13
LETTER doi:10.1038/nature12960 Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European In ˜igo Olalde 1 *, Morten E. Allentoft 2 *, Federico Sa ´nchez-Quinto 1 , Gabriel Santpere 1 , Charleston W. K. Chiang 3 , Michael DeGiorgio 4,5 , Javier Prado-Martinez 1 , Juan Antonio Rodrı ´guez 1 , Simon Rasmussen 6 , Javier Quilez 1 , Oscar Ramı ´rez 1 , Urko M. Marigorta 1 , Marcos Ferna ´ndez-Callejo 1 , Marı ´a Encina Prada 7 , Julio Manuel Vidal Encinas 8 , Rasmus Nielsen 9 , Mihai G. Netea 10 , John Novembre 11 , Richard A. Sturm 12 , Pardis Sabeti 13,14 , Toma `s Marque `s-Bonet 1,15 , Arcadi Navarro 1,15,16,17 , Eske Willerslev 2 & Carles Lalueza-Fox 1 Ancient genomic sequences have started to reveal the origin and the demographic impact of farmers from the Neolithic period spread- ing into Europe 1–3 . The adoption of farming, stock breeding and sedentary societies during the Neolithic may have resulted in adapt- ive changes in genes associated with immunity and diet 4 . However, the limited data available from earlier hunter-gatherers preclude an understanding of the selective processes associated with this cru- cial transition to agriculture in recent human evolution. Here we sequence an approximately 7,000-year-old Mesolithic skeleton dis- covered at the La Bran ˜a-Arintero site in Leo ´n, Spain, to retrieve a complete pre-agricultural European human genome. Analysis of this genome in the context of other ancient samples suggests the existence of a common ancient genomic signature across western and central Eurasia from the Upper Paleolithic to the Mesolithic. The La Bran ˜a individual carries ancestral alleles in several skin pig- mentation genes, suggesting that the light skin of modern Europeans was not yet ubiquitous in Mesolithic times. Moreover, we provide evidence that a significant number of derived, putatively adaptive variants associated with pathogen resistance in modern Europeans were already present in this hunter-gatherer. Next-generation sequencing (NGS) technologies are revolution- izing the field of ancient DNA (aDNA), and have enabled the sequen- cing of complete ancient genomes 5,6 , such as that of O ¨ tzi, a Neolithic human body found in the Alps 1 . However, very little is known of the genetic composition of earlier hunter-gatherer populations from the Mesolithic period (circa 10,000–5,000 years before present, BP; imme- diately preceding the Neolithic period). The Iberian site called La Bran ˜a-Arintero was discovered in 2006 when two male skeletons (named La Bran ˜a 1 and 2) were found in a deep cave system, 1,500 m above sea level in the Cantabrian mountain range (Leo ´n, Northwestern Spain) (Fig. 1a). The skeletons were dated to approximately 7,000 years BP (7,940–7,690 calibrated BP) 7 . Because of the cold environment and stable thermal conditions in the cave, the preservation of these specimens proved to be exceptional (Fig. 1b). We identified a tooth from La Bran ˜a 1 with high human DNA content (48.4%) and sequenced this specimen to a final effective genomic depth-of- coverage of 3.403 (Extended Data Fig. 1). We used several tests to assess the authenticity of the genome sequence and to determine the amount of potential modern human contamina- tion. First, we observed that sequence reads from both the mitochondrial *These authors contributed equally to this work. 1 Institut de Biologia Evolutiva, CSIC-UPF, Barcelona 08003, Spain. 2 Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark. 3 Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095, USA. 4 Department of Integrative Biology, University of California, Berkeley, California 94720, USA. 5 Department of Biology, Pennsylvania State University, 502 Wartik Laboratory, University Park, Pennsylvania 16802, USA. 6 Center for Biological Sequence Analysis, Technical University of Denmark, DK- 2800 Kongens Lyngby, Denmark. 7 I.E.S.O. ’Los Salados’, Junta de Castilla y Leo ´ n, E-49600 Benavente, Spain. 8 Junta de Castilla y Leo ´ n, Servicio de Cultura de Leo ´ n, E-24071 Leo ´ n, Spain. 9 Center for Theoretical Evolutionary Genomics, University of California, Berkeley, California 94720, USA. 10 Department of Medicine and Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Nijmegen Medical Centre, 6500 Nijmegen, The Netherlands. 11 Department of Human Genetics, University of Chicago, Illinois 60637, USA. 12 Institute for Molecular Bioscience, Melanogenix Group, The University of Queensland, Brisbane, Queensland 4072, Australia. 13 Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA. 14 Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA. 15 Institucio ´ Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Catalonia, Spain. 16 Centre de Regulacio ´ Geno ` mica (CRG), Barcelona 08003, Catalonia, Spain. 17 National Institute for Bioinformatics (INB), Barcelona 08003, Catalonia, Spain. –0.06 –0.04 –0.02 0.00 0.02 0.04 0.06 –0.02 0.00 0.02 0.04 0.06 0.08 PC2 PC1 SE CH IT IT FI LFI ES UK IT FR IT FI FI IE Sct ES BE ES SE CH RO FR LFI CH CH CH CH CH CZ SE PL CH PT UK ES FI UK IT FI DE DE IE SE UK ES PT FI ES FR CH YG NL IE IT LFI CH PT PT HR ES FI IT UK PT CH IT ES RO PT PT CH UK RO IT BE CH FI CH PT PT IT UK UK ES FR BE GR UK CH ES PT PT ES ES IT ES FR BA UK BE FR PT LFI DE FR ES YG IT PT FR HR FR FI CH ES LFI LFI UK LFI CH DE PT YG CH FR PT PL UK UK FR YG YG CH YG FR IE CH ES UK IE CH ES IE UK IT LFI CH ES LFI UK UK UK ES ES PL ES ES CH IT FI ES BA UK DE FI IE HU ES ES CH LFI FR ES FR IT IE CH PT HU UK PT FI PL IE UK RS CH FR ES CH DE CH IT CH CH IE CH LFI IE UK IT UK UK CH CH ES BE ES IT LFI ES CH IT FR UK ES CH FI CH FR LFI IE CH AT FI LFI UK ES DE FR IT CH PT ES UK CH IT FR UK IT IE BE CH IT LFI FR IT ES ES FI IE UK FI LFI ES LFI CZ ES PT IT IE DE FI UK CH UK CH GR CH UK IT IT IT FR IT UK CH PT FR UK UK CH ES FI DE IT PT IE CH IT FR AT LFI FI UK SE IT CH DE PL IT CH PT YG FI IE ES ES CY IT UK PT IE DE IT CH IT CH FR PT IT FR PT SI LFI CH HU IT CH BE FI PL LFI UK UK PT IT IT UK RO FI PL HU CH UK FI FR LFI PT UK CH ES FI IT PL FI IE UK FR NL IT UK IT IT UK IT FR PT ES RU DE CH PT PL CH PT IT IT LFI ES IT CH IE UK PT FR YG CZ Sct CH LFI DE IT LV ES PT PT FI LFI CZ UK CH YG UK CH IT ES UK CH YG CH YG BE UK FR CH ES IE DE CH YG FR FI CH CH CH PL CZ CZ LFI UK LFI ES CH FR CH DE UK DE ES UK DE HR ES IT IT CH DE ES UK IT HU FR GR DE UK CH FI CH GR PT CH FI PT IT CH CH IT FI MK IT ES FI ES AL DE IT PT IT IE RU UK UK IE UK IT IT IT CH YG IT FI CH CH IE DE ES UK PT YG LFI PT DE ES PT DE RU CH FR UK PT CZ FR BE Sct UK FR PT FI IT FI PT PT PT UK LFI CH UK CH FI UK CH UK IE PT RU IT ES SI ES CH Sct UK CH FI YG UK DE CH RO ES IT FR FR LFI CH IT IT YG ES UK UK UK CZ IE IT FR CH ES IT ES FI AT CH IT CY IE CH PL FR PT NL IT YG FR CH IT BA UK DE IT PT IT BE YG SE CH FI PT DE IT DE FR PT CH UK LFI IT IE IT ES ES AL ES CH AL FR IT ES IT FI UK PT CH UK DE GR UK UK IE CH IT LFI IT CH DE RU DE FR FR BE IT IT IT IE PT BA PT FI UK PT UK IT FI Sct IT IE CH FR YG IT AT ES PT DE UK UK IT FR CH CH PL UK IT FR HU NL YG PT DE DE YG IT DE BE FR IE BE CH BE FI AT CH ES IT UK CH IE ES IT BE IT MK UK HU CH IT IT LFI LFI ES FR CH IT UK PT FI UK KS DE ES ES NL ES FI PT IT LFI UK FR ES PT CH UK UK CH FR ES IT UK BE UK CH IT PL FI CH UK YG HU IT DE IE DE LFI DE IT ES UK LFI IE SK ES ES UK GR FR FR PT LFI UK IT CH FR PT ES CH HU CH IT LFI TR CH LFI HU CH IT UK YG NO PT NL IT IT IT IE DE DE FR FI FI UK CH YG CH ES YG PT DE IT LFI BE IE CH PT ES DE IE ES IT ES CH IE UK FR LFI BE IT LFI UK ES FI IT CH PT DE GR CH CH IT FI DE IT UK YG BE BE IT YG LFI CH PL IT UK HR UK UK UK NL CH PT LFI ES UK AT PT FR CH IT LFI DE PT IT FI CH LFI FI UK FI LFI IT HR PT IT ES IT LFI PT ES PT NL IT FR CH UK BG FR BE UK CH IE LFI LFI UK PT IT BE CH CH IE ES RS IT UK IT IT PT CH FI CH BA IT DE UK IT IT PT UK PT FI BE PT ES FR IE IT YG LFI LFI PL PL CH PT CH LFI YG FR UK UK NL CH UK UK IE CH BE CH PT IE ES FI IT KS DE NL UK ES IT FI IT PT UK IT UK FR HU DE UK LFI FI IT UK IT BE IT FR BE UK FR CH IT IT BE CH YG HU IT FI ES FI UK BA PT BE FR CH ES DE BE AT ES YG FR ES ES BE FR LFI UK YG UK YG IT PT UK IT LFI PT PT FR IT FR CH BE CH FR IT CH UK FI IT DE ES NL IT FR UK PT CH UK PT IT FI CH NL UK FI ES LFI HU CH IT HU IE DE DE ES FI UK UK PT PT AT UK LFI AT CH FR CH CH UK UK CY IT CH UK YG LFI PT UK IT CH HU PT PL FR LFI BA LFI CH IE HU BE UK YG IT NO BE NL IE IT IE IT CH SE ES CH BG CH AT UK DE CH AT LFI ES IE LFI UK PT PL ES IT DK IT UK FR FR YG CH CH PT CH CH PT ES PT FI CH IE UK IE IT CH IT IE FR NL IT DE IE UK ES PT ES FR IT UK ES UK PT PT FR HR IT IT IT SE PT CH HR IT IT IT PT UK CH BE BE UK FI CH UK DE FI UK IT ES ES FR HU IT UK LFI IT CZ PT IT BA LFI RO IT AT FI ES ES UK DE PT PT ES HU CH FI NL IT DE CH CH IT IT PT LFI ES YG BE CH PT CH CH UK PT IT PL UK UK PT PT ES CH RO DE UK FR PT RO CH UK PT IT IT ES FI FI DE IT CH IT CH UK IT CH LFI UK AT FR UK ES CH IT CH CH IT RO ES IT PT FI UK PT PT CH LFI NO IT CH UK CH IT LFI FI DE UK CH TR ES IE ES IT PT CZ CH TR IT FI MK DE IT BE RO CH PT UK DE FR UK IT ES PT UK IT FI BE DE BE IT IT FR CH PT YG UK CH CH ES SE IT DE UK CH IT ES IT CH CH FR UK UK RS PT UK PT LFI FI UK CH IT ES FI GR ES IT UK YG BE CH PT CH DE UK RO CH UK UK IT UK YG CH ES FR UK BE CH PL NL CH IT IT UK BA CH PT CH ES UK CH MK CH CH IE IT FR UK ES CH CH DE IT PT BE LFI UK IT CH IT UK ES IT UK CH IT LFI ES UK UK PT IT DE UK UK IT CH PT UK PT CH IE IT DE UA UK ES IT FR PL CH PT HR IT IT CH CH CH FI CH UK FI PL LFI UK IT FR TR RU CH IT FR RO CH ES UK PT UK ES DE IT FR LFI IT ES IT CH BE UK CH ES PT LFI IT FI CY ES ES IT NL UKUK UK DE CH CH ES HU IE CZ CH IE PT CH IE LFI UK IE RO YG UK UK RO DE CH PT LFI AT IT SE PT ES CH IE IT ES UK La Braña 1 Ötzi Ajv70 Ire8 Gok4 Ajv52 a b c La Bra La Braña-Arintero a-Arintero site site La Braña-Arintero site Figure 1 | Geographic location and genetic affinities of the La Bran ˜a 1 individual. a, Location of the La Bran ˜a-Arintero site (Spain). b, The La Bran ˜a1 skeleton as discovered in 2006. c, PCA based on the average of the Procrustes transformations of individual PCAs with La Bran ˜a 1 and each of the five Neolithic samples 1,3 . The reference populations are the Finnish HapMap, FINHM and POPRES. Population labels with labelling of ref. 12 with the addition of FI (Finns) or LFI (late-settlement Finns). Ajv70, Ajv52, Ire8 and Gok4 are Scandinavian Neolithic hunter-gatherers and a farmer, respectively 3 . O ¨ tzi is the Tyrolean Ice Man 1 . 00 MONTH 2014 | VOL 000 | NATURE | 1 Macmillan Publishers Limited. All rights reserved ©2014

