201
Today’s Outline - February 01, 2018 C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 1 / 18

csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Today’s Outline - February 01, 2018

• Problems from Chapter 6

• Problems from Chapter 7

Homework Assignment #04:Chapter 7:1,2,4,5,7,9due Thursday, February 08, 2018

Homework Assignment #05:Chapter 7:11,13,14,15,16,19due Thursday, February 15, 2018

Midterm Exam #1Thursday, February 22, 2018

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 1 / 18

Page 2: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Today’s Outline - February 01, 2018

• Problems from Chapter 6

• Problems from Chapter 7

Homework Assignment #04:Chapter 7:1,2,4,5,7,9due Thursday, February 08, 2018

Homework Assignment #05:Chapter 7:11,13,14,15,16,19due Thursday, February 15, 2018

Midterm Exam #1Thursday, February 22, 2018

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 1 / 18

Page 3: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Today’s Outline - February 01, 2018

• Problems from Chapter 6

• Problems from Chapter 7

Homework Assignment #04:Chapter 7:1,2,4,5,7,9due Thursday, February 08, 2018

Homework Assignment #05:Chapter 7:11,13,14,15,16,19due Thursday, February 15, 2018

Midterm Exam #1Thursday, February 22, 2018

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 1 / 18

Page 4: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Today’s Outline - February 01, 2018

• Problems from Chapter 6

• Problems from Chapter 7

Homework Assignment #04:Chapter 7:1,2,4,5,7,9due Thursday, February 08, 2018

Homework Assignment #05:Chapter 7:11,13,14,15,16,19due Thursday, February 15, 2018

Midterm Exam #1Thursday, February 22, 2018

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 1 / 18

Page 5: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Today’s Outline - February 01, 2018

• Problems from Chapter 6

• Problems from Chapter 7

Homework Assignment #04:Chapter 7:1,2,4,5,7,9due Thursday, February 08, 2018

Homework Assignment #05:Chapter 7:11,13,14,15,16,19due Thursday, February 15, 2018

Midterm Exam #1Thursday, February 22, 2018

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 1 / 18

Page 6: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Today’s Outline - February 01, 2018

• Problems from Chapter 6

• Problems from Chapter 7

Homework Assignment #04:Chapter 7:1,2,4,5,7,9due Thursday, February 08, 2018

Homework Assignment #05:Chapter 7:11,13,14,15,16,19due Thursday, February 15, 2018

Midterm Exam #1Thursday, February 22, 2018

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 1 / 18

Page 7: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.23

Consider the (eight) n = 2 states, |2 l ml ms〉. Find the energy of eachstate, under strong Zeeman splitting. Express each answer as the sum ofthree terms: the Bohr energy, the fine structure (proportional to α2), andthe Zeeman contribution (proportional to µBBext). If you ignore finestructure altogether, how many distinct levels are there and what are theirdegeneracies?

The Bohr term is identicalfor all of these states

the strong Zeeman termis

and the fine structure per-turbation for l > 0 is

E2 = −13.6 eV

22= −3.4 eV

EZ = µBBext(ml + 2ms)

Efs = (1.7 eV)α2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 2 / 18

Page 8: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.23

Consider the (eight) n = 2 states, |2 l ml ms〉. Find the energy of eachstate, under strong Zeeman splitting. Express each answer as the sum ofthree terms: the Bohr energy, the fine structure (proportional to α2), andthe Zeeman contribution (proportional to µBBext). If you ignore finestructure altogether, how many distinct levels are there and what are theirdegeneracies?

The Bohr term is identicalfor all of these states

the strong Zeeman termis

and the fine structure per-turbation for l > 0 is

E2 = −13.6 eV

22= −3.4 eV

EZ = µBBext(ml + 2ms)

Efs = (1.7 eV)α2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 2 / 18

Page 9: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.23

Consider the (eight) n = 2 states, |2 l ml ms〉. Find the energy of eachstate, under strong Zeeman splitting. Express each answer as the sum ofthree terms: the Bohr energy, the fine structure (proportional to α2), andthe Zeeman contribution (proportional to µBBext). If you ignore finestructure altogether, how many distinct levels are there and what are theirdegeneracies?

The Bohr term is identicalfor all of these states

the strong Zeeman termis

and the fine structure per-turbation for l > 0 is

E2 = −13.6 eV

22

= −3.4 eV

EZ = µBBext(ml + 2ms)

Efs = (1.7 eV)α2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 2 / 18

Page 10: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.23

Consider the (eight) n = 2 states, |2 l ml ms〉. Find the energy of eachstate, under strong Zeeman splitting. Express each answer as the sum ofthree terms: the Bohr energy, the fine structure (proportional to α2), andthe Zeeman contribution (proportional to µBBext). If you ignore finestructure altogether, how many distinct levels are there and what are theirdegeneracies?

The Bohr term is identicalfor all of these states

the strong Zeeman termis

and the fine structure per-turbation for l > 0 is

E2 = −13.6 eV

22= −3.4 eV

EZ = µBBext(ml + 2ms)

Efs = (1.7 eV)α2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 2 / 18

Page 11: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.23

Consider the (eight) n = 2 states, |2 l ml ms〉. Find the energy of eachstate, under strong Zeeman splitting. Express each answer as the sum ofthree terms: the Bohr energy, the fine structure (proportional to α2), andthe Zeeman contribution (proportional to µBBext). If you ignore finestructure altogether, how many distinct levels are there and what are theirdegeneracies?

The Bohr term is identicalfor all of these states

the strong Zeeman termis

and the fine structure per-turbation for l > 0 is

E2 = −13.6 eV

22= −3.4 eV

EZ = µBBext(ml + 2ms)

Efs = (1.7 eV)α2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 2 / 18

Page 12: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.23

Consider the (eight) n = 2 states, |2 l ml ms〉. Find the energy of eachstate, under strong Zeeman splitting. Express each answer as the sum ofthree terms: the Bohr energy, the fine structure (proportional to α2), andthe Zeeman contribution (proportional to µBBext). If you ignore finestructure altogether, how many distinct levels are there and what are theirdegeneracies?

The Bohr term is identicalfor all of these states

the strong Zeeman termis

and the fine structure per-turbation for l > 0 is

E2 = −13.6 eV

22= −3.4 eV

EZ = µBBext(ml + 2ms)

Efs = (1.7 eV)α2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 2 / 18

Page 13: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.23

Consider the (eight) n = 2 states, |2 l ml ms〉. Find the energy of eachstate, under strong Zeeman splitting. Express each answer as the sum ofthree terms: the Bohr energy, the fine structure (proportional to α2), andthe Zeeman contribution (proportional to µBBext). If you ignore finestructure altogether, how many distinct levels are there and what are theirdegeneracies?

The Bohr term is identicalfor all of these states

the strong Zeeman termis

and the fine structure per-turbation for l > 0 is

E2 = −13.6 eV

22= −3.4 eV

EZ = µBBext(ml + 2ms)

Efs = (1.7 eV)α2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 2 / 18

Page 14: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.23

Consider the (eight) n = 2 states, |2 l ml ms〉. Find the energy of eachstate, under strong Zeeman splitting. Express each answer as the sum ofthree terms: the Bohr energy, the fine structure (proportional to α2), andthe Zeeman contribution (proportional to µBBext). If you ignore finestructure altogether, how many distinct levels are there and what are theirdegeneracies?

The Bohr term is identicalfor all of these states

the strong Zeeman termis

and the fine structure per-turbation for l > 0 is

E2 = −13.6 eV

22= −3.4 eV

EZ = µBBext(ml + 2ms)

Efs = (1.7 eV)α2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 2 / 18

Page 15: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.23 (cont.)

