26
Deflection F actor Charts for Two- and Three-Layer Elastic Systems S. THENN DE BARROS, Consulting Engineer, Sao Paulo, Brazil Tables of deflection factor values for three-layer elastic sys- tems loaded with uniform circular loads have been published by A. Jones of the Thornton Research Center, in connection with the development of a fundamental method of pavement design. For convenience in the design and analysis of pavement struc- tures, these factors should be presented in graphic form. The analytical expression of the deflection factor was modified, and the determining parameters were transformed to permit an easier and more direct process of deflection analysis. Two- layer factors were also computed as a particular case of three- layer systems. This paper presents a series of deflection factor charts for two- and three-layer systems, for a wide range of parameter values, based on Jones' tables. Severalexamples were computed to show the practical application of the charts. •THE deflection beneath the center of a uniform load, p, applied on a circular, flexible bearing area of radius r (Fig. 1) resting on the surface of a uniform elastic medium of semi-infinite depth, of elastic modulus E and Poisson's ratioμ,, after Boussinesq is W= 2 ( 1 - u 2 ) pr E forμ, = 0. 5 W= l. 5 pr E forμ, = 0. 35 W= 1. 75 r E The reduction of Poisson's ratio from 0. 5 to 0. 35 increases the deflection of the uniform medium by 17 percent. If the load is applied by a rigid plate instead of a flexible bearing area, the deflec- tion of the uniform medium computed by the foregoing formulas should be multiplied by the factor 1r/4 or 0. 785. For instance Forμ, = 0. 5 W _ l.18p r r - E Let us now compute the deflection of the uniform medium below a certain depth, considering the layer above this depth as incompressible. The deflection at any depth is equal to the term ~r multiplied by a deflection factor F. Figure 1 shows the values of the deflection factor at various depths for flexible and rigid bearing areas. The two curves show that the influence of the type of bearing area depends on the depth at which the deflection is computed. At the surface, the deflection factor is 1. 5 for a flexible Paper sponsored by Committee on Mechanics of Earth Masses and Layered Systems, and presented at the 45th Annual Meeting. 83

DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

Deflection Factor Charts for Two- and Three-Layer Elastic Systems S. THENN DE BARROS, Consulting Engineer, Sao Paulo, Brazil

Tables of deflection factor values for three-layer elastic sys­tems loaded with uniform circular loads have been published by A. Jones of the Thornton Research Center, in connection with the development of a fundamental method of pavement design. For convenience in the design and analysis of pavement struc­tures, these factors should be presented in graphic form. The analytical expression of the deflection factor was modified, and the determining parameters were transformed to permit an easier and more direct process of deflection analysis. Two­layer factors were also computed as a particular case of three­layer systems. This paper presents a series of deflection factor charts for two- and three-layer systems, for a wide range of parameter values, based on Jones' tables. Severalexamples were computed to show the practical application of the charts.

•THE deflection beneath the center of a uniform load, p, applied on a circular, flexible bearing area of radius r (Fig. 1) resting on the surface of a uniform elastic medium of semi-infinite depth, of elastic modulus E and Poisson's ratioµ,, after Boussinesq is

W= 2 ( 1 - u2) pr

E

forµ, = 0. 5 W = l. 5 pr E

forµ, = 0. 35 W = 1. 75 ~ r E

The reduction of Poisson's ratio from 0. 5 to 0. 35 increases the deflection of the uniform medium by 17 percent.

If the load is applied by a rigid plate instead of a flexible bearing area, the deflec­tion of the uniform medium computed by the foregoing formulas should be multiplied by the factor 1r/4 or 0. 785. For instance

Forµ, = 0. 5 W _ l.18p r

r - E

Let us now compute the deflection of the uniform medium below a certain depth, considering the layer above this depth as incompressible. The deflection at any depth

is equal to the term ~r multiplied by a deflection factor F. Figure 1 shows the values

of the deflection factor at various depths for flexible and rigid bearing areas. The two curves show that the influence of the type of bearing area depends on the depth at which the deflection is computed. At the surface, the deflection factor is 1. 5 for a flexible

Paper sponsored by Committee on Mechanics of Earth Masses and Layered Systems, and presented at the 45th Annual Meeting.

83

Page 2: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

84

...

C 0

u • -• C

I

(ti

0.7

0.8

0~ -o.• ~

Q3

~

0.2

~

0.1

000

007

0.0G

0. 0.1

DEFLECTION FACTOR F

01 0

0,15 0.2 0,3 0.5 1,0 1.18 1.!S 2. 0 3.0

0 C[ a:

2

4

~ 6 :J: I­Q. .... 0

8

10

/ V

/ I

I

j

I I

Rigid Plot•- // ~ Fleiclble Beorin~ Area

,. V i 2r I -

~~--

Poisson's Ratlo•0.5 -

Figure 1. Deflection factor of uniform medium.

- ..... ---. --- -- - ,_ - r• ~ ~ ....... ~ ~

~ r-t--,-,... r-,. -.. -....... - r-,. I'. -~ ~ i-. t--, "' - 2

I', - I', - r-.r--.... --I'. r-.. r,,,. r-... - -.. ... I' r-- "' - ,- - ... '

- I"-.. r,... I'-

' .... i'.. I~ ' , ...

r-- ,- - - I', 'I',. ....... 1'- --- r--t r...

' 'r--,. "I'..... -,... I' l'r-., r-

+-

' ...

I" -.... ' ['- "" ~ ....

r ' " r-..

•; ,-

' ' ~- I~ . ' ~ h -" "'i', ' --- ... , ' r-.... I. 755pr ' i-eo W• ·F r-.. E2 I',._

Poisson's rotio = 0.35 1/n... ~

Er/ ~-; ' 'i-. ' ...

' ' ' ·,

r--

'

' o.z 0.3 0.4 0.5 0.8 Cl1 0.8 09 I 2 3 4 5 6

Depth in radii h/r

Figure 2. Deflection factor chart for two-layered elastic systems.

,-

r--- ,.._

..... r-.

r--..,._ 1 e 11 10

Page 3: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

85

bearing area and 1. 18 for a rigid plate (for µ. = 0. 5 ). At depths greater than three times the radius the two factors are practically equal.

The deflection of a two-layer elastic system can be expressed in a form similar to the deflection of the uniform medium, but affected by an appropriate deflection factor. Assume a two-layer system such as that in Figure 2, in which the first layer is of thickness h, elastic modulus E1, and Poisson's ratio µ., and the second layer is of semi­infinite depth, elastic modulus Ell and the same Poisson's ratioµ., with perfect con­tinuity between the two layers. The deflection, after Burmister (!), is

W=l.5pr F Ez . w (µ. = 0. 5)

The deflection factor Fw, forµ.= constant, depends on the parameters E1/Ea and h/r. The Burmister graph (1) gives the values of the factor Fw for several values of the parameters, but allows-little accuracy in the readings of Fw, especially in the region of h/r < 1. Moreover, the range it covers is too small for the parameter h/r (up to 6) and too large for the parameter E1/Ea (up to 10,000).

