60
Datornätverk A – lektion 3 MKS B – lektion 3 Kapitel 3: Fysiska signaler. Kapitel 4: Digital transmission.

Datornätverk A – lektion 3 MKS B – lektion 3 Kapitel 3: Fysiska signaler. Kapitel 4: Digital transmission

Embed Size (px)

Citation preview

Page 1: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Datornätverk A – lektion 3MKS B – lektion 3

Kapitel 3: Fysiska signaler.Kapitel 4: Digital transmission.

Page 2: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 2

Repetition: The TCP/IP model

H – header (pakethuvud): control data added at the front end of the data unitT – trailer (svans): control data added at the back end of the data unitTrailers are usually added only at layer 2.

Page 3: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 3

Physical LayerPhysical Layer

PART IIPART II

Page 4: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Chapter 3 – Time and Frequency Domain Concept, Transmission

Impairments

Page 5: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 5

Figure 3.1 Comparison of analog and digital signals

Page 6: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 6

Signals can be analog or digital. Analog signals can have an infinite number of values in a range; digital

signals can have only a limited number of values.

Note:Note:

Page 7: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 7

Periodic signal repeat over and over

again, once per period The period ( T ) is the

time it takes to make one complete cycle

Non periodic signal don’t repeat

according to any particular pattern

Periodic vs. Non Periodic Signals

Page 8: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 8

Sinusvågor

Periodtid T = t2 - t1. Enhet: s.Frekvens f = 1/T. Enhet: 1/s=Hz.T=1/f.Amplitud eller toppvärde Û. Enhet: Volt.Fasläge: θ = 0 i ovanstående exempel. Enhet: Grader eller radianer.Momentan spänning: u(t)= Ûsin(2πft+θ)

Page 9: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 9

Figure 3.4 Period and frequency

Page 10: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 10

Tabell 3.1 Enheter för periodtid och frekvensTabell 3.1 Enheter för periodtid och frekvens

Enhet Ekvivalent Enhet Ekvivalent

Sekunder (s) 1 s Hertz (Hz) 1 Hz

Millisekunder (ms) 10–3 s Kilohertz (kHz) 103 Hz

Mikrosekunder (μs) 10–6 s Megahertz (MHz) 106 Hz

Nanosekunder (ns) 10–9 s Gigahertz (GHz) 109 Hz

Pikosekunder (ps) 10–12 s Terahertz (THz) 1012 Hz

Exempel: En sinusvåg med periodtid 1 ns har frekvens 1 GHz.

Page 11: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 11

Figure 3.6 Sine wave examples

Page 12: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 12

Figure 3.6 Sine wave examples (continued)

Page 13: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 13

ExempelExempel

Vilken frekvens i kHz har en sinusvåg med periodtid 100 ms?

LösningLösning

Alternativ 1: Gör om till grundenheten. 100 ms = 0.1 sf = 1/0.1 Hz = 10 Hz = 10/1000 kHz = 0.01 kHz

Alternativ 2: Utnyttja att 1 ms motsvarar 1 kHz.f = 1/100ms = 0.01 kHz.

Page 14: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 14

Figure 3.5 Relationships between different phases

Page 15: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 15

Measuring the Phase

The phase is measured in degrees or in radians. One full cycle is 360o

360o (degrees) = 2 (radians)

Example: A sine wave is offset one-sixth of a cycle with respect to time 0. What is the phase in radians?

Solution: (1/6) 360 = 60 degrees = 60 x 2p /360 rad = 1.046 rad

Page 16: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 16

Figure 3.6 Sine wave examples (continued)

Page 17: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 17

Example 2Example 2

A sine wave is offset one-sixth of a cycle with respect to time zero. What is its phase in degrees and radians?

SolutionSolution

We know that one complete cycle is 360 degrees.

Therefore, 1/6 cycle is

(1/6) 360 = 60 degrees = 60 x 2 /360 rad = 1.046 rad

Page 18: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 18

Figure 3.7 Time and frequency domains (continued)

Page 19: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 19

Figure 3.7 A DC signal (likspänning), i.e. a signal with frequency 0 Hz

Page 20: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 20

Figure 3.8 Square wave

Page 21: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 21

Figure 3.9 Three harmonics

Page 22: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 22

Figure 3.10 Adding first three harmonics

Page 23: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 23

Figure 3.11 Frequency spectrum comparison

Page 24: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 24

Example: Square Wave  

Square wave with frequency fo

Component 1:

Component 5:

Component 3:

.

.

.

.

.

.

