Convex Analysis and Optimization Mit

Embed Size (px)

Citation preview

  • 7/27/2019 Convex Analysis and Optimization Mit

    1/300

    LECTURE SLIDES ONNVEX ANALYSIS AND OPTIMIZATIONCO

    BASED ON 6.253 CLASS LECTURES AT THEMASS. INSTITUTE OF TECHNOLOGY

    CAMBRIDGE, MASS

    SPRING 2010

    BY DIMITRI P. BERTSEKAShttp://web.mit.edu/dimitrib/www/home.html

    Based on the bookConvexOptimizationTheory,Athena Scientific,2009,includingtheon-lineChapter6andsupplementarymaterialat

    http://www.athenasc.com/convexduality.html

    All figures are courtesy of Athena Scientific, and are used with permission..

    http://web.mit.edu/dimitrib/www/home.htmlhttp://www.athenasc.com/convexduality.htmlhttp://www.athenasc.com/convexduality.htmlhttp://web.mit.edu/dimitrib/www/home.html
  • 7/27/2019 Convex Analysis and Optimization Mit

    2/300

    LECTURE 1TRODUCTION TO THE COURSEAN IN

    LECTURE OUTLINE TheRoleofConvexityinOptimization DualityTheory AlgorithmsandDuality CourseOrganization

  • 7/27/2019 Convex Analysis and Optimization Mit

    3/300

    HISTORY AND PREHISTORY Prehistory:Early1900s- 1949. Caratheodory,Minkowski,Steinitz,Farkas.

    Propertiesofconvexsetsandfunctions.Fenchel- Rockafellarera:1949- mid1980s.

    Dualitytheory.Minimax/gametheory(vonNeumann).(Sub)differentiability,optimalityconditions,

    sensitivity.Modernera- Paradigmshift:Mid1980s- present.

    Nonsmooth analysis (a theoretical/esotericdirection).

    Algorithms (a practical/high impact direction).Achangeintheassumptionsunderlyingthefield.

  • 7/27/2019 Convex Analysis and Optimization Mit

    4/300

    OPTIMIZATION PROBLEMSricform:Gene

    minimize f(x)subjectto xC

    Costfunctionf :n ,constraintsetC,e.g.,C=Xx|h1(x) = 0, . . . , hm(x) = 0

    x|g1(x)0, . . . , gr(x)0 Continuousvsdiscreteproblemdistinction Convex programming problems are those forwhichf andC areconvex Theyarecontinuousproblems

    Theyarenice,andhavebeautifuland intuitivestructure

    However, convexity permeates all of optimiza

    tion,includingdiscreteproblems Principal vehicle for continuous-discrete connectionisduality:

    The dual problem of a discrete problem iscontinuous/convex

    Thedualproblemprovidesimportantinformationforthesolutionofthediscreteprimal(e.g., lowerbounds,etc)

  • 7/27/2019 Convex Analysis and Optimization Mit

    5/300

    WHY IS CONVEXITY SO SPECIAL?AconvexfunctionhasnolocalminimathatarenotglobalAnonconvexfunctioncanbeconvexifiedwhile

    maintainingtheoptimalityof itsglobalminima Aconvexsethasanonemptyrelativeinterior

    A convex set is connected and has feasible directionsatanypoint Theexistenceofaglobalminimumofaconvexfunctionoveraconvexsetisconvenientlycharacterized intermsofdirectionsofrecession A polyhedral convex set is characterized intermsofafinitesetofextremepointsandextremedirections

    Areal-valuedconvexfunctioniscontinuousandhasnicedifferentiabilityproperties Closed convexcones are self-dualwith respecttopolarity

    Convex,lowersemicontinuousfunctionsareselfdualwithrespecttoconjugacy

  • 7/27/2019 Convex Analysis and Optimization Mit

    6/300

    DUALITY Twodifferentviewsofthesameobject. Example: Dualdescriptionofsignals.

    Time domain Frequency domain

    Dualdescriptionofclosedconvexsets

    A union of points An intersection of halfspaces

  • 7/27/2019 Convex Analysis and Optimization Mit

    7/300

    DUAL DESCRIPTION OF CONVEX FUNCTION Defineaclosedconvexfunctionbyitsepigraph. Describetheepigraphbyhyperplanes. Associatehyperplaneswithcrossingpoints(theconjugatefunction).

    x

    Slope =y

    0

    (y, 1)

    f(x)

    infxn

    {f(x) xy}= f(y)

    Primal Description Dual Description

    Values f(x) Crossing pointsf(y)

  • 7/27/2019 Convex Analysis and Optimization Mit

    8/300

    FENCHEL PRIMAL AND DUAL PROBLEMS

    x x

    f1(x)

    f2(x)

    Slope yf

    1(y)

    f

    2 (

    y)

    f1

    (y) +f2

    (y)

    Vertical Distances Crossing Point Differentials

    Primal Problem Description Dual Problem Description

    Primalproblem:minf1(x) +f2(x)

    x

    Dualproblem:( ) f fy 1 2 (y)max

    yaretheconjugateswheref1 andf2

  • 7/27/2019 Convex Analysis and Optimization Mit

    9/300

    FENCHEL DUALITY

    f1(x)Slope y

    x

    x

    f2(x)

    f1

    (y)

    f2

    (y)

    f1

    (y) +f2

    (y)

    Slope y

    minx

    f1(x) +f2(x)

    = max

    y

    f

    1(y) f

    2(y)

    Underfavorableconditions(convexity): Theoptimalprimalanddualvaluesareequal The optimal primal and dual solutions are

    related

  • 7/27/2019 Convex Analysis and Optimization Mit

    10/300

    A MORE ABSTRACT VIEW OF DUALITY Despite its elegance, the Fenchel framework issomewhatindirect. Fromdualityofsetdescriptions,to

    dualityoffunctionaldescriptions,to dualityofproblemdescriptions.

    Amoredirectapproach: Startwithaset,then

    Definetwosimpleprototypeproblems dualtoeachother.

    Avoid functional descriptions (a simpler, lessconstrainedframework).

  • 7/27/2019 Convex Analysis and Optimization Mit

    11/300

    MIN COMMON/MAX CROSSING DUALITY

    0!

    "#$

    %#0 )1*22&'3 ,*&'- 4/

    %

    !

    "5$

    %

    %#0 )1*22&'3 ,*&'- 4/

    7

    !

    "8$

    9

    6%

    %

    %#0 )1*22&'3 ,*&'- 4/

    %&' )*++*' ,*&'- ./

    .

    7

    70 0

    0

    u u

    u

    w

    MM

    M

    MMin CommonPoint w

    Max CrossingPoint q

    Max CrossingPoint q Max Crossing

    Point q

    (a) (b)

    (c)

    Allofdualitytheoryandallof(convex/concave)minimax theory can be developed/explained intermsofthisonefigure. Themachineryofconvexanalysis isneededtoflesh out this figure, and to rule out the exceptional/pathologicalbehaviorshownin(c).

  • 7/27/2019 Convex Analysis and Optimization Mit

    12/300

    ABSTRACT/GENERAL DUALITY ANALYSIS

    Minimax Duality Constrained OptimizationDuality

    Min-Common/Max-CrossingTheorems

    Theorems of the

    Alternative etc( MinMax = MaxMin )

    Abstract Geometric Framework

    Special choices

    ofM

    (Set M)

  • 7/27/2019 Convex Analysis and Optimization Mit

    13/300

    EXCEPTIONAL BEHAVIORIfconvexstructure isso favorable,what isthesourceofexceptional/pathologicalbehavior?