Jones (2) published a series of tables of deflection factor values for three-layer elastic systems loaded with a uniform circular load, in connection with the development of a fundamental method of pavement design. The Jones' deflection factors were com­puted for a value of Poisson's ratio of 0. 35 in each layer. Two-layer systems are a particular case of three-layer systems, in which one modular ratio is equal to one. Hence, two-layer factors were computed from Jones' tables by a proper selection of parameters. For convenience and uniformity of presentation, the two-layer factors were transformed to comply with the equation

W = 1. 75 pr . F Ea

(µ = 0. 35)

The deflection factor F depends on the same parameters E1/E2 and h/r, forµ.= con­stant. The numerical value of factor Fis different from factor Fw, for the same values of the parameters, but the deflections computed by the two last equations are very close. The reduction of Poisson's ratio from 0. 5 to 0. 35 increases the deflection of layered systems by less than 10 percent, for the practical range of the parameters. The average increase is about 7 percent. The actual value of Poisson's ratio of pave­ment structures is not known, but it is likely to be between 0. 35 and 0. 5. This dif­ference can be ignored in practical applications.

The second equation may be put under another form, more adequate for the deter­mination of the moduli by load bearing tests:

E2 = 1. 75 rt F

But p/W = k is the unit load per unit deflection or "modulus of reaction." Hence

. . . Ea = 1. 75 r k F (µ = 0. 35)

The deflection factor F varies from O to 1. It is inversely proportional to the load spreading ability or reinforcing effect of the pavement over the bare subgrade.

Table 1 and the graph of Figure 2 give the values of the deflection factor F for several practical values of the parameters. Parameter h/r varies logarithmically from 0. 15 to 10, and parameter E1/Ea varies from 2 to 100. The curves for modular ratios from 2 to 50 were computed from Jones' tables. The curve for E1/E2 = 100, not computed by Jones, was drawn by logarithmical extrapolation and is accurate enough for practical applications. The graph should not be further extrapolated. All interpolations for intermediary values of Ei/Ea should be computed logarithmically.

Jones' original deflection factors (2) for three-layer systems conform with the equation -

Page 4: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

86

TABLE 1

DEFLECTION FACTOR VALUES FOR TWO-LAYERED ELASTIC SYSTEMS

~ r

0.156

0. 312

0. 625

I, 25

2.5

5

10

I

1.000

1.000

1.000

1.000

1.000

1.000

1.000

(Poisson's ratio= 0. 35)

2 5 10

.966 .939 .925

.930 ,867 ,818

.839 .693 .600

,711 .494 .388

.614 .356 .250

.558 .279 .176

.529 ,240 .138

W= l.755pr. ,f E3

Poi11on11 ratio = 0. 3 5

20

.908

.756

,512

.307

.183

.117

.0836

n 1 • n2 = N

50

.869

.654

-405

.227

.126

.0732

0.466

W= deflection beneath the center of circular uniform load

r = radius p= unit lood

h1, h2= thicknesses of layers

E1, E2, ~= elastic rnodulii of layers

F = deflection factor

Figure 3. Deflection parameters of three-layered elastic systems.

Page 5: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

CD

F =

~ 1 + i = 1 Pi (x) exp qi (x)

co

1 + ~l ri (x) exp qj (x)

J1 (Ax) - --dx

X

87

The functions pi (x), qi (x) and ri (x) are polynomials with coefficients depending on the non-dimensional parameters, J1 is a Bessel function, A= r/h2 and the other parameters are shown in Figure 3. The factor F as such has no immediate physical meaning. Jones computed and tabulated the factor F in function of th·e parameters

E1/E2 = k1, Ea/Es = k2, h1/h2 = H, r/h2 = A

For convenience and ease of application, Jones' three-layer factors were also trans­formed to comply with the following equation, similar to the two-layer equation

W _ 1.75pr F - Es . (µ = 0. 35)

The three-layer deflection factor F, for µ = constant, depends on the parameters de­fined in Figure 2

The tables and graphs in Figures 4 to 18 give the values of the three-layer deflection factor F for all combinations of the following parameter values

Il1 = 2, 5, 10, 20, 50 n2 = 2, 5, 10

h1/r = 0. 15 to 5 ha/r = 0. 3 to 5

Combining the graphs in Figures 4 to 18 with the graph of Figure 2 it is possible to interpolate for values of n1 or n2 between 1 and 2.

Jeuffroy and Bachelez (3) proposed an approximate method of three-layer system deflection calculation. The deflections computed by the Jeuffroy-Bachelez method are close to the values computed by the Jones method.

All deflection factors given for two- and three-layer systems were computed for the case of a flexible bearing area. For the case of a rigid plate, the computed deflec­tions should be multiplied by a "bearing factor." The exact value of this factor cannot be determined at this time. It can be safely stated that for the layered systems of interest in pavement design the bearing factor must be between rr/4 and 1, probably closer to 1. From analogy with the uniform medium (Fig. 1), it is evident that the surface layers have a greater influence on the difference between deflections of rigid and flexible bearing areas. If the surface layers are relatively stiff, this difference should be small. Taking into account the overall inaccuracies of modeling the pave­ment by an elastic layered system, it is suggested that the same deflection factors should be tentatively used in deflection analysis of pavement systems loaded with rigid plates.

An approximate formula is now proposed to calculate an "equivalent modulus" E1,2 that can be su~stituted for moduli E1 and Ea, for the same deflection. The three-layer system is thus reduced to an equivalent two-layer system, composed of one layer of

Page 6: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

88

5 0 15 02

4

F" ""I' J I II II ' I ,, I"" I I ''{ ' I '

~ - \ \ I

': \ \ ' I

03 04 05 06 07 08 09 I 15

3 I:

~ \ \ ~

- " \ 1\

' I \

2

- I'- \ I - I\ I - ' '-

I"-. ~

\ I -:. I'-.. \ \ I

1.5 - - ... - - - .J ~ -\- -L ::--- -- ,- - ,- - --'I.

:. --..... i'\. \ I ............ \ I ... '

:. "'I'--- r\ ~ \ ~ -N

.s::. 0.9

0.B

0.7

0.6

0.5

= ~ " \. \ Wl. \ : ........... "' \ 0 \ ~ -

I~ " "' '\ ,c;>_ \ 1' = --.....

" \., \ \ \ I r--... I - " ~~- \ I = ' 0 I

~ " > \ \ \ \ \ I

0.4 = ........

' ' \ \ : ..,_,.,

~ ~

~ -~

I\ ' + ':\, I

- - - - ~t " I Il l 111 1, 11111 IHI \ 11 t 111 11 IIH 1111 \ I I 11,

02 03 0.4 0.5 0.6 0.7 0.8 09 I 1.5

h , / r

1 :x 0,156 0,312 0,625 1,25

0,312 ,858 . 789 . 662 .510

0,625 .772 .717 .6 16 .489

1,25 .669 .633 .560 .460

2,5 - .564 .508 .428

5 - - .470 .400

Figure 4.

2 I ' I I \ '

\

\ \

1-- \: - -i;

\ \ \ ,

\ I

- - -rl, rl 111

2

2,5

,394

.387

.375

.360

.343

n = 2 1 N=4

n 2 = 2

4 I II I I II" 'Ir

\ \ \ ,,

" \\>!.

-- 1-\- --\ \

I

I

t-

11 I I ll II 111 11 , .. , 3 4

5

--.32 3

.319

.314

.306

-i

4 -

3

--

-2 -

--~ I .5

-----= -: ~ --~ = t

0.9

0.B

07

0.6

0.!5

0.4

,§ 0.3

5

Page 7: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

03 04 05 06 07 0809 I l"/'l'I , .. -.. '" " ' ' " " " " I

~

: ......... 4

~ 'r-,.. I: ['. - " i- i--,... r--..