Derived immune and ancestral pigmentation alleles in a ... de ojos azules y piel oscura... · DNA(mtDNA)andthenuclearDNAofLaBran˜a1showedthetypical ancientDNAmisincorporationpatternsthatarisefromdegradationof

Embed Size (px)

Citation preview

Page 1: Derived immune and ancestral pigmentation alleles in a ... de ojos azules y piel oscura... · DNA(mtDNA)andthenuclearDNAofLaBran˜a1showedthetypical ancientDNAmisincorporationpatternsthatarisefromdegradationof

LETTERdoi:10.1038/nature12960

Derived immune and ancestral pigmentation allelesin a 7,000-year-old Mesolithic EuropeanInigo Olalde1*, Morten E. Allentoft2*, Federico Sanchez-Quinto1, Gabriel Santpere1, Charleston W. K. Chiang3,Michael DeGiorgio4,5, Javier Prado-Martinez1, Juan Antonio Rodrıguez1, Simon Rasmussen6, Javier Quilez1, Oscar Ramırez1,Urko M. Marigorta1, Marcos Fernandez-Callejo1, Marıa Encina Prada7, Julio Manuel Vidal Encinas8, Rasmus Nielsen9,Mihai G. Netea10, John Novembre11, Richard A. Sturm12, Pardis Sabeti13,14, Tomas Marques-Bonet1,15, Arcadi Navarro1,15,16,17,Eske Willerslev2 & Carles Lalueza-Fox1

Ancient genomic sequences have started to reveal the origin and thedemographic impact of farmers from the Neolithic period spread-ing into Europe1–3. The adoption of farming, stock breeding andsedentary societies during the Neolithic may have resulted in adapt-ive changes in genes associated with immunity and diet4. However,the limited data available from earlier hunter-gatherers precludean understanding of the selective processes associated with this cru-cial transition to agriculture in recent human evolution. Here wesequence an approximately 7,000-year-old Mesolithic skeleton dis-covered at the La Brana-Arintero site in Leon, Spain, to retrieve acomplete pre-agricultural European human genome. Analysis ofthis genome in the context of other ancient samples suggests theexistence of a common ancient genomic signature across westernand central Eurasia from the Upper Paleolithic to the Mesolithic.The La Brana individual carries ancestral alleles in several skin pig-mentation genes, suggesting that the light skin of modern Europeanswas not yet ubiquitous in Mesolithic times. Moreover, we provideevidence that a significant number of derived, putatively adaptivevariants associated with pathogen resistance in modern Europeanswere already present in this hunter-gatherer.

