45
Energie regenerabila produsa de sisteme integrate cu pile de combustie Crina S Ilea PhD Crina S. Ilea, PhD [email protected]

Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

Energie regenerabila produsa de sistemeintegrate cu pile de combustie

Crina S Ilea PhDCrina S. Ilea, [email protected]

Page 2: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

ContentContent

• Introduction

Hi t f P t t h• History of Prototech

• Fuel Cells & renewable energy Applications

• Fuel Cells for Space Applications

F l C ll f Oil d G A li ti• Fuel Cells for Oil and Gas Applications

• Solid Oxide Fuel Cell manufacturers

• PEM Fuel Cell manufacturers

Page 3: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

Crina Silvia Ilea (n. Suciu)Crina Silvia Ilea (n. Suciu)

• 2010 – present Researcher, Prototech AS, Norway

• 2008‐2010 Post‐Doc researcher, Prototech, AS Norway

• 2004‐2007 PhD, Institute for Physics and Technology, University of Bergen, Norway

• 2000‐2001 Master of Science, Faculty of Chemistry and Chemical Engineering, , y y g g,Babes‐Bolyai University, Cluj‐Napoca, Romania

• 1995‐2000 Bachelor of Science, Faculty of Chemistry and Chemical Engineering, Babes‐Bolyai University, Cluj‐Napoca, RomaniaBabes Bolyai University, Cluj Napoca, Romania

• 2011‐2014 Associate Professor (20%) Institute for Physics and Technology, University of Bergen, Norway

• 2001 2009 Assistant Professor Faculty of Chemistry and Chemical Engineering• 2001‐2009 Assistant Professor, Faculty of Chemistry and Chemical Engineering, Babes‐Bolyai University, Cluj‐Napoca, Romania

• 2011 Prize – “Norsk Hydrogenforums prise for excellent PhD work for 2010”

• European Commission Evaluator: FP7 2011, H2020 2015, 2016

• Publications: 2 books, 3 patents, > 10 peer‐reviewed scientifc papers, PlenaryLectures, Invited lectures, Posters

• Supervision: 1 PhD, 7 MSc, 5 BSc.

Page 4: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

Prototech in brief

• Christian Michelsen InstituteChristian Michelsen Institute• Founded in 1988

• Two departments:P t & S i (SOFC PEM‐ Parts & Services (SOFC, PEM,

Energy conversion, Energy optimization)‐ Research & Development p(Machining of complex structures, Small and medium series, Prototype productionHi h lit t

Space & Energy

High quality measurement laboratory)

Page 5: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

History of SOFC module3 kW CHP

Kollsnes, Bergen, 2008

10 kW - Mjøllner

SOFC, 1991-1997 MF Vågen 12 kW HT-PEMBergen, 2010Bergen, 2010

20kW SOFC ModuleZEG Power, 2014

5

Page 6: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

Cells and stacksTwin stack 2kW

InterconnectInterconnect

Cell

12 Twin stack 20kW 1 kW Stack

Page 7: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

Fuel Cells vs. Electrolysis

Fuel Cell ElectrolyserFuel Cell2 H2 + O2 ‐> 2 H2O + electric power

Electrolyserelectric power + H2O ‐> 2 H2 + O2

Space p

Page 8: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

Short stack / long term measurements

Measured OCV: 0.901 V Calculated OCV: 0.904 V

H2: 600ml/min, CO2: 600 ml/min, Air: 13.6 l/min

Two Cells 94 cm2Two Cells, 94 cm2

25 A = 0.26 A/cm2

2‐cell short stackMaterials: LSM/3YSZ/NiMaterials: LSM/3YSZ/NiInterconnects: LaCrO3

T = 900oCI = 0 21 A/cm2I = 0.21 A/cm2100 hoursDegradation: ∼ 1%/khour

Page 9: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,
Page 10: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

Mjøllner project (1997)j p j ( )

1200

1400

1200

1400Power (W)

Temp (°C)

600

800

1000

600

800

1000

empe

ratu

re (o

C)

Pow

er (W

)

0

200

400

0

200

400

0 200 400 600 800 1000 1200 1400 1600

Te

Time (hours)

Page 11: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

BKK pilot plant ‐ SOFC for CHP (2008) • 3+3 kW SOFC plant for combined heat and power

