csd-ppt[1]

Embed Size (px)

Citation preview

  • 8/12/2019 csd-ppt[1]

    1/72

    Constitutive Modelling for

    Engineering Materials inComputational Procedures

    By

    Chandrakant S. Desai

  • 8/12/2019 csd-ppt[1]

    2/72

  • 8/12/2019 csd-ppt[1]

    3/72

    Solids, Interfaces and Joints

  • 8/12/2019 csd-ppt[1]

    4/72

  • 8/12/2019 csd-ppt[1]

    5/72

  • 8/12/2019 csd-ppt[1]

    6/72

    Is Continuum Approach Valid?

    May be for some limited materials

    In general: Geologic materials contain

    discontinuities initially, and/or they

    develop during deformations. Then thecontinuum approach may not be valid, e.g.

    the definition of stress

    = P/A A tends to 0.

  • 8/12/2019 csd-ppt[1]

    7/72

  • 8/12/2019 csd-ppt[1]

    8/72

    DSC Approach

    Sat and Asat: Existence and

    Nonexistence

    Combines continuum and discontinuum

    approaches and takes into accountmicrostructural modifications in a material

    element, which may lead to

    microcracking, fracture and softening ordegradation. It also accounts for healing or

    stiffening.

  • 8/12/2019 csd-ppt[1]

    9/72

  • 8/12/2019 csd-ppt[1]

    10/72

  • 8/12/2019 csd-ppt[1]

    11/72

  • 8/12/2019 csd-ppt[1]

    12/72

    DSC : BASICS

  • 8/12/2019 csd-ppt[1]

    13/72

  • 8/12/2019 csd-ppt[1]

    14/72

  • 8/12/2019 csd-ppt[1]

    15/72

    (c) Schematic of Stress-strain

    Response

    i relative intacta observedc fully adjusted

    Dc Df Du

    i

    c

    a

    D = 0

    Dcd

    D = 1

    (a) Clusters of RI and FA parts

    F

    A

    R

    I

    D>0D = 0 (or Do) DDu1

    (b) Symbolic Representation of DSC

    RI

    FA

    FA

    Ri D = 0

    Dc

    Df

    Du

    D = 1

    Rc

    Schematic Representation of the Disturbed State Concept

  • 8/12/2019 csd-ppt[1]

    16/72

  • 8/12/2019 csd-ppt[1]

    17/72

  • 8/12/2019 csd-ppt[1]

    18/72

    Relative Intact (RI) Response

  • 8/12/2019 csd-ppt[1]

    19/72

    HISS as RI response

    Where,

    22

    2

    a

    DD

    p

    JJ =

    ( )2

    11

    3

    ap

    RJJ

    +=

    = 2/32

    3.2

    27

    D

    Dr J

    JS

  • 8/12/2019 csd-ppt[1]

    20/72

    (b) Octahedral plane; ( for convexity)

    (a)

    3

    R

    Ultimate

    Envelope

    PhaseChange

    Line

    (Critical

    State)

    Figure 8. Plots of Yield Surface, F, in

    Stress Spaces

  • 8/12/2019 csd-ppt[1]

    21/72

    The Hierarchical SingleSurface

    (HISS) Plasticity Model:Contains most other plasticity

    models as special cases:

    For Example: Conventional: von Mises,

    Mohr Coulomb, Drucker Pragerand Continuous Yielding Models: Critical

    Sate, Cap, Matsuoka/Nakai, and Lade et al.

  • 8/12/2019 csd-ppt[1]

    22/72

    Critical State Model As a Special ofHISS:

    Assume: Soil is normally consolidated and

    cohesionless and 3R=0, then HISS specializes to:

    which has the form similar to

    modified Cam Clay model.

    02

    1

    2

    12 =+ JJJ D

  • 8/12/2019 csd-ppt[1]

    23/72

    In the critical state model: The critical state

    is reached near the end when the materialelement deforms with invariant volume

    under shear.

    On the other Hand; In the DSC, the

    material element may reach the fully

    adjusted state (FA) , which can beconsidered to be the critical state, from the

    beginning, at distributed locations in the

    material . Then, when most of the materialreaches the FA (critical state) , it could fail.

  • 8/12/2019 csd-ppt[1]

    24/72

    Fully Adjusted State

    Zero Strength :0

    ~ =

    Critical State : ,12 .JmJcD =

    = a

    c

    ccpJee 3ln

    10

    Partially Saturated Soil: Saturated State

    ~~~

    C=

  • 8/12/2019 csd-ppt[1]

    25/72

    DISTURBANCE

  • 8/12/2019 csd-ppt[1]

    26/72

    (c) Schematic of Stress-strain

    Response

    i relative intact

    a observedc fully adjusted

    Dc Df Du

    i

    c

    a

    D = 0

    Dcd

    D =

    1

    (a) Clusters of RI and FA parts

    F

    AR

    ID>0D = 0 (or

    Do)

    DDu1

    (b) Symbolic Representation of

    DSC

    RI

    F

    A

    F

    A

    Ri D = 0

    Dc

    Df

    Du

    D = 1

    Rc

    Figure 5. Schematic Representation of the Disturbed State Concept

  • 8/12/2019 csd-ppt[1]

    27/72

  • 8/12/2019 csd-ppt[1]

    28/72

  • 8/12/2019 csd-ppt[1]

    29/72

  • 8/12/2019 csd-ppt[1]

    30/72

  • 8/12/2019 csd-ppt[1]

    31/72

    a

    c

    d

    bSoftenin

    g

    Residual

    Healing

    (a) Stress-strain Response

    a

    c

    d

    b

    D

    (b) Disturbance

    Figure 7. Representation of Softening and Healing (Stiffening)

    Response in DSC

  • 8/12/2019 csd-ppt[1]