Next-generation sequencing (NGS) technologies are revolution-izing the field of ancient DNA (aDNA), and have enabled the sequen-cing of complete ancient genomes5,6, such as that of Otzi, a Neolithichuman body found in the Alps1. However, very little is known of thegenetic composition of earlier hunter-gatherer populations from theMesolithic period (circa 10,000–5,000 years before present, BP; imme-diately preceding the Neolithic period).

The Iberian site called La Brana-Arintero was discovered in 2006when two male skeletons (named La Brana 1 and 2) were found in adeep cave system, 1,500 m above sea level in the Cantabrian mountainrange (Leon, Northwestern Spain) (Fig. 1a). The skeletons were datedto approximately 7,000 years BP (7,940–7,690 calibrated BP)7. Becauseof the cold environment and stable thermal conditions in the cave, thepreservation of these specimens proved to be exceptional (Fig. 1b). Weidentified a tooth from La Brana 1 with high human DNA content (48.4%)and sequenced this specimen to a final effective genomic depth-of-coverage of 3.403 (Extended Data Fig. 1).

We used several tests to assess the authenticity of the genome sequenceand to determine the amount of potential modern human contamina-tion. First, we observed that sequence reads from both the mitochondrial

*These authors contributed equally to this work.

1Institut de Biologia Evolutiva, CSIC-UPF, Barcelona 08003, Spain. 2Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark.3Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095, USA. 4Department of Integrative Biology, University of California, Berkeley, California 94720, USA.5Department of Biology, Pennsylvania State University, 502 Wartik Laboratory, University Park, Pennsylvania 16802, USA. 6Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark. 7I.E.S.O. ’Los Salados’, Junta de Castilla y Leon, E-49600 Benavente, Spain. 8Junta de Castilla y Leon, Servicio de Cultura de Leon, E-24071 Leon, Spain. 9Center forTheoretical Evolutionary Genomics, University of California, Berkeley, California 94720, USA. 10Department of Medicine and Nijmegen Institute for Infection, Inflammation and Immunity, RadboudUniversity Nijmegen Medical Centre, 6500 Nijmegen, The Netherlands. 11Department of Human Genetics, University of Chicago, Illinois 60637, USA. 12Institute for Molecular Bioscience, MelanogenixGroup, The University of Queensland, Brisbane, Queensland 4072, Australia. 13Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge,Massachusetts 02138, USA. 14Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA. 15Institucio Catalana de Recerca i Estudis Avançats(ICREA), 08010 Barcelona, Catalonia, Spain. 16Centre de Regulacio Genomica (CRG), Barcelona 08003, Catalonia, Spain. 17National Institute for Bioinformatics (INB), Barcelona 08003, Catalonia, Spain.