Etot = −3.4 eV + (3.4 eV)α2

2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}+ µBBext(ml + 2ms)

|n l ml ms〉 (ml + 2ms) {. . . } Total Energy

|1〉 = |2 0 0 12〉 1 −58 −3.4 eV[1 + 5

16α2] + µBBext

|2〉 = |2 0 0 −12〉 −1 −58 −3.4 eV[1 + 516α

2]− µBBext

|3〉 = |2 1 1 12〉 2 −18 −3.4 eV[1 + 1

16α2] + 2µBBext

|4〉 = |2 1 −1 −12〉 −2 −18 −3.4 eV[1 + 116α

2]− 2µBBext

|5〉 = |2 1 0 12〉 1 − 7

24 −3.4 eV[1 + 748α

2] + µBBext

|6〉 = |2 1 1 −12〉 0 −1124 −3.4 eV[1 + 1148α

2]

|7〉 = |2 1 0 −12〉 −1 − 724 −3.4 eV[1 + 7

48α2]− µBBext

|8〉 = |2 1 −1 12〉 0 −1124 −3.4 eV[1 + 11

48α2]

ignoring fine structure there are 5 distinct levels with two of them singlydegenerate and the other double degenerate

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 3 / 18

Page 16: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.23 (cont.)

Etot = −3.4 eV + (3.4 eV)α2

2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}+ µBBext(ml + 2ms)

|n l ml ms〉 (ml + 2ms) {. . . } Total Energy

|1〉 = |2 0 0 12〉 1 −58 −3.4 eV[1 + 5

16α2] + µBBext

|2〉 = |2 0 0 −12〉 −1 −58 −3.4 eV[1 + 516α

2]− µBBext

|3〉 = |2 1 1 12〉 2 −18 −3.4 eV[1 + 1

16α2] + 2µBBext

|4〉 = |2 1 −1 −12〉 −2 −18 −3.4 eV[1 + 116α

2]− 2µBBext

|5〉 = |2 1 0 12〉 1 − 7

24 −3.4 eV[1 + 748α

2] + µBBext

|6〉 = |2 1 1 −12〉 0 −1124 −3.4 eV[1 + 1148α

2]

|7〉 = |2 1 0 −12〉 −1 − 724 −3.4 eV[1 + 7

48α2]− µBBext

|8〉 = |2 1 −1 12〉 0 −1124 −3.4 eV[1 + 11

48α2]

ignoring fine structure there are 5 distinct levels with two of them singlydegenerate and the other double degenerate

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 3 / 18

Page 17: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.23 (cont.)

Etot = −3.4 eV + (3.4 eV)α2

2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}+ µBBext(ml + 2ms)

|n l ml ms〉 (ml + 2ms) {. . . } Total Energy

|1〉 = |2 0 0 12〉 1 −58 −3.4 eV[1 + 5

16α2] + µBBext

|2〉 = |2 0 0 −12〉 −1 −58 −3.4 eV[1 + 516α

2]− µBBext

|3〉 = |2 1 1 12〉 2 −18 −3.4 eV[1 + 1

16α2] + 2µBBext

|4〉 = |2 1 −1 −12〉 −2 −18 −3.4 eV[1 + 116α

2]− 2µBBext

|5〉 = |2 1 0 12〉 1 − 7

24 −3.4 eV[1 + 748α

2] + µBBext

|6〉 = |2 1 1 −12〉 0 −1124 −3.4 eV[1 + 1148α

2]

|7〉 = |2 1 0 −12〉 −1 − 724 −3.4 eV[1 + 7

48α2]− µBBext

|8〉 = |2 1 −1 12〉 0 −1124 −3.4 eV[1 + 11

48α2]

ignoring fine structure there are 5 distinct levels with two of them singlydegenerate and the other double degenerate

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 3 / 18

Page 18: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.23 (cont.)

Etot = −3.4 eV + (3.4 eV)α2

2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}+ µBBext(ml + 2ms)

|n l ml ms〉 (ml + 2ms) {. . . } Total Energy

|1〉 = |2 0 0 12〉 1 −58 −3.4 eV[1 + 5

16α2] + µBBext

|2〉 = |2 0 0 −12〉 −1 −58 −3.4 eV[1 + 516α

2]− µBBext

|3〉 = |2 1 1 12〉 2 −18 −3.4 eV[1 + 1

16α2] + 2µBBext

|4〉 = |2 1 −1 −12〉 −2 −18 −3.4 eV[1 + 116α

2]− 2µBBext

|5〉 = |2 1 0 12〉 1 − 7

24 −3.4 eV[1 + 748α

2] + µBBext

|6〉 = |2 1 1 −12〉 0 −1124 −3.4 eV[1 + 1148α

2]

|7〉 = |2 1 0 −12〉 −1 − 724 −3.4 eV[1 + 7

48α2]− µBBext

|8〉 = |2 1 −1 12〉 0 −1124 −3.4 eV[1 + 11

48α2]

ignoring fine structure there are 5 distinct levels with two of them singlydegenerate and the other double degenerate

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 3 / 18

Page 19: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.23 (cont.)

Etot = −3.4 eV + (3.4 eV)α2

2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}+ µBBext(ml + 2ms)

|n l ml ms〉 (ml + 2ms) {. . . } Total Energy

|1〉 = |2 0 0 12〉 1 −58 −3.4 eV[1 + 5

16α2] + µBBext

|2〉 = |2 0 0 −12〉 −1 −58 −3.4 eV[1 + 516α

2]− µBBext

|3〉 = |2 1 1 12〉 2 −18 −3.4 eV[1 + 1

16α2] + 2µBBext

|4〉 = |2 1 −1 −12〉 −2 −18 −3.4 eV[1 + 116α

2]− 2µBBext

|5〉 = |2 1 0 12〉 1 − 7

24 −3.4 eV[1 + 748α

2] + µBBext

|6〉 = |2 1 1 −12〉 0 −1124 −3.4 eV[1 + 1148α

2]

|7〉 = |2 1 0 −12〉 −1 − 724 −3.4 eV[1 + 7

48α2]− µBBext

|8〉 = |2 1 −1 12〉 0 −1124 −3.4 eV[1 + 11

48α2]

ignoring fine structure there are 5 distinct levels with two of them singlydegenerate and the other double degenerate

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 3 / 18

Page 20: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.23 (cont.)

Etot = −3.4 eV + (3.4 eV)α2

2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}+ µBBext(ml + 2ms)

|n l ml ms〉 (ml + 2ms) {. . . } Total Energy

|1〉 = |2 0 0 12〉 1 −58 −3.4 eV[1 + 5

16α2] + µBBext

|2〉 = |2 0 0 −12〉 −1 −58 −3.4 eV[1 + 516α

2]− µBBext

|3〉 = |2 1 1 12〉 2 −18 −3.4 eV[1 + 1

16α2] + 2µBBext

|4〉 = |2 1 −1 −12〉 −2 −18 −3.4 eV[1 + 116α

2]− 2µBBext

|5〉 = |2 1 0 12〉 1 − 7

24 −3.4 eV[1 + 748α

2] + µBBext

|6〉 = |2 1 1 −12〉 0 −1124 −3.4 eV[1 + 1148α

2]

|7〉 = |2 1 0 −12〉 −1 − 724 −3.4 eV[1 + 7

48α2]− µBBext

|8〉 = |2 1 −1 12〉 0 −1124 −3.4 eV[1 + 11

48α2]

ignoring fine structure there are 5 distinct levels with two of them singlydegenerate and the other double degenerate

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 3 / 18

Page 21: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.23 (cont.)