...}5cos5

13cos

3

1{cos

4)( ttt

Ats ooo

tA

ts o

cos4

)(1

tA

ts o

3cos3

4)(3

tA

ts o

5cos5

4)(5

Page 25: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 25

Characteristic of the Component Signals in the Square Wave

Infinite number of components Only the odd harmonic components are

present The amplitudes of the components

diminish with increasing frequency

Page 26: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 26

Figure 3.12 Signal corruption

Page 27: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 27

Figure 3.13 Bandwidth

Page 28: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 28

Example 3Example 3

If a periodic signal is decomposed into five sine waves with frequencies of 100, 300, 500, 700, and 900 Hz, what is the bandwidth? Draw the spectrum, assuming all components have a maximum amplitude of 10 V.

SolutionSolution

B = fh  fl = 900 100 = 800 HzThe spectrum has only five spikes, at 100, 300, 500, 700, and 900 (see Figure 13.4 )

Page 29: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 29

Figure 3.14 Example 3

Page 30: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 30

Example 5Example 5

A signal has a spectrum with frequencies between 1000 and 2000 Hz (bandwidth of 1000 Hz). A medium can pass frequencies from 3000 to 4000 Hz (a bandwidth of 1000 Hz). Can this signal faithfully pass through this medium?

SolutionSolution

The answer is definitely no. Although the signal can have The answer is definitely no. Although the signal can have the same bandwidth (1000 Hz), the range does not the same bandwidth (1000 Hz), the range does not overlap. The medium can only pass the frequencies overlap. The medium can only pass the frequencies between 3000 and 4000 Hz; the signal is totally lost.between 3000 and 4000 Hz; the signal is totally lost.

Page 31: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 31

Figure 3.16 A digital signal

Page 32: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 32

A digital signal is a composite signal A digital signal is a composite signal with an infinite bandwidth.with an infinite bandwidth.

Note:Note:

Page 33: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 33

Figure 3.17 Bit rate and bit interval

Page 34: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 34

Example 6Example 6

A digital signal has a bit rate of 2000 bps. What is the duration of each bit (bit interval)

SolutionSolution

The bit interval is the inverse of the bit rate.

Bit interval = 1/ 2000 s = 0.000500 s = 0.000500 x 106 s = 500 s

Page 35: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 35

Media Filters the Signal

Media

INPUT OUTPUT

Certain frequenciesdo not pass through

What happens when you limit frequencies?

Square waves (digital values) lose their edges -> Harder to read correctly.

Page 36: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 36

Table 3.12 Bandwidth RequirementTable 3.12 Bandwidth Requirement

BitRate

Harmonic1

Harmonics1, 3

Harmonics1, 3, 5

Harmonics1, 3, 5, 7

1 Kbps 500 Hz 1,5 KHz 3 KHz 4,5 KHz

10 Kbps 5 KHz 15 KHz 30 KHz 45 KHz

100 Kbps 50 KHz 150 KHz 300 KHz 450 KHz

Page 37: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 37

The bit rate and the bandwidth are The bit rate and the bandwidth are proportional to each other.proportional to each other.

Note:Note:

Page 38: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 38

The analog bandwidth of a medium is The analog bandwidth of a medium is expressed in hertz; the digital expressed in hertz; the digital bandwidth, in bits per second.bandwidth, in bits per second.

Note:Note:

Page 39: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 39

Figure 3.19 Low-pass and band-pass

Page 40: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 40

Filtering the Signal Filtering is equivalent to cutting all the

frequiencies outside the band of the filter

High pass

INPUTS1(f)

H(f)

H(f)

OUTPUT S2(f)= H(f)*S1(f)

Low pass

INPUTS1(f)

H(f)

H(f)

f

OUTPUT S2(f)= H(f)*S1(f)

Band pass

INPUTS1(f)

H(f)

H(f)

OUTPUT S2(f)= H(f)*S1(f)

Types of filters Low pass

Band pass

High pass

f

f

Page 41: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 41

Digital transmission (without Digital transmission (without modulation) needs a modulation) needs a

low-pass channel.low-pass channel.

Note:Note:

Page 42: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 42

Analog transmission (by means of Analog transmission (by means of modulation) can use a band-pass modulation) can use a band-pass

channel.channel.

Note:Note:

Page 43: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 43

Figure 3.21 Attenuation

Page 44: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 44

Förstärkning mätt i decibel (dB)

1 gång effektförstärkning = 0 dB.2 ggr effektförstärkning = 3 dB.10 ggr effektförstärkning = 10 dB.100 ggr effektförstärkning = 20 dB.1000 ggr effektförstärkning = 30 dB.Osv.