–0.06 –0.04 –0.02 0.00 0.02 0.04 0.06

–0.02

0.00

0.02

0.04

0.06

0.08

PC2

PC

1

SE

CH

ITIT

FI

LFI

ES

UK

ITFR

IT

FIFI

IESct

ES

BE

ES

SE

CHROFR

LFI

CH

CH

CHCH

CH

CZ

SEPL

CH

PT

UK

ES

FI

UK

IT

FI

DE

DE

IE

SE

UK

ES

PT

FI

ES

FRCH

YG

NL

IE

IT

LFI

CH

PT

PT

HR

ES

FI

IT

UK

PT

CH

ITES

RO

PTPT

CH

UK

RO

IT

BE

CH

FI

CH

PTPT

IT

UK

UK

ES

FR BE

GR

UK

CH

ES

PT

PTES

ES

ITES

FR

BAUK

BE

FR

PT

LFI

DE

FR

ES

YG

IT

PT

FR

HR

FR

FI

CH

ES

LFI

LFI

UK

LFI

CH

DE

PT

YGCH

FR

PT

PL

UK

UKFR

YG

YG

CH

YG

FR

IE

CH

ES

UKIE

CH

ES

IE

UK

IT

LFI

CH

ES

LFI

UK

UK

UK

ES

ES

PL

ESES

CH

IT

FI

ES

BAUK

DE

FI

IE HU

ES

ESCH

LFI

FR

ES

FR

IT

IE

CH

PT

HUUK

PT

FI

PL

IEUK

RS

CHFR ES

CH

DECH

IT

CHCH

IE

CH

LFI

IE

UK

IT

UKUK

CHCH

ES

BE

ES IT

LFI

ES

CH

IT

FR

UK

ES

CH

FI

CH

FR

LFI

IE

CH AT

FI

LFI

UK

ES

DE

FR

IT

CH

PT

ES

UK

CH

IT

FR

UK

IT

IE BECH

IT

LFI

FR

ITES

ES

FI

IE UK

FI

LFI

ES

LFI

CZ

ES

PTIT

IE DE

FI

UK

CH

UK

CH

GR

CH

UK

IT

IT

IT

FR

IT

UK

CH

PTFR

UKUK

CH

ES

FI

DE

ITPT

IE

CH

IT

FR

AT

LFI

FI

UK

SE

IT

CHDE

PL

IT

CH

PT

YG

FI

IE

ESES

CY

IT

UK

PT

IE

DE

IT

CH

IT

CH

FR

PT

IT

FR

PT

SI

LFI

CH

HU

ITCH

BE

FI

PL

LFI

UK

UK

PT

IT IT

UK

RO

FI

PL

HU

CH

UK

FI

FR

LFI

PT

UK

CH

ES

FI

IT

PL

FI

IE

UK

FR

NL

IT

UK

ITIT

UK

IT

FR

PTES

RU

DE

CH

PT

PL

CH

PT

IT

IT

LFI

ES

IT

CH

IE

UK

PT

FR YG

CZ

Sct

CH

LFI

DE

IT

LV

ESPT

PT

FI

LFI

CZ

UK

CHYG

UK

CH

ITES

UK

CH

YG

CH

YG

BEUK

FR

CHES

IE

DE

CH

YG

FR

FI

CH

CHCH

PL

CZ

CZ

LFI

UK

LFI

ES

CH

FR

CH

DEUK

DE

ES

UK

DEHR

ES

IT

IT

CHDE

ES

UK

IT

HU

FR

GR

DEUK

CH

FI

CH

GRPT

CH

FI

PTIT

CHCH

IT

FI

MK

IT

ES

FI

ES

AL

DE

IT

PT

IT

IE

RU

UKUK

IE UK

IT

IT

IT

CHYG

IT

FI

CH CH

IEDE

ES

UK

PT

YG

LFI

PT

DE

ES PT

DE

RU

CHFR

UK

PT

CZ

FRBE

SctUK

FR

PT

FI

IT

FI

PT

PT

PT

UK

LFI

CH

UK

CH

FI

UK

CH

UKIE

PT

RU

IT

ES

SI

ES

CH

Sct

UK

CH

FI

YGUK

DE

CH

RO

ES

IT

FR

FR

LFI

CH

IT

IT

YG

ES

UKUKUK

CZIE

IT

FR

CH

ES

IT

ES

FI

AT

CH

IT

CY

IE

CH

PL

FR PT

NL

IT

YGFR

CH

IT

BAUK

DE

IT

PT

IT

BE

YG

SE

CH

FI

PT

DE

IT

DE

FR

PTCH

UK

LFI

IT

IE

IT

ES

ES

AL

ES

CH

AL

FR

IT

ES

IT

FI

UK

PT

CHUK

DE

GR

UK

UK

IE

CH

IT

LFI

IT

CH

DE

RU

DEFR

FR

BE

IT

IT

IT

IE

PT

BA

PT

FI

UK

PT

UK

IT

FI

Sct

IT

IE

CH

FR

YG

IT

AT

ES

PT

DE

UKUK

IT

FR

CHCH

PL

UK

IT

FR

HUNL

YG

PT

DE

DE

YG

IT

DEBE

FR

IEBE

CHBE

FI

AT

CH

ESIT

UK

CH

IE

ES

IT

BE IT

MK

UK

HU

CH

IT

IT

LFI

LFI

ES

FRCHIT

UK

PT

FI

UK

KS

DE

ES

ES

NL

ES

FI

PTIT

LFI

UKFR

ES

PT

CH

UKUK

CH

FR

ESIT

UK

BE

UK

CH

IT

PL

FI

CH

UK

YG

HU

IT

DEIE

DE

LFI

DE

ITES

UK

LFI

IE

SK

ESES

UK

GR

FR FR

PT

LFI

UK

IT

CHFR

PTES

CH

HUCH

IT

LFI

TR

CH

LFI

HU

CH

IT

UK

YG

NO

PT

NL

IT

IT

IT

IE

DE

DE

FR

FI

FI

UK

CHYGCH

ES

YG

PT

DE

IT

LFI

BE

IE

CH

PT

ES

DE

IE

ES

IT

ES

CHIE

UK

FR

LFI

BE

IT

LFI

UK

ES

FI

IT

CH

PT

DE

GR

CHCH

IT

FI

DE

IT

UK

YG

BEBE

IT

YG

LFI

CH

PL

IT

UK

HR

UK

UK

UK

NL

CH

PT

LFI

ES

UK AT

PT

FR CH

IT

LFI

DE

PT

IT

FI

CH

LFI

FI

UK

FI

LFI

IT

HR

PT

IT

ESIT

LFI

PTES

PT

NL

IT

FRCH

UK

BGFR

BEUK CH

IE

LFI

LFI

UK

PTIT

BE

CHCH

IE

ES

RS

IT

UK

ITIT

PT

CH

FI

CHBA

IT

DE

UK

ITIT

PT

UK

PT

FI

BE

PT

ES

FR

IE

IT

YG

LFI

LFI

PL

PL

CH

PT

CH

LFI

YGFR

UK

UK

NL

CHUK

UKIE

CH

BECH

PT

IE

ES

FI

ITKS

DE

NLUK

ES

IT

FI

IT

PT

UK

IT

UK

FR

HU

DE

UK

LFI

FI

IT

UK

IT

BE

IT

FR

BE

UK

FR CH

ITIT

BE

CH

YG

HU

IT

FI

ES

FI

UK

BA

PT

BEFR

CH

ES

DEBE AT

ES

YG

FRES

ES

BE

FR

LFI

UK

YG

UK

YG

IT

PT

UK

IT

LFI

PTPTFR

IT

FR

CH

BE

CH

FR

IT

CH

UK

FI

IT

DE

ES

NL

IT

FR

UK

PT

CH

UK

PTIT

FI

CH

NLUK

FI

ES

LFI

HU

CH

IT

HUIE

DEDE

ES

FI

UKUK

PTPT

AT

UK

LFI

AT

CH

FR

CH

CH

UK

UK

CY

IT

CH

UK

YG

LFI

PT

UK

IT

CH

HU

PT

PL

FR

LFI

BA

LFI

CH

IE

HU

BE

UK

YG

IT

NO

BE

NL

IE

IT

IE

IT

CH

SE

ESCHBG

CH

ATUK

DE CHAT

LFI

ES

IE

LFI

UK

PT

PL

ES

IT

DK

IT

UK

FRFR

YGCH

CH

PT

CH

CH

PT

ES PT

FI

CH

IE UK

IE

IT

CH

IT

IE

FR

NL

IT

DE

IE

UK

ES PTES

FR

IT

UK

ES

UK

PTPT

FR

HR

IT

IT

IT

SE

PT

CH

HR

IT

IT

IT

PT

UKCH

BE

BEUK

FI

CHUKDE

FI

UK

IT

ES

ES

FR

HU

IT

UK

LFI

IT

CZ

PT

IT

BA

LFI

RO

IT

AT

FI

ES ES

UK

DE

PT

PT

ES

HU

CH

FI

NL

IT

DE

CH

CHIT

IT

PT

LFI

ES

YG

BE CH

PT

CHCH

UK

PTIT

PL

UK

UK

PT

PT

ESCH

RO

DE

UK

FR

PT

ROCHUK

PTIT

ITES

FI

FI

DE

IT

CH

IT

CH

UK

IT

CH

LFI

UK

ATFR

UK

ES

CH

IT

CH

CH

IT

RO

ES IT

PT

FI

UK

PTPT

CH

LFI

NO

IT

CH

UK

CH

IT

LFI

FIDE

UK

CH

TR

ES

IE

ESIT

PT

CZCH

TR

IT

FI

MK

DE

IT

BE

ROCH

PT

UKDEFRUK

IT

ES PT

UK

IT

FI

BE

DE

BE

IT

IT

FRCH

PT

YG

UK

CH

CH

ES

SE

IT

DEUK

CH

IT

ESIT

CHCH

FR

UK

UK

RS

PT

UK

PT

LFI

FI

UK

CH

IT

ES

FI

GR

ES

IT

UK YG

BE

CH

PT

CHDE

UK

RO

CH

UKUK

IT

UK

YG

CH

ES

FR

UK

BE

CH

PL

NL

CH

IT

IT

UK

BACH

PT

CH

ES

UK

CH

MK

CH

CH

IE

IT

FR

UK

ES

CH

CH

DE

IT

PT

BE

LFI

UK

IT

CH

IT

UK

ES

IT

UK

CH

IT

LFI

ES

UK

UK

PT

IT

DE

UKUK

IT

CH

PT

UK

PT

CHIE

IT

DE

UA

UK

ES

IT

FR

PL

CH

PT

HR

IT

IT

CH

CH

CH

FI

CH

UK

FI

PL

LFI

UK

IT

FR

TR

RU

CH

IT

FR

RO

CH

ES

UK

PT

UK

ES

DE

IT

FR

LFI

IT

ES

IT

CHBE

UK

CH

ES

PT

LFI

IT

FI

CY

ES

ES

IT

NL

UKUKUK DE

CH

CH

ES

HU

IECZ

CHIE

PT

CH

IE

LFI

UKIE

RO

YG

UKUK

RO

DECH

PT

LFI

AT

IT

SE

PT

ES

CH

IE

IT

ES

UK

La Braña 1

Ötzi

Ajv70Ire8

Gok4

Ajv52

a b

c

La BraLa Braña-Arinteroa-Arinterositesite

La Braña-Arinterosite

Figure 1 | Geographic location and genetic affinities of the La Brana 1individual. a, Location of the La Brana-Arintero site (Spain). b, The La Brana 1skeleton as discovered in 2006. c, PCA based on the average of the Procrustestransformations of individual PCAs with La Brana 1 and each of the fiveNeolithic samples1,3. The reference populations are the Finnish HapMap,FINHM and POPRES. Population labels with labelling of ref. 12 with theaddition of FI (Finns) or LFI (late-settlement Finns). Ajv70, Ajv52, Ire8 andGok4 are Scandinavian Neolithic hunter-gatherers and a farmer, respectively3.Otzi is the Tyrolean Ice Man1.