3

I'- '\ ,_

' ,- r- ..... ~ 2

,- r--.,... t\.. 1,5 I- - - i--- - '- - - -~ - - - ~ 1-..-

i::: ........

' ['.. ~ ::.. -- ................. ', .... ~~-- \ ...

' N

;-- ......... "-" \ : ~ ......... r--. ~ ' :--- ' ~ . ,A '\ I\ " .......

' ~ ~6'- '\. \ c-. \

~ ............... ~.t '\ \

I\ \ \. \ --....... ..... ~' '\ \ ' \ "

.c 0 .9

0.8

0.7

0.6

05

"""'-!:- ,:.,. " I'\ \ 1

~o " '\

\ \ \ \ 0 .4

: ~ " \. \ ' \ ' I I Iii, "

.... ,. ... · -· I 0.2 0.3 0 .4 0.5 0 .6 0.7 0.8 0.9 I

h 1 / r

~ r 0,156 0,312 0,625

0,312 .747 .651 .505

0,625 .601 .537 .438

I, 2 5 .449 .416 .359

2,5 - .320 . 287

5 - - .235

Figure 5.

15 2 ,, ·: 'I l' I

l\ I I'\ I [\ I

I r\~ I \ I\ I

' d ~

- I-+' I-.. '- I- -

: ~ I

~ I \ \ 1 ' ' I

\! \ \ \ I \ ' I

I

" I

\1 I I,

1.5 2

1,25 2,5

.352 .240

.324 .231

.284 .215

.240 .194

,202 .172

"/" 2 N=IO

nz = 5

3 4 ' " " ' "

\

\ '- \- - - -

' I

\ \ \

' ... .... 3 4

5

-.171

.166

.158

.148

-; "'

:

-'--

-

:

4

2

1.5

0 .9

0.8

0.7

06

0.5

0.4

.... 0.3 5

89

Page 8: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

90

5 015 02 , 111 l'I' '' "" .. .. "' ....... '" I ......

03 04 05 06 0 7 OB 09 I

4 : ........ . :

' ~

3

2

-r--r-r-... K I'-... r--.

- -i--. ..... I'..

- ...... , ' 1,5 -- . - ---1,;._- - - - -.

I"<,;: - - - ~ cl 1---

- ....... i---.. ..... ~ ... ...._ .. - ---i--... ....

I'-,,

~ ~rt ~

0.9

0.8

0.7

0.6

0.5

~ ~ '-Q \

= ....... ...... -....-.. ~ \

~- I', R,j' \. \ ~~ ....... ~v, '\ ~ ' - "

r--......._ N~ I\ \ \ -

~ "-I::, ' '\ \ \ \.

0.4 § ""'-is- "" \ \ ' ~ ~ " I\ I\ I\ \ ~I, .~ \.. ' " \ .\ .\, ... ,\

"" '"" ... "' 030.15 0.2 0 .3 0 .4 O!:i 06 0.7 OS 09 I

~ r 0,156 0,312 0,625

0,312 ,664 .5 59 .415

0,625 ,500 .436 .346

I, 25 ,344 . 315 .267

2,5 - ,221 .198

5 -- - .149

Figure 6.

15 2 II ! ,,, '"

I I

~ : N---I \. I \q I I \

V. -+ - - -\ ' \I \

'{ ,, I \

I \ I

\ I

\ I \ I

I I

I' \ : ,I ,I, '. 1.5 2

1,25 2,5

.274 .174

.246 .165

.207 .150

.165 .130

. 128 .108

n = 2 1

N=20 n

2 = 10

3 4 5 5 ""

'\ .... ; ,,, 4

,o

\ 3

-2

--- - ~ ~ - I .5

\ \ \ I

I

. . 3

5

-.112

,108

.JOO

.0903

-:

:

'

... ... 4

I

09 0.8

0.7

0.6

0.5

0.4

Page 9: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

... ' .. .c

4

2

us

0.9

0,8

0,7

0.6

0 .5

0.4

0.3

I l 'I I

-- ' :- - - -",

= ~ r-...

" ,,.. r ' '-

", ~ ~ '\. ~ ~

~o

,, ,.~.

03 04 05 0.607080.91 "" "" '\ "' , ..

\

' \ \ \ \ 1

'\ 1

\ I\. \

\ \ \ ' '\ \ I\. ' ' ' '\ I\ \

- - - f\- ~- 1-\ - \ r"

'\. ~ \ \ \

"' \ \ \ -

' \ \ ~~ i'\. I\ ' \ h \

'I ' \~ "' \n

\ \o \~ \ \

~'\ ,~ ~' \ ,

\ ~i) \ \ 1

I\ , \

, \ \

\ ., , .. , , \. I., ..

1.5 2 ,, : ' I I ' IO I

I

\ I

\ I \ I

I ' ' I I

\ \ I \ \ ~ L,

- \- - I-\- ,- ,- .-\tl.-

\ 7¥-'~ I

I

' I \

' I \ I

I

I I I

' I I

I I ,I , I,

0.15 0 .2 O.:S Q4 0.5 0.6 0 ,7 OB 0.9 I 2

h 1 /r

~ r 0,156 0,312 0,625 1,25 2,5

0,312 ,830 ,733 ,556 .372 .246

0,625 ,745 .669 ,522 .359 .242

I, 25 ,648 .593 .:476 .339 ,235

2,5 - .528 .430 .313 .224

5 - - ,394 ,289 .211

Figure 7.

"1 .. 5

"z = 2

3

\

\

\ \~ I.~

- - - -

3

5

-.174

.172

.168

, 163

N=IO

, .. , ..

-

-

-- >-

-

' : '

1

4

3

2

1.5

' 0.9

0.8

0.7

0.6

0 .5

0 .4

... 0 .3 4 5

91

Page 10: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

92

.. .s:::.

5

4

2

15

I

0 .9

0.8

0.7

0 .6

0.5

0.4

0.3

015 02 03 04 05 06 07 0809 I ' ' ' I' I"' .,. .,. rro ' I\.

" I: \

'~ [\

- "' I\ .........

r-.... ~ \ I'-.. ~

- i'-.. \ .:. r---.... "- ~ ,_ _ ,- - ._ - ~

~ ~ ~

_-.:s

~ ~ ~ j --

----I-- ·, - "-- " f'...1-. " I\ \~, i:;...__ I'\

i: ......... "-- ... "\ .,., \" ~- '" " I\ - \'t ' t: --.......... '\ , \ "'~ 1 --~--- ... 'i'-.. " '\If> i-.., ' --......... " ~-t. 'is- ·, \ ' 1:-. 1'. I\

I: .... "- [t \ ' \ 7

le,........_ ~o '\ \ \ \ . "Iii

s I~ ' \ \ -, ~ .I \. ' .\ .\

I- t 1- ·•-~ .. .. I ... 11

0.15 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 I

h 1 /r

~ r 0,156 0,312 0,625

0,312 .713 .598 .427

0,625 .572 .497 .378

I, 25 .429 .387 .312

2,5 - .299 .249

5 - - , 202

Figure 8.