    32/72

  • 8/12/2019 csd-ppt[1]

    33/72

    Multicomponent DSC Models for Creep

  • 8/12/2019 csd-ppt[1]

    34/72

  • 8/12/2019 csd-ppt[1]

    35/72

  • 8/12/2019 csd-ppt[1]

    36/72

    DSC for Interfaces and Joints

  • 8/12/2019 csd-ppt[1]

    37/72

  • 8/12/2019 csd-ppt[1]

    38/72

    DSC FOR INTERFACES/

    JOINTS

    Two Dimensional

  • 8/12/2019 csd-ppt[1]

    39/72

    DSC Parameters and Testing

  • 8/12/2019 csd-ppt[1]

    40/72

  • 8/12/2019 csd-ppt[1]

    41/72

  • 8/12/2019 csd-ppt[1]

    42/72

  • 8/12/2019 csd-ppt[1]

    43/72

  • 8/12/2019 csd-ppt[1]

    44/72

    COMP U TER Implementation

  • 8/12/2019 csd-ppt[1]

    45/72

  • 8/12/2019 csd-ppt[1]

    46/72

    APPLICATIONS

  • 8/12/2019 csd-ppt[1]

    47/72

  • 8/12/2019 csd-ppt[1]

    48/72

    APPLICATION 1: DYNAMIC, LIQUEFACTION-SHAKE TABLE TEST

  • 8/12/2019 csd-ppt[1]

    49/72

  • 8/12/2019 csd-ppt[1]

    50/72

  • 8/12/2019 csd-ppt[1]

    51/72

  • 8/12/2019 csd-ppt[1]

    52/72

  • 8/12/2019 csd-ppt[1]

    53/72

  • 8/12/2019 csd-ppt[1]

    54/72

  • 8/12/2019 csd-ppt[1]

    55/72

  • 8/12/2019 csd-ppt[1]

    56/72

    APPLICATION 2: DYNAMIC-LIQUEFACTION-CENTRIFUGE PILE

    TEST

  • 8/12/2019 csd-ppt[1]

    57/72

    pore pressure

    displacement

    bending moment

    acceleration

    9.3

    m

    11.4

    m

    Dr 80%

    Dr 55%

  • 8/12/2019 csd-ppt[1]

    58/72

    (a) Mesh for total domain

    1

    2

    3

    4

    5

    6

    7

    8

    9

    12

    22.667 m

    20.7 m

    3.7 m

    A D

    B C

  • 8/12/2019 csd-ppt[1]

    59/72

    Figure 9. Base motion acceleration (Wilson et al. 1997c)

    -0.25

    -0.20

    -0.15

    -0.10

    -0.05

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0 5 10 15 20 25

    Time (sec)

    Acceleration(g)

    80

    120

    kPa

    Excess Pore Pressure=Initial'v

  • 8/12/2019 csd-ppt[1]

    60/72

    0

    40

    80

    0 9 18 27

    Time, sec

    PoreP

    ressure,

    Experimental

    0

    40

    80

    120

    0 9 18 27

    Time, sec

    PorePressure,

    kPa

    With Interface Case

    Excess Pore Pressure=Initial

    'v

    0

    40

    80

    120

    0 9 18 27

    Time, sec

    PorePressure,

    kPa

    Without Interface Case

    Excess Pore Pressure=Initial'v

    Comparisons for pore water pressures for Element 139 near pile.

  • 8/12/2019 csd-ppt[1]

    61/72

    APPICATION 3:

    REINFORCED EARTH

  • 8/12/2019 csd-ppt[1]

    62/72

    Laboratory Triaxial

    Tests on Back Fill

  • 8/12/2019 csd-ppt[1]

    63/72

    Interface Tests Using CYMDOF: Cyclic

    Multi Degree of Freedom Shear Device

    Saturated and Dry

  • 8/12/2019 csd-ppt[1]

    64/72

  • 8/12/2019 csd-ppt[1]

    65/72

    Mesh near geogrid in fine mesh

  • 8/12/2019 csd-ppt[1]

    66/72

  • 8/12/2019 csd-ppt[1]

    67/72

  • 8/12/2019 csd-ppt[1]

    68/72

    Wide Range of Applications: Failure and Reliability Analysis of

    Computer Chips in Electronic Packaging

    Behavior of Glacial Till and Till-Ice

    Interface for Prediction of Motion of

    Glaciers and Ice Sheets: Global Warming

    and Climate Change

  • 8/12/2019 csd-ppt[1]

    69/72

    31

    mm35

    mm

    31

    mm35

    mmX

    Y

    Figure 2: Pin layout for 313-pin PBGA

    (Zwick)

  • 8/12/2019 csd-ppt[1]

    70/72

    CONCLUSIONS: DSC: Perhaps ONLY Unified Approach

    available for Constitutive Modeling: Solidsand Interfaces/Joints

    Contains most previous approaches as

    Special cases: Elasticity, Plasticity,Viscoplasticity, Damage, etc and

    Critical State or Cap Models commonly

    used in Geotechnical Engineering areincluded within DSC

  • 8/12/2019 csd-ppt[1]

    71/72

    Conclusions (Continued) Lowest or equal number of parameters

    compared to available models ofcomparable capabilities.

    Parameters have physical meanings and

    can be determined from standardlaboratory tests.

    Validated with respect laboratory tests,

    impendent tests and Field/laboratorymeasurements.

  • 8/12/2019 csd-ppt[1]

    72/72

    Conclusions (continued) ** Applied to a wide range of problems: Static and Dynamic Soil-Structure

    interaction, Piles, Retaining walls, Dams,

    Tunnels.

    Earthquake analysis, and LIQUEFACTION Landslides and Glacier Motions

    Electronic Packaging: Computer Chips-

    Boeing