0 0 M O N T H 2 0 1 4 | V O L 0 0 0 | N A T U R E | 1

Macmillan Publishers Limited. All rights reserved©2014

Page 2: Derived immune and ancestral pigmentation alleles in a ... de ojos azules y piel oscura... · DNA(mtDNA)andthenuclearDNAofLaBran˜a1showedthetypical ancientDNAmisincorporationpatternsthatarisefromdegradationof

DNA (mtDNA) and the nuclear DNA of La Brana 1 showed the typicalancient DNA misincorporation patterns that arise from degradation ofDNA over time8 (Extended Data Fig. 2a, b). Second, we showed that theobserved number of human DNA fragments was negatively correlatedwith the fragment length (R2 . 0.92), as expected for ancient degradedDNA, and that the estimated rate of DNA decay was low and inagreement with predicted values9 (Extended Data Fig. 2c, d). We thenestimated the contamination rate in the mtDNA genome, assembled toa high depth-of-coverage (913), by checking for positions differingfrom the mtDNA genome (haplogroup U5b2c1) that was previouslyretrieved with a capture method2. We obtained an upper contamina-tion limit of 1.69% (0.75–2.6%, 95% confidence interval, CI) (Supplemen-tary Information). Finally, to generate a direct estimate of nuclear DNAcontamination, we screened for heterozygous positions (among readswith .43 coverage) in known polymorphic sites (Single NucleotidePolymorphism Database (dbSNP) build 137) at uniquely mapped sec-tions on the X chromosome6 (Supplementary Information). We foundthat the proportion of false heterozygous sites was 0.31%. Togetherthese results suggest low levels of contamination in the La Brana 1sequence data.

To investigate the relationship to extant European samples, we con-ducted a principal component analysis (PCA)10 and found that theapproximately 7,000-year-old Mesolithic sample was divergent fromextant European populations (Extended Data Fig. 3a, b), but was placedin proximity to northern Europeans (for example, samples from Swedenand Finland)11–14. Additional PCAs and allele-sharing analyses withancient Scandinavian specimens3 supported the genetic similarity ofthe La Brana 1 genome to Neolithic hunter-gatherers (Ajv70, Ajv52,Ire8) relative to Neolithic farmers (Gok4, Otzi) (Fig. 1c, Extended DataFigs 3c and 4). Thus, this Mesolithic individual from southwesternEurope represents a formerly widespread gene pool that seems to bepartially preserved in some modern-day northern European popula-tions, as suggested previously with limited genetic data2,3. We subse-quently explored the La Brana affinities to an ancient Upper Palaeolithicgenome from the Mal’ta site near Lake Baikal in Siberia15. Outgroup f3

and D statistics16,17, using different modern reference populations, sup-port that Mal’ta is significantly closer to La Brana 1 than to Asians ormodern Europeans (Extended Data Fig. 5 and Supplementary Infor-mation). These results suggest that despite the vast geographical dis-tance and temporal span, La Brana 1 and Mal’ta share common geneticancestry, indicating a genetic continuity in ancient western and centralEurasia. This observation matches findings of similar cultural artefactsacross time and space in Upper Paleolithic western Eurasia and Siberia,particularly the presence of anthropomorphic ‘Venus’ figurines thathave been recovered from several sites in Europe and Russia, includingthe Mal’ta site15. We also compared the genome-wide heterozygosity of

the La Brana 1 genome to a data set of modern humans with similarcoverage (3–43). The overall genomic heterozygosity was 0.042%,lower than the values observed in present day Asians (0.046–0.047%),Europeans (0.051–0.054%) and Africans (0.066–0.069%) (ExtendedData Fig. 6a). The effective population size, estimated from heterozyg-osity patterns, suggests a global reduction in population size of approxi-mately 20% relative to extant Europeans (Supplementary Information).Moreover, no evidence of tracts of autozygosity suggestive of inbreed-ing was observed (Extended Data Fig. 6b).

To investigate systematically the timing of selection events in therecent history of modern Europeans, we compared the La Brana gen-ome to modern populations at loci that have been categorized as ofinterest for their role in recent adaptive evolution. With respect to tworecent well-studied adaptations to changes in diet, we found the ancientgenome to carry the ancestral allele for lactose intolerance4 and approxi-mately five copies of the salivary amylase (AMY1) gene (Extended DataFig. 7 and Supplementary Information), a copy number compatiblewith a low-starch diet18. These results suggest the La Brana hunter-gatherer was poor at digesting milk and starch, supporting the hypo-theses that these abilities were selected for during the later transition toagriculture.

To expand the survey, we analysed a catalogue of candidate signalsfor recent positive selection based on whole-genome sequence vari-ation from the 1000 Genomes Project13, which included 35 candidatenon-synonymous variants, ten of which were detected uniquely in theCEU (Utah residents with northern and western European ancestry)sample 19. For each variant we assessed whether the Mesolithic genomecarried the ancestral or derived (putatively adaptive) allele.

Of the ten variants, the Mesolithic genome carried the ancestral andnon-selected allele as a homozygote in three regions: C12orf29 (a gene withunknown function), SLC45A2 (rs16891982) and SLC24A5 (rs1426654)(Table 1). The latter two variants are the two strongest known lociaffecting light skin pigmentation in Europeans20–22 and their ancestralalleles and associated haplotypes are either absent or segregate at verylow frequencies in extant Europeans (3% and 0% for SLC45A2 andSLC24A5, respectively) (Fig. 2). We subsequently examined all genesknown to be associated with pigmentation in Europeans22, and foundancestral alleles in MC1R, TYR and KITLG, and derived alleles inTYRP1, ASIP and IRF4 (Supplementary Information). Although theprecise phenotypic effects cannot currently be ascertained in a Europeangenetic background, results from functional experiments20 indicate thatthe allelic combination in this Mesolithic individual is likely to haveresulted in dark skin pigmentation and dark or brown hair. Furtherexamination revealed that this individual carried the HERC2 rs12913832*Csingle nucleotide polymorphism (SNP) and the associated homozygoushaplotype spanning the HERC2–OCA2 locus that is strongly associated

Table 1 | Mesolithic genome allelic state at 10 nonsynonymous variants recently selected in EuropeansAllelic state Gene Name SNP Amino-acid change Function

La Brana 1 carries thederived allele

PTX4 Pentraxin 4 rs2745098 Arg281Lys May be involved in innateimmunity

UHRF1BP1 UHRF1 binding protein 1 rs11755393 Gln454Arg Risk locus for systemiclupus erythematosus

GPATCH1 G patch domain containing 1 rs10421769 Leu520Ser Receptor for OmpA expressedby E. coli

WWOX WW domain-containing oxidoreductase rs12918952 Ala179Thr Acts as a tumour suppressor andhas a role in apoptosis

CCDC14 Coiled-coil domain-containing protein14

rs17310144 Thr365Pro Unknown

La Brana 1 carries boththe ancestral and the

derived allele

SETX Senataxin rs1056899 Val2587Ile Involved in spinocerebellar ataxiaand amyotrophic lateral sclerosis

TDRD12 Tudor domain containing 12 rs11881633 Glu413Lys UnknownLa Brana 1 retains the

ancestral alleleC12orf29 Chromosome 12 open reading frame 29 rs9262 Val238Leu Unknown

SLC45A2 Solute carrier family 45, member 2 rs16891982 Leu374Phe Associated with skin pigmentationSLC24A5 Solute carrier family 24, member 5 rs1426654 Ala111Thr Associated with skin pigmentation

RESEARCH LETTER

2 | N A T U R E | V O L 0 0 0 | 0 0 M O N T H 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014

Page 3: Derived immune and ancestral pigmentation alleles in a ... de ojos azules y piel oscura... · DNA(mtDNA)andthenuclearDNAofLaBran˜a1showedthetypical ancientDNAmisincorporationpatternsthatarisefromdegradationof

with blue eye colour23. Moreover, a prediction of eye colour based ongenotypes at additional loci using HIrisPlex24 produced a 0.823 maximaland 0.672 minimal probability for being non-brown-eyed (Supplemen-tary Information). The genotypic combination leading to a predictedphenotype of dark skin and non-brown eyes is unique and no longerpresent in contemporary European populations. Our results indicatethat the adaptive spread of light skin pigmentation alleles was notcomplete in some European populations by the Mesolithic, and thatthe spread of alleles associated with light/blue eye colour may havepreceded changes in skin pigmentation.

