40
David L. Keefe, M.D. SARG International Summit May 28, 2018 What Causes Genomic Instability During Preimplanation Embryo Development?

David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

Embed Size (px)

Citation preview

Page 1: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

David L. Keefe, M.D. SARG International

SummitMay 28, 2018

What Causes Genomic Instability During Preimplanation Embryo Development?

Page 2: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

Disclosures

• Clinical Experts Panel‐Illumina • Scientific Advisory Boards‐ Origio and Cooper Genomics 

• Research funded by March of Dimes to study effects of telomere attrition on aneuploidy in human embryos 

Page 3: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

Objectives

• Describe the pervasive genomic instability that characterizes preimplantation embryo development

• Understand how telomeres reset during preimplantation development

• Propose an explanation for genomic instability in embryos  as a byproduct of telomere rejuvenation during the earliest stages of life

Page 4: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

I. Global Genomic Instability, Including Aneuploidy, Mosaicism & Copy Number Variants, is Common In Preimplantation Embryos

Page 5: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

35%

27%

18%

9%

2%

52% 50% 50.50%47.70%

50%

<35 35‐37 38‐40 41‐42 >42

SART

Euploid

Aneuploidy Contributes to Age‐Related Infertility

Harton, Grifo, Munne et al. (2013) Fertil and Steril and unpublished data.

NYU Data

Page 6: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

• Definition‐ presence of two or more populations of cells with different genotypes in one individual, who has developed from a single fertilized egg.[1]

[1] Stern, C. and K. Sekiguti 1931. Bio. Zentr. 51, 194–199.

What About Mosaicism? 

Page 7: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

Does Mosaicism Invalidate PGT‐A?• Retrospective study of embryos that had undergone PGS by NGS  (@ Reprogenetics) from 2/15‐1/17.

• Thawed, expanded, re‐biopsied, repeated NGS using same WGA, Veriseq, MiSeq, but in our own laboratory

• Blastocysts w/ diagnosis of mosaic, aneuploid or euploid• Whole Genome Amplification (WGA) by Sureplex• Veriseq DNA library prep • MiSeq sequencing to assess chromosomal copy number• BlueFuse Multi software• Aneuploidy‐ >80% change in chromosome copy number• Mosaicism‐ examined varying thresholds from 20‐80% (per PGDIS); also looked at 30% and 40% thresholds 

Sachdev et al, ASRM 2017

Page 8: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

PGT‐A Is Reliable and Accurate• 129 samples from 32 blastocysts from 17 patients 

• 18 mosaic, 4 aneuploid and 10 euploid• Concordance for aneuploidy‐ 97% (62/64 samples)

• Concordance b/w ICM/TE for aneuploidy‐ 100%• 2 non‐concordant samples between TE biopsies, but both showed either aneuploidy for another chromosome or complex mosaicism with more than 3 chromosomes mosaic. 

.Sachdev et al, ASRM 2017

Page 9: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

PGT‐A Is Reliable & Accurate • Mosaic chromosome not identified consistently in repeat biopsy specimens, regardless of diagnostic criteria used to call mosaicism 

• Concordance for mosaicism between clinical and experimental biopsies not affected by varying diagnostic threshold for mosaicism 

• Concordance for mosaicism not different between TE and ICM 

• Number of samples with additional mosaic chromosomes (a chromosome in addition to the chromosome previously diagnosed to be mosaic) significantly varied between the different diagnostic thresholds (p <0.001). 

• Number of cells included in the biopsy did not affect concordance for mosaicism across all diagnostic threshold levels 

Sachdev et al, ASRM 2017

Page 10: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

“Euploid” embryo

Aneuploid Euploid

Page 11: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

“Aneuploid” embryo

Aneuploid Euploid

Page 12: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

“Mosaic” embryoAneuploid Euploid

Page 13: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

Summary and Conclusions‐Mosaicism & Reliability PGS by NGS

• PGS previously thought to provide a binary output‐ normal vs. abnormal

• With increased sensitivity associated with aCGHand NGS, PGS now detects more subtle abnormalities, including mosaicism

• PGS w/ NGS provides a nuanced output, similar to glucose tolerance test for diagnosis of diabetes mellitus

• More studies needed to optimize clinical utility of PGS 

Page 14: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

• Definition:  a phenomenon in which sections of the genome are repeated and the number of repeats in the genome varies between individuals in the human population.[1] Copy number variation is a type of structural variation: specifically, it is a type of duplication or deletion event that affects a considerable number of base pairs.[2]

[1] Mccarroll et al (2007) Nature Gen 39:37‐42 [2]Sharp AJ et al (2005) Am J Hum Gen 77:78‐88

Copy Number Variants

Page 15: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

Copy Number Variants Are Common During Preimplantation Embryo Development

Page 16: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

Why So Much Genomic Instability During Early Embryo Development?

• Causes of Mosaicism‐– Mitotic non‐disjunction, leading to aneuploid cell line

– Correction of prior meiotic error

• Causes of Copy Number Variants– Anaphase lag‐ is the most common way by which mosaicism arises in the preimplantationembryo.[2]

Page 17: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

• Anaphase lag‐ delayed movement during anaphase, where one homologous chromosome in meiosis or one chromatid in mitosis fails to connect to the spindle apparatus, or is tardily drawn to its pole and fails to be included in the reforming nucleus. 

• Chromosome forms a micronucleus in the cytoplasm and is lost from the cell.[1] The lagging chromosome is not incorporated into the nucleus of one of the daughter cells, resulting in one normal daughter cell and one with monosomy.[2]

• Anaphase lag can also cause a rescue of the daughter cell if the cell was originally trisomy.[1]

[1]Gardner, R.J.M; Sutherland, Grant R. (2004). Chromosome Abnormalities and Genetic Counseling (3rd ed.). NY: Oxford Press. p[2]Jump up^ "Human Molecular Genetics". Archived from the original on June 29, 2007.