Etot = −3.4 eV + (3.4 eV)α2

2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}+ µBBext(ml + 2ms)

|n l ml ms〉 (ml + 2ms) {. . . } Total Energy

|1〉 = |2 0 0 12〉 1 −58 −3.4 eV[1 + 5

16α2] + µBBext

|2〉 = |2 0 0 −12〉 −1 −58 −3.4 eV[1 + 516α

2]− µBBext

|3〉 = |2 1 1 12〉 2 −18 −3.4 eV[1 + 1

16α2] + 2µBBext

|4〉 = |2 1 −1 −12〉 −2 −18 −3.4 eV[1 + 116α

2]− 2µBBext

|5〉 = |2 1 0 12〉 1 − 7

24 −3.4 eV[1 + 748α

2] + µBBext

|6〉 = |2 1 1 −12〉 0 −1124 −3.4 eV[1 + 1148α

2]

|7〉 = |2 1 0 −12〉 −1 − 724 −3.4 eV[1 + 7

48α2]− µBBext

|8〉 = |2 1 −1 12〉 0 −1124 −3.4 eV[1 + 11

48α2]

ignoring fine structure there are 5 distinct levels with two of them singlydegenerate and the other double degenerate

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 3 / 18

Page 22: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.23 (cont.)

Etot = −3.4 eV + (3.4 eV)α2

2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}+ µBBext(ml + 2ms)

|n l ml ms〉 (ml + 2ms) {. . . } Total Energy

|1〉 = |2 0 0 12〉 1 −58 −3.4 eV[1 + 5

16α2] + µBBext

|2〉 = |2 0 0 −12〉 −1 −58 −3.4 eV[1 + 516α

2]− µBBext

|3〉 = |2 1 1 12〉 2 −18 −3.4 eV[1 + 1

16α2] + 2µBBext

|4〉 = |2 1 −1 −12〉 −2 −18 −3.4 eV[1 + 116α

2]− 2µBBext

|5〉 = |2 1 0 12〉 1 − 7

24 −3.4 eV[1 + 748α

2] + µBBext

|6〉 = |2 1 1 −12〉 0 −1124 −3.4 eV[1 + 1148α

2]

|7〉 = |2 1 0 −12〉 −1 − 724 −3.4 eV[1 + 7

48α2]− µBBext

|8〉 = |2 1 −1 12〉 0 −1124 −3.4 eV[1 + 11

48α2]

ignoring fine structure there are 5 distinct levels with two of them singlydegenerate and the other double degenerate

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 3 / 18

Page 23: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.23 (cont.)

Etot = −3.4 eV + (3.4 eV)α2

2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}+ µBBext(ml + 2ms)

|n l ml ms〉 (ml + 2ms) {. . . } Total Energy

|1〉 = |2 0 0 12〉 1 −58 −3.4 eV[1 + 5

16α2] + µBBext

|2〉 = |2 0 0 −12〉 −1 −58 −3.4 eV[1 + 516α

2]− µBBext

|3〉 = |2 1 1 12〉 2 −18 −3.4 eV[1 + 1

16α2] + 2µBBext

|4〉 = |2 1 −1 −12〉 −2 −18 −3.4 eV[1 + 116α

2]− 2µBBext

|5〉 = |2 1 0 12〉 1 − 7

24 −3.4 eV[1 + 748α

2] + µBBext

|6〉 = |2 1 1 −12〉 0 −1124 −3.4 eV[1 + 1148α

2]

|7〉 = |2 1 0 −12〉 −1 − 724 −3.4 eV[1 + 7

48α2]− µBBext

|8〉 = |2 1 −1 12〉 0 −1124 −3.4 eV[1 + 11

48α2]

ignoring fine structure there are 5 distinct levels with two of them singlydegenerate and the other double degenerate

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 3 / 18

Page 24: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.23 (cont.)

Etot = −3.4 eV + (3.4 eV)α2

2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}+ µBBext(ml + 2ms)

|n l ml ms〉 (ml + 2ms) {. . . } Total Energy

|1〉 = |2 0 0 12〉 1 −58 −3.4 eV[1 + 5

16α2] + µBBext

|2〉 = |2 0 0 −12〉 −1 −58 −3.4 eV[1 + 516α

2]− µBBext

|3〉 = |2 1 1 12〉 2 −18 −3.4 eV[1 + 1

16α2] + 2µBBext

|4〉 = |2 1 −1 −12〉 −2 −18 −3.4 eV[1 + 116α

2]− 2µBBext

|5〉 = |2 1 0 12〉 1 − 7

24 −3.4 eV[1 + 748α

2] + µBBext

|6〉 = |2 1 1 −12〉 0 −1124 −3.4 eV[1 + 1148α

2]

|7〉 = |2 1 0 −12〉 −1 − 724 −3.4 eV[1 + 7

48α2]− µBBext

|8〉 = |2 1 −1 12〉 0 −1124 −3.4 eV[1 + 11

48α2]

ignoring fine structure there are 5 distinct levels with two of them singlydegenerate and the other double degenerate

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 3 / 18

Page 25: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.23 (cont.)

Etot = −3.4 eV + (3.4 eV)α2

2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}+ µBBext(ml + 2ms)

|n l ml ms〉 (ml + 2ms) {. . . } Total Energy

|1〉 = |2 0 0 12〉 1 −58 −3.4 eV[1 + 5

16α2] + µBBext

|2〉 = |2 0 0 −12〉 −1 −58 −3.4 eV[1 + 516α

2]− µBBext

|3〉 = |2 1 1 12〉 2 −18 −3.4 eV[1 + 1

16α2] + 2µBBext

|4〉 = |2 1 −1 −12〉 −2 −18 −3.4 eV[1 + 116α

2]− 2µBBext

|5〉 = |2 1 0 12〉 1 − 7

24 −3.4 eV[1 + 748α

2] + µBBext

|6〉 = |2 1 1 −12〉 0 −1124 −3.4 eV[1 + 1148α

2]

|7〉 = |2 1 0 −12〉 −1 − 724 −3.4 eV[1 + 7

48α2]− µBBext

|8〉 = |2 1 −1 12〉 0 −1124 −3.4 eV[1 + 11

48α2]

ignoring fine structure there are 5 distinct levels with two of them singlydegenerate and the other double degenerate

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 3 / 18

Page 26: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.25

Work out the matrix elements of H ′Z and H ′fs and construct the W-matrixgiven in the text, for n = 2.

The derivation in the book used the 8 distinct j , and mj eigenstates as thebasis upon which to build the interaction matrix

l = 0

{

ψ1 ≡∣∣1212

⟩= |00〉

∣∣1212

⟩ψ2 ≡

∣∣12 −

12

⟩= |00〉

∣∣12 −

12

l = 1

ψ3 ≡∣∣3232

⟩= |11〉

∣∣1212

⟩ψ4 ≡

∣∣32 −

32

⟩= |1−1〉

∣∣12 −

12

⟩ψ5 ≡

∣∣3212

⟩=√

23 |10〉

∣∣1212

⟩+√

13 |11〉

∣∣12 −

12

⟩ψ6 ≡

∣∣1212

⟩= −

√13 |10〉

∣∣1212

⟩+√

23 |11〉

∣∣12 −

12

⟩ψ7 ≡

∣∣32 −

12

⟩=√

13 |1−1〉

∣∣1212

⟩+√

23 |10〉

∣∣12 −

12

⟩ψ8 ≡

∣∣12 −

12

⟩= −

√23 |1−1〉

∣∣1212

⟩+√

13 |10〉

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 4 / 18

Page 27: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.25

Work out the matrix elements of H ′Z and H ′fs and construct the W-matrixgiven in the text, for n = 2.

