39
  • Concept 2 K. J. Kamp A compact AFM scanner 39 The analytical model is used to find zero roll angle Vertical rod length [m]
  • Slide 40
  • Concept 2 K. J. Kamp A compact AFM scanner 40 Resulting roll angle Final iteration L 1 = 3,0 mm L 2 = 4,0 mm u lever = 10 microns x = 4,9 microns Roll angle = -0,63 microrad
  • Slide 41
  • Concept 2 K. J. Kamp A compact AFM scanner 41 Dynamics FEM modal results Lateral eigenmodes (x,y): ~12,3 kHz Vertical mode (z): ~36,5 kHz Lateral: Vertical:
  • Slide 42
  • Concept 2 K. J. Kamp A compact AFM scanner 42 Summary The orthogonal scanner concept meets all the requirements The stroke of 10 x 10 x 2 microns can be achieved The roll angle is ~ 0,64 microrad The resonance frequencies are 12,3 kHz lateral 43,4 kHz vertical
  • Slide 43
  • Detailed design K. J. Kamp A compact AFM scanner 43 Introduction Research Questions Requirements specifications Concept 1 Concept 2 Detailed Design Conclusion
  • Slide 44
  • Detailed design Component selection Piezo actuators Triangulation sensors AFM chip holder K. J. Kamp A compact AFM scanner 44
  • Slide 45
  • Detailed design Piezo actuators PI (Physik Instrumente) 5 x 5 x 9 mm for vertical motion 3 x 3 x 13,5 mm for lateral motion K. J. Kamp A compact AFM scanner 45 TypeDimensionsNom. displ. P885.115 x 5 x 9 mm~6,5 micron P883.313 x 3 x 13,5 mm~13 micron
  • Slide 46
  • Detailed design Triangulation sensors Lion Precision capacitive sensors K. J. Kamp A compact AFM scanner 46 TypeDimensionsRange C3R-0,83 x 15 mm25 microns
  • Slide 47
  • Detailed design AFM chip holder Bruker DAFMCH probe holder Piezo holder measures 4 x 5 mm at the base. K. J. Kamp A compact AFM scanner 47
  • Slide 48
  • Detailed design Final design overview Outer dimensions (x,y): 26 x 26 mm K. J. Kamp A compact AFM scanner 48 Probe holder Sensor Lever Piezo actuator
  • Slide 49
  • Detailed design Cross-section view (no piezo actuators) K. J. Kamp A compact AFM scanner 49
  • Slide 50
  • Detailed design K. J. Kamp A compact AFM scanner 50
  • Slide 51
  • Detailed design Summary Specifications Dimensions (x,y) 26 x 26 mm Stroke(microns) 16 x 16 x 6,5 Roll angle 5,4 microrad Resonances lateral 9,8 kHz Resonances vertical 30,4 kHz K. J. Kamp A compact AFM scanner 51
  • Slide 52
  • Detailed design Summary Specifications Requirements Dimensions (x,y) 26 x 26 mm 15 x 15 mm Stroke(microns) 16 x 16 x 6,5 10 x 10 x 2 Roll angle 5,4 microrad < 2 microrad Resonances lateral 9,8 kHz > 10 kHz Resonances vertical 30,4 kHz > 30 kHz K. J. Kamp A compact AFM scanner 52
  • Slide 53
  • Conclusion K. J. Kamp A compact AFM scanner 53 Introduction Research Questions Requirements specifications Concept 1 Concept 2 Detailed Design Conclusion
  • Slide 54
  • The requirements have been set up for the AFM scanner The first concept is not feasible The second concept meets all the requirements and is feasible The detailed design is limited by the selected components: 1.The required size can not be achieved 2.The required roll angle is exceeded by a factor 2 K. J. Kamp A compact AFM scanner 54
  • Slide 55
  • Questions? K. J. Kamp A compact AFM scanner 55 Introduction Research Questions Requirements specifications Concept 1 Concept 2 Detailed Design Questions?