15 2

" r,. I .. 1-,. I I\. I \ I I I\ I

I \ ~ I

\ I \

' I \o

- I- - - -v '~

I

~ I I I\ I \

\ I

' I

\ I

\ ' 1 I

I

- -J I ,, .I Ir, ,

1.5 2

1,25 2,5

.268 ,162

,250 ,157

.223 .148

, 188 ,134

.155 . 116

"1 = 5

"z = 5

3

\ \ 1

'- - - I-

, ... 3

5

-,IOI

.0989

.0944

,0871

N=25

4 "" ,

-

\ i,

·:,:,. .

.... - -

'

'

4

3

2

1.5

I

0.9

0 .8

0 .7

06

0.5

0.4

, ... , .. , 0.3 4 5

Page 11: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

5 015 02 E' 'I '" I

,, ' I "" I' I " ,, J I 03 04 05 06 07 0809 I

,_ 4 r-,-..,

" 3 :. ' ~ ---

2

,_ I'--. ... \_ ... .......

r--... '::- - ' ~ ' I=" ........... "\

1.5 -- -- -- -~

' - - - f-'\ -- --I-

I- --r-.... " I\!" .... ' ,_

... -....

N I .c

0.9

O.B

0.7

0.6

0.5

0.4

,_ ..... , "\ \ r---. ' '\.o = r---..... ', ~ 11' \ ;:- r--...... ~~ [\ \

-.......... "-~ '\ \ \ r--... ~ "r---..,, ~ \ \

' '\ I\ \ \ ;..___ "°-,o '" I\ \ ' ' ~ !O \. \ \ \ \

~

~ '\._ ' \ . - \

~. ·" I.\ 1 .. \ 11 ,\ ' 11 It I \ , , ... ' I 0.3 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I

h 1 / r

~ r 0,156 0,312 0,625

0,312 .626 . 508 . 350

0,625 .469 .401 .301

I, 25 .325 .291 .236

2,5 - .206 .174

5 - -- . 130

Figure 9.

1 5 'I IIJ'

[\

' I I I I I I I

I 'f., I

1--~.....I

\I

~ I

I I

I

\ I I

\ I , I

I

1\ I I

1.5

1,25

. 211

.195

. 168

.134

. 102

n = 5 1 N=SO

n 2 = 10

2 3 4 I ' I ' I ~ ' ' ' "" " 'J X:

I' Pr., \ \ u: 4

\ f:'o ~(!) 3

\~ \ -

\ ' ' - 2

I -: \ \ -

- - -- ·\- - I-'- - 1.5

\ \

I

\ \

I

2

2,5

. 122

.118

. 109

.0954

.0779

I

I I

I I

1,,, lu ll

3 4

5

-

.0712

.0691

.0649

.0~79

-..:

:

-C

.

--:

' C

0 .9

0.8

0.7

0.6

0.5

0.4

11ii 0.3 5

93

Page 12: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

94

... ' .. .c.

4

3

2

L5

I

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0 .3 04 05 06 07 0809 I I 1 1'" ' , .... , .. . '"' ''\ OIi 11•1 , .... '"' ·~

= \ ~ \ \ ' >- ' I\ r\ \

\ \ \ \ \ I\ \ \ \ i

- \. \ \ \ I

- \. \ \ \ ~- --· --~- ~ .l - - ,-- \ - r - \-- " \ \ \ \ \ , - '-

' '\, ' \ ' \ ~

' '\. \ \ \ ~ ~ "\. ' ' \ \',;

k ' \ \ \i I\ ~

"' \ ' \f i \ \

"' ' \ ~ 'v;>_ P' \ \ I

~ " ,<;,, \u· ' \ ~ '0 , ..... \ \ \ = 1\3' \ \ \ \ ~~

~~1 .. 1 I ~ ' IL 1 .r I• I II II l111 '' " Ii i UI "I I

0.15 0 .2 0 .3 0 .4 0.5 0.6 0 .7 0.8 0 .9 I

~ r 0,156 0,312 0,625

o, 312 .BIi .687 .483

o, 625 .729 .630 ,457

I, 25 .634 .561 .420

2,5 - .499 .379

5 - -- .346

Figure 10.

15 2 'I ' ' I ' Ir ljl 11

j \ ,. I

\ I

\ I \ \

I , I

I

- - .., - :1 id -

a__

~

I I I

I ' I

I I

I I l I

L5 2

1125 215

,298 .181

,290 ,178

.275 .174

,255 .166

.234 .156

n1 =10

,, "

\

'

-

, 1 ..

N=20

"II 11 11 , , ''" .

: 4 .

3

-:

2 ~ -I!-' ,: ~ -=

>- - - t-- I .5

II " " ' "

3 4

5

-. II 6

. 115

. 112

.109

-= -: I

:

.

= ~

~

=

0.9

0.8

0 .7

0.6

0.5

0.4

Il l~

50 .3

Page 13: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

... ' .. .c

5015 02 0 3 04 05 0.60.70.8091

: " " ' " ,, 1"'1 ' I

4

3

2

1.5

0 .9

0.8

0.7

0 .6

0.5

0.4

0.3

~

I=

......

,- 'I"-,- r----- '

['-.... - I"-i::- ............. I"\ .. t- --- -- ~ '!,,,,. - -- I"\ ~ "I'

........ - I',.. "' ·-; .......... ' \. : 'r-,,. 'I\. ' ---...... ':-. '\

=-- "' \ \,'

"'""' \o \ " \ :-, --e~ '\_0

~ "' n ~ \ \ ~()~ ~ ' ' 1 ,X .\ \ I.\

' I\ :, \ \ \,.

\

I"\ \ I'. \ ~

-- --~ -- ·\-· [\ \ \

\ \ -'1 ' ~ \,

I\<;> b \ \ \ '

\ \

\ \ \ \ \ J "' 1, .. 111, I,

0.15 0.2 03 0.4 0.5 0.6 0.7 08 0.9 I

h 1 / r

~ I 0,156 0,312 0,625

0,312 . 689 .553 .369

0,625 .553 .467 .334

I, 26 .416 .367 .281

2,5 - . 284 . 225

5 - -- .181

Figure l l.

15 2 'I ' i I 'I "\ I

I \ : \

\ I

\ 1

'{ I' I

--+ \ .: -t----I ~~

) ! t, I

\ I

\ I

' : I I I I I

I

I , I ,I ,I I

1.5 2

1,25 2,5

. 217 .123

.207 . 121

.187 . 115

. 160 .105

. 130 .0912

"1 = 10 N=50

"2 = 5

3 4

"\ I'" '"I '''

' :

'.

\ \ \ \ p . .

~ . \~ .

I . . -- - - 1t ·

I\ -

I . -.

I : I j

I .

I .

I : . :

~ ~

11,I , 11

4

3

2

1.5

0 .9

0.8

0 .7

0.6

0.5

0.4

0.3 3 4 5

5

-

.0720

.0706

.0679

.0629

95

Page 14: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

96

... .......

N

~

03 04 05 06070.8091 15 0 I I I 'I . ,, .. "" ' I '"' .. .. "' I' I I~

4 ~ ' I= .... r--... \. '

3

,.,, \

~ ' 1\ -2

............. '\ I \ r-,...