    Answer: Somecommonoperationsonconvexsetsdonotpreservesomebasicproperties. Example: A linearly transformedclosedcon

    vex set need not be closed (contrary to compactandpolyhedralsets).

    Alsothevectorsumoftwoclosedconvexsetsneednotbeclosed.

    x1

    x2

    C1=

    (x1, x2)| x1 >0, x2 >0, x1x2 1

    C2=

    (x1, x2)| x1= 0

    Thisisamajorreasonfortheanalyticaldifficul

    ties in convex analysis and pathological behaviorinconvexoptimization(andthefavorablecharacterofpolyhedralsets).

  • 7/27/2019 Convex Analysis and Optimization Mit

    14/300

    MODERN VIEW OF CONVEX OPTIMIZATIONTraditionalview:Pre1990s LPsaresolvedbysimplexmethod NLPsaresolvedbygradient/Newtonmeth

    ods ConvexprogramsarespecialcasesofNLPs

    LP CONVEX NLP

    Duality Gradient/NewtonSimplex

    Modernview:Post1990s LPs are often solved by nonsimplex/convex

    methods Convexproblemsareoftensolvedbythesame

    methodsasLPs

    KeydistinctionisnotLinear-NonlinearbutConvex-Nonconvex(Rockafellar)

    LP CONVEX NLP

    Simplex Gradient/NewtonDuality

    Cutting plane

    Interior pointSubgradient

  • 7/27/2019 Convex Analysis and Optimization Mit

    15/300

    THE RISE OF THE ALGORITHMIC ERA ConvexprogramsandLPsconnectaround Duality

    Large-scalepiecewiselinearproblems Synergyof:

    Duality

    Algorithms Applications

    Newproblemparadigmswithrichapplications Duality-baseddecomposition

    Large-scaleresourceallocation Lagrangianrelaxation,discreteoptimization Stochasticprogramming

    Conicprogramming

    Robustoptimization Semidefiniteprogramming

    Machinelearning Supportvectormachines l1 regularization/Robustregression/Compressed

    sensing

  • 7/27/2019 Convex Analysis and Optimization Mit

    16/300

    METHODOLOGICAL TRENDSwmethods,renewedinterestinoldmethods.InteriorpointmethodsNe

    Subgradient/incrementalmethodsPolyhedralapproximation/cuttingplanemeth

    ods Regularization/proximalmethods Incrementalmethods

    Renewedemphasisoncomplexityanalysis

    Nesterov,Nemirovski,andothers ... Optimalalgorithms(e.g.,extrapolatedgra

    dientmethods) Emphasisoninteresting(oftenduality-related)large-scalespecialstructures

  • 7/27/2019 Convex Analysis and Optimization Mit

    17/300

    COURSE OUTLINEillfollowcloselythetextbookrtsekas, Convex Optimization Theory, Wew Be

    Athena Scientific,2009,includingtheon-lineChapter6andsupplementarymaterialathttp://www.athenasc.com/convexduality.html

    Additionalbookreferences: Rockafellar,ConvexAnalysis,1970. BoydandVanderbergue,ConvexOptimiza

    tion,CambridgeU.Press,2004. (On-lineathttp://www.stanford.edu/~boyd/cvxbook/)

    Bertsekas,Nedic,andOzdaglar,ConvexAnalysisandOptimization,Ath.Scientific,2003. Topics (the texts design is modular, and thefollowingsequenceinvolvesnolossofcontinuity):

    BasicConvexityConcepts: Sect.1.1-1.4. Convexity and Optimization: Ch.3. Hyperplanes&Conjugacy: Sect.1.5,1.6. Polyhedral Convexity: Ch.2. Geometric Duality Framework: Ch.4.

    Duality Theory: Sect.5.1-5.3. Subgradients: Sect.5.4. Algorithms: Ch.6.

    http://www.athenasc.com/convexduality.htmlhttp://www.stanford.edu/~boyd/cvxbook/http://www.stanford.edu/~boyd/cvxbook/http://www.athenasc.com/convexduality.html
  • 7/27/2019 Convex Analysis and Optimization Mit

    18/300

    WHAT TO EXPECT FROM THIS COURSE Requirements: Homework(25%),midterm(25%),andatermpaper(50%)

    Weaim:To develop insight and deep understanding

    ofafundamentaloptimizationtopicTotreatwithmathematicalrigoran impor

    tantbranchofmethodologicalresearch,andtoprovideanaccountofthestateoftheartinthefield

    Togetanunderstandingofthemerits,limitations,

    and

    characteristics

    of

    the

    rich

    set

    of

    availablealgorithms

    Mathematicallevel: Prerequisites are linear algebra (preferably

    abstract)andrealanalysis(acourseineach) Proofswillmatter ... buttherichgeometryofthesubjecthelpsguidethemathematics

    Applications: They are many and pervasive ... but dont

    expect much in this course. The book byBoyd and Vandenberghe describes a lot ofpracticalconvexoptimizationmodels

    Youcandoyourtermpaperonanapplicationarea

  • 7/27/2019 Convex Analysis and Optimization Mit

    19/300

    A NOTE ON THESE SLIDESheseslidesareateachingaid,notatextontexpectarigorousmathematicaldevelop T D

    ment The statements of theorems are fairly precise,buttheproofsarenot Manyproofshavebeenomittedorgreatlyabbreviated Figures are meant to convey and enhance understandingofideas,nottoexpressthemprecisely Theomittedproofsandafullerdiscussioncanbe found in the Convex Optimization Theorytextbookanditssupplementarymaterial

  • 7/27/2019 Convex Analysis and Optimization Mit

    20/300

    LECTURE 2LECTURE OUTLINE

    Convexsetsandfunctions Epigraphs

    Closedconvexfunctions

    RecognizingconvexfunctionsReading: Section1.1

  • 7/27/2019 Convex Analysis and Optimization Mit

    21/300

    SOME MATH CONVENTIONSllofourworkisdoneinn: spaceofn-tuples Ax= (x1, . . . , xn)

    Allvectorsareassumedcolumnvectors denotestranspose,soweusex todenotearowvector

    xy istheinnerproductni=1xiyi ofvectorsxandy

    x=xx isthe(Euclidean)normofx. Weusethisnormalmostexclusively

    Seethe

    textbook

    for

    an

    overview

    of

    the

    linear

    algebraandrealanalysisbackgroundthatwewilluse. Particularlythefollowing:

    Definitionofsupandinfofasetofrealnumbers

    Convergenceofsequences(definitionsofliminf,

    limsup of a sequence of real numbers, anddefinitionof limofasequenceofvectors)

    Open, closed, and compact sets and theirproperties

    Definitionandpropertiesofdifferentiation

  • 7/27/2019 Convex Analysis and Optimization Mit

    22/300

    CONVEX SETS

    x+ (1 )y, 0 1

    yx x

    y

    x

    y

    x

    y

    AsubsetC ofn iscalledconvex ifx+(1)yC, x,yC, [0,1]

    OperationsthatpreserveconvexityIntersection,scalarmultiplication,vectorsum,

    closure, interior, lineartransformations Specialconvexsets: Polyhedralsets: Nonemptysetsoftheform

    {x|ajxbj, j= 1, . . . , r}(alwaysconvex,closed,notalwaysbounded)

    Cones: Sets C such that x C for all > 0 and x C (not always convex orclosed)

  • 7/27/2019 Convex Analysis and Optimization Mit

    23/300

    CONVEX FUNCTIONS

    ! "#$% ' #( ) ! %"#*%

    $ *

    +

    "#! $ ' #( ) ! %*%

    ! $ ' #( ) ! %*

    "#$%

    "#*%

    x+ 1 )y

    C

    x y

    f(x)

    f(y)

    f(x) + (1 )f(y)

    fx+ (1 )y

    Let C be a convex subset of n. A functionf :C iscalledconvex ifforall[0,1]fx+(1)y

    f(x)+(1

    )f(y),

    x,y

    CIfthe inequality isstrictwhenevera(0,1)andx=y,thenf iscalledstrictlyconvexoverC.

