Cycle Analysis JJ1400 Turbojet

  • Upload
    pxc3536

  • View
    20

  • Download
    0

Embed Size (px)

DESCRIPTION

Thermodynamic Cycle Analysis of JJ1400 Turbojet (Jet Joe) Model Aircraft Turbine Engine

Citation preview

  • Exhaust properties estimation of the JJ-1400 Turbojet

    Given From Jet-Joe:

    RPMidle 42000 rpmrpmrpmrpm EGTnominal 680 CCCC =T9 680 CCCC 953.15 KKKK

    RPMmax 160000 rpmrpmrpmrpm Lubricant Turbine oil: 3%-5%

    Fuel: Jet-A Kerosene Fmax 14 lbflbflbflbf (max thrust) 1.4

    =Qf 200 mLmLmLmL

    min 3.333 106

    mmmm3

    ssssfuel consuption

    Measured Geometry:

    D9 45.4 mmmmmmmm D5 59.5 mmmmmmmm =Do +89.9 49.1

    2mm 69.5 mmmmmmmm

    hPR_f 43.1 106 JJJJ

    kgkgkgkglow heating value =f 0.81

    gmgmgmgm

    cmcmcmcm3

    810 kgkgkgkg

    mmmm3

    =m'f Qf f 0.0027 kgkgkgkg

    ssssRair 287

    JJJJ

    kgkgkgkg KKKK

    Cycle Analysis:

    Knowing thrust and assuming as a first approximation using momemtum equation that inlet velocity is zero, we get:

    F m'9 V9 m'o Vo

    9 0.365 kgkgkgkg

    mmmm3

    assuming atm pressure

    9 1.34 cp_9 1130 JJJJ

    kgkgkgkg KKKK

    =A9

    4D9

    2 0.00162 mmmm2 =a9 9 Rair T9 605.444

    mmmm

    ssss

  • =V9

    Fmax

    9 A9324.646

    mmmm

    ssss=M9

    V9

    a90.536 =Tt9 +T9

    V92

    2 cp_9999.785 KKKK

    n Tt9

    Tt51 Tt5 Tt9 assuming adiabatic flow through nozzle

    =A5

    4D5

    2 0.00278 mmmm2

    from continuity assuming same density : =V5

    V9 A9

    A5189.011

    mmmm

    ssss

    =T5 Tt5 V5

    2

    2 cp_9983.977 KKKK

    2nd Iteration

    =m'9 A9 9 V9 0.192 kgkgkgkg

    ssss=m'o m'9 m'f 0.189

    kgkgkgkg

    ssss

    F m'9 V9 m'o Vo Ao

    4Do

    2

    =o 1.181 kg

    m31.181

    kgkgkgkg

    mmmm3

    =Vo m'o

    o Ao42.212

    mmmm

    ssss

    =V9

    +Fmax m'o Vo

    9 A9344.828

    mmmm

    ssss

    3rd Iteration

    =m'9 A9 9 V9 0.204 kgkgkgkg

    ssss=m'o m'9 m'f 0.201

    kgkgkgkg

    ssss

    F m'9 V9 m'o Vo Ao

    4Do

    2

    =o 1.181 kg

    m31.181

    kgkgkgkg

    mmmm3

    =Vo m'o

    o Ao44.874

    mmmm

    ssss

    =V9

    +Fmax m'o Vo

    9 A9347.367

    mmmm

    ssss

  • 4th Iteration

    =m'9 A9 9 V9 0.205 kgkgkgkg

    ssss=m'o m'9 m'f 0.203

    kgkgkgkg

    ssss

    F m'9 V9 m'o Vo Ao

    4Do

    2

    =o 1.181 kg

    m31.181

    kgkgkgkg

    mmmm3

    =Vo m'o

    o Ao45.209

    mmmm

    ssss

    =V9

    +Fmax m'o Vo

    9 A9347.696

    mmmm

    ssss

    5th Iteration

    =m'9 A9 9 V9 0.205 kgkgkgkg

    ssss=m'o m'9 m'f 0.203

    kgkgkgkg

    ssss

    F m'9 V9 m'o Vo =Ao

    4Do

    2 0.00379 mmmm2

    =o 1.181 kg

    m31.181

    kgkgkgkg

    mmmm3

    =Vo m'o

    o Ao45.252

    mmmm

    ssss

    =V9

    +Fmax m'o Vo

    9 A9347.739

    mmmm

    ssss

    6th Iteration

    =m'9 A9 9 V9 0.205 kgkgkgkg

    ssss=m'o m'9 m'f 0.203

    kgkgkgkg

    ssss

    F m'9 V9 m'o Vo Ao

    4Do

    2

    =o 1.181 kg

    m31.181

    kgkgkgkg

    mmmm3

    =Vo m'o

    o Ao45.258

    mmmm

    ssss

    =V9

    +Fmax m'o Vo

    9 A9347.744

    mmmm

    ssss

    Now we calculate the final total properties:

    =Tt9 +T9 V9

    2

    2 cp_9

    1.007 103 KKKK =M9 V9

    a90.574

  • Tt5 Tt9 from continuity assuming same density we have following estimation :

    =V5 V9 A9

    A5202.459

    mmmm

    ssss

    =T5 Tt5 V5

    2

    2 cp_9988.52 KKKK

    Now the calculations to estimate the real static temperature, pressure, density and velocity @5:

    Assuming c Pt3

    Pt22.8 c 2.8 cp 1004

    JJJJ

    kgkgkgkg KKKK

    c Tt3

    Tt2=c c

    1

    1.342

    Temperatures

    =T0 25 CCCC 298.15 KKKK =Tt2 +T0 Vo

    2

    2 cp299.17 KKKK rblade.mean 10 mmmmmmmm

    =Tt3 c Tt2 401.493 KKKK =Vblade.mean RPMmax rblade.mean 167.552 mmmm

    ssss

    =V3+Vblade.mean

    2 Vo2 173.556

    mmmm

    ssss

    =T3 Tt3 V3

    2

    2 cp386.492 KKKK

    Pressures

    P0 101 kPakPakPakPa

    =Pt2 +P0 o Vo

    2

    2102.21 kPakPakPakPa

    =Pt3 Pt2 c 286.187 kPakPakPakPa 3 2.27 kgkgkgkg

    mmmm3

    =P3 Pt3 3 V3

    2

    2251.998 kPakPakPakPa

  • =qin hPR_f m'f 116.37 kWkWkWkW

    =P4 P3 251.998 kPakPakPakPa

    qin hPR m'f +m'o m'f cp T4 T3

    =T4 +T3 qin

    +m'o m'f cp950.597 KKKK =T4 677.447 CCCC =T5 988.52 KKKK

    b Tt4

    Tt3T9

    T0=b

    T9

    T03.197 =Tt4 Tt3 b

    1.284 103 KKKK

    =M4

    Tt4

    T412

    11.323

    =Tt5 1.007 103 KKKK =Pt4 P4

    +1

    1

    2M4

    2

    1

    720.817 kPakPakPakPa

    =Pt5 Tt5

    Tt4

    1

    Pt4 307.961 kPakPakPakPa

    =Pt5

    Pt40.427 =

    Pt4

    Pt52.341

    Iterative calculations to get t5, p5 and V5:

    1st

    5 0.58136 kgkgkgkg

    mmmm3

    =P5 Pt5 5 V5

    2

    2296.047 kPakPakPakPa

    =V5 V9 A9 o

    A5 5411.285

    mmmm

    ssss=o 1.181

    kgkgkgkg

    mmmm3

    =T5 Tt5 V5

    2

    2 cp_9931.81 KKKK =Tt5 1006.6571 KKKK

  • 2nd

    5 1.11 kgkgkgkg

    mmmm3

    =P5 Pt5 5 V5

    2

    2214.08 kPakPakPakPa

    =V5 V9 A9 o

    A5 5215.409

    mmmm

    ssss=T5 Tt5

    V52

    2 cp_9986.126 KKKK

    3rd

    5 0.87 kgkgkgkg

    mmmm3

    =P5 Pt5 5 V5

    2

    2287.777 kPakPakPakPa

    =V5 V9 A9 o

    A5 5274.833

    mmmm

    ssss=T5 Tt5

    V52

    2 cp_9973.235 KKKK

    4th

    5 1.03 kgkgkgkg

    mmmm3

    =P5 Pt5 5 V5

    2

    2 2.691 105 PaPaPaPa

    =V5 V9 A9 o

    A5 5232.14

    mmmm

    ssss=T5 Tt5

    V52

    2 cp_9982.812 KKKK

    5th

    5 0.9922 kgkgkgkg

    mmmm3

    =P5 Pt5 5 V5

    2

    2 2.812 105 PaPaPaPa

    =V5 V9 A9 o

    A5 5240.984

    mmmm

    ssss=T5 Tt5

    V52

    2 cp_9980.961 KKKK

  • 6th

    5 0.9896 kgkgkgkg

    mmmm3

    =P5 Pt5 5 V5

    2

    2279.227 kPakPakPakPa

    =V5 V9 A9 o

    A5 5241.617

    mmmm

    ssss=T5 Tt5

    V52

    2 cp_9980.826 KKKK

    Kinetic Power Available from the fluid

    =Ke 1

    2m'9 V9

    2 12.423 kWkWkWkW