' I ...... I

- ' ' I

:... ---- ' ' I

1.5 ---- --- --~ -- -- ---' ,- -- - \ - -- >--j- -

I

0.9

0.8

0.7

0.6

0.5

0.4

03

~ ---

= i'---....

g-......_

- " ....... r-........

~-.............. "~ ... -

1"""'1.+. '\ l,11,)~

"' I"'--. .....

"'i--I"-.. ....

' 'M

" ~ ..... ~'l!' .. \. \. '

" \ .\ ' ).. ,

'" "

' \

'\ \~ \ 'i,_0

\ )_ \ 'Q \

\ \ \ \ \ ' ' \ \

\ ' \ \ ,11 11 •• , ,, \ "

, ... , ... 0.15 0 .2 0 .3 0 .4 0 .5 0.6 0.7 0.8 0.9 I

h 1 / r

I~ r 0,156 0,312 0,625

0,312 .601 .467 .302

0,625 .450 .376 .267

I, 2·5 .312 . 275 ,214

2,5 - .195 .159

5 - - .117

Figure 12.

\!· - I I

\ I \ \ I

' I ' I I

I I I i,I

1.5

1,25

.172

.163

.144

.117

.0885

"1 = 10 N•IOO

"· "10

2 'I' ,,

' ,,

"" \ -

' \ : 4

\ ' :

\ .., \\

\~ -3

. 0

'~ \ -0

.,., \

\! \ l -- \-

\ \

\ \ \ \ 1

,II

2

2,5

.0946

.0924

.0876

.0782

.0642

- ,..._ -

I I I I

I I

I

I

...:

----:

--:

-----:

= --:

2

1.5

I

0.9

0.8

0.7

0.6

0.5

0.4

' " 3

'" .. 0.3 4 5

5

-.0525

.0514

,0489

.0442

Page 15: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

... ' .. .r:

97

"1 =20 N=40

"2 = 2

03 04 05 06 07 0809 I 15 2 ' \ ' "" l't'" "" ' I 'I I I ,11 I II " I I '1 "" "' \' ':

"'-. - - 1------1---+--+-+-+--+---i \ 1--l-'-l--t--.\-+--1---t--1--t-1--1c+l'3

4: ' \ : \ 11 4

c'I ' ' I 3 4 55

\ \ : \ r \ \ \

: I 3

\ l--\-1--1- 1-+--- H>-l--l--~+-----l-l--l-!--l---l--l-----ll---+-.._l--l-t-t

\ '\ \ \ ' \ : e g 2 1:---t----t---+ll--tt---t--t-\--t--t-ll-t+-+-l--t------\t---rll-tHll--+- +-,h:rt--t-~ 2

I=- ' \ \ '

3 ::

' \ I : 1.5 ~ --- --\; -- \ - , --- -- - - - - \- ----1 --~ ""- \ \ \ \ \ ' ~ I-~- ~ ~ f-;\,---+-'r-l\ - \l-\-+-'11-t--t-1---+--H, - ----t-t-t--t-t,--:-~-t--Hll-"-t--t----Ht----+--11--• -1-• --;-_1

- [tii - .... - - - ·- - - 1.5

; '\. \. \ \ \ 0 =' 0.9 ; \.. \ \ \ \ \, 'G, : 0.9

0.0 i\ \ \ \ ~ 1 , I ~ o.e 0 .7 h,~\--+-'lr--\ -+-\-\-l---\-\+)- IG~H-'ll'i,., . .--11--H---'t--½f-l--H~l--i!i-t--+-t-+ --+--J-t--H-t--:I 0 .7

o.6 i;: __ \~ 1----\ ~ - .....\-'t--1U1,f-l.-1-1-\ -1~1,__-1-1----1--11---1---+-1---j.j1---+Lil-l--1-+--l,--+---+--1f-Ll---l-----'l- o.6 0.5 \ ;> ;,, _\ \ l I = 0.5

c\9_. '° \ \ \ I -I- +1- -+-1--+--+-+--H----17 1- ,- 1--+--+----+---+---+--=t

0.4 l=-E-\\~t -+\c\- -t-\\-=-::,~:::~:,:~7-:~i::~:li=_~H•~:-=--=--~~-=-~::I :-=-:~::-=-~~-=-:~-=-:-=-:-=-:-:§ 0 .4

0 .3 I ,\ I \. I II. \ , ',.l 1111 1, ' " I, I II I' " "" I 1 I ,I I ,I I II " II " "" "" '~ 0.3 0 ,1 5 0 .2 0 .3 0.4 0 .5 0.6 0.7 0 .8 0.9 I 1,5 2 3 4 5

h, /r

X 0,156 0,312 0,625 1,25 2,5 5 r

0,312 .789 .629 .411 .239 .136 -0,625 .711 .583 .394 .234 .135 .0809

I, 25 .621 .523 .365 .224 .132 .0802

2,5 - .465 .331 .209 .127 .0788

5 - - .300 .191 .120 .0764

Figure 13.

Page 16: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

98

... ' .. .c

4

3

2

l.!5

0 .9

0.8

0,7

0 ,6

0.!5

0.4

0 ,3

1:1 •111 1 II

: I:;

t,-

. - ....

-I=" ............ ~---,~ ,-

I=--...

:= 'I'-.. ~

~ : ..... , :,.,. "" - " ~ " : ...,

' \.'.~ .. : ~l!l. \ ;;{r, \ ·,1, 1111

0.15 0 .2

03 0.4 0 5 0.6 07 0,8 0.9 I II I" II 'I 111•111 I' I'\: ' II" ' ' 'I

' \ '\ \

........ 'r--.. r,,.,.. \

I\ \ \ r..... f\

..... .... ' \ '\ I\ ' -- --,~ _ ,_ -\ ---- C ---

"-- \ r,., \ '\ I\ \ ~

' \. '\ ~ '· '\ '\ \9 I \ I'\ \ \ \ ' '\. ll' I \ \9

~ " \ \

1

xd'_ \ I ' \ \ \

' \ \ 1 I I I , \

'" ..... , I,

0 .3 0.4 0 .!5 0 .6 0.7 0.8 0.9 I

h 1 /r

X r 0,156 0,312 0,625

0,312 ,662 . 501 .313

0,625 .535 .433 .290

I, 2 5 .404 .345 .250

2,5 -- .267 . 202

5 -- - .161

Figure 14.

15 2 I ;n I ip r ~

I \ \ I ' I

I I

I \ I I I ,;, I ,-,:.

I \ I \

~ ,+ - J -

\ i \ I

I

: I

! I I I ' I I

-I,' I, l.f,

'' I

1!5 2

1,25 2,5

.175 .095.3

.169 .0939

.157 .0909

.136 .0846

. 112 .0742

n, = 20 N=IOO

n I: 5

3 4 f llllTI 1111

1 I'

~ I

f \ \ -.-- I- -

I

' " 1,.,,

3

5

-.0528

.0521

.0506

.0475

nm rm~ ;

4

-;;

3 --

2

._ _ l,!5

I I

I I

' I I

--.

'

-

:

:

-

0 .9

0 .8

0.7

0 ,6

0.!5

0 .4

"' .. : 0.3 !5 4

Page 17: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

... ' .. .s::.

0115 02 03 04 05 06 0.7 080.9 I 15 2 15 1 ! 11 ...

""' ...