    Iff isaconvex function,thenall its levelsets{

    x

    C| f(x)

    } and

    {x

    C

    | f(x) <

    },

    where isascalar,areconvex.

  • 7/27/2019 Convex Analysis and Optimization Mit

    24/300

    EXTENDED REAL-VALUED FUNCTIONS!"#$

    #

    %&'()# !+',-.&'

    !"#$

    #

    /&',&'()# !+',-.&'

    01.23415 01.23415f(x) f(x)

    xx

    Epigraph Epigraph

    Convex function Nonconvex function

    dom(f) dom(f)

    Theepigraphofafunctionf :X [,]isthesubsetofn+1 givenby

    epi(f) =(x,w)|xX,w , f(x)wTheeffectivedomainoff istheset

    dom(f) =xX |f(x)forallxX andX isconvex,thedefinitioncoincideswiththeearlierone. Wesaythatf isclosedifepi(f)isaclosedset. We say that f is lower semicontinuous at avectorxX iff(x)liminfkf(xk)foreverysequence{xk} X withxk x.

  • 7/27/2019 Convex Analysis and Optimization Mit

    25/300

    CLOSEDNESS AND SEMICONTINUITY I Proposition: Forafunctionf :n [,],thefollowingareequivalent:

    (i) V ={x|f(x)} isclosedforall .(ii) f islowersemicontinuousatallx n.

    (iii) f isclosed.f(x)

    xx| f(x)

    epi(f)

    (ii) (iii): Let (xk, wk) epi(f) with (xk, wk) (x,w). Thenf(xk)wk,and

    f(x)liminff(xk)w so(x,w)epi(f)k(iii) (i): Let{xk} V and xk x. Then

    (xk, ) epi(f) and (xk, ) (x,), so (x,)epi(f),andxV.

    (i)

    (ii):

    If

    xk

    x

    and

    f(x)

    > >

    lim

    infk

    f(xkconsidersubsequence{xk}K xwithf(xk)

    - contradictsclosednessofV.

  • 7/27/2019 Convex Analysis and Optimization Mit

    26/300

    CLOSEDNESS AND SEMICONTINUITY II Lowersemicontinuityofafunctionisadomain-specificproperty,butclosenessisnot:

    Ifwechangethedomainofthefunctionwithoutchangingitsepigraph,itslowersemicontinuitypropertiesmaybeaffected.

    Example: Definef :(0,1) [,]andf :[0,1] [,]by f(x) = 0, x(0,1),

    f(x) =0 ifx

    (0,1),

    ifx= 0orx=1.Thenf and fhavethesameepigraph, andbotharenotclosed. Butf islower-semicontinuouswhilefisnot.

    Notethat: Iffislowersemicontinuousatallxdom(f),

    it isnotnecessarilyclosed Iffisclosed,dom(f)isnotnecessarilyclosed

    Proposition: Let f :X [,] be a function. If dom(f) is closedandf is lowersemicontinuousatallxdom(f),thenf isclosed.

  • 7/27/2019 Convex Analysis and Optimization Mit

    27/300

    ROPERANDIMPROPERCONVEXFUNCTION

    f(x) f(x)

    xdom(f) dom(f)

    x

    epi(f) epi(f)

    NotClosedImproperFunction ClosedImproperFunction

    Wesaythatf isproperiff(x)forallxX,andwewillcallf improperifit isnotproper. Notethatf isproperifandonlyifitsepigraphisnonemptyanddoesnotcontainaverticalline. Animproperclosedconvexfunctionisverype-culiar: it takes an infinite value ( or) at everypoint.

  • 7/27/2019 Convex Analysis and Optimization Mit

    28/300

    RECOGNIZING CONVEX FUNCTIONS Some important classes of elementary convexfunctions: Affine functions, positive semidefinitequadraticfunctions,normfunctions,etc. Proposition: Letfi :n (,],iI,begivenfunctions(I isanarbitraryindexset).(a)Thefunctiong:n (,]givenby

    g(x) =1f1(x) + +mfm(x), i >0 isconvex(orclosed) iff1, . . . , f m areconvex(respectively,closed).(b)Thefunctiong:n (,]givenby

    g(x) =f(Ax)whereAisanmnmatrix isconvex(orclosed)iff isconvex(respectively,closed).(c)Thefunctiong:n (,]givenby

    g(x)=supfi(x)iI

    isconvex(orclosed) ifthefi areconvex(respectively,closed).

  • 7/27/2019 Convex Analysis and Optimization Mit

    29/300

    LECTURE 3LECTURE OUTLINE

    DifferentiableConvexFunctionsConvexandAffineHulls

    CaratheodorysTheorem

    RelativeInteriorReading: Sections1.1,1.2,1.3.0

  • 7/27/2019 Convex Analysis and Optimization Mit

    30/300

    DIFFERENTIABLE CONVEX FUNCTIONS

    zx

    f(z)

    f(x) +f(x)(z x)

    LetC

    n beaconvexsetandletf :

    n

    bedifferentiableovern.

    (a) Thefunctionf isconvexoverC ifff(z)f(x) + (zx)f(x), x,zC

    (b) If the inequality is strict whenever x = z,thenf isstrictlyconvexoverC.

  • 7/27/2019 Convex Analysis and Optimization Mit

    31/300

    PROOF IDEAS

    z

    x

    x

    f(x) + (z x)f(x)

    f(z)

    f(z)

    f(x) + (1 )f(y)

    f(x)

    (y)

    z = x+ (1 )y y

    f(z) + (y z)f(z)

    f(z) + (x z)f(z)

    (a)

    (b)

    x+ (z x)

    f(x) +fx+ (z x)

    f(x)

  • 7/27/2019 Convex Analysis and Optimization Mit

    32/300

    OPTIMALITY CONDITION LetC beanonemptyconvexsubsetofn andlet f :n be convex and differentiable overanopensetthatcontainsC. Thenavectorx Cminimizesf overC ifandonly if

    f(x)(x

    x)

    0,

    x

    C.

    Proof: Iftheconditionholds,thenf(x)f(x)+(xx)f(x)f(x), xC,sox minimizesf overC.

    Converse: Assumethecontrary,i.e.,x minimizesf overCandf(x)(xx)

  • 7/27/2019 Convex Analysis and Optimization Mit

    33/300

    TWICE DIFFERENTIABLE CONVEX FNS Let C be a convex subset of n and let f :n betwicecontinuouslydifferentiableover

    .n(a) If2f(x) ispositivesemidefiniteforallx

    C,thenf isconvexoverC.(b) If2f(x) is positive definite for all x C,

    thenf isstrictlyconvexoverC.(c) If C is open and f is convex over C, then

    2f(x)ispositivesemidefiniteforallxC.Proof: (a)Bymeanvaluetheorem,forx,y

    C

    f(y) =f(x)+(yx)f(x)+12(yx)2f

    x+(yx)

    (yx)

    for some [0,1]. Using the positive semidefinitenessof2f,weobtain

    f(y)f(x) + (yx)f(x), x,yCFromtheprecedingresult,f isconvex.(b) Similar to (a), we have f(y) > f(x) + (yx)

    f(x) forallx,y

    C withx=

    y,andweuse

    theprecedingresult.(c)Bycontradiction ... similar.