The derivation in the book used the 8 distinct j , and mj eigenstates as thebasis upon which to build the interaction matrix

l = 0

{

ψ1 ≡∣∣1212

⟩= |00〉

∣∣1212

⟩ψ2 ≡

∣∣12 −

12

⟩= |00〉

∣∣12 −

12

l = 1

ψ3 ≡∣∣3232

⟩= |11〉

∣∣1212

⟩ψ4 ≡

∣∣32 −

32

⟩= |1−1〉

∣∣12 −

12

⟩ψ5 ≡

∣∣3212

⟩=√

23 |10〉

∣∣1212

⟩+√

13 |11〉

∣∣12 −

12

⟩ψ6 ≡

∣∣1212

⟩= −

√13 |10〉

∣∣1212

⟩+√

23 |11〉

∣∣12 −

12

⟩ψ7 ≡

∣∣32 −

12

⟩=√

13 |1−1〉

∣∣1212

⟩+√

23 |10〉

∣∣12 −

12

⟩ψ8 ≡

∣∣12 −

12

⟩= −

√23 |1−1〉

∣∣1212

⟩+√

13 |10〉

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 4 / 18

Page 28: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.25

Work out the matrix elements of H ′Z and H ′fs and construct the W-matrixgiven in the text, for n = 2.

The derivation in the book used the 8 distinct j , and mj eigenstates as thebasis upon which to build the interaction matrix

l = 0

{ψ1 ≡

∣∣1212

⟩= |00〉

∣∣1212

⟩ψ2 ≡

∣∣12 −

12

⟩= |00〉

∣∣12 −

12

l = 1

ψ3 ≡∣∣3232

⟩= |11〉

∣∣1212

⟩ψ4 ≡

∣∣32 −

32

⟩= |1−1〉

∣∣12 −

12

⟩ψ5 ≡

∣∣3212

⟩=√

23 |10〉

∣∣1212

⟩+√

13 |11〉

∣∣12 −

12

⟩ψ6 ≡

∣∣1212

⟩= −

√13 |10〉

∣∣1212

⟩+√

23 |11〉

∣∣12 −

12

⟩ψ7 ≡

∣∣32 −

12

⟩=√

13 |1−1〉

∣∣1212

⟩+√

23 |10〉

∣∣12 −

12

⟩ψ8 ≡

∣∣12 −

12

⟩= −

√23 |1−1〉

∣∣1212

⟩+√

13 |10〉

∣∣12 −

12

⟩C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 4 / 18

Page 29: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Page 30: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Page 31: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Page 32: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Page 33: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

ψ4 ≡ |1−1〉∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Page 34: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Page 35: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

ψ5 ≡ |10〉∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Page 36: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Page 37: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

ψ6 ≡ |11〉∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Page 38: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Page 39: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

ψ7 ≡ |10〉∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Page 40: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Page 41: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

ψ8 ≡ |1−1〉∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Page 42: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Page 43: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

⟩C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Page 44: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Complete n = 2, l = 0, 1 degenerate set

The complete set of 8 n = 2, l = 0, 1 degenerate states using quantumnumbers l , s, ml , and ms can now be listed

l = 0

{

ψ1 ≡ |00〉∣∣1212

⟩=∣∣1212

⟩ψ2 ≡ |00〉

∣∣12 −

12

⟩=∣∣12 −

12

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

now build the W matrix for the H ′ = HZ + Hfs perturbation

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 6 / 18

Page 45: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Complete n = 2, l = 0, 1 degenerate set

The complete set of 8 n = 2, l = 0, 1 degenerate states using quantumnumbers l , s, ml , and ms can now be listed

l = 0

{ψ1 ≡ |00〉

∣∣1212

⟩=∣∣1212

⟩ψ2 ≡ |00〉

∣∣12 −

12

⟩=∣∣12 −

12

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

now build the W matrix for the H ′ = HZ + Hfs perturbation

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 6 / 18

Page 46: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Complete n = 2, l = 0, 1 degenerate set

The complete set of 8 n = 2, l = 0, 1 degenerate states using quantumnumbers l , s, ml , and ms can now be listed

l = 0

{ψ1 ≡ |00〉

∣∣1212

⟩=∣∣1212

⟩ψ2 ≡ |00〉

∣∣12 −

12

⟩=∣∣12 −

12

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

⟩now build the W matrix for the H ′ = HZ + Hfs perturbation

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 6 / 18

Page 47: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Page 48: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms)

= β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Page 49: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms)

= β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]

= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Page 50: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms)

= β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]

= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Page 51: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]

= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Page 52: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Page 53: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction

⟨ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Page 54: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Page 55: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Page 56: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Page 57: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β

⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Page 58: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Page 59: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Page 60: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β

= −5γ − β⟨ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Page 61: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β

⟨ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Page 62: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Page 63: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Page 64: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Page 65: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β

⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Page 66: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Page 67: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Page 68: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Page 69: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2βC. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Page 70: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Page 71: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

= 23

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Page 72: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Page 73: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β

= −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Page 74: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β

⟨ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Page 75: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

= 13

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Page 76: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Page 77: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3]

= −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Page 78: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ

⟨ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Page 79: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

= 23

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Page 80: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Page 81: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β

= −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Page 82: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β

⟨ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Page 83: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

= 13

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Page 84: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Page 85: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3]

= −113 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Page 86: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Page 87: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉⟨

ψ5|H ′|ψ6

⟩=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ6|H ′|ψ5

⟩⟨ψ7|H ′|ψ8

⟩=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

⟩= −γ

√29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ8|H ′|ψ7

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

Page 88: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉

⟨ψ5|H ′|ψ6

⟩=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ6|H ′|ψ5

⟩⟨ψ7|H ′|ψ8

⟩=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

⟩= −γ

√29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ8|H ′|ψ7

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

Page 89: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉⟨

ψ5|H ′|ψ6

=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ6|H ′|ψ5

⟩⟨ψ7|H ′|ψ8

⟩=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

⟩= −γ

√29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ8|H ′|ψ7

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

Page 90: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉⟨

ψ5|H ′|ψ6

⟩=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ6|H ′|ψ5

⟩⟨ψ7|H ′|ψ8

⟩=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

⟩= −γ

√29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ8|H ′|ψ7

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

Page 91: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉⟨

ψ5|H ′|ψ6

⟩=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3]

= 4√2

3 γ =⟨ψ6|H ′|ψ5

⟩⟨ψ7|H ′|ψ8

⟩=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

⟩= −γ

√29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ8|H ′|ψ7

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

Page 92: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉⟨

ψ5|H ′|ψ6

⟩=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ

=⟨ψ6|H ′|ψ5

⟩⟨ψ7|H ′|ψ8

⟩=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

⟩= −γ

√29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ8|H ′|ψ7

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

Page 93: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉⟨

ψ5|H ′|ψ6

⟩=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ6|H ′|ψ5

⟨ψ7|H ′|ψ8

⟩=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

⟩= −γ

√29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ8|H ′|ψ7

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

Page 94: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉⟨

ψ5|H ′|ψ6

⟩=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ6|H ′|ψ5

⟩⟨ψ7|H ′|ψ8

=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

⟩= −γ

√29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ8|H ′|ψ7

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

Page 95: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉⟨

ψ5|H ′|ψ6

⟩=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ6|H ′|ψ5

⟩⟨ψ7|H ′|ψ8

⟩=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ8|H ′|ψ7

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

Page 96: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉⟨

ψ5|H ′|ψ6

⟩=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ6|H ′|ψ5

⟩⟨ψ7|H ′|ψ8

⟩=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

⟩= −γ

√29 [4− 3] + γ

√29 [8− 3]

