48
DC MOTOR DRIVES (MEP 1523) Dr. Nik Rumzi Nik Idris Department of Energy Conversion FKE, UTM

DC MOTOR DRIVES (MEP 1523)

Embed Size (px)

DESCRIPTION

DC MOTOR DRIVES (MEP 1523). Dr. Nik Rumzi Nik Idris Department of Energy Conversion FKE, UTM. INTRODUCTION. DC DRIVES: Electric drives that use DC motors as the prime movers. DC motor: industry workhorse for decades. - PowerPoint PPT Presentation

Citation preview

Page 1: DC MOTOR DRIVES (MEP 1523)

DC MOTOR DRIVES(MEP 1523)

Dr. Nik Rumzi Nik Idris

Department of Energy Conversion

FKE, UTM

Page 2: DC MOTOR DRIVES (MEP 1523)

INTRODUCTION

• DC DRIVES: Electric drives that use DC motors as the prime movers

• Dominates variable speed applications before PE converters were introduced

• DC motor: industry workhorse for decades

• Will AC drive replaces DC drive ?

– Predicted 30 years ago

– AC will eventually replace DC – at a slow rate

– DC strong presence – easy control – huge numbers

Page 3: DC MOTOR DRIVES (MEP 1523)

Introduction

DC Motors

• Several limitations:

• Advantage: Precise torque and speed control without sophisticated electronics

• Regular Maintenance • Expensive

• Heavy • Speed limitations

• Sparking

Page 4: DC MOTOR DRIVES (MEP 1523)

Introduction

DC Motors - 2 pole: permanent magnet excitation

Stator

Rotor

PM

Page 5: DC MOTOR DRIVES (MEP 1523)

Introduction

DC Motors - 2 pole: wound stator excitation

Stator

Rotor

Page 6: DC MOTOR DRIVES (MEP 1523)

Introduction

DC Motors - 2 pole

• Mechanical commutator to maintain armature current direction

X

X

X

X

X

Armature mmf produces flux which distorts main flux produce by field

Armature reaction

Page 7: DC MOTOR DRIVES (MEP 1523)

Introduction

Flux at one side of the pole may saturate

Zero flux region shifted

Flux saturation, effective flux per pole decreases

Large machine employs compensation windings and interpoles

• Armature mmf distorts field flux

Armature reaction

Page 8: DC MOTOR DRIVES (MEP 1523)

Introduction

Armature reaction

Field flux Armature flux Resultant flux

Page 9: DC MOTOR DRIVES (MEP 1523)

Introduction

DC Motors

Page 10: DC MOTOR DRIVES (MEP 1523)

Introduction

at ikTe Electric torque

Ea ke Armature back e.m.f.

Lf Rf

if

aa

aat edtdi

LiRv

+

ea

_

LaRa

ia+

Vt

_

+

Vf

_

dtdi

LiRv ffff

Page 11: DC MOTOR DRIVES (MEP 1523)

Introduction

aaat EIRV In steady state,

2T

ea

T

t

k

TRkV

Therefore steady state speed is given by,

Three possible methods of speed control:

Field fluxArmature voltage Vt

Armature resistance Ra

aa

aat edtdi

LiRV

Armature circuit:

Page 12: DC MOTOR DRIVES (MEP 1523)

Introduction

2T

ea

T

t

k

TRkV

Te

TLT

t

kV

Vt ↓

Varying Vt

Requires variable DC supply

Page 13: DC MOTOR DRIVES (MEP 1523)

Introduction

2T

ea

T

t

k

TRkV

Te

Ra ↑

TL

T

t

kV

Varying Ra

Simple controlLosses in external resistor

Page 14: DC MOTOR DRIVES (MEP 1523)

Introduction

2T

ea

T

t

k

TRkV

Te

TL

T

t

kV

Varying

Not possible for PM motorMaximum torque capability reduces

Page 15: DC MOTOR DRIVES (MEP 1523)

Introduction

For wide range of speed control 0 to base armature voltage, above base field flux reduction

Armature voltage control : retain maximum torque capability

Field flux control (i.e. flux reduced) : reduce maximum torque capability

Te

MaximumTorque capability

Armature voltage controlField flux control

base

Page 16: DC MOTOR DRIVES (MEP 1523)

Introduction

Te

MaximumTorque capability

base

Page 17: DC MOTOR DRIVES (MEP 1523)

Introduction

Te

Constant powerConstant torque

base

0 to base armature voltage, above base field flux reduction

P = EaIa,max = kaIa,max

Pmax

Pmax = EaIa,max = kabaseIa,max

1/

P

Page 18: DC MOTOR DRIVES (MEP 1523)

MODELING OF CONVERTERS AND DC MOTOR

Used to obtain variable armature voltage

POWER ELECTRONICS CONVERTERS

• Efficient Ideal : lossless

• Phase-controlled rectifiers (AC DC)

• DC-DC switch-mode converters(DC DC)

Page 19: DC MOTOR DRIVES (MEP 1523)

Modeling of Converters and DC motor

Phase-controlled rectifier (AC–DC)