  • 7/27/2019 Convex Analysis and Optimization Mit

    34/300

    CONVEX AND AFFINE HULLS

    GivenasetX n:A convex combination of elements of X is a

    mvectoroftheform ixi,wherexi X,i 0,andmi=1i =1. i=1

    TheconvexhullofX,denotedconv(X), isthe

    intersectionofallconvexsetscontainingX. (CanbeshowntobeequaltothesetofallconvexcombinationsfromX). TheaffinehullofX,denotedaff(X),istheintersectionofallaffinesetscontainingX (anaffineset is a set of the form x+S, where S is a subspace). AnonnegativecombinationofelementsofX isavectoroftheformm ixi,wherexi Xandi=1i0foralli. TheconegeneratedbyX,denotedcone(X), isthesetofallnonnegativecombinationsfromX:

    Itisaconvexconecontainingtheorigin. Itneednotbeclosed!

    If X is a finite set, cone(X) is closed (nontrivialtoshow!)

  • 7/27/2019 Convex Analysis and Optimization Mit

    35/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    36/300

    PROOF OF CARATHEODORYS THEOREM(a) Let x be a nonzero vector in cone(X), andletmbethesmallest integersuchthatxhastheformm ixi, where i > 0 and xi X fori=1all i = 1, . . . , m. If the vectors xi were linearlydependent,therewouldexist1, . . . , m,with

    mixi = 0i=1

    andat leastoneofthei ispositive. Considerm

    (ii)xi,i=1

    where

    is

    the

    largest

    such

    that

    ii 0foralli. Thiscombinationprovidesarepresentation

    ofxasapositivecombinationoffewerthanmvectorsofXacontradiction. Therefore,x1, . . . , xm,arelinearly independent.(b)Useliftingargument: applypart(a)toY =

    (x,1)|xX.

    Y

    x

    X

    0

    1(x, 1)

    n

  • 7/27/2019 Convex Analysis and Optimization Mit

    37/300

    AN APPLICATION OF CARATHEODORY

    Theconvexhullofacompactsetiscompact.Proof: Let X be compact. We take a sequenceinconv(X)andshowthatithasaconvergentsubsequencewhoselimit is inconv(X).

    ByCaratheodory,asequenceinconv(X)canbeexpressedasn+1 ,whereforallkandi=1 ikxik

    ki, k 0, x X, andn+1k =1. Since thei i i=1 isequence

    k k k(1

    k, . . . , n+1, x1, . . . , xn+1)

    isbounded,ithasalimitpoint

    (1, . . . , n+1, x1, . . . , xn+1)

    ,which must satisfy n+1i = 1, and i 0,i=1xi X foralli.

    The vectorn+1ixi belongs to conv(X)i=1and is a limit point of n+1k k, showingi=1 ixithatconv(X)iscompact. Q.E.D.

    Note that the convex hull of a closed set neednotbeclosed!

  • 7/27/2019 Convex Analysis and Optimization Mit

    38/300

    RELATIVE INTERIOR

    a relative interior point of C, if x irpointofC relativetoaff(C). x is s aninterio ri(C)denotestherelativeinteriorofC,i.e.,thesetofallrelativeinteriorpointsofC. LineSegmentPrinciple: IfCisaconvexset,

    x ri(C) and x cl(C), then all points on thelinesegmentconnectingxandx,exceptpossiblyx,belongtori(C).

    x

    C x = x+(1

    )x

    x

    S

    S

    ProofofcasewherexC: Seethefigure. Proof of case where x

    / C: Take sequence

    {xk} C withxk x. Argueasinthefigure.

  • 7/27/2019 Convex Analysis and Optimization Mit

    39/300

    ADDITIONAL MAJOR RESULTS LetC beanonemptyconvexset.

    (a) ri(C)isanonemptyconvexset,andhasthesameaffinehullasC.

    (b)Prolongation Lemma: x ri(C) if andonly if every line segment in C having xasoneendpointcanbeprolongedbeyondxwithout leavingC.

    z2

    C

    X

    z1

    z1 and z2 are linearlyindependent, belong to

    Cand span aff(C)

    0

    Proof: (a)Assumethat0C. Wechoosemlinearly independent vectors z1, . . . , zm

    C, where

    misthedimensionofaff(C),andwe letm m

    X=

    izi i 0, i= 1, . . . , m

    i=1 i=1

    (b)=>isclearbythedef.ofrel.interior. Reverse:takeanyxri(C);useLineSegmentPrinciple.

  • 7/27/2019 Convex Analysis and Optimization Mit

    40/300

    OPTIMIZATION APPLICATION

    Aconcavefunctionf : n thatattainsits minimum over a convex set X at an x ri(X)mustbeconstantoverX.

    X

    x

    x

    x

    aff(X)

    Proof: (By contradiction) Let x X be suchthat f(x) > f(x). Prolong beyond x the linesegment x-to-x to a point x

    X. By concavity

    off,wehaveforsome(0,1)f(x)f(x)+(1)f(x),

    and since f(x) > f(x), we must have f(x) >f(x)- acontradiction. Q.E.D. Corollary: Alinearfunctioncanattainamininumonlyattheboundaryofaconvexset.

  • 7/27/2019 Convex Analysis and Optimization Mit

    41/300

    LECTURE 4LECTURE OUTLINE

    Algebraofrelativeinteriorsandclosures Continuityofconvexfunctions

    Closuresoffunctions

    Recessionconesand linealityspaceReading: Sections1.31-1.3.3,1.4.0

  • 7/27/2019 Convex Analysis and Optimization Mit

    42/300

    CALCULUS OF REL. INTERIORS: SUMMARY The ri(C) and cl(C) of a convex set C differverylittle.

    Any set between ri(C) and cl(C) has thesamerelativeinteriorandclosure.

    Therelativeinteriorofaconvexsetisequalto

    the

    relative

    interior

    of

    its

    closure.

    Theclosureoftherelative interiorofacon

    vexset isequaltoitsclosure.Relative interior and closure commute with

    Cartesianproductand inverse imageundera linear

    transformation.

    Relativeinteriorcommuteswithimageunderalineartransformationandvectorsum,butclosuredoesnot.

    Neither relative interior nor closure commutewithset intersection.

  • 7/27/2019 Convex Analysis and Optimization Mit

    43/300

    CLOSURE VS RELATIVE INTERIOR Proposition:

    (a) Wehavecl(C)=clri(C)andri(C)=ricl(C).(b) LetCbeanothernonemptyconvexset. Then

    thefollowingthreeconditionsareequivalent:(i)

    C

    and

    C

    have

    the

    same

    rel.

    interior.

    (ii) C andC havethesameclosure.

    (iii) ri(C)Ccl(C).Proof: (a)Sinceri(C)C,wehavecl

    ri(C)

    cl(C). Conversely, let x

    cl(C). Let x

    ri(C).BytheLineSegmentPrinciple,wehave

    x+(1)xri(C), (0,1].Thus,xisthelimitofasequencethatliesinri(C),so

    x

    cl

    ri(C)

    .

    x

    x

    C

    Theproofofri(C)=ricl(C) issimilar.