= 4√2

3 γ =⟨ψ8|H ′|ψ7

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

Page 97: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉⟨

ψ5|H ′|ψ6

⟩=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ6|H ′|ψ5

⟩⟨ψ7|H ′|ψ8

⟩=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

⟩= −γ

√29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ

=⟨ψ8|H ′|ψ7

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

Page 98: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉⟨

ψ5|H ′|ψ6

⟩=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ6|H ′|ψ5

⟩⟨ψ7|H ′|ψ8

⟩=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

⟩= −γ

√29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ8|H ′|ψ7

⟩C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

Page 99: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β 0 0 0 0 0 0 00 5γ+β 0 0 0 0 0 00 0 γ−2β 0 0 0 0 00 0 0 γ+2β 0 0 0 0

0 0 0 0 73γ−β −4

√2

3 γ 0 0

0 0 0 0 −4√2

3 γ 113 γ 0 0

0 0 0 0 0 0 73γ+β −4

√2

3 γ

0 0 0 0 0 0 −4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

Page 100: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β 0 0 0 0 0 0 00 5γ+β 0 0 0 0 0 00 0 γ−2β 0 0 0 0 00 0 0 γ+2β 0 0 0 0

0 0 0 0 73γ−β −4

√2

3 γ 0 0

0 0 0 0 −4√2

3 γ 113 γ 0 0

0 0 0 0 0 0 73γ+β −4

√2

3 γ

0 0 0 0 0 0 −4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

Page 101: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β 0 0 0 0 0 0 00 5γ+β 0 0 0 0 0 00 0 γ−2β 0 0 0 0 00 0 0 γ+2β 0 0 0 0

0 0 0 0 73γ−β −4

√2

3 γ 0 0

0 0 0 0 −4√2

3 γ 113 γ 0 0

0 0 0 0 0 0 73γ+β −4

√2

3 γ

0 0 0 0 0 0 −4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

Page 102: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β

0 0 0 0 0 0 00 5γ+β 0 0 0 0 0 00 0 γ−2β 0 0 0 0 00 0 0 γ+2β 0 0 0 0

0 0 0 0 73γ−β −4

√2

3 γ 0 0

0 0 0 0 −4√2

3 γ 113 γ 0 0

0 0 0 0 0 0 73γ+β −4

√2

3 γ

0 0 0 0 0 0 −4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

Page 103: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β

0 0 0 0 0 0 00

5γ+β

0 0 0 0 0 00 0 γ−2β 0 0 0 0 00 0 0 γ+2β 0 0 0 0

0 0 0 0 73γ−β −4

√2

3 γ 0 0

0 0 0 0 −4√2

3 γ 113 γ 0 0

0 0 0 0 0 0 73γ+β −4

√2

3 γ

0 0 0 0 0 0 −4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

Page 104: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β

0 0 0 0 0 0 00

5γ+β

0 0 0 0 0 00 0

γ−2β

0 0 0 0 00 0 0 γ+2β 0 0 0 0

0 0 0 0 73γ−β −4

√2

3 γ 0 0

0 0 0 0 −4√2

3 γ 113 γ 0 0

0 0 0 0 0 0 73γ+β −4

√2

3 γ

0 0 0 0 0 0 −4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

Page 105: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β

0 0 0 0 0 0 00

5γ+β

0 0 0 0 0 00 0

γ−2β

0 0 0 0 00 0 0

γ+2β

0 0 0 0

0 0 0 0 73γ−β −4

√2

3 γ 0 0

0 0 0 0 −4√2

3 γ 113 γ 0 0

0 0 0 0 0 0 73γ+β −4

√2

3 γ

0 0 0 0 0 0 −4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

Page 106: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β

0 0 0 0 0 0 00

5γ+β

0 0 0 0 0 00 0

γ−2β

0 0 0 0 00 0 0

γ+2β

0 0 0 0

0 0 0 0

73γ−β

−4√2

3 γ 0 0

0 0 0 0 −4√2

3 γ 113 γ 0 0

0 0 0 0 0 0 73γ+β −4

√2

3 γ

0 0 0 0 0 0 −4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

Page 107: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β

0 0 0 0 0 0 00

5γ+β

0 0 0 0 0 00 0

γ−2β

0 0 0 0 00 0 0

γ+2β

0 0 0 0

0 0 0 0

73γ−β

−4√2

3 γ 0 0

0 0 0 0 −4√2

3 γ

113 γ

0 0

0 0 0 0 0 0 73γ+β −4

√2

3 γ

0 0 0 0 0 0 −4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

Page 108: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β

0 0 0 0 0 0 00

5γ+β

0 0 0 0 0 00 0

γ−2β

0 0 0 0 00 0 0

γ+2β

0 0 0 0

0 0 0 0

73γ−β

−4√2

3 γ 0 0

0 0 0 0 −4√2

3 γ

113 γ

0 0

0 0 0 0 0 0

73γ+β

−4√2

3 γ

0 0 0 0 0 0 −4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

Page 109: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β

0 0 0 0 0 0 00

5γ+β

0 0 0 0 0 00 0

γ−2β

0 0 0 0 00 0 0

γ+2β

0 0 0 0

0 0 0 0

73γ−β

−4√2

3 γ 0 0

0 0 0 0 −4√2

3 γ

113 γ

0 0

0 0 0 0 0 0

73γ+β

−4√2

3 γ

0 0 0 0 0 0 −4√2

3 γ

113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

Page 110: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β

0 0 0 0 0 0 00

5γ+β

0 0 0 0 0 00 0

γ−2β

0 0 0 0 00 0 0

γ+2β

0 0 0 0

0 0 0 0

73γ−β − 4

√2

3 γ

0 0

0 0 0 0

− 4√2

3 γ 113 γ

0 0

0 0 0 0 0 0

73γ+β

−4√2

3 γ

0 0 0 0 0 0 −4√2

3 γ

113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

Page 111: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β

0 0 0 0 0 0 00

5γ+β

0 0 0 0 0 00 0

γ−2β

0 0 0 0 00 0 0

γ+2β

0 0 0 0

0 0 0 0

73γ−β − 4

√2

3 γ

0 0

0 0 0 0

− 4√2

3 γ 113 γ

0 0

0 0 0 0 0 0

73γ+β − 4

√2

3 γ

0 0 0 0 0 0

− 4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

Page 112: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β 0 0 0 0 0 0 00 5γ+β 0 0 0 0 0 00 0 γ−2β 0 0 0 0 00 0 0 γ+2β 0 0 0 0

0 0 0 0 73γ−β − 4

√2

3 γ 0 0

0 0 0 0 − 4√2

3 γ 113 γ 0 0

0 0 0 0 0 0 73γ+β − 4

√2

3 γ

0 0 0 0 0 0 − 4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

Page 113: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β 0 0 0 0 0 0 00 5γ+β 0 0 0 0 0 00 0 γ−2β 0 0 0 0 00 0 0 γ+2β 0 0 0 0

0 0 0 0 73γ−β − 4

√2

3 γ 0 0

0 0 0 0 − 4√2

3 γ 113 γ 0 0

0 0 0 0 0 0 73γ+β − 4

√2

3 γ

0 0 0 0 0 0 − 4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation.