For the remaining loci, La Brana 1 displayed the derived, putativelyadaptive variants in five cases, including three genes, PTX4, UHRF1BP1and GPATCH1 (ref. 19), involved in the immune system (Table 1 andExtended Data Fig. 8). GPATCH1 is associated with the risk of bacterialinfection. We subsequently determined the allelic states in 63 SNPsfrom 40 immunity genes with previous evidence for positive selectionand for carrying polymorphisms shown to influence susceptibility toinfections in modern Europeans (Supplementary Information). LaBrana 1 carries derived alleles in 24 genes (60%) that have a wide rangeof functions in the immune system: pattern recognition receptors,intracellular adaptor molecules, intracellular modulators, cytokinesand cytokine receptors, chemokines and chemokine receptors andeffector molecules. Interestingly, four out of six SNPs from the firstcategory are intracellular receptors of viral nucleic acids (TLR3, TLR8,IFIH1 (also known as MDA5) and LGP2)25.

Finally, to explore the functional regulation of the genome, we alsoassessed the La Brana 1 genotype at all expression quantitative trait loci(eQTL) regions associated to positive selection in Europeans (Sup-plementary Information). The most interesting finding is arguably thepredicted overexpression of eight immunity genes (36% of those with

described eQTLs), including three Toll-like receptor genes (TLR1, TLR2and TLR4) involved in pathogen recognition26.

These observations suggest that the Neolithic transition did not driveall cases of adaptive innovation on immunity genes found in modernEuropeans. Several of the derived haplotypes seen at high frequencytoday in extant Europeans were already present during the Mesolithic,as neutral standing variation or due to selection predating the Neolithic.De novo mutations that increased in frequency rapidly in response tozoonotic infections during the transition to farming should be iden-tified among those genes where La Brana 1 carries ancestral alleles.

To confirm whether the genomic traits seen at La Brana 1 can begeneralized to other Mesolithic populations, analyses of additional ancientgenomes from central and northern Europe will be needed. Nevertheless,this genome sequence provides the first insight as to how these hunter-gatherers are related to contemporary Europeans and other ancientpeoples in both Europe and Asia, and shows how ancient DNA can shedlight on the timing and nature of recent positive selection.

METHODS SUMMARYDNA was extracted from the La Brana 1 tooth specimen with a previously pub-lished protocol2. Indexed libraries were built from the ancient extract and sequencedon the Illumina HiSeq platform. Reads generated were mapped with BWA27 to thehuman reference genome (NCBI 37, hg19) after primer trimming. A metagenomicanalysis and taxonomic identification was generated with the remaining readsusing BLAST 2.2.271 and MEGAN4 (ref. 28) (Extended Data Fig. 9). SNP callingwas undertaken using a specific bioinformatic pipeline designed to account forancient DNA errors. Specifically, the quality of misincorporations likely caused byancient DNA damage was rescaled using the mapDamage2.0 software29, and a setof variants with a minimum read depth of 4 was produced with GATK30. Analysesincluding PCA10, Outgroup f3

16 and D statistics17 were performed to determine thepopulation affinities of this Mesolithic individual (Supplementary Information).

rs75

5678

77rs

1920

9718

8rs

3540

2rs

7937

1483

rs18

7050

917

rs73

0748

91rs

3540

3rs

8763

63rs

8006

4515

rs10

4619

28rs

1119

1288

6rs

1118

4507

5rs

3540

4rs

7727

8088

rs14

0309

535

rs35

405

rs11

3214

512

rs35

406

rs18

0707

453

rs78

8550

57rs

3540

7rs

5795

9046

rs55

7466

63rs

1147

9453

6rs

6874

998

rs68

9440

8rs

1421

6789

7rs

1006

7723

rs11

5630

314

rs14

6144

555

rs14

3546

871

rs16

8919

77rs

1819

2281

7rs

1882

1633

1rs

3539

6rs

1388

9142

4rs

4013

2rs

1411

3586

8rs

1919

3400

1rs

3539

7rs

7850

5258

rs16

8919

82rs

1138

9109

6rs

1142

3718

9rs

1380

0566

1rs

1364

038

rs18

5145

rs14

9480

117

rs18

5146

rs73

0771

06rs

7534

4149

rs25

0417

rs11

6828

782

rs11

3928

135

rs22

8794

9rs

1140

6828

7rs

3538

9rs

7729

962

rs21

1309

7rs

1157

9351

3rs

1145

7390

1rs

3539

1rs

7608

1820

rs18

6125

987

rs35

393

rs11

4452

043

rs13

6403

7rs

7615

2294

rs10

1087

2rs

2877

7rs

7736

6462

rs11

4048

710

rs75

0924

13rs

1890

0233

4rs

7307

7127

rs14

9427

409

rs19

0934

666

rs14

1821

415

rs80

2925

49rs

1116

1849

5rs

7870

4525

rs74

4425

6rs

1478

2156

1rs

1450

5821

9

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Alle

le fr

eque

ncy

Alle

le fr

eque

ncy

Genotype

CEU

YRI

La Braña 1

rs16891982

rs75

6267

86rs

7580

4106

rs14

3538

859

rs18

5587

149

rs11

6688

269

rs22

4465

7rs

1502

7178

5rs

1016

2789

rs79

8754

56rs

5572

8404

rs26

7534

6rs

1428

8925

3rs

7806

5868

rs11

1337

581

rs18

6348

543

rs19

1207

217

rs18

3165

868

rs18

8836

177

rs24

3335

4rs

2459

391

rs77

5757

93rs

1917

4093

4rs

1904

3625

4rs

7729

4837

rs14

2736

532

rs13

9737

156

rs26

7534

7rs

1842

0002

5rs

1445

6205

6rs

2555

364

rs64

9330

6rs

1420

3974

3rs

4775

737

rs11

3182

462

rs14

5907

211

rs17

4265

96rs

7912

2997

rs24

5939

3rs

8041

528

rs16

9606

24rs

8022

8496

rs14

2665

4rs

1503

7978

9rs

1406

6622

9rs

2433

357

rs41

4384

9rs

7517

9742

rs76

6134

07rs

1158

7830

4rs

1927

5324

4rs

1411

2375

7rs

9302

141

rs76

5478

66rs

2017

4942

6rs

2470

102

rs13

8354

861

rs14

1380

477

rs79

4432

33rs

1861

6234

3rs

2469

597

rs16

9606

31rs

1696

0633

rs24

3335

9rs

1906

7659

9rs

7792

0254

rs14

9290

668

rs36

0754

90rs

1291

4834

rs74

0119

10rs

1845

5098

2rs

1171

0380

4rs

1398

0226

3rs

1893

3533

1rs

7401

1911

rs59

3188

01rs

5604

4246

rs77

6184

50rs

1149

0635

3rs

1835

6627

2rs

1143

2127

9rs

1880

3096

8rs

1416

8041

4rs

1508

8513

9rs

7633

2840

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Alle

le fr

eque

ncy

Alle

le fr

eque

ncy

Genotype

CEU

YRI

La Braña 1

rs1426654

Figure 2 | Ancestral variants around the SLC45A2 (rs16891982, above) andSLC24A5 (rs1426654, below) pigmentation genes in the Mesolithic genome.The SNPs around the two diagnostic variants (red arrows) in these two geneswere analysed. The resulting haplotype comprises neighbouring SNPs that are

also absent in modern Europeans (CEU) (n5112) but present in Yorubans(YRI) (n5113). This pattern confirms that the La Brana 1 sample is older thanthe positive-selection event in these regions. Blue, ancestral; red, derived.