T

Q1Q2

Q3 Q4

3-phasesupply

+

Vt

ia

Page 20: DC MOTOR DRIVES (MEP 1523)

Phase-controlled rectifier

Q1Q2

Q3 Q4

T

3-phasesupply

3-phasesupply

+

Vt

Modeling of Converters and DC motor

Page 21: DC MOTOR DRIVES (MEP 1523)

Phase-controlled rectifier

Q1Q2

Q3 Q4

T

F1

F2

R1

R2+ Va -

3-phasesupply

Modeling of Converters and DC motor

Page 22: DC MOTOR DRIVES (MEP 1523)

Phase-controlled rectifier (continuous current)

• Firing circuit –firing angle control

Establish relation between vc and Vt

firingcircuit

currentcontroller

controlled rectifier

+

Vt

vciref+

-

Modeling of Converters and DC motor

Page 23: DC MOTOR DRIVES (MEP 1523)

Phase-controlled rectifier (continuous current)

• Firing angle control

180vv

cosV2

Vt

cma

ct v

180v

180vv

t

c

linear firing angle control

cosvv sc

Cosine-wave crossing control

s

cma v

vV2V

Modeling of Converters and DC motor

Page 24: DC MOTOR DRIVES (MEP 1523)

Phase-controlled rectifier (continuous current)

•Steady state: linear gain amplifier•Cosine wave–crossing method

Modeling of Converters and DC motor

•Transient: sampler with zero order hold

T

GH(s)

converter

T – 10 ms for 1-phase 50 Hz system – 3.33 ms for 3-phase 50 Hz system

Page 25: DC MOTOR DRIVES (MEP 1523)

0.3 0.31 0.32 0.33 0.34 0.35 0.36-400

-200

0

200

400

0.3 0.31 0.32 0.33 0.34 0.35 0.36-10

-5

0

5

10

Phase-controlled rectifier (continuous current)

Td

Td – Delay in average output voltage generation 0 – 10 ms for 50 Hz single phase system

Outputvoltage

Cosine-wave crossing

Control signal

Modeling of Converters and DC motor

Page 26: DC MOTOR DRIVES (MEP 1523)

Phase-controlled rectifier (continuous current)

• Model simplified to linear gain if bandwidth (e.g. current loop) much lower than sampling frequency

Low bandwidth – limited applications

• Low frequency voltage ripple high current ripple undesirable

Modeling of Converters and DC motor

Page 27: DC MOTOR DRIVES (MEP 1523)

Switch–mode converters

Q1Q2

Q3 Q4

T

+Vt

-

T1

Modeling of Converters and DC motor

Page 28: DC MOTOR DRIVES (MEP 1523)

Switch–mode converters

+Vt

-

T1D1

T2

D2

Q1Q2

Q3 Q4

T

Q1 T1 and D2

Q2 D1 and T2

Modeling of Converters and DC motor

Page 29: DC MOTOR DRIVES (MEP 1523)

Switch–mode converters

Q1Q2

Q3 Q4

T+ Vt -

T1D1

T2D2

D3

D4

T3

T4

Modeling of Converters and DC motor

Page 30: DC MOTOR DRIVES (MEP 1523)

Switch–mode converters

• Switching at high frequency

Reduces current ripple

Increases control bandwidth

• Suitable for high performance applications

Modeling of Converters and DC motor

Page 31: DC MOTOR DRIVES (MEP 1523)

Switch–mode converters - modeling

+

Vdc

Vdc

vc

vtri

q

0

1q

when vc > vtri, upper switch ON

when vc < vtri, lower switch ON

Modeling of Converters and DC motor

Page 32: DC MOTOR DRIVES (MEP 1523)

tri

onTt

ttri Tt

dtqT1

dtri

vc

q

Ttri

d

Switch–mode converters – averaged model

Modeling of Converters and DC motor

dc

dT

0dc

trit dVdtV

T1

Vtri

Vdc Vt

Page 33: DC MOTOR DRIVES (MEP 1523)

Vtri,p-Vtri,pvc

d

1

0

0.5

p,tri

c

V2v

5.0d

cp,tri

dcdct v

V2V

V5.0V

Switch–mode converters – averaged model

Modeling of Converters and DC motor

Page 34: DC MOTOR DRIVES (MEP 1523)

Switch–mode converters – small signal model

Modeling of Converters and DC motor

)s(vV2V

)s(V cp,tri

dct

)s(vVV

)s(V cp,tri

dct

2-quadrant converter

4-quadrant converter

Page 35: DC MOTOR DRIVES (MEP 1523)

DC motor – separately excited or permanent magnet

Modeling of Converters and DC motor

Extract the dc and ac components by introducing small perturbations in Vt, ia, ea, Te, TL and m

aa

aaat edtdi

LRiv

Te = kt ia ee = kt

dtd

JTT mle

aa

aaat e~dti~

dLRi

~v~

)i~(kT

~aEe

)~(ke~ Ee

dt)~(d

J~BT~

T~

Le

ac components

aaat ERIV

aEe IkT

Ee kE

)(BTT Le

dc components

Page 36: DC MOTOR DRIVES (MEP 1523)