The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

Page 114: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β 0 0 0 0 0 0 00 5γ+β 0 0 0 0 0 00 0 γ−2β 0 0 0 0 00 0 0 γ+2β 0 0 0 0

0 0 0 0 73γ−β −4

√2

3 γ 0 0

0 0 0 0 −4√2

3 γ 113 γ 0 0

0 0 0 0 0 0 73γ+β −4

√2

3 γ

0 0 0 0 0 0 −4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

Page 115: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Block 1 solution

The first block is solved bydiagonalizing the 2 × 2 sub-matrix

0 = det

∣∣∣∣∣ 73γ−β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ−β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 − 11

3βγ − 18

3γλ+ βλ

= λ2 − λ(6γ − β) +

(45

9γ2 − 11

3βγ

)using the quadratic equation and recalling that the solution must benegated

− λ± = 3γ − β

2± 1

2

√36γ2 − 12βγ + β2 − 20γ2 +

44

3βγ

λ±= −3γ +β

2±√

4γ2 +2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 11 / 18

Page 116: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Block 1 solution

The first block is solved bydiagonalizing the 2 × 2 sub-matrix

0 = det

∣∣∣∣∣ 73γ−β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣

0 = (7

3γ−β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 − 11

3βγ − 18

3γλ+ βλ

= λ2 − λ(6γ − β) +

(45

9γ2 − 11

3βγ

)using the quadratic equation and recalling that the solution must benegated

− λ± = 3γ − β

2± 1

2

√36γ2 − 12βγ + β2 − 20γ2 +

44

3βγ

λ±= −3γ +β

2±√

4γ2 +2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 11 / 18

Page 117: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Block 1 solution

The first block is solved bydiagonalizing the 2 × 2 sub-matrix

0 = det

∣∣∣∣∣ 73γ−β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ−β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 − 11

3βγ − 18

3γλ+ βλ

= λ2 − λ(6γ − β) +

(45

9γ2 − 11

3βγ

)using the quadratic equation and recalling that the solution must benegated

− λ± = 3γ − β

2± 1

2

√36γ2 − 12βγ + β2 − 20γ2 +

44

3βγ

λ±= −3γ +β

2±√

4γ2 +2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 11 / 18

Page 118: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Block 1 solution

The first block is solved bydiagonalizing the 2 × 2 sub-matrix

0 = det

∣∣∣∣∣ 73γ−β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ−β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 − 11

3βγ − 18

3γλ+ βλ

= λ2 − λ(6γ − β) +

(45

9γ2 − 11

3βγ

)using the quadratic equation and recalling that the solution must benegated

− λ± = 3γ − β

2± 1

2

√36γ2 − 12βγ + β2 − 20γ2 +

44

3βγ

λ±= −3γ +β

2±√

4γ2 +2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 11 / 18

Page 119: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Block 1 solution

The first block is solved bydiagonalizing the 2 × 2 sub-matrix

0 = det

∣∣∣∣∣ 73γ−β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ−β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 − 11

3βγ − 18

3γλ+ βλ

= λ2 − λ(6γ − β) +

(45

9γ2 − 11

3βγ

)using the quadratic equation and recalling that the solution must benegated

− λ± = 3γ − β

2± 1

2

√36γ2 − 12βγ + β2 − 20γ2 +

44

3βγ

λ±= −3γ +β

2±√

4γ2 +2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 11 / 18

Page 120: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Block 1 solution

The first block is solved bydiagonalizing the 2 × 2 sub-matrix

0 = det

∣∣∣∣∣ 73γ−β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ−β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 − 11

3βγ − 18

3γλ+ βλ

= λ2 − λ(6γ − β) +

(45

9γ2 − 11

3βγ

)

using the quadratic equation and recalling that the solution must benegated

− λ± = 3γ − β

2± 1

2

√36γ2 − 12βγ + β2 − 20γ2 +

44

3βγ

λ±= −3γ +β

2±√

4γ2 +2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 11 / 18

Page 121: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Block 1 solution

The first block is solved bydiagonalizing the 2 × 2 sub-matrix

0 = det

∣∣∣∣∣ 73γ−β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ−β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 − 11

3βγ − 18

3γλ+ βλ

= λ2 − λ(6γ − β) +

(45

9γ2 − 11

3βγ

)using the quadratic equation and recalling that the solution must benegated

− λ± = 3γ − β

2± 1

2

√36γ2 − 12βγ + β2 − 20γ2 +

44

3βγ

λ±= −3γ +β

2±√

4γ2 +2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 11 / 18

Page 122: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Block 1 solution

The first block is solved bydiagonalizing the 2 × 2 sub-matrix

0 = det

∣∣∣∣∣ 73γ−β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ−β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 − 11

3βγ − 18

3γλ+ βλ

= λ2 − λ(6γ − β) +

(45

9γ2 − 11

3βγ

)using the quadratic equation and recalling that the solution must benegated

− λ± = 3γ − β

2± 1

2

√36γ2 − 12βγ + β2 − 20γ2 +

44

3βγ

λ±= −3γ +β

2±√

4γ2 +2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 11 / 18

Page 123: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Block 1 solution

The first block is solved bydiagonalizing the 2 × 2 sub-matrix

0 = det

∣∣∣∣∣ 73γ−β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ−β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 − 11

3βγ − 18

3γλ+ βλ

= λ2 − λ(6γ − β) +

(45

9γ2 − 11

3βγ

)using the quadratic equation and recalling that the solution must benegated

− λ± = 3γ − β

2± 1

2

√36γ2 − 12βγ + β2 − 20γ2 +

44

3βγ

λ±= −3γ +β

2±√

4γ2 +2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 11 / 18

Page 124: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Block 1 solution

The first block is solved bydiagonalizing the 2 × 2 sub-matrix

0 = det

∣∣∣∣∣ 73γ−β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ−β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 − 11

3βγ − 18

3γλ+ βλ

= λ2 − λ(6γ − β) +

(45

9γ2 − 11

3βγ

)using the quadratic equation and recalling that the solution must benegated

− λ± = 3γ − β

2± 1

2

√36γ2 − 12βγ + β2 − 20γ2 +

44

3βγ

λ±= −3γ +β

2±√

4γ2 +2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 11 / 18

Page 125: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Block 2 solution

The second block is solved inthe same way

0 = det

∣∣∣∣∣ 73γ+β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ+β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 +

11

3βγ − 18

3γλ− βλ

= λ2 − λ(6γ + β) +

(45

9γ2 +

11

3βγ

)using the quadratic equation and negating the solution

− λ± = 3γ +β

2± 1

2

√36γ2 + 12βγ + β2 − 20γ2 − 44

3βγ

λ±= −3γ − β

2±√

4γ2 − 2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 12 / 18

Page 126: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Block 2 solution

The second block is solved inthe same way 0 = det

∣∣∣∣∣ 73γ+β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣

0 = (7

3γ+β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 +

11

3βγ − 18

3γλ− βλ

= λ2 − λ(6γ + β) +

(45

9γ2 +

11

3βγ

)using the quadratic equation and negating the solution

− λ± = 3γ +β

2± 1

2

√36γ2 + 12βγ + β2 − 20γ2 − 44

3βγ

λ±= −3γ − β

2±√

4γ2 − 2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 12 / 18

Page 127: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Block 2 solution

The second block is solved inthe same way 0 = det

∣∣∣∣∣ 73γ+β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ+β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 +

11

3βγ − 18

3γλ− βλ

= λ2 − λ(6γ + β) +

(45

9γ2 +

11

3βγ

)using the quadratic equation and negating the solution

− λ± = 3γ +β

2± 1

2

√36γ2 + 12βγ + β2 − 20γ2 − 44

3βγ

λ±= −3γ − β

2±√

4γ2 − 2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 12 / 18

Page 128: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Block 2 solution

The second block is solved inthe same way 0 = det

∣∣∣∣∣ 73γ+β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ+β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 +