LETTER RESEARCH

0 0 M O N T H 2 0 1 4 | V O L 0 0 0 | N A T U R E | 3

Macmillan Publishers Limited. All rights reserved©2014

Page 4: Derived immune and ancestral pigmentation alleles in a ... de ojos azules y piel oscura... · DNA(mtDNA)andthenuclearDNAofLaBran˜a1showedthetypical ancientDNAmisincorporationpatternsthatarisefromdegradationof

Online Content AnyadditionalMethods, ExtendedData display items and SourceData are available in the online version of the paper; references unique to thesesections appear only in the online paper.

Received 22 October; accepted 17 December 2013.

Published online 26 January 2014.

1. Keller, A. et al. New insights into the Tyrolean Iceman’s origin and phenotype asinferred by whole-genome sequencing. Nature Commun. 3, 698 (2012).

2. Sanchez-Quinto, F. et al. Genomic affinities of two 7,000-year-old Iberian hunter-gatherers. Curr. Biol. 22, 1494–1499 (2012).

3. Skoglund, P. et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science 336, 466–469 (2012).

4. Laland, K. N., Odling-Smee, J. & Myles, S. How culture shaped the human genome:bringing genetics and the human sciences together. Nature Rev. Genet. 11,137–148 (2010).

5. Rasmussen, M. et al. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463, 757–762 (2010).

6. Rasmussen, M. et al. An Aboriginal Australian genome reveals separate humandispersals into Asia. Science 334, 94–98 (2011).

7. Vidal Encinas, J. M. & Prada Marcos, M. E. Los hombres mesolıticos de La Brana-Arintero (Valdelugueros, Leon) (Leon: Junta de Castilla y Leon, 2010).

8. Overballe-Petersen, S., Orlando, L. & Willerslev, E. Next-generation sequencingoffers new insights into DNA degradation. Trends Biotechnol. 30, 364–368 (2012).

9. Allentoft, M. E. et al. The half-life of DNA in bone: measuring decay kinetics in 158dated fossils. Proc. R. Soc. B Biol. Sci. 279, 4824–4733 (2012).

10. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoSGenet. 2, e190 (2006).

11. Nelson, M. R. et al. The population reference sample, POPRES: a resource forpopulation, disease, and pharmacological genetics research. Am. J. Hum. Genet.83, 347–358 (2008).

12. Novembre, J. et al. Genes mirror geography within Europe. Nature 456, 98–101(2008).

13. An integrated map of genetic variation from 1,092 human genomes. Nature 491,56–65 (2012).

14. Surakka, I. et al. Founder population-specific HapMap panel increases power inGWA studies through improved imputation accuracy and CNV tagging. GenomeRes. 20, 1344–1351 (2010).

15. Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry ofNative Americans. Nature 505, 87–91 (2014).

16. Reich, D., Thangaraj, K., Patterson, N., Price, A. L. & Singh, L. Reconstructing Indianpopulation history. Nature 461, 489–494 (2009).

17. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328,710–722 (2010).

18. Perry, G. H. et al. Diet and the evolution of human amylase gene copy numbervariation. Nature Genet. 39, 1256–1260 (2007).

19. Grossman, S. R. et al. Identifying recent adaptations in large-scale genomic data.Cell 152, 703–713 (2013).

20. Lamason, R. L. et al. SLC24A5, a putative cation exchanger, affects pigmentation inzebrafish and humans. Science 310, 1782–1786 (2005).

21. Norton, H. L. et al. Genetic evidence for the convergent evolution of light skin inEuropeans and East Asians. Mol. Biol. Evol. 24, 710–722 (2007).

22. Sturm, R. A. & Duffy, D. L. Human pigmentation genes under environmentalselection. Genome Biol. 13, 248 (2012).

23. Sturm, R. A. et al.A single SNP inan evolutionary conserved region within intron 86of the HERC2 gene determines human blue-brown eye color. Am. J. Hum. Genet.82, 424–431 (2008).

24. Walsh, S. et al. The HIrisPlex system for simultaneous prediction of hair and eyecolour from DNA. Forensic Sci. Int. Genet. 7, 98–115 (2013).

25. Aoshi, T., Koyama, S., Kobiyama, K., Akira, S. & Ishii, K. J. Innate and adaptiveimmune responses to viral infection and vaccination. Curr. Opin. Virol. 1, 226–232(2011).

26. Moresco, E. M. Y., LaVine, D. & Beutler, B. Toll-like receptors. Curr. Biol. 21,R488–R493 (2011).

27. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheelertransform. Bioinformatics 25, 1754–1760 (2009).

28. Huson, D. H., Mitra, S., Ruscheweyh, H.-J., Weber, N. & Schuster, S. C. Integrativeanalysis of environmental sequences using MEGAN4. Genome Res. 21,1552–1560 (2011).

29. Jonsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L.mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damageparameters. Bioinformatics 29, 1682–1684 (2013).

30. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework foranalyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303(2010).

Supplementary Information is available in the online version of the paper.

Acknowledgements The authors thank L. A. Grau Lobo (Museo de Leon) for access tothe La Brana specimen, M. Rasmussen and H. Schroeder for valid input into theexperimental work, and M. Raghavan for early access to Mal’ta genome data.Sequencing was performedat the Danish National High-Throughput DNA-SequencingCentre, University of Copenhagen. The POPRES data were obtained from dbGaP(accession number 2038). The authors are grateful for financial support from theDanish National Research Foundation, ERC Starting Grant (260372) to TM-B, and(310372) to M.G.N., FEDER and Spanish Government Grants BFU2012-38236, theSpanish Multiple Sclerosis Netowrk (REEM) of the Instituto de Salud Carlos III (RD12/0032/0011) to A.N., BFU2011-28549 to T.M.-B., BFU2012-34157 to C.L.-F., ERC(Marie Curie Actions 300554) to M.E.A., NIH NRSA postdoctoral fellowship(F32GM106656) to C.W.K.C., NIH (R01-HG007089) to J.N., NSF postdoctoralfellowship (DBI-1103639) to M.D., the Australian NHMRC to R.A.S. and a predoctoralfellowship from the Basque Government (DEUI) to I.O.

Author Contributions C.L.-F. and E.W. conceived and lead the project. M.E.P. andJ.M.V.E. provided anthropological and archaeological information. O.R. and M.E.A.performed the ancient extractions and library construction, respectively. I.O., M.E.A.,F.S.-Q., J.P.-M., S.R., O.R., M.F.-C. and T.M.-B. performed mapping, SNP calling, mtDNAassembly, contamination estimates and different genomic analyses on the ancientgenome. I.O., F.S.-Q., G.S., C.W.K.C., M.D., J.A.R., J.Q., O.R., U.M.M. and A.N. performedfunctional, ancestry and population genetic analyses. R.N. and J.N. coordinated theancestry analyses. M.G.N., R.A.S. and P.S. coordinated the immunological,pigmentation and selection analyses, respectively. I.O., M.E.A., T.M.-B., E.W. and C.L.-F.wrote themajority of themanuscriptwith critical input fromR.N.,M.G.N., J.N., R.A.S., P.S.and A.N.