Page 18: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

Anaphase Lag

Page 19: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

II. Telomeres & Genomic Instability in Preimplantation Embryos

Page 20: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

Telomere‐ Structure 

• Tandem repeats (TTAGGG)• 6 proteins in a complex known as Shelterin.• Fold single stranded end of chromosome into a t‐loop to avoid DNA damage response. 

• Loss of telomere leads to apoptosis or senescence. 

Page 21: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

Telomere End Fusions Produce Anaphase Lag, Mosaicism & CNVs

Maciejowski J Nat Rev (2017)18:175‐86

Page 22: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

Telomere Attrition in Mice PhenocopiesReproductive Aging in Women

Increased embryo fragmentation & apoptosis(Juriscova et al, 2003)

Observation Explained by Telomere Theory

Decreased Chiasmata-(Hassold et al, 1996)

Spindle abnormalities-(Battaglia et al,1997)

Low levels mtDNA deletions & ROS -(Keefe et al, 1995)

Production Line –(Henderson and Edwards, 1968)

Keefe & Liu, 2009

Page 23: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

What About Women? Reproductive Function in Patient w/ Telomeropathy

Unaffected Patient (29‐31) DKC (30 years old)

Anti‐Mullerian Hormone 1‐3 0.3

Stimulation Dosage 200 IU 600IU

Stimulation Duration 10‐11 18

Oocytes Retrieved 15‐20 7

% Fertilized 90% 40%

% of Euploid embryos 50% 14%

Robinson et al, unpublished 

Page 24: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

2007

Page 25: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

Telomeres Are Short in Oocytes and Elongate in Embryos‐ Even Parthenotes

Page 26: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

Telomere Elongation‐ Even in Telomerase Null Mice

Page 27: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

Robinson et al, unpublished 

Telomeres Lengthen in Preimplantation Human Embryos

P = .03

N.S.

P= .03P= .0002

Page 28: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

P = .003

P = .019N.S.

N= 16N= 37 N= 21 N= 32

Telomeres Lengthen in Human ParthenotesFollowing Activation  

Robinson et al, unpublished 

Page 29: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

DNA Double Strand Break Repair‐ Rad 50, Bloom, Werner Expressed During Cleavage Stage

Page 30: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

III. What Causes Alternative Lengthening of Telomeres in Preimplantation Embryos?

Page 31: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

Flies Elongate Telomeres Via Retrotransposition

Page 32: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

Retrotransposition• With other, inactive transposable elements, e.g. Alu & Sine, 

retrotransposons comprise 40% of human genome• Parasites which infected our ancestral genome over billions 

of years• Line 1‐ Long Interspersed Element (L1)‐ Are active, more 

recent retrotransposons‐maintain reverse transcriptase & endonuclease activities.  Insert randomly throughout the genome under certain circumstances, e.g. during early embryo development. 

• Comprises 17% of human genome‐ up to 100 copies active• Held in check by methylation of CpG islands in 5’ promoter 

region and by histone methylation • During oogenesis & early embryo development cytosines are  

demethylated to reset the epigenetic clock @ the beginning of life

• Cytosine demethylation activates L1 • Activation of L1 causes fetal oocyte attrition in mice   

Page 33: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

Cytosine Demethylation During Gametogenesis & Early Development

Page 34: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

Do Mammals Mobilize Retrotransposons To Elongate Telomeres During Early Development? 

Telomere RNA (TERRA)Expressed (Wang)

Telomere elongation inhibited by AZT (Navarro)

ORF2 expressed in embryos? (Bourroul)

ALT in human embryos & parthenotes(Robinson)

Methylome clock advanced in individual human oocytes? (Wang, Charmani)

Retrotransposon capture (RC) seqto compare TE architecture in euploid vs. aneupoidhuman embryos; persistence of LINE1 message in abnormal blasts? (Maxwell)

Page 35: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

TERRA Biogenesis in Mammals

S. Feuerhahn et al. / FEBS Letters 584 (2010) 3812–3818

Page 36: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability
Page 37: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

TERRA Activated in Cleavage Mouse Embryos 

TERRA                                        TRF1  DAPI  Merge

Early 2cell(G1)

Late 2cell(S/G2)

4cell

A

TERRA foci per cell

>50 (n=12)

20 (n=6)

7.5 (n=6)

B

Page 38: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

Line1 Copy Number Increases During Early Development

Page 39: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

Summary & Conclusions• Genomic instability is common in preimplantation embryos

• Mitotic as well as meiotic errors‐mosaicism, copy number variants

• Telomeres are essential for genomic stability• DNA recombination‐based telomere elongation, which resembles  retrotransposon activation, may contribute to global genomic instability during preimplantation embryo development

Page 40: David L. Keefe, M.D. SARG International Summit May 28, 2018cme-utilities.com/mailshotcme/SARG/Presentations/1515_Keefe_B_Mon.pdf · Objectives • Describe the pervasive genomic instability

Acknowledgements Laboratory for Human Reproduction

David L. KeefeFang ‘Helen’ WangRicardo Pimentel (Univ. Fed. De Goias) Libing Wang (UCLA)Lan Wang (Tongji Med. College)Elisa Atamian (Boston Univ.)Jason Kofinas (Kofinas Ferility) Dani Antunes (NYU FC)Molly Kumar (University of Sydney)Lin Liu (Univ. Nankai)Nidhee SachdevPaula Navarro (USP‐RP, Brazil)

NYU Fertility CenterYael KramerDavid McCullohJamie Grifo &Embryology Staff

New York Stem Cell FoundationDeter Egli

FundingMarch of DimesStanley Kaplan Research 

Endowment