  • 7/27/2019 Convex Analysis and Optimization Mit

    44/300

    LINEAR TRANSFORMATIONS LetC beanonemptyconvexsubsetofn andletAbeanm nmatrix.

    (a) WehaveA ri(C)=ri(A C). (b) WehaveA cl(C)cl(A C). Furthermore,

    ifC isbounded,thenA cl(C)=cl(A C).

    Proof: (a)Intuition: SphereswithinCaremappedonto spheres within A C (relative to the affinehull).(b)WehaveAcl(C)cl(A C),sinceifasequence {

    xk}

    C converges to some x

    cl(C) then thesequence{Axk},whichbelongstoA C,convergestoAx,implyingthatAxcl(A C).

    To show the converse, assuming that C isbounded, choose any z cl(A C). Then, thereexists{xk} C such that Axk z. Since C isbounded,

    {xk}

    has

    asubsequence

    that

    converges

    tosomexcl(C),andwemusthaveAx=z. ItfollowsthatzA cl(C). Q.E.D.

    Notethat ingeneral,wemayhaveA int(C)=int(A C), A cl(C)=cl(A C)

  • 7/27/2019 Convex Analysis and Optimization Mit

    45/300

    INTERSECTIONS AND VECTOR SUMS LetC1 andC2 benonemptyconvexsets.

    (a) Wehaveri(C1 +C2)=ri(C1)+ri(C2),cl(C1)

    +

    cl(C2)

    cl(C1 +C2)IfoneofC1 andC2 isbounded,then

    cl(C1)+cl(C2)=cl(C1 +C2)(b) Ifri(C1)ri(C2) =,then

    ri(C1C2)=ri(C1)ri(C2),cl(C1C2)=cl(C1)cl(C2)

    Proof of (a): C1 +C2 istheresultofthe lineartransformation(x1, x2)x1 +x2. Counterexamplefor(b):

    C1 ={x|x0}, C2 ={x|x0}

  • 7/27/2019 Convex Analysis and Optimization Mit

    46/300

    CARTESIAN PRODUCT - GENERALIZATION LetC beconvexsetinn+m. Forx n,let

    Cx ={y|(x,y)C},andlet

    D={

    x|Cx =

    }.

    Thenri(C) =(x,y)|xri(D), yri(Cx).

    Proof:

    SinceD

    is

    projection

    of

    C

    on

    x-axis,

    ri(D) =x|thereexistsy m with(x,y)ri(C),sothat

    ri(C) =xri(D)Mxri(C),

    where Mx = (x,y) | y m. For every x ri(D),wehaveMx

    ri(C)=ri(MxC) =(x,y)|yri(Cx).Combinetheprecedingtwoequations. Q.E.D.

  • 7/27/2019 Convex Analysis and Optimization Mit

    47/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    48/300

    CLOSURES OF FUNCTIONSTheclosure ofa function f :X [,n ] isefunctionclf : [,]with

    thepi(clf)=clepi(f)

    Theconvexclosureoff isthefunctionclf withepi(cl

    f)=clconvepi(f)

    Proposition: Foranyf :X [,]

    inf f(x)= inf (clf)(x)= inf (clf)(x).xX xn xn

    Also,anyvectorthatattainstheinfimumoffoverX alsoattainstheinfimumofclf andclf. Proposition: Foranyf :X [,]:

    (a) clf (orclf)isthegreatestclosed(orclosedconvex,resp.) functionmajorizedbyf.

    (b) If f is convex, then clf is convex, and it isproperifandonlyiff isproper. Also,(clf)(x) =f(x), xridom(f),andifx

    ridom(f)

    andy

    dom(clf),

    (clf)(y)=limfy+(xy). 0

  • 7/27/2019 Convex Analysis and Optimization Mit

    49/300

    RECESSION CONE OF A CONVEX SET

    Given a nonempty convex set C, a vector d isadirectionof recession if starting at any x in Candgoing indefinitelyalongd,wenevercrosstherelativeboundaryofC topointsoutsideC:

    x+d

    C,

    x

    C,

    0

    x

    C

    0

    d

    x + d

    Recession Cone RC

    RecessionconeofC (denotedbyRC): Thesetofalldirectionsofrecession. RC isaconecontainingtheorigin.

  • 7/27/2019 Convex Analysis and Optimization Mit

    50/300

    RECESSION CONE THEOREM LetC beanonemptyclosedconvexset.

    (a) The recession coneRC is a closed convexcone.

    (b) AvectordbelongstoRC ifandonlyifthereexistssomevectorx

    C suchthatx+d

    C forall0.(c)RC containsanonzerodirection ifandonly

    ifC isunbounded.(d) TherecessionconesofCandri(C)areequal.(e)

    If

    D

    is

    another

    closed

    convex

    set

    such

    that

    CD= ,wehave

    RCD =RC RDMore generally, for any collection of closedconvexsetsCi,iI,whereI isanarbitraryindexsetandiICi isnonempty,wehave

    RiICi =iIRCi

  • 7/27/2019 Convex Analysis and Optimization Mit

    51/300

    PROOF OF PART (B)

    x

    C

    z1 = x+ d

    z2

    z3

    x

    x+ d

    x+ d1

    x+ d2

    x+ d3

    Let d = 0 be such that there exists a vectorx

    C with x+d

    C for all

    0. We fix

    xC and >0,andweshowthatx+dC.Byscalingd,itisenoughtoshowthatx+dC.

    Fork= 1,2, . . .,let(zkx)

    zk =x+kd, dk =zk

    x

    d

    Wehavedk zk x d xx zk x xx

    = + , 1, 0,d zk x d zk x zk x zk x

    sodk dandx+dk x+d. Usetheconvexity andclosednessofC toconcludethatx+dC.

  • 7/27/2019 Convex Analysis and Optimization Mit

    52/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    53/300

    LECTURE 5

    LECTURE OUTLINEDirectionsofrecessionofconvexfunctions

    Localandglobalminima

    ExistenceofoptimalsolutionsReading: Sections1.4.1,3.1,3.2

  • 7/27/2019 Convex Analysis and Optimization Mit

    54/300

    DIRECTIONS OF RECESSION OF A FNWeaimtocharacterizedirectionsofmonotonicdecreaseofconvexfunctions.

    Somebasicgeometricobservations: Thehorizontal directions intherecession

    coneoftheepigraphofaconvex functionfaredirectionsalongwhichthe levelsetsareunbounded.

    Along these directions the level sets xf(x) are unbounded and f is mono-|tonicallynondecreasing.

    Thesearethedirectionsofrecessionoff.

    !

    epi(f)

    Level Set V!= {x | f(x) "!}

    Slice {(x,!) | f(x) "!}

    RecessionCone of f

    0

  • 7/27/2019 Convex Analysis and Optimization Mit

    55/300

    RECESSION CONE OF LEVEL SETS Proposition: Letf :n (,]beaclosedproperconvexfunctionandconsiderthelevelsetsV =x|f(x),where isascalar. Then:

    (a) AllthenonemptylevelsetsV havethesamerecessioncone:

    RV =d|(d,0)Repi(f)(b) IfonenonemptylevelsetV iscompact,then

    alllevelsetsarecompact.Proof: (a)JusttranslatetomaththefactthatRV =thehorizontaldirectionsofrecessionofepi(f)

    (b)Followsfrom(a).