Author Information Alignment data are available through the Sequence Read Archive(SRA) under accession numbers PRJNA230689 and SRP033596. Reprints andpermissions information is available at www.nature.com/reprints. The authors declareno competing financial interests. Readers are welcome to comment on the onlineversion of the paper. Correspondence and requests for materials should be addressedto E.W. ([email protected]) or C.L.-F. ([email protected]).

RESEARCH LETTER

4 | N A T U R E | V O L 0 0 0 | 0 0 M O N T H 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014

Page 5: Derived immune and ancestral pigmentation alleles in a ... de ojos azules y piel oscura... · DNA(mtDNA)andthenuclearDNAofLaBran˜a1showedthetypical ancientDNAmisincorporationpatternsthatarisefromdegradationof

Extended Data Figure 1 | Alignment and coverage statistics of the La Brana1 genome. a, Alignment summary of the La Brana 1 sequence data to hg19assembly. b, Coverage statistics per chromosome. The percentage of the

chromosome covered by at least one read is shown, as well as the mean readdepth of all positions and positions covered by at least one read. c, Percentage ofthe genome covered at different minimum read depths.

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2014

Page 6: Derived immune and ancestral pigmentation alleles in a ... de ojos azules y piel oscura... · DNA(mtDNA)andthenuclearDNAofLaBran˜a1showedthetypical ancientDNAmisincorporationpatternsthatarisefromdegradationof

Extended Data Figure 2 | Damage pattern of La Brana 1 sequenced reads.a, b, Frequencies of C to T (red) and G to A (blue) misincorporations at the 59

end (left) and 39 end (right) are shown for the nuclear DNA (nuDNA) (a)and mtDNA (b). c, d, Fragment length distribution of reads mapping to the

nuclear genome (c) and mtDNA genome (d). Coefficients of determination(R2) for an exponential decline are provided for the four different data sets.The exponential coefficients for the four data sets correspond to the damagefraction (l); e is the base of the natural logarithm.

RESEARCH LETTER

Macmillan Publishers Limited. All rights reserved©2014

Page 7: Derived immune and ancestral pigmentation alleles in a ... de ojos azules y piel oscura... · DNA(mtDNA)andthenuclearDNAofLaBran˜a1showedthetypical ancientDNAmisincorporationpatternsthatarisefromdegradationof

Extended Data Figure 3 | Genetic affinities of the La Brana 1 genome.a, PCA of the La Brana 1 SNP data and the 1000 Genomes Project Europeanindividuals. b, PCA of La Brana 1 versus world-wide data genotyped with theIllumina Omni 2.5M array. Continental terms make reference to each Omnipopulation grouping as follows: Africans, Yoruba and Luyha; Asians, Chinese(Beijing, Denver, South, Dai), Japanese and Vietnamese; Europeans, Iberians,

Tuscans, British, Finns and CEU; and Indian Gujarati from Texas. c, Each panelshows PC1 and PC2 based on the PCA of one of the ancient samples with themerged POPRES1FINHM sample, before Procrustes transformation. Theancient samples include the La Brana 1 sample and four Neolithic samples fromrefs 1 and 3.

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2014

Page 8: Derived immune and ancestral pigmentation alleles in a ... de ojos azules y piel oscura... · DNA(mtDNA)andthenuclearDNAofLaBran˜a1showedthetypical ancientDNAmisincorporationpatternsthatarisefromdegradationof

Extended Data Figure 4 | Allele-sharing analysis. Each panel shows theallele-sharing of a particular Neolithic sample from refs 1 and 3 with La Brana 1sample. The sample IDs are presented in the upper left of each panel (Ajv52,

Ajv70, Ire8, Gok4 and Otzi). In the upper right of each panel, the Pearson’scorrelation coefficient is given with the associated P value.

RESEARCH LETTER

Macmillan Publishers Limited. All rights reserved©2014

Page 9: Derived immune and ancestral pigmentation alleles in a ... de ojos azules y piel oscura... · DNA(mtDNA)andthenuclearDNAofLaBran˜a1showedthetypical ancientDNAmisincorporationpatternsthatarisefromdegradationof

Extended Data Figure 5 | Pairwise outgroup f3 statistics. a, Sardinian versus Karitiana. b, Sardinian versus Han. c, La Brana 1 versus Mal’ta. d, Sardinian versusMal’ta. e, La Brana 1 versus Karitiana. The solid line represents y 5 x.

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2014

Page 10: Derived immune and ancestral pigmentation alleles in a ... de ojos azules y piel oscura... · DNA(mtDNA)andthenuclearDNAofLaBran˜a1showedthetypical ancientDNAmisincorporationpatternsthatarisefromdegradationof

Extended Data Figure 6 | Analysis of heterozygosity. a, Heterozygositydistributions of La Brana 1 and modern individuals with similar coverage fromthe 1000 Genomes Project (using 1-Mb windows with 200 kb overlap). CEU,northern- and western-European ancestry. CHB, Han Chinese; FIN, Finns;

GBR, Great Britain; IBS, Iberians; JPT, Japanese; LWK, Luhya; TSI, Tuscans;YRI, Yorubans. b, Heterozygosity values in 1-Mb windows (with 200 kboverlap) across each chromosome.

RESEARCH LETTER

Macmillan Publishers Limited. All rights reserved©2014

Page 11: Derived immune and ancestral pigmentation alleles in a ... de ojos azules y piel oscura... · DNA(mtDNA)andthenuclearDNAofLaBran˜a1showedthetypical ancientDNAmisincorporationpatternsthatarisefromdegradationof

Extended Data Figure 7 | Amylase copy-number analysis. a, Sizedistribution of diploid control regions. b, AMY1 gene copy number in La Brana1. CN, copy number; DGV, Database of Genomic Variation. c, La Brana 1AMY1 gene copy number in the context of low- and high-starch dietpopulations. d, Classification of low- and high-starch diet individuals based on

AMY1 copy number. Using data from ref. 18, individuals were classified as inlow-starch (less or equal than) or high-starch (higher than) categories and thefraction of correct predictions was calculated. In addition, we calculated therandom expectation and 95% limit of low-starch-diet individuals classifiedcorrectly at each threshold value.

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2014

Page 12: Derived immune and ancestral pigmentation alleles in a ... de ojos azules y piel oscura... · DNA(mtDNA)andthenuclearDNAofLaBran˜a1showedthetypical ancientDNAmisincorporationpatternsthatarisefromdegradationof

Extended Data Figure 8 | Neighbouring variants for three diagnostic SNPsrelated to immunity. a, rs2745098 (PTX4 gene). b, rs11755393 (UHRF1BP1gene). c, rs10421769 (GPATCH1 gene). For PTX4, UHRF1BP1 and GPATCH1,

La Brana 1 displays the derived allele and the European-specific haplotype,indicating that the positive-selection event was already present in theMesolithic. Blue, ancestral; red, derived.

RESEARCH LETTER

Macmillan Publishers Limited. All rights reserved©2014

Page 13: Derived immune and ancestral pigmentation alleles in a ... de ojos azules y piel oscura... · DNA(mtDNA)andthenuclearDNAofLaBran˜a1showedthetypical ancientDNAmisincorporationpatternsthatarisefromdegradationof

Extended Data Figure 9 | Metagenomic analysis of the non-human reads.a, Domain attribution of the reads that did not map to hg19. b, Proportion of

different Bacteria groups. c, Proportion of different types of Proteobacteria.d, Microbial attributes of the microbes present in the La Brana 1 sample.

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2014