• Operating on natural gas at Kollsnes Industrial Park

• 1800 hours of operation

• Max. temperature ~800 ºC

• Stable SOFC performance under regular operating conditions

Page 12: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

T‐Cell (2016)

• FP7 – FCH‐JU

C th (G ) t• Certh (Gr) + partners

• Triode operation (3‐electrode SOFC)

C ll i h ili l d• Cells with auxiliary electrode

• Aim: Increase performance, tollerance to sulphur avoid sootingsulphur, avoid sooting

• Stackable repetable parts

T i d ll ti t j tif• Triode cell operation must justify:– Loss due to reversed current

– Lower active area and higher current densitiesLower active area and higher current densities through other part of the stack

– Higher complexity for production

– Reversible electrodes

Page 13: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

RoxSolidCell (2017)

• Eurostar project

• Testing of redox stableTesting of redox stable anode supported cells

• Technology from Fiaxell• Technology from FiaxellSwitzerland

Oth t UiA• Other partners: UiA(No), EPFL (Ch), CNRS‐IMN (F ) CTI (F )IMN (Fr), CTI (Fr)

Page 14: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

BioZEG (Zero Emission Gas)20142014

‐ CH2P from Biogas‐ Phase one: 30 kW H2‐ Phase two: 30 kW H2 + 20 kW SOFC‐ Hybrid SOFC + burner‐ >70% efficiency

Page 15: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

The footprint of the box (l x b x h) is 2024 mm x 1424 mm x 1565 mm.mm x 1424 mm x 1565 mm.24 stacks SOFC hot box

Page 16: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

770

780 @ 36 hours• P = 4100 kW

740

750

760

ature (oC)

P 4100 kW• 53 V x 77.3 A• FU: 54%

720

730

Tempera

• Stack: 26.5 V x 6.44 A• Cell: 0.883 V

38

700

710

32.0 33.0 34.0 35.0 36.0 37.0 38.0

• T = 753oC

@ 37 3 h

32

34

36

tage

@ 37.3 hours• P = 7000 kW• 105 2 V x 66 5 A

28

30

Stack Vo

l • 105.2 V x 66.5 A• FU: 62%• Stack: 26 3 V x 11 1 A

24

26

32.0 33.0 34.0 35.0 36.0 37.0 38.0

hours

Stack: 26.3 V x 11.1 A• Cell: 0.877 V• T = 761oC

Page 17: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

BioCellus (2007)

woodgas

1. Necessary gas quality for a safe operation2. Gas cleaning unit built3. Integration of the biomass ggasifier with the SOFC4. layers of fuel cells alternate with layers of heat pipes,1kW planar stack

heatTested on wood gas, stable performanceAverage power = 300 W

World first fuel cell tested using wood gas Max. power output = 700 W

Page 18: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

Maritime ‐ REMKOF (2009)

• Demonstration of a HTPEM‐driven ferry boat in Bergen harbour

• 12 kW HTPEM + batteries, H2 in metal hydride tanks

• Aspects:p

• Green fuel reforming

• CO2 absorption system and thermal integration

• 5 kW APU for small ships integrated and tested in real marine environment

• Design and model a 100 kW demo power system for ship propulsion

Page 19: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

High Speed passenger vessel (2014)– Examine possibility of using H2 as fuel for ships (offshore supply ships, ferries, passenger

vessels, etc.)

– Used existing high speed passenger vessel as basis for specific case

– Next step will be to develop full scale demo

(2016)

Page 20: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

(2015)

https://vimeo.com/77206272

Page 21: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

Green Fish Farms (2016)

Page 22: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,
Page 23: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

Demonstration of a closed lool H2/O2 fuel cell system(2014)(2014)

Sun PhaseEclipse

‐ Contractor: European Space Agency‐ Aim: design manufacture and set up a closed loop regenerative fuel cell system for a‐ Aim: design, manufacture and set up a closed loop regenerative fuel cell system for a telecom satellite, and test it to represent 15 years of the satellite in orbit‐ Resume: H2 and O2 are fuel for the FC, generated from H2O by an electrolyzer using solar power and converted to H2O by the FC in a closed loop.power and converted to H2O by the FC in a closed loop.