  • 7/27/2019 Convex Analysis and Optimization Mit

    56/300

    RECESSION CONE OF A CONVEX FUNCTION For a closed proper convex function f :n (,],the(common)recessionconeofthenonemptylevel sets V =x |f(x), , is the recessionconeoff,andisdenotedbyRf.

    0

    Recession ConeRf

    Level Sets off

    Terminology: dRf: adirectionofrecessionoff. Lf =Rf (Rf): the linealityspaceoff. dLf: adirectionofconstancyoff. Example: Forthepos.semidefinitequadratic

    f(x) =xQx+ax+b,therecessionconeandconstancyspaceareRf={d|Qd= 0, ad0}, Lf ={d|Qd= 0, ad= 0}

  • 7/27/2019 Convex Analysis and Optimization Mit

    57/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    58/300

    DESCENT BEHAVIOR OF A CONVEX FN!"# % & '(

    &

    !"#(

    "&(

    !"# % & '(

    &

    !"#(

    ")(

    !"# % & '(

    &

    !"#(

    "*(

    !"# % & '(

    &

    !"#(

    "+(

    !"# % & '(

    &

    !"#(

    ",(

    !"# % & '(

    &

    !"#(

    "!(

    f(x)

    f(x)

    f(x)

    f(x)

    f(x)

    f(x)

    f(x+ d)

    f(x+ d) f(x+ d)

    f(x+ d)

    f(x+ d)f(x+ d)

    rf(d) = 0

    rf(d) = 0 rf(d) = 0

    rf(d)< 0

    rf(d) > 0 rf(d)> 0

    y isadirectionofrecession in(a)-(d). This behavior is independent of the startingpointx,as longasxdom(f).

  • 7/27/2019 Convex Analysis and Optimization Mit

    59/300

    LOCAL AND GLOBAL MINIMA

    Considerminimizingf : n ( , ]overa setX n xisfeasibleifxXdom(f) x isa(global)minimumoff overX ifx isfeasibleandf(x)=infx

    X f(x)

    x isalocal minimumoff overX ifx isaminimumoff overasetX {x| xx }Proposition: If X is convex and f is convex,then:

    (a)

    Alocal

    minimum

    of

    fover

    X

    is

    also

    aglobal

    minimumoff overX.

    (b) If f is strictly convex, then there exists atmostoneglobalminimumoff overX.

    f(x)

    f(x) + (1 )f(x)

    fx + (1 )x

    0 x

    x x

  • 7/27/2019 Convex Analysis and Optimization Mit

    60/300

    The set of minima of a proper f : n EXISTENCE OF OPTIMAL SOLUTIONS

    (,] isthe intersectionof itsnonempty levelsets. Thesetofminimaoff isnonemptyandcompactifthelevelsetsoff arecompact. (AnExtensionofthe)WeierstrassTheorem: Thesetofminimaoff overX isnonemptyandcompactifX isclosed,f islowersemicontinuous over X, and one of the following conditionsholds:

    (1) X isbounded.(2) Some setx X | f(x) is nonempty

    andbounded.(3) For every sequence{xk} X s. t.xk

    ,wehavelimk

    f(xk) =

    .(Coercivity

    property).Proof: In all cases the level sets of f X arecompact. Q.E.D.

  • 7/27/2019 Convex Analysis and Optimization Mit

    61/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    62/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    63/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    64/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    65/300

    ROLE OF CLOSED SET INTERSECTIONS I A fundamental question: Givenasequenceofnonemptyclosedsets{Ck} inn withCk+1

    forallk,whenis nonempty?Ck k=0Ck Set intersection theorems are significant in atleast three major contexts, which we will discussin

    what

    follows:

    1. Does a function f : n (,] attain aminimumoverasetX? Thisistrueifandonlyif

    Intersectionofnonempty

    xX |f(x)k

    isnonempty.

    Optimal

    Solution

    Level Sets off

    X

  • 7/27/2019 Convex Analysis and Optimization Mit

    66/300

    ROLE OF CLOSED SET INTERSECTIONS II2. IfC isclosedandAisamatrix,isA C closed?Specialcase:

    IfC1 andC2 areclosed, isC1 +C2 closed?

    x

    Nk

    AC

    C

    y yk+1 yk

    Ck

    3. If F(x,z) is closed, is f(x) = infzF(x,z)closed?

    (Critical

    question

    in

    duality

    theory.)

    Can

    beaddressedbyusingtherelation

    Pepi(F)epi(f)clPepi(F)

    whereP() isprojectiononthespaceof(x,w).

  • 7/27/2019 Convex Analysis and Optimization Mit

    67/300

    ASYMPTOTIC SEQUENCES Given nested sequence {Ck} of closed convexsets,{xk}isanasymptoticsequenceif

    = 0, k= 0,1, . . .xk Ck, xk xk d

    xk

    ,

    xkdwheredisanonzerocommondirectionofrecessionofthesetsCk. AsaspecialcasewedefineasymptoticsequenceofaclosedconvexsetC (useCk C). Every unbounded {xk} with xk Ck has anasymptoticsubsequence. {xk} iscalledretractiveifforsomek,wehave

    xkdCk, kk.

    x0

    x1x2

    x3

    x4 x5

    0d

    Asymptotic Direction

    Asymptotic Sequence

  • 7/27/2019 Convex Analysis and Optimization Mit

    68/300

    RETRACTIVE SEQUENCES A nested sequence{Ck} of closed convex setsisretractiveifallitsasymptoticsequencesarere-tractive.

    x0!"

    !#

    !$

    !"

    !#

    !$

    %&' )*+,&-+./*

    "

    %0' 123,*+,&-+./*

    4

    !"

    !#

    !$

    !"

    !$

    53+*,6*-+.2353+*,6*-+.23

    "

    4

    4

    !#!7

    C0

    C0

    C1

    C1

    C2

    C2x0

    x1

    x1x2

    x2

    x3

    (a) Retractive Set Sequence (b) Nonretractive Set Sequence

    Intersection k=0

    Ck Intersection k=0Ck

    d

    d

    0

    0

    A closed halfspace (viewed asa sequencewithidenticalcomponents) isretractive. IntersectionsandCartesianproductsofretractivesetsequencesareretractive. A polyhedral set is retractive. Also the vectorsumofaconvexcompactsetandaretractiveconvexset isretractive. Nonpolyhedralconesandlevelsetsofquadraticfunctionsneednotberetractive.

  • 7/27/2019 Convex Analysis and Optimization Mit

    69/300

    SET INTERSECTION THEOREM IProposition: If

    {Ck

    }isretractive,then

    Ck

    k=0isnonempty. Keyproof ideas:

    (a) Theintersection Ck isemptyiffthesek=0quence

    {x

    k}ofminimumnormvectorsofC

    k

    is unbounded (so a subsequence is asymptotic).