Page 45: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 45

Dämpning mätt i decibel

Dämpning 100 ggr = Dämpning 20 dB = förstärkning 0.01 ggr = förstärkning med – 20 dB.

Dämpning 1000 ggr = 30 dB dämpning = -30dB förstärkning.

En halvering av signalen = dämpning med 3dB = förstärkning med -3dB.

Page 46: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 46

Measurement of Attenuation

Signal attenuation is measured in units called decibels (dB).

If over a transmission link the ratio of output power is Po/Pi, the attenuation is said to be –10log10(Po/Pi) = 10log10(Pi/Po) dB.

In cascaded links the attenuation in dB is simply a sum of the individual attenuations in dB.

dB is negative when the signal is attenuated and positive when the signal is amplified

Page 47: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 47

What is dB?

A decibel is 1/10th of a Bel, abbreviated dB

Suppose a signal has a power of P1 watts, and a second signal has a power of P2 watts. Then the power amplitude difference in decibels, is:

10 log10 (P2 / P1)

As a rule of thumb:

10dB means power ratio 10/120dB means power ratio 100/130dB means power ratio 1000/140dB means power ratio 10000/1

Page 48: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 48

Example 12Example 12

Imagine a signal travels through a transmission medium and its power is reduced to half. This means that P2 = 1/2 P1. In this case, the attenuation (loss of power) can be calculated as

SolutionSolution

10 log10 log1010 (P2/P1) = 10 log (P2/P1) = 10 log1010 (0.5P1/P1) = 10 log (0.5P1/P1) = 10 log1010 (0.5) (0.5)

= 10(–0.3) = –3 dB = 10(–0.3) = –3 dB

Page 49: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 49

Example 13Example 13

Imagine a signal travels through an amplifier and its power is increased ten times. This means that

P2 = 10· P1.

In this case, the amplification (gain of power) can be calculated as

10 log10 log1010 (P2/P1) = 10 log (P2/P1) = 10 log1010 (10P1/P1) (10P1/P1)

= 10 log= 10 log1010 (10) = 10 (1) = 10 dB (10) = 10 (1) = 10 dB

Page 50: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 50

Figure 3.22 Example 14: In cascaded links the amplification in dB is simply a sum of the individual amplifications in dB.

–3dB + 7dB – 3dB = +1dB

Total amplification:

Page 51: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 51

Figure 3.23 Symbol distortion

Page 52: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 52

Figure 3.24 Noise

Page 53: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 53

Noise and Interference Noise is present in the form of random

motion of electrons in conductors, devices and electronic systems (due to thermal energy) and can be also picked up from external sources (atmospheric disturbances, ignition noise etc.)

Interference (cross-talk) generally refers to the unwanted signals, picked up by communication link due to other transmissions taking place in adjacent frequency bands or in physically adjacent transmission lines

Page 54: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 54

Signal-brus-förhållande

Ett signal-brus-förhållande på 100 dB innebär att den starkaste signalen är 100 dB starkare än bruset.

Ljud som är svagare än bruset hörs inte utan dränks i bruset.

Ljudets dynamik skillnaden mellan den starkaste ljudet och det svagaste ljudet som man kan höra, och är vanligen ungefär detsamma som signal-brus-förhållandet.

Page 55: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 55

Page 56: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 56

Throughput (Genomströmningshastighet)

Page 57: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 57

Delay (Time, Latency)

When data are sent from one node to next node (without intermediate points), two types of delays are experienced: transmission time (Paketsändningstid) propagation delay (Utbredningsfördröjning)

When data pass through intermediate nodes four types of delay (latency) are experienced: transmission time propagation delay queue time processing time

Page 58: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 58

Figure 3.26 Propagation time

Page 59: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 59

Transmission Time (Paketsändningstid)

The transmission time is the time necessary to put the complete message on the link (channel).

The transmission time depends on the length of the message and the bit rate of the link and is expressed as:

length of packet (bits) bit rate (bits/sec)

Page 60: Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission

Summer 2006 Computer Networks 60

Propagation Delay (Time)

The propagation delay is the time needed for the signal to propagate (travel) from one end of a channel to the other.

The transmition time depends on the distance between the two ends and the speed of the signal and is expressed as

distance (m) / speed of propagation (m/s) Through free space signals propagate at the

speed of light which is 3 * 108 m/s Through wires signals propagate at the speed of

2 * 108 m/s