11

3βγ − 18

3γλ− βλ

= λ2 − λ(6γ + β) +

(45

9γ2 +

11

3βγ

)using the quadratic equation and negating the solution

− λ± = 3γ +β

2± 1

2

√36γ2 + 12βγ + β2 − 20γ2 − 44

3βγ

λ±= −3γ − β

2±√

4γ2 − 2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 12 / 18

Page 129: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Block 2 solution

The second block is solved inthe same way 0 = det

∣∣∣∣∣ 73γ+β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ+β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 +

11

3βγ − 18

3γλ− βλ

= λ2 − λ(6γ + β) +

(45

9γ2 +

11

3βγ

)using the quadratic equation and negating the solution

− λ± = 3γ +β

2± 1

2

√36γ2 + 12βγ + β2 − 20γ2 − 44

3βγ

λ±= −3γ − β

2±√

4γ2 − 2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 12 / 18

Page 130: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Block 2 solution

The second block is solved inthe same way 0 = det

∣∣∣∣∣ 73γ+β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ+β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 +

11

3βγ − 18

3γλ− βλ

= λ2 − λ(6γ + β) +

(45

9γ2 +

11

3βγ

)

using the quadratic equation and negating the solution

− λ± = 3γ +β

2± 1

2

√36γ2 + 12βγ + β2 − 20γ2 − 44

3βγ

λ±= −3γ − β

2±√

4γ2 − 2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 12 / 18

Page 131: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Block 2 solution

The second block is solved inthe same way 0 = det

∣∣∣∣∣ 73γ+β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ+β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 +

11

3βγ − 18

3γλ− βλ

= λ2 − λ(6γ + β) +

(45

9γ2 +

11

3βγ

)using the quadratic equation and negating the solution

− λ± = 3γ +β

2± 1

2

√36γ2 + 12βγ + β2 − 20γ2 − 44

3βγ

λ±= −3γ − β

2±√

4γ2 − 2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 12 / 18

Page 132: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Block 2 solution

The second block is solved inthe same way 0 = det

∣∣∣∣∣ 73γ+β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ+β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 +

11

3βγ − 18

3γλ− βλ

= λ2 − λ(6γ + β) +

(45

9γ2 +

11

3βγ

)using the quadratic equation and negating the solution

− λ± = 3γ +β

2± 1

2

√36γ2 + 12βγ + β2 − 20γ2 − 44

3βγ

λ±= −3γ − β

2±√

4γ2 − 2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 12 / 18

Page 133: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Block 2 solution

The second block is solved inthe same way 0 = det

∣∣∣∣∣ 73γ+β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ+β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 +

11

3βγ − 18

3γλ− βλ

= λ2 − λ(6γ + β) +

(45

9γ2 +

11

3βγ

)using the quadratic equation and negating the solution

− λ± = 3γ +β

2± 1

2

√36γ2 + 12βγ + β2 − 20γ2 − 44

3βγ

λ±= −3γ − β

2±√

4γ2 − 2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 12 / 18

Page 134: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Block 2 solution

The second block is solved inthe same way 0 = det

∣∣∣∣∣ 73γ+β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ+β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 +

11

3βγ − 18

3γλ− βλ

= λ2 − λ(6γ + β) +

(45

9γ2 +

11

3βγ

)using the quadratic equation and negating the solution

− λ± = 3γ +β

2± 1

2

√36γ2 + 12βγ + β2 − 20γ2 − 44

3βγ

λ±= −3γ − β

2±√

4γ2 − 2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 12 / 18

Page 135: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17

Although the Schrodinger equation for helium itself cannot be solvedexactly, there exist “helium-like” systems that do admit exact solutions. Asimple example is “rubber-band helium,” in which the Coulomb forces arereplaced by Hooke’s law forces:

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

(a) Show that by the change of variables below, this Hamiltonian can besolved analytically

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

(b) What is the exact ground state energy for this system?

(c) Solve for an upper bound to the ground state using the variationalprinciple

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 13 / 18

Page 136: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2

+ u2 − 2~u · ~v + v2

)= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Page 137: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2

+ u2 − 2~u · ~v + v2

)= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Page 138: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v)

~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2

+ u2 − 2~u · ~v + v2

)= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Page 139: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2

+ u2 − 2~u · ~v + v2

)= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Page 140: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2

+ u2 − 2~u · ~v + v2

)

= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Page 141: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2 + u2 − 2~u · ~v + v2

)

= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Page 142: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2 + u2 − 2~u · ~v + v2

)= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Page 143: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2 + u2 − 2~u · ~v + v2

)= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Page 144: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2 + u2 − 2~u · ~v + v2

)= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Page 145: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2 + u2 − 2~u · ~v + v2

)= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Page 146: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2 + u2 − 2~u · ~v + v2

)= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Page 147: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2 + u2 − 2~u · ~v + v2

)= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Page 148: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2 + u2 − 2~u · ~v + v2

)= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Page 149: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x

+ 2∂2

∂ux∂vx+

∂2

∂v2x

)∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x

− 2∂2

∂ux∂vx+

∂2

∂v2x

)(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Page 150: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)

=1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x

+ 2∂2

∂ux∂vx+

∂2

∂v2x

)∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x

− 2∂2

∂ux∂vx+

∂2

∂v2x

)(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Page 151: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)

=1

2

(∂2

∂u2x

+ 2∂2

∂ux∂vx+

∂2

∂v2x

)∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x

− 2∂2

∂ux∂vx+

∂2

∂v2x

)(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Page 152: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x

+ 2∂2

∂ux∂vx+

∂2

∂v2x

)

∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x

− 2∂2

∂ux∂vx+

∂2

∂v2x

)(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Page 153: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x+ 2

∂2

∂ux∂vx

+∂2

∂v2x

)

∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x

− 2∂2

∂ux∂vx+

∂2

∂v2x

)(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Page 154: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x+ 2

∂2

∂ux∂vx+

∂2

∂v2x

)

∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x

− 2∂2

∂ux∂vx+

∂2

∂v2x

)(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Page 155: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x+ 2

∂2

∂ux∂vx+

∂2

∂v2x

)∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)

=1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x

− 2∂2

∂ux∂vx+

∂2

∂v2x

)(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Page 156: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x+ 2

∂2

∂ux∂vx+

∂2

∂v2x

)∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)

=1

2

(∂2

∂u2x

− 2∂2

∂ux∂vx+

∂2

∂v2x

)(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Page 157: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x+ 2

∂2

∂ux∂vx+

∂2

∂v2x

)∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x

− 2∂2

∂ux∂vx+

∂2

∂v2x

)

(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Page 158: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x+ 2

∂2

∂ux∂vx+

∂2

∂v2x

)∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x− 2

∂2

∂ux∂vx

+∂2

∂v2x

)

(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Page 159: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x+ 2

∂2

∂ux∂vx+

∂2

∂v2x

)∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x− 2

∂2

∂ux∂vx+

∂2

∂v2x

)

(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Page 160: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x+ 2

∂2

∂ux∂vx+

∂2

∂v2x

)∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x− 2

∂2

∂ux∂vx+

∂2

∂v2x

)(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Page 161: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x+ 2

∂2

∂ux∂vx+

∂2

∂v2x

)∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x− 2

∂2

∂ux∂vx+

∂2

∂v2x

)(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)

−→ ∇21 +∇2

2 = ∇2u +∇2

v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Page 162: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x+ 2

∂2

∂ux∂vx+

∂2

∂v2x

)∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x− 2

∂2

∂ux∂vx+

∂2

∂v2x

)(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Page 163: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

Putting it all together . . .