I , ' ' I I Ill \'.'' 4 ' ' : \

'\ ~ \

3 "'- r ' ' ....

' ' I \ ~ I\ I

2 "'I'\ \ I

~ ........ I \ .... " '\. \I - ....... "' ' ~

1.5 --- - -"""'

- - - _..., ~- - - -\: - - - _JJ -t- ~

I

0.9

0.8

0 .7

0 .6

0.5

0.4

0 .3

k. "' t- "-... '\I\. :::--

" ' ~ ...... ........ "'\. I\.

..... , ' r---... '\. ' "" t-

""'---.. ~ ~ ~-,~

.......,'- '" I\ \ ~ ~v \ \

- '{I~ ' \ ~I[\_ i\ I ,\ , .. ...

\. \

I\ ' \ 9

I\,., \0 ~ \

' ' \

\ I 0.15 0 .2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I

~ r 0,156 0,312 0,625

0,312 .573 .419 .254

o, 625 .434 .349 .232

I, 25 .301 .260 .193

2,5 - .184 .145

5 - - .106

Figure 15.

I

~ \ t

! \ \ 0

,"' I \ \ I I

' I I I I I

I I I I I I I I I l , I I I I ,1

1.5 2

1,25 2,5

.139 .0740

.134 .0729

.123 .0703

.102 .0645

.0779 .0542

n = 20 1 N=200

n1

: 10

3 4 :

' \

4

\

I\ 1

3

' ' \ !~ ,~ . 2

,~ \: t-- - - -W: 1.5

I I I I I I I

, .. 3

5

-.0396

.0390

.0377

.0348

l

:

--·-:

-

,, 4 5

0.9

0.8

0.1

0.6

0 .5

0.4

0.3

99

Page 18: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

100

50 15 02

I 1'1'1 "" '" ... \ ,., 'X ,., .. 03 04 05 06 0.7 08 09 I

4 \ ' - \ -\

\ I

r- \ \ \ I

2

I

\ \ ,

i=- I\. \ \ I ~ \ \ \ C

1,5 -~ --\ -- -\-_,

·- -\ -- -- - - -\ \

1 \ ;

,._

' .. ~\ I\ \ \ \ -.c.

0.9

ae 0.1

06

0.5

~ \ \ I \ 1 ~ : \ ' \ \ l,

~\ \ \ ~ ,- (JL.

\ \ \ \ D ~

\ \ \o k " [\ \ \o I

0.4 :, \ ' J ' - ~ "'

0.3 I 1\~,11 I,. "I '" .... . ' "" 0,15 02 o. 3 0.4 0.5 0.6 0.7 0.8 0.9 t

h , / r

~ r 0,156 0,312 0,6 2 5

0,312 .744 .538 .324

o, 625 .677 .508 .314

I, 25 .594 .461 .297

2,5 - .411 .271

5 - - .245

Figure 16.

15 2 I' \' ' 'I 'I' , I

I

\ \ I

I

I I

I e I i'-'

-- -- - - --I'>

;;, ,I

!-' I "' 0 I I

I I

I

I : I .I

1.5 2

1,25 2 , 5

.178 .0960

.175 .0953

.170 .0940

.161 .0915

.148 .0868

n 1 = 50 N=IOO

"2 = 2

4 , I \'

I ' \ I

I I I

u -~

~ - --

·-- r- - 1- - -I -:

I :. -

I :

I I

I I I -

= : -

"' "" .. : 3 4

5

-.0532

.0528

.0522

.0509

4

2

1.5

0.9

0.8

0.7

0.6

0.5

04

Page 19: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

0 .15 0.2 0.3 0.4 05 0.6 07 0.8 0.9 I 5

::.' I . ,I' ''' .,

'X '" "' I=, ' 4 ~ \

' 3 - I'- I\ ~ \ \ ,-

' ~ ,-.

2

-~ '

" ~ \ - t,., ~ \ \ :::;, \.. ' ' 1.5 -~ --- _ ..) t - - r\- --,- - - - ,-

"" \ ' \ \ -I\

... .......

N

.c 0.9

0.8

0.7

0.6

0.5

~" " i'\ \ \ l \.

= '\ \. ' \

~

""' I\ \ \c2,

- "" \ \ \ \o \0

~, I\. \ ' \p, \"' \ '\ \ \ 0 i

0 \ I

ii... 0 \'o \ \

0.4 \.. "'- \1" \ \ \

~- \~ 'f \ ' '1~11, I ,\, ,\, I l, .... 0.3

0.15 0.2 0.3 0.4 0.5 0.6 a:! 08 0.9 I

~ r 0,156 0,312 0,625

0,312 . 612 . 421 . 244

o, 625 .507 . 378 .233

I, 25 .387 . 311 .209

2,5 - . 241 .173

5 - - . 137

Figure 17.

1.5 2

''I. I " I I ·~ \ I I\ ' \ I \

\ I

' ' I

\ : \ ' \ \: I \ ]\

-- - r1 -- ~-I I~ I

0

I I 0 ' <JI I

I I I I ' I I I I I I I I I I I

I I .I I I I

1.5 2

1,25 2,5

. 131 . 0687

.128 .0681

.12~ .0667

.II 0 .0637

.0915 .0575

< I

I

\ 19 la

- '-

I I

I I I

I I I

N=250

4 er fl ITTTITTT

y : - 4 -'

' ~ -

3

I -~I g

-' 2

-

- I- - -~ _, .5

-

--

~

-: ~

= Ill,.;;

4 5

5

-.0364

.0361

.0354

.0338

I

0.9

0.8

0.7

0.6

0.5

0 .4

0 .3

101

Page 20: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

102

5

4

3

2

1.5

.... ...... .. .c

0.9

0.8

0,7

0.6

0.5

0.4

0.3

015 02 03 04 05 06 07 Q8 0.9 I ' ,1 ' " ' ,,, . . ..

"' .. ,, I

~ ' . I'\ \

' ' ... I\ _ . ...... '\ r--.. I\

' ['\ \ r--.... \

~ !'.. '\ \ I;. I'-. ' \ =- _-,,,,,... -- 1--• - ~ -- - ~- t-I - - --"' ..... -

'"" ~ ' -

"\I\, -

:----........ I\ \ I.........._ " ' 1,

- " I\ \ J JI

~ ~i... '\ '\ \~ ~ "\ I\ I\~ r

'\ ~ o '~ ~ ' i-.. 0

'\, \o ~ \ '\,.. \'l 1 1

"'t.C? ' } ' ;,t 111 ' I 111 1 , , II "" "' J U L .il1J. '" '" 015 Q2 0.3 0.4 0.5 0.6 0.7 08 0.9 I

h 1 /r

I~ ' 0,156 0,312 0,62!5

0,312 . 524 . 348 , 197

0,625 . 410 . 305 .187

I, 25 . 288 .237 .164

2,5 - .169 .128

!S - - .0926

Figure 18.