    (b) An asymptotic sequence{xk} of minimumnorm vectors cannot be retractive, becausesuch a sequence eventually gets closer to 0whenshiftedoppositetotheasymptoticdirection.

    x0

    x1

    x2x3

    x4 x5

    0d

    Asymptotic Direction

    Asymptotic Sequence

  • 7/27/2019 Convex Analysis and Optimization Mit

    70/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    71/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    72/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    73/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    74/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    75/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    76/300

    LECTURE 7LECTURE OUTLINE

    PartialMinimization Hyperplaneseparation Properseparation

    NonverticalhyperplanesReading: Sections3.3,1.5

  • 7/27/2019 Convex Analysis and Optimization Mit

    77/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    78/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    79/300

    Let F :n+m PARTIAL MINIMIZATION THEOREM

    (,] be a closed properconvexfunction,andconsiderf(x)=infzm F(x,z). Everyset intersectiontheoremyieldsaclosed-nessresult. Thesimplestcaseisthefollowing:

    Preservation of Closedness Under Com

    pactness: Ifthereexistx n, suchthattheset

    z|F(x,z)isnonemptyandcompact,thenfisconvex,closed,andproper. Also,foreachx

    dom(f),thesetof

    minimaofF(x, )isnonemptyandcompact.

    x

    z

    w

    x1

    x2

    O

    F(x, z)

    f(x) = infz

    F(x, z)

    epi(f)

    x

    z

    w

    x1

    x2

    O

    F(x, z)

    f(x) = infz

    F(x, z)

    epi(f)

  • 7/27/2019 Convex Analysis and Optimization Mit

    80/300

    HYPERPLANES

    a

    x

    Negative Halfspace

    Positive Halfspace

    {x| ax b}

    {x| ax b}

    Hyperplane

    {x| ax= b}= {x| ax= ax}

    Ahyperplaneisasetoftheform

    {x

    |ax=b

    },

    whereaisnonzerovector inn andbisascalar. We say that two sets C1 and C2 areseparatedbyahyperplaneH={x|ax=b}ifeachliesinadifferentclosedhalfspaceassociatedwithH,i.e.,either ax1 bax2, x1 C1,x2 C2,

    or ax2 bax1, x1 C1, x2 C2 IfxbelongstotheclosureofasetC,ahyperplane that separates C andthe singleton set

    {x}issaidbesupportingC atx.

  • 7/27/2019 Convex Analysis and Optimization Mit

    81/300

    VISUALIZATION Separatingandsupportinghyperplanes:

    a

    (a)

    C1 C2

    x

    a

    (b)

    C

    Aseparating{x|ax=b}thatisdisjointfromC1 andC2 iscalledstrictlyseparating:

    ax1 < b < ax2, x1 C1, x2 C2

    (a)

    C1 C2

    x

    a

    (b)

    C1

    C2x1

    x2

  • 7/27/2019 Convex Analysis and Optimization Mit

    82/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    83/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    84/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    85/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    86/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    87/300

    NONVERTICAL HYPERPLANES A hyperplane in n+1 with normal (,) isnonvertical if=0. Itintersectsthe(n+1)staxisat= (/)u+w,where(u,w)isanyvectoronthehyperplane.

    0 u

    w

    (,)

    (u, w)

    u+w

    NonverticalHyperplane

    VerticalHyperplane

    (, 0)

    Anonverticalhyperplanethatcontainstheepigraphofafunction in itsupperhalfspace,provides lowerboundstothefunctionvalues. Theepigraphofaproperconvexfunctiondoesnotcontainaverticalline,soitappearsplausiblethat it is contained in the upper halfspace ofsomenonverticalhyperplane.

  • 7/27/2019 Convex Analysis and Optimization Mit

    88/300

    NONVERTICAL HYPERPLANE THEOREM

    Let C be a nonempty convex subset of n+1 thatcontainsnovertical lines. Then:(a)C iscontainedinaclosedhalfspaceofanon-

    verticalhyperplane, i.e.,thereexist n, with = 0, and such thatu

    +

    w

    forall(u,w)C.(b) If (u,w)/ cl(C), there exists a nonvertical

    hyperplanestrictlyseparating(u,w)andC.Proof: Notethatcl(C)containsnovert.line[sinceC contains no vert. line, ri(C) contains no vert.line,andri(C)andcl(C)havethesamerecessioncone]. Sowejustconsiderthecase: C closed.(a) C is the intersection of the closed halfspacescontainingC. Ifallthesecorrespondedtoverticalhyperplanes,C wouldcontainavertical line.(b)Thereisahyperplanestrictlyseparating(u,w)andC. Ifitisnonvertical,wearedone,soassumeit isvertical. Addtothisverticalhyperplaneasmall -multiple of a nonvertical hyperplane containingC inoneofitshalfspacesasper(a).

  • 7/27/2019 Convex Analysis and Optimization Mit

    89/300

    LECTURE 8LECTURE OUTLINE

    Convexconjugatefunctions Conjugacytheorem Examples

    SupportfunctionsReading: Section1.6

  • 7/27/2019 Convex Analysis and Optimization Mit

    90/300

    CONJUGATE CONVEX FUNCTIONS Considerafunctionf anditsepigraphNonverticalhyperplanessupportingepi(f)

    Crossingpointsofverticalaxis

    f

    (y)=

    sup

    xy

    f(x)

    , y

    n.

    xn

    x

    Slope =y

    0

    (y, 1)

    f(x)

    infxn

    {f(x) xy}= f(y)

    Foranyf :n [,],itsconjugateconvexfunction isdefinedby

    f(y)= supxyf(x), y nxn

  • 7/27/2019 Convex Analysis and Optimization Mit

    91/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    92/300

    CONJUGATE OF CONJUGATEFromthedefinition

    f(y)= supxyf(x), y n,xn

    notethatf isconvexandclosed. Reason: epi(f)istheintersectionoftheepigraphsofthelinearfunctionsofy

    xyf(x)asxrangesover

    n.

    Considertheconjugateoftheconjugate:f(x)= supyxf(y), x n.

    yn

    f isconvexandclosed. Important fact/Conjugacy theorem: If fisclosedproperconvex,thenf =f.

  • 7/27/2019 Convex Analysis and Optimization Mit

    93/300

    CONJUGACY THEOREM - VISUALIZATIONf(y)= sup x

    y

    f(x) , y

    n

    x n f(x)= supyxf(y), x n

    yn

    Iff isclosedconvexproper,thenf =f.

    x

    Slope =y

    0

    f(x)(y, 1)

    infxn

    {f(x) xy}= f(y)y

    x

    f

    (y)

    f(x) = supyn

    yx f(y)

    H=

    (x,w)| w xy= f(y)

    Hyperplane

  • 7/27/2019 Convex Analysis and Optimization Mit

    94/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    95/300

    PROOFOFCONJUGACYTHEOREM(A), (C) (a) For all x,y, we have f(y) yxf(x),implyingthatf(x)sup y{yxf (y)}=f (x). (c)Bycontradiction. Assumethere is(x,)epi(f)with(x,)/epi(f). Thereexistsanon-verticalhyperplanewithnormal(y,1)thatstrictlyseparates

    (x,

    )

    and

    epi(f).

    (The

    vertical

    componentofthenormalvectorisnormalizedto-1.)