Page 24: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

1 Commercial HTPEM fuel cell module1. Commercial HTPEM fuel cell module• 4kW electrical power• Tested with circulated pure oxygen, and realistic eclipse cycles• Operating conditions: 160C & 1atm Operating conditions: 160C & 1atm• Result: completed 52 out of 250 cycles, stopped due to membrane malfunction.• Cause: improper operating procedures/conditions

Page 25: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

2. Liquid‐cooled bipolar plates were developedMaterial selection: testing of steel and graphite composites bipolar plates

Short stack with steel bipolar plates3. Design and construction of closed loop H2/O2 RFCS bread board demonstratorFC i d i i hFC incorporated in to a pressure tightenclosureUnitised Fuel Cell modified to dedicated PEM electrolyserelectrolyser1 kW class, 38 cells, graphite composite bipolar plates, external O2 manifold

Short stack with graphite compositebipolar plates

Page 26: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

Very stable and reliable system performance. Operated in a closed loop, recirculating the reactantsFuelCell stack performance decrease amounted for 8,4% after 1362 cycles, or 0,0062% per cycle, which is better then the target of 0,01% U per cycleElectrolyser stack did not show noticeable decrease in performance during the test periodOnly slight current differences due to temperature fluctuations

Page 27: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

1362 on‐off fuel cell cycles performed successfully along with approximately 2700 Electrolyser on‐off1362 on off fuel cell cycles performed successfully along with approximately 2700 Electrolyser on off cycles•Roundtrip efficiency under test conditions of 45 %•System efficiency 45% (can be significantly improved by new materials, pressure and lower electrolysis l )voltage)

Page 28: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

HTPEM FC stack development (2015)‐ Design, build and test HTPEM FC stacks operating at 160‐200oC

‐ Durable, compact, lightweight design

‐ Thin (0,1‐0,2 mm) metallic plates

Page 29: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

Methane Pyrolysis (2016)

External

NG (CH )

NG

SOFC

electricity

source

NG (CH4)pyrolysis

C

Gasification

heat

H2

CO2

Storage CO2

2CO

electricity

SOFC

H20Air O2

Main purpose: utilize natural gas (NG) for power production and co-production of H2while capturing CO2 in the process. p g 2 p

Page 30: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,
Page 31: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

ACT – Accelerating CCS TechnologiesCountry Partner Contribution

GermanyForschungszentrum Jülich GmbH Projektträger Jülich (FZJ/PtJ)

€6 M

Centre for Research and Technology HellasGreece

Centre for Research and Technology Hellas (CERTH)

€0

The NetherlandsMinistry of Economic Affairs/Rijksdienst voor Ondernemend Nederland (RVO)

€4 M

NorwayThe Research Council of Norway (RCN) and

( )€6 MNorway

Gassnova SF (GN)€6 M

RomaniaExecutive Agency for Higher Education, Research and Innovation Funding (UEFISCDI)

€1 M

SpainSpanish Ministry of Economy and Competitiveness (MINECO)

€0.3 MCompetitiveness (MINECO)

SwitzerlandSwiss Federal Department for the Environment, Transport, Energy and Communications (DETEC)

€4 M

TurkeyThe Scientific and Technological Research Council of Turkey (TUBITAK)

€2 My ( )

United KingdomDepartment of Energy and Climate Change (DECC)

€5.5 M

http://www.act‐ccs.eu/ACT is a European initiative to establish CO2 capture and storage (CCS) as a tool to combat global warming.2 p g ( ) g gUpcoming ACT Call to be published 7 June 2016

Page 32: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

Solid Oxide Fuel Cells for Mars (2016)Climate: ‐153oC to 20oCAtmosphere: 95% CO2, 6 mbar

Water cooled top cover

SOFC used for energy storage with large storage capacity utilizing onsite CO2 as reactant.Reversible fuel cell operation, CO/CO2/O2 as reactantsOperating at 900 oC

f b

200oC Zone Current collection

20-30V

Storage of CO at 10 bars

Stack pressure rods

900oC, 10bar

<< 100 mbar zon

Oxygen inlet

500oC,

Insulation

200oC Zone Water cooled bottom cover

Page 33: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

Regenerative energy storage system for l ( )space exploration missions (2015)

Aim: development and testing of a 1 kW reversible solid oxide fuel cell RSOFC consists of two 30 layer CFY‐stacks from Plansee/IKTS St k t d t f h th ith f l if ldStacks were mounted on top of each other with a common fuel manifold and an external air manifold designed for both stacks Tests: ‐ SOFC/SOEC mode (1000h)

‐ 2 full cycles starting with CO2 / CO as fuely g /

Page 34: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

A reversible fuel cell breadboard has been tested for more than 1300 hours:

‐ The system has successfully produced its own fuel starting from H2O and CO2.The system has successfully produced its own fuel starting from H2O and CO2.