, I ,

15 2 I ~ ' I' ' '

l r,,,

I . I\ i \ I

. r , , I I I

' \o - - ·A .... ,--1-\'ct,-

l~ L I ~

-I I

I

i I I I I l I I II I I

I II I : I I I '

I ,I, Ir ,I, j ,I , 1.5 2

1,2!5 2,!S

.104 .0539

.102 .0534

.0966 .0523

.0847 .0496

.0664 .0436

n 1 =50 N=500

n 1 =10

3 ' '_'X " "

4 11 111 "" '""

4

- r-t-

\ \

~;' I' I

-- -- - I-

l I

I I

I I

I I Il l 11 t 1111

3 4

!S

-

.0280

.0277

.0272

,0258

.: 3

-2

< 1 .5

-----

-~ --: : .:=

0.9

0.8

0.7

0.6

0.5

0 ,4

Ill~ 0.3 5

Page 21: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

103

modulus E1,2 and thickness h1 + h2 supported by the same subgrade of modulus E3• The approximate formula is

The term hi ~ is called the layer rigidity factor. The approximate formula is exact within 10 percent of the computed deflection for ha/r not greater than 1, and within 15 percent for hll/r not greater than 2. This formula is not indicated for hll/r greater than 2. Making n' the modular ratio of the equivalent two-layer system and h1/h2 = H, it follows

n' = E1, 2 = n2 [.H ~ + 1] s Es H + 1

The deflection of the equivalent two-layer system may be calculated by the graph in Figure 2 with the parameters n' and (h1 + h2)/r.

An analogous expression has been proposed by Palmer and Barber ( 4) to reduce the two-layer system to an equivalent uniform medium. Barber demonstrated that his approximate formula yielded deflections very close to Burmister's two-layer analysis (1). The validity of the rigidity factor concept both for two-layer and three-layer systems lends support to its tentative extension to multilayer systems. It is suggested that intermediate layers may be modified if the rigidity factor is kept constant. It is also suggested that multilayer systems can be reduced to equivalent three-layer sys­tems for the purpose of deflection calculation, aggregating similar adjacent layers and computing their equivalent modulus by the foregoing formula. The subgrade should not be altered, in any cRse, and neither should it be included in the equivalent modulus calculation, due to its infinite depth. Further research is needed on these points.

The modular ratio Ei/E2 for two-layer flexible pavement structures is always below 100, being closer to 100 for semiflexible soil-cement pavements (5, 6, 7, 8). The modular ratio for rigid pavements is always well above 100. Therefore, The graph in Figure 1, including values of E1/E2 from 2 to 100 is adequate for the structural analysis of flexible and semiflexible two-layer pavements. Rigid pavement design is based on a stress criterion and not on deflection limits. Accordingly, surface deflection com­putation is of little use for rigid pavement analysis, and it is not necessary to include in the graph the higher values of the modular ratio.

In the case of three-layer pavement structures, there is normally a marked dif­ference between modular ratios n1 and na. For technical and economical reasons n1 and n2 are always greater than one, and n1 is usually greater than n2. The effective modular ratio for granular non-cemented materials is always between 2 and 5 (9, 10, 11). Hence, the value of na is usually between 2 and 5. The value of n1 for flexfble and semiflexible pavements is usually between 5 and 50. The three-layer deflection charts in Figures 4 to 18 provide an adequate range of modular ratios for the design and structural analysis of flexible and semiflexible pavements.

The elastic moduli to be used in the structural analysis should be measured by load bearing tests or other field tests conducted on the full pavement section. Laboratory tests on small samples or molded specimens do not correlate well with field values. Great care should be exercised in the determination of the layers moduli, for the moduli values have a critical effect on the deflections.

It is not correct to measure the subgrade modulus by load bearing tests on the subgrade alone, and then to measure the pavement layers' moduli by new tests on each superimposed layer, using in the calculations the subgrade modulus previously determined. This process gives too high and erratic values for the pavement moduli, as reported elsewhere (12). The effective in-place subgrade modulus is much higher than the modulus of the subgrade alone. The main reasons are (a) an increase in com­paction of the lower layers caused by the compaction of the top layers; (b) the confining effect of the top layer; (c) the nonlinearity of the soil stress-strain curve; (d) the load

Page 22: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

104

spreading ability of the pavement, allowing lower stresses on the subgrade; (e) possibly, lack of agreement between the theoretical elastic model and actual pavement response. All these factors contribute in varying degrees to an increase of the effective subgrade modulus. The saturation of the subgrade by capillarity after the construction of the pavement acts in the opposite direction, but this effect is smaller than the sum of the others. Consequently, the modulus of the subgrade alone is of no avail for the calcula­tion _of the pavement moduli. All moduli should be measured simultaneously by tests conducted at the surface of the complete pavement. This determination is possible with load bearing tests with several plate diameters or several pavement thicknesses. Theoretically, the solution of a two-layer system requires at least two plate diameters (or two thicknesses) and the solution of a three-layer system requires at least three diameters (or thicknesses). The calculation of the moduli requires the solution of a system of simultaneous equations. For greater precision, the deflection factor values should be interpolated in the tables below each graph, instead of reading the values on the graphs. The problem is further complicated by the scatter of test results. A study of three-layer system moduli determination has been published (12).

A few examples of application are included to illustrate the use of the deflection factor charts.

PRACTICAL EXAMPLES

1. Suppose a pavement is composed of penetration macadam base course and light s urface treatment, with total thickness of 15 cm (6 in.), resting directly on the subgrade. Assume the following values for the elastic moduli : subgrade soil 500 kg/cm 2 (7, 140 psi); base and surfacing considered as a single layer 30, 000 kg/cm 2 (429 ,000 psi). The basic wheel load is 5 long tons (11, 200 lb), with contact press ure of 7 kg/cm2

(100 ps i) and contact radius of 15. 1 cm (6 in.). Calculate the elastic deflection.

h/r = 15/15. 1 =- 1 E1/E2 = 30, 000/500 = 60

w = ?

The graph in Figure 2 gives the value of F by interpolation between the curves of E1/E2 = 50 and 100, for h/r = 1. For better accuracy, several values of F should be taken from the graph, at the intersections of the curves of E1/E2 with the vertical line of h/r = 1. An auxiliary graph should be made on log-log paper, plotting values of F vs respective values of EJEa, and connecting the plotted points by a continous curve. This auxiliary graph gives the value of F for EJEa = 60

F = 0. 26

W = 1. 75 x 7 x 15· l x 0. 26 =" 0. 1 cm 500

(0. 04 in.)

2. Design the thickness of the same pavement of Example 1 for the condition of the deflection being less than 0. 05 cm (0. 02 in.).

The required deflection factor is

E1/ E2 = 60 W = 0. 05 cm

h/r = ?

F = 0. 05 X 500 = O. 13 l.75X 7 X 15. 1

Inasmuch as the deflection factor is proportional to the deflection, this value of F could be obtained taking half of the previous value. Now it is necessary to draw the complete curve of E1/Ea = 60 on the graph in Figure 2 interpolating between the curves of 50 and

Page 23: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

100. The points near the probable solution, i.e., between h/ r = 2 and 3, should be plotted by logarithmical interpolation, as in the previous example. The point at the intersection of the curve of EJEa = 60 with the horizontal line of F = 0. 13 gives the solution

h/r = 2. 3

. ·. h = 2. 3 X 15. 1 = 35 cm (13. 8 in.)

105

It was necessary to increase the thickness to more than double the previous value to reduce the deflection in half.