    Consider two parallel hyperplanes, translatedto pass through x,f(x) and x,f(x) . Theirvertical crossing points are xyf(x) and xyf(x),andliestrictlyaboveandbelowthecrossingpointofthestrictlysep.hyperplane. Hence

    xyf(x)> xyf(x)whichcontradictspart(a). Q.E.D.

    x

    epi(f)(y, 1)

    x,f(x)

    epi(f) (x,)

    x,

    f

    (x)

    0

    xyf(x)xyf(x)

  • 7/27/2019 Convex Analysis and Optimization Mit

    96/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    97/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    98/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    99/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    100/300

    LECTURE 9LECTURE OUTLINE

    Mincommon/maxcrossingduality Weakduality SpecialCases

    Constrainedoptimizationandminimax StrongdualityReading: Sections4.1,4.2,3.4

  • 7/27/2019 Convex Analysis and Optimization Mit

    101/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    102/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    103/300

    MATHEMATICAL FORMULATIONS

    Optimal value of the min common problem:w = inf w

    (0,w)M

    u

    w

    M

    M(,1)

    (,1)

    q

    q() = inf (u,w)M

    w+ u}

    0

    Dual function value

    Hyperplane H, =

    (u,w)| w + u=

    w

    Math formulation of the max crossingproblem: Focus on hyperplanes with normals(,1)whosecrossingpoint satisfies

    w+u, (u,w)MMaxcrossingproblemistomaximizesubjecttoinf(u,w)M{w+u}, n,or

    maximize q() = inf)M

    {w+u}(u,w

    subjectto . n

  • 7/27/2019 Convex Analysis and Optimization Mit

    104/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    105/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    106/300

    GENERAL OPTIMIZATION DUALITY Considerminimizingafunctionf :n [,]. LetF : n+r [ , ]beafunctionwith

    f(x) =F(x,0), x n Considertheperturbationfunction

    p(u)= inf F(x,u)xnandtheMC/MCframeworkwithM =epi(p)

    Themincommonvaluew isw

    =p(0)= inf F(x,0) = inf f(x)xn xn

    Thedualfunction isq()= inf p(u)+u= inf F(x,u)+u

    ur (x,u)n+rso

    q(

    ) =F

    (0,

    ),where

    F istheconjugate

    ofF,viewedasafunctionof(x,u) Since

    q = sup q() = inf F(0,) = inf F(0, ),r r r

    wehavew = inf F(x,0) inf F(0, ) =q

    xn r

  • 7/27/2019 Convex Analysis and Optimization Mit

    107/300

    CONSTRAINED OPTIMIZATION Minimizef :n overtheset

    C=xX |g(x)0,whereX n andg:n r. Introduceaperturbedconstraintset

    Cu =xX |g(x)u, u r,andthefunction

    f(x) ifxCu,F(x,u) = otherwise,

    whichsatisfiesF(x,0)=f(x)forallxC. Considerperturbationfunction

    p(u)=

    inf

    F

    (x,

    u)

    =

    inf

    f(x),

    xn xX,g(x)u

    andtheMC/MCframeworkwithM =epi(p).

  • 7/27/2019 Convex Analysis and Optimization Mit

    108/300

    CONSTR. OPT. - PRIMAL AND DUAL FNS Perturbationfunction(orprimalfunction)

    p(u)= inf F(x,u)= inf f(x),xn xX,g(x)u

    0 u

    (g(x), f(x))| x X

    M= epi(p)

    w =p(0)

    p(u)

    q

    IntroduceL(x,) =f(x) +g(x). Thenq()= inf p(u) +u

    r=

    uinf f(x) +u

    ur, xX,g(x)uinfxX L(x,) if0,= otherwise.

  • 7/27/2019 Convex Analysis and Optimization Mit

    109/300

    LINEAR PROGRAMMING DUALITY

    Considerthelinearprogramminimize cxsubjectto ajxbj, j= 1,...,r,

    wherec

    n,aj

    n,andbj

    ,j= 1, . . . , r. For0,thedualfunctionhastheform

    q()= inf L(x,)xn

    j(bj ajx)r

    b ifj=1ajj =c,= otherwise

    Thusthedualproblem ismaximize b

    rsubjectto ajj =c, 0.

    j=1

    r

    inf cx+=xn j=1

  • 7/27/2019 Convex Analysis and Optimization Mit

    110/300

    Given

    MINIMAX PROBLEMS:X Z , where X n, Z m

    considerminimize sup(x,z)

    zZsubjectto xX

    ormaximize

    inf

    (x,

    z)

    xX

    subjectto zZ. Some importantcontexts:

    Constrainedoptimizationdualitytheory

    Zerosumgametheory Wealwayshave

    sup inf (x,z) inf sup(x,z)zZxX xX zZ

    Key question: Whendoesequalityhold?

  • 7/27/2019 Convex Analysis and Optimization Mit

    111/300

    CONSTRAINED OPTIMIZATION DUALITY Fortheproblem

    minimize f(x)subjectto xX, g(x)0

    introducetheLagrangianfunctionL(x,) =f(x) +g(x)

    Primalproblem(equivalenttotheoriginal)

    min supL(x,) =xX 0

    f(x) ifg(x)

    0, otherwise,

    Dualproblemmax inf L(x,)

    0 x

    X

    Keydualityquestion: Is ittruethat?

    inf supL(x,) =w q =sup inf L(x,)xn

    0 =

    0xn

  • 7/27/2019 Convex Analysis and Optimization Mit

    112/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    113/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    114/300

    VISUALIZATION

    x

    z

    Curve of maxima

    Curve of minima

    f (x,z)

    Saddle point

    (x*,z*)

    ^f(x(z),z)

    f(x,z(x))^

    The

    curve

    of

    maxima

    f(x,z(x))

    lies

    above

    the

    curveofminimaf(x(z), z),wherez(x)=argmaxf(x,z), x(z)=argminf(x,z)

    z xSaddle points correspond to points where thesetwocurvesmeet.

  • 7/27/2019 Convex Analysis and Optimization Mit

    115/300

    MINIMAX MC/MC FRAMEWORK Introduce perturbation function p : m [,]

    p(u)= inf sup(x,z)uz,xX zZ u m

    ApplytheMC/MCframeworkwithM =epi(p)Introduceclf,theconcaveclosureoffWehave

    sup(x,z)= sup(cl)(x,z),zZ zm

    sow =p(0)= inf sup(cl)(x,z).

    xX zm

    Thedualfunctioncanbeshowntobe

    q() =inf(cl)(x,),xX m

    soif(x, )isconcaveandclosed,w

    = inf sup (x,z), q = sup inf (x,z)xX zm zm xX

  • 7/27/2019 Convex Analysis and Optimization Mit

    116/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    117/300

    LECTURE 10LECTURE OUTLINE

    MinCommon/MaxCrossingdualitytheorems Strongdualityconditions Existenceofdualoptimalsolutions

    NonlinearFarkas lemmaReading: Sections4.3,4.4,5.1

    0!

    "#$

    %#0 )1*22&'3 ,*&'- 4/

    %

    !

    "5$

    %

    %#0 )1*22&'3 ,*&'- 4/

    7

    !

    "8$

    9

    6%

    %

    %#0 )1*22&'3 ,*&'- 4/

    %&' )*++*' ,*&'- ./

    .

    7

    70 0

    0

    u u

    u

    w

    MM

    M

    MMin CommonPoint w

    Max CrossingPoint q

    Max CrossingPoint q Max Crossing

    Point q

    (a) (b)

    (c)

  • 7/27/2019 Convex Analysis and Optimization Mit

    118/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    119/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    120/300

    PROOFOFTHEOREM I

    Assumethatq =w . Let (uk, wk) M besuchthatuk 0. Then,

    nq() = inf {w+u} wk+uk, k, (u,w)M

    Taking the limit as k , we obtain q() n

    liminfkwk,forall ,implyingthat w =q = sup q() liminfwk

    n kConversely, assume that for every sequence

    (uk, wk) M with uk 0, there holds w

    liminfkwk. If w = , then q = , by weakduality,soassumethat < w . Steps:

    Step1: (0, w )/cl(M)forany >0.

    w

    u

    w

    M

    M(uk, wk)

    (uk+1, wk+1)w (uk,

    0

    wk)(uk+1,liminfk wk+1) wk

  • 7/27/