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω2 1

2|(~u + ~v)− (~u − ~v)|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω22v2

=

[− ~2

2m∇2

u +1

2mω2u2

]+

[− ~2

2m∇2

v +1

2mω2v2− 1

2λmω2v2

]this is now two separated harmonicoscillators, the second with an addednegative potential energy term

the ground state energies of this three-dimensional oscillator can simply bewritten down

Eu =3

2~ω

Ev =3

2~ω√

1− λ

Egs =3

2~ω(1 +

√1− λ)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 16 / 18

Page 164: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

Putting it all together . . .

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω2 1

2|(~u + ~v)− (~u − ~v)|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω22v2

=

[− ~2

2m∇2

u +1

2mω2u2

]+

[− ~2

2m∇2

v +1

2mω2v2− 1

2λmω2v2

]this is now two separated harmonicoscillators, the second with an addednegative potential energy term

the ground state energies of this three-dimensional oscillator can simply bewritten down

Eu =3

2~ω

Ev =3

2~ω√

1− λ

Egs =3

2~ω(1 +

√1− λ)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 16 / 18

Page 165: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

Putting it all together . . .

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω2 1

2|(~u + ~v)− (~u − ~v)|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω22v2

=

[− ~2

2m∇2

u +1

2mω2u2

]+

[− ~2

2m∇2

v +1

2mω2v2− 1

2λmω2v2

]this is now two separated harmonicoscillators, the second with an addednegative potential energy term

the ground state energies of this three-dimensional oscillator can simply bewritten down

Eu =3

2~ω

Ev =3

2~ω√

1− λ

Egs =3

2~ω(1 +

√1− λ)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 16 / 18

Page 166: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

Putting it all together . . .

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω2 1

2|(~u + ~v)− (~u − ~v)|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω22v2

=

[− ~2

2m∇2

u +1

2mω2u2

]+

[− ~2

2m∇2

v +1

2mω2v2− 1

2λmω2v2

]this is now two separated harmonicoscillators, the second with an addednegative potential energy term

the ground state energies of this three-dimensional oscillator can simply bewritten down

Eu =3

2~ω

Ev =3

2~ω√

1− λ

Egs =3

2~ω(1 +

√1− λ)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 16 / 18

Page 167: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

Putting it all together . . .

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω2 1

2|(~u + ~v)− (~u − ~v)|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω22v2

=

[− ~2

2m∇2

u +1

2mω2u2

]

+

[− ~2

2m∇2

v +1

2mω2v2− 1

2λmω2v2

]this is now two separated harmonicoscillators, the second with an addednegative potential energy term

the ground state energies of this three-dimensional oscillator can simply bewritten down

Eu =3

2~ω

Ev =3

2~ω√

1− λ

Egs =3

2~ω(1 +

√1− λ)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 16 / 18

Page 168: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

Putting it all together . . .

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω2 1

2|(~u + ~v)− (~u − ~v)|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω22v2

=

[− ~2

2m∇2

u +1

2mω2u2

]+

[− ~2

2m∇2

v +1

2mω2v2 − 1

2λmω2v2

]

this is now two separated harmonicoscillators, the second with an addednegative potential energy term

the ground state energies of this three-dimensional oscillator can simply bewritten down

Eu =3

2~ω

Ev =3

2~ω√

1− λ

Egs =3

2~ω(1 +

√1− λ)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 16 / 18

Page 169: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

Putting it all together . . .

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω2 1

2|(~u + ~v)− (~u − ~v)|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω22v2

=

[− ~2

2m∇2

u +1

2mω2u2

]+

[− ~2

2m∇2

v +1

2mω2v2− 1

2λmω2v2

]this is now two separated harmonicoscillators, the second with an addednegative potential energy term

the ground state energies of this three-dimensional oscillator can simply bewritten down

Eu =3

2~ω

Ev =3

2~ω√

1− λ

Egs =3

2~ω(1 +

√1− λ)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 16 / 18

Page 170: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

Putting it all together . . .

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω2 1

2|(~u + ~v)− (~u − ~v)|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω22v2

=

[− ~2

2m∇2

u +1

2mω2u2

]+

[− ~2

2m∇2

v +1

2mω2v2− 1

2λmω2v2

]this is now two separated harmonicoscillators, the second with an addednegative potential energy term

the ground state energies of this three-dimensional oscillator can simply bewritten down

Eu =3

2~ω

Ev =3

2~ω√

1− λ

Egs =3

2~ω(1 +

√1− λ)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 16 / 18

Page 171: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

Putting it all together . . .

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω2 1

2|(~u + ~v)− (~u − ~v)|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω22v2

=

[− ~2

2m∇2

u +1

2mω2u2

]+

[− ~2

2m∇2

v +1

2mω2v2− 1

2λmω2v2

]this is now two separated harmonicoscillators, the second with an addednegative potential energy term

the ground state energies of this three-dimensional oscillator can simply bewritten down

Eu =3

2~ω

Ev =3

2~ω√

1− λ

Egs =3

2~ω(1 +

√1− λ)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 16 / 18

Page 172: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

Putting it all together . . .

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω2 1

2|(~u + ~v)− (~u − ~v)|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω22v2

=

[− ~2

2m∇2

u +1

2mω2u2

]+

[− ~2

2m∇2

v +1

2mω2v2− 1

2λmω2v2

]this is now two separated harmonicoscillators, the second with an addednegative potential energy term

the ground state energies of this three-dimensional oscillator can simply bewritten down

Eu =3

2~ω

Ev =3

2~ω√

1− λ

Egs =3

2~ω(1 +

√1− λ)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 16 / 18

Page 173: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

Putting it all together . . .

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω2 1

2|(~u + ~v)− (~u − ~v)|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω22v2

=

[− ~2

2m∇2

u +1

2mω2u2

]+

[− ~2

2m∇2

v +1

2mω2v2− 1

2λmω2v2

]this is now two separated harmonicoscillators, the second with an addednegative potential energy term

the ground state energies of this three-dimensional oscillator can simply bewritten down

Eu =3

2~ω

Ev =3

2~ω√

1− λ

Egs =3

2~ω(1 +

√1− λ)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 16 / 18

Page 174: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉〈Vee〉 = −λ

4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 −����2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Page 175: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉〈Vee〉 = −λ

4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 −����2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Page 176: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉〈Vee〉 = −λ

4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 −����2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Page 177: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉

〈Vee〉 = −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 −����2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Page 178: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉〈Vee〉 = −λ

4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 −����2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Page 179: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉〈Vee〉 = −λ

4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 −����2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Page 180: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉〈Vee〉 = −λ

4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 − 2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Page 181: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉〈Vee〉 = −λ

4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 −����2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Page 182: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉〈Vee〉 = −λ

4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 −����2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Page 183: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉〈Vee〉 = −λ

4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 −����2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Page 184: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉〈Vee〉 = −λ

4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 −����2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]

= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Page 185: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉〈Vee〉 = −λ

4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 −����2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Page 186: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Page 187: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Page 188: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Page 189: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Page 190: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)

2− λ2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Page 191: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)

2− λ2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Page 192: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)

2− λ2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Page 193: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Page 194: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ

√1− λ

1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Page 195: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ

√1− λ

1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Page 196: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ

√1− λ

1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Page 197: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ

1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Page 198: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ

1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Page 199: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ

1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Page 200: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Page 201: csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 · Problem 6.23 Consider the (eight) n = 2 states, j2l m l m si. Find the energy of each

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18