3. Compute the elastic moduli of the same pavement, with 35 cm (13. 8 in.) of thick­ness , from the following results of load bearing tests

The equation is

Diameter Modulus of Reaction

cm in. kg/cm3

80 31. 5 24. 6 20 7. 9 317. 5

Ea. = 1. 75 r k F

For ¢ 80 h/ r = 35/ 40 = 0. 875 k = 24. 6 kg/ cm3

F' = ?

pci

888 11,462

Ea = 1. 75 X 40 X 24. 6 X F ' = 1722 F'

For ¢ 20 h/ r = 35/10 = 3. 5 F " = ?

k = 317. 5 kg/cm 3

Ea = 1. 75 X 10 X 317. 5 X F " = 5556 F"

Comparing the two values of Ea

1722 F ' = 5556 F " .. . F '/F " = 3. 22

Take from the graph in Figure 2 several values of F, at the intersections of the curves of E1/ Ea with the vertical lines of h/ r = 0. 875 and h/ r = 3. 5, and calculate their re­spective ratios

EJEa F' F "

F '/F " (h/r = 0. 875) (h/r = 3. 5)

2 0.78 0. 58 1. 34 5 0. 59 0. 31 1. 90

10 0. 49 0. 21 2. 33 20 0. 40 0. 14 2. 86 40 0. 328 0. 106 3. 10 50 0. 305 0. 096 3. 18 60 0. 290 0. 090 3. 22 70 0. 278 0. 085 3. 27

100 0. 250 0. 075 3. 33

The points near the probable solution (E1/Ea more than 40) should be computed by logarithmical interpolation, as in the first example.

Page 24: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

106

The computed value of F' /F" equals the required value of 3. 22 at the point E1/E2 = 60 or F' = 0. 290. The moduli sought are

Ea= 1722 x 0. 290 = 500 kg/cm2 (7,140 psi) E1 = 60 x 500 = 30,000 kg/cm2 (429,000 psi)

4. Calculate the deflection of the following three-layer favement. The wheel load is 5 long tons (11, 200 lb), the contact pressure is 7 kg/cm (100 psi) and the contact radius is 15. 1 cm (6 in.).

Thickness

cm in.

Modulus

kg/cma psi

1. Asphaltic-concrete surface course

2. Stabilized base course 3. Subgrade

15 6 20 7. 9

50,000 2,500

500

714,300 35 700 7,140

n1 = 50, 000/2, 500 = 20 na "' 2, 500/500 = 5 Es = 500 kg/cma

hi/r = 15/15. 1 ="' 1 ha/r = 20/15. 1 = 1. 32

From the graph in Figure 14 : F = 0. 185

.·. W= 1. 75 \~0x

15· 1 xo.185= 0.07cm (0. 027 in)

5. Modify the thickness of the pavement of Example 4 so that the deflection is less than 0. 05 cm (0. 02 in.). The required deflection factor is

F = 0. 05 X 500 = 0. 13 l.75X7Xl5.l

A new curve for F = 0. 13 should be interpolated between the curves of 0. 10 and 0. 15 in the graph of Figure 14. All points on this curve correspond to thicknesses h1 and h2 satisfying the required condition of W = 0. 05 cm. Possible combinations are as follows.

h1/r ha/r

1 4. 7 1. 25 3 1. 5 1. 7 1. 6 1. 32

The best combination of h1 and ha should be selected by considering economic and engineering aspects, taking into account the unit costs of surface and base courses. In most cases, it is cheaper to increase the base thickness. Suppose the first com­bination is selected

hJr = 1 h:i/r = 4. 7

h1 = 1 x 15. 1 ="' 15 cm ha = 4. 7 X 15. 1 =' 71 cm

Total thickness: 15 + 71 = 86 cm (33. 9 in) If the fourth combination were preferred

hJr = 1. 6 h:i/r = 1. 32

h1 = 1. 6 x 15. 1 = 24 cm ha = 1. 32 x 15. 1 = 20 cm

Page 25: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

107

Total thickness: 24 + 20 = 44 cm (17. 3 in. )

Increasing the surface course from 15 to 24 cm permits reducing the total thickness from 86 to 44 cm. In this particular case, 1 cm of surface course is equivalent to 5. 7 cm of base course.

The deflection of the latter combination may be checked by the approximate formula, since ha/r is less than 2.

H = 1. 6/1. 32 = 1. 22

n' = 5 [ 1. 22 Y2o + 1 ] a = 1. 22 + 1 36. 2

n' /r = 24 + 20

= 2. 91 15. 1

Entering the graph of Figure 2 with parameters n' and h '/r F = 0. 128

.". W = l. 75 x 7 x 15· l x 0. 128 = 0. 047 cm 500

The result is close enough to the specified deflection of 0. 05 cm. 6. If the given modular ratios are intermediate between the values of the graphs in

Figures 4 to 18, it is necessary to construct an auxiliary graph of similar aspect, by a series of logarithmical interpolations between the given graphs. Consider for instance the following case.

n1 = 15 Ila = 4

The deflection factor is bracketed by the following values

n1 X na F 20 X 5 0. 175

20 X 2 0. 265 10 X 5 0. 210 10 X 2 0. 315

The deflection factor, obtained by three interpolations on log-log paper, is

F = 0. 208

If an analysis of several thicknesses is required, it is necessary to trace the auxiliary graph corresponding to n1 = 15, na = 4 for the whole range of thicknesses.

REFERENCES

1. Burmister, D. The Theory of Stresses and Displacements in Layer Systems and Applications to the Design of Airport Runways. HRB Proc., Vol. 23, pp. 12·5-149, 1943.

2. Jones, A. The Calculation of Surface Deflection for Three-Layer Elastic Systems. Proc. Symp. on Road Tests for Pavement Design, Lisbon, 1962.

3. Jeuffroy, G., and Bachelez, J. Note on a Method of Analysis for Pavements. Proc. Ann Arbor Conf., 1962.

4. Palmer, L. A., and Barber, E. S. Soil Displacement Under a Circular Loaded Area. HRB Proc., Vol. 20, pp. 279-286, 1940.

Page 26: DEFLECTION FACTOR CHARTS FOR TWO-AND THREE-LAYER …

108

5. Harris, F. A. Selection and Design of Semi-Flexible and Conventional Type Pave­ments. HRB Proc., Vol. 35, pp. 110-138, 1956.

6. Baker, R F., and Papazian, H. S. The Effect of Stiffness Ratio on Pavement Stress Analysis. HRB Proc. , Vol. 39 , pp. 61-85, 1960.

7. Sowers, G. F., and Vesic, A. B. Vertical Stresses in Subgrades Beneath Statically Loaded Flexible Pavements. HRB Bull. 342, pp. 90-123, 1962.

8. Vesic, A. B. Disc., Proc, Ann Arbor Conf., 1962. 9. Peattie, K R. The Significance of the Surface Deflection of Flexible Pavements.

Proc. Symp. on Road Tests for Pavement Design, Lisbon, 1962. 10. Dorman G. M. The Extension to Practice of a Fundamental Procedure for the

Design of Flexible Pavements. Proc. Ann Arbor Conf., 1962. 11. Heukelom, W., and Klomp, A. J. G., Dynamic Testing as a Means of Controlling

Pavements During and After Construction. Proc. Ann Arbor Conf., 1962. 12. de Barros, S. Thenn. Application of Three-Layer System Methods to the Evalua­

tion of Soil-Cement Bases. Highway Research Record 145, 1966.