DC motor – small signal model

Modeling of Converters and DC motor

Perform Laplace Transformation on ac components

aa

aaat e~dti~

dLRi

~v~

)i~(kT

~aEe

)~(ke~ Ee

dt)~(d

J~BT~

T~

Le

Vt(s) = Ia(s)Ra + LasIa + Ea(s)

Te(s) = kEIa(s)

Ea(s) = kE(s)

Te(s) = TL(s) + B(s) + sJ(s)

Page 37: DC MOTOR DRIVES (MEP 1523)

DC motor – small signal model

Modeling of Converters and DC motor

Page 38: DC MOTOR DRIVES (MEP 1523)

DC motor – small signal model: Block diagram transformation

Modeling of Converters and DC motor

Page 39: DC MOTOR DRIVES (MEP 1523)

CLOSED-LOOP SPEED CONTROL

Cascade control structure

• It is flexible – outer loop can be readily added or removed depending on the control requirements

• The control variable of inner loop (e.g. torque) can be limited by limiting its reference value

1/s

convertertorquecontroller

speedcontroller

positioncontroller

+

-

+

-

+

-

tacho

Motor* T**

kT

Page 40: DC MOTOR DRIVES (MEP 1523)

CLOSED-LOOP SPEED CONTROL

Design procedure in cascade control structure

• Inner loop (current or torque loop) the fastest – largest bandwidth

• The outer most loop (position loop) the slowest – smallest bandwidth

• Design starts from torque loop proceed towards outer loops

Page 41: DC MOTOR DRIVES (MEP 1523)

CLOSED-LOOP SPEED CONTROL

Closed-loop speed control – an example

OBJECTIVES:

• Fast response – large bandwidth

• Minimum overshoot good phase margin (>65o)

• Zero steady state error – very large DC gain

BODE PLOTS

• Obtain linear small signal model

METHOD

• Design controllers based on linear small signal model

• Perform large signal simulation for controllers verification

Page 42: DC MOTOR DRIVES (MEP 1523)

CLOSED-LOOP SPEED CONTROL

Ra = 2 La = 5.2 mH

J = 152 x 10–6 kg.m2B = 1 x10–4 kg.m2/sec

kt = 0.1 Nm/Ake = 0.1 V/(rad/s)

Vd = 60 V Vtri = 5 V

fs = 33 kHz

Permanent magnet motor’s parameters

Closed-loop speed control – an example

• PI controllers • Switching signals from comparison of vc and triangular waveform

Page 43: DC MOTOR DRIVES (MEP 1523)

CLOSED-LOOP SPEED CONTROL

Torque controller design

Tc

vtri

+

Vdc

q

q

+

kt

Torque controller

Tkaa sLR

1

)s(Tl

)s(Te

sJB1

Ek

)s(Ia )s()s(Va

+-

-

+

Torquecontroller

Converter

peak,tri

dc

VV)s(Te

-+

DC motor

Page 44: DC MOTOR DRIVES (MEP 1523)

Bode Diagram

Frequency (rad/sec)

-50

0

50

100

150From: Input Point To: Output Point

Mag

nitu

de (

dB)

10-2

10-1

100

101

102

103

104

105

-90

-45

0

45

90

Pha

se (

deg)

CLOSED-LOOP SPEED CONTROL

Torque controller design Open-loop gain

compensated

compensated

kpT= 90

kiT= 18000

Page 45: DC MOTOR DRIVES (MEP 1523)

CLOSED-LOOP SPEED CONTROL

Speed controller design

Assume torque loop unity gain for speed bandwidth << Torque bandwidth

1Speedcontroller sJB

1

* T* T

+

Torque loop

Page 46: DC MOTOR DRIVES (MEP 1523)

Bode Diagram

Frequency (Hz)

-50

0

50

100

150From: Input Point To: Output Point

Mag

nitu

de (

dB)

10-2

10-1

100

101

102

103

104

-180

-135

-90

-45

0

Pha

se (

deg)

CLOSED-LOOP SPEED CONTROL

Speed controllerOpen-loop gain

compensated

kps= 0.2

kis= 0.14

compensated

Page 47: DC MOTOR DRIVES (MEP 1523)

CLOSED-LOOP SPEED CONTROL

Large Signal Simulation results

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45-40

-20

0

20

40

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45-2

-1

0

1

2

Speed

Torque

Page 48: DC MOTOR DRIVES (MEP 1523)

CLOSED-LOOP SPEED CONTROL – DESIGN EXAMPLE

SUMMARY

Power electronics converters – to obtain variable armature voltage

Phase controlled rectifier – small bandwidth – large ripple

Switch-mode DC-DC converter – large bandwidth – small ripple

Controller design based on linear small signal model

Power converters - averaged model

DC motor – separately excited or permanent magnet

Closed-loop speed control design based on Bode plots

Verify with large signal simulation

Speed control by: armature voltage (0 b) and field flux (b)