‐ 1 kW power for 4 hours has been achieved for 16 cycles.

‐ 500 W power for 6 hours has been achieved for 37 cycles.

l l f h d f k h h h h b h d f l‐ Electrolysis of hydrogen for 7 kWh within 7 hours has been achieved for 33 cycles.

‐ Changing between full power in fuel cell mode and full power in electrolysis mode in

66 minutes.

‐ No degradation observed for the first 830 hours, discontinuous degradation around

830 hours giving 8.5 % lower performance after 1000 hours operation. 550

490

510

530

ack voltage

y = ‐0.0086x + 527.02

y = ‐0.0024x + 524.16

450

470

460 500 540 580 620 660 700 740 780 820 860

Sta

Time (hours)

y = 0.0099x ‐ 688.46

‐640

‐620

‐600

W)

Time (hours)

Power 3 Power 4

y = 0.012x ‐ 708.26740

‐720

‐700

‐680

‐660

Stack po

wer (W

‐760

‐740

500 600 700 800 900 1000 1100 1200

Time (hours)

Power 3 Power 4

Page 35: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,
Page 36: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

CHEOP – Clean Highly EfficientCHEOP Clean Highly Efficient Offshore Power

• 16 mNOK JIP‐project (Research Council of Norway (RCN) 50% Petromaks 2)(RCN) 50% ‐ Petromaks 2)

• Statoil and Shell are industry partners• Petrobras, ExxonMobil and FMC have shown greatPetrobras, ExxonMobil and FMC have shown great

interest in the project

• Develop an optimal fuel‐cell stack – ideal both offshore and onshore

• Main goal is to produce an optimised 10 kW fuel cellstack, which will be the main building block in theSOFC MW system

3636

SOFC MW‐system

Page 37: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

Subsea Fuel Cell Concept 12MW Electricity output (modular) 12 MWElectrical efficency (net) >65%Natural gas input energy 18.4 MW thNatural gas input flow 1600 Sm3/hrModule size 2 MWNo of stack boxes each module 204Power each stack box 10 kW

Page 38: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

Subsea power from Fuel Cells

• Module based (2MW)Module based (2MW)• 60‐85% Power efficiency• Runs on local NG• Redundancy reduction

d• Low maintenance need• Few movable parts

Page 39: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

32MW Topside Concept32MW Topside Concept

AfterburnerExhaust

7 MWel

Afterburner

Heat

Carbon rich reformate

15 MWheat25 MWel

HeatReformer with H2

membrane

NG + H2O

H2

H2O

• Module based• 60 85% Power efficiency including heat capture

Advantages of hybrid concept:Weight and cost reduction due to integration of the PEM‐system• 60‐85% Power efficiency including heat capture

• Redundancy reduction compared to gas turbines• Low maintenance need• Few movable parts

Highly efficient reformation of NG utilizing excess heat from the SOFCExhaust suitable for CO2 captureFew movable parts

Page 40: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

Technical specificationsElectricity output (modules of 3MW) 32 MWElectrical efficency (net) >60%Natural gas input energy 53 MW thNatural gas input flow 23000 Sm3/hrHeat output (oil at 160C) 15 MW

Mass 130t

Size Similar to turbine skidSize Similar to turbine skid

Page 41: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

Solid Oxide Fuel Cell manufacturers( )• FZJülich (D)

– Short stack test for 40.000 hours (5 years)

– 20 kW system – one year operation

– Prototech and FZ Jülich is partners in H2020 project

• Sunfire (D)• Sunfire (D)

– 30 kW SOFC module

– Focus on power to gas/liquid

• SolidPower (It)

– 2.5 kW CHP for demonstration purposes2.5 kW CHP for demonstration purposes

– High production capacity (~ 5MW/year)

– Prototech and SOFC Power is partners in FCH‐JU project

• Bloom (US) – 200‐250 kW commercial SOFC energy servers

– Several multi‐MW plants delivered

• Plansee/IKTS (AU/D) ‐ Stack production

Page 42: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

PEM Fuel Cell technology manufacturersgy

• Nedstack (NL)

– PEM

– 2‐10kW stacks

• Largest module produced: 1MW

– >20.000 hours proven lifetime

• Advent (GR/US)( / )

– HT‐PEM

– 20.000 hours proven lifetime

– Size according to customer specificationsSi e according to customer specifications

• Ballard (CA)

– PEMPEM

– > 215MW of products deployed worldwide

• Serenergy (DK)Serenergy (DK)

– Produce HT‐PEM stacks and systems

– Stacks are scalable from 1‐6kW

Page 43: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

Thank you for your attentionThank you for your attention

crina@prototech [email protected]

Page 44: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

Test program: i) Fuel cell mode: 0.5 kW for 5 hours followed by 1 kW for 4 hours; ii) Electrolyzer mode: Fuel for 7 kWh of electricity produced in 7 hours;ii) Electrolyzer mode: Fuel for 7 kWh of electricity produced in 7 hours; iii) Continuous testing for 1000 hours with less than 10% degradation, and iv) Two full electrolysis / fuel cell cycles starting with CO2 and producing CO as fuel.

800

825

850

875

30

32

34

36

erature

voltage

y = ‐0.0242x + 287.76

y = ‐0.0441x + 309.8

220

240

260

280

300

Stack p

ower (W

)

700

725

750

775

22

24

26

28

575 580 585 590 595 600 605 610 615 620 625

Tempe

Stack v

Time (hours)

Stack 3 Stack 4 Temp

200

220

0 200 400 600 800 1000 1200 1400

Time (hours)

Power 3 Power 4

550Stack 3 Stack 4 Temp

10

20

30

40

0

500

1 000

1 500ent (A)

ower (W)

y = ‐0.0086x + 527.02

y = ‐0.0024x + 524.16470

490

510

530

Stack v

oltage

‐30

‐20

‐10

0

‐2 000

‐1 500

‐1 000

‐500

575 580 585 590 595 600 605 610 615 620 625

Curre

Stack po

Time (hours)Power Current

450460 500 540 580 620 660 700 740 780 820 860

Time (hours)

Power 3 Power 4

y = 0.0099x ‐ 688.46‐620

‐600

Power Current

Stack voltage, current, power and temperature during twofull cycles

y = 0.012x ‐ 708.26

‐760

‐740

‐720

‐700

‐680

‐660

‐640

500 600 700 800 900 1000 1100 1200

Stack p

ower (W

)

500 600 700 800 900 1000 1100 1200

Time (hours)

Power 3 Power 4

Power vs. time at 10.4 A (top), 20.9 A (middle) and ‐20.2 A (down)

Page 45: Crina S PhD crina@prototech - diaspora-stiintifica.ro · Crina Silvia Ilea (n. Suciu) • 2010 –present Researcher, Prototech AS, Norway • 2008‐2010 Post‐Doc researcher, Prototech,

Fuel cell performance on CO/CO2

Hydrogen CO/CO2 Hydrogen

10

20

35

40

ege

‐10

0

25

30

Temperature

Stack voltag

‐20201260 1280 1300 1320

Time (hours)

St k 4 C tStack 4 Current

Electrolysis – a voltage has increased from 34.7 V at ‐20 A to 36.5 V at 17.5 A when H2O is replaced with CO2. ‐ increase can neither be explained by differences in temperature, reactant composition nor reactant utilisation thus it is a result of slower reaction rates for CO than for Hreactant utilisation, thus it is a result of slower reaction rates for CO than for H2.

‐ using 28.8 V as OCV, the area specific resistance (ASR) increased from 1.25 Ω⋅cm2 to 1.86 Ω⋅cm2, giving an increase of 0.6 Ω⋅cm2.

Fuel cell mode ‐ performed at 23.3 V and 7.0 A, which is significantly lower than during hydrogen operation, 25.5 V and 10 A.

‐ Calculation of theoretical OCV for the different fuel composition gives 30.2 V for 80 % H2in steam while only 27 8 V for 40 % CO in CO Hence calculating the ASR values give us a value of 2 0in steam while only 27.8 V for 40 % CO in CO2. Hence, calculating the ASR values give us a value of 2.0 Ω⋅cm2 for H2 operation and 2.6 Ω⋅cm2 for CO operation. This represents exactly the same increase as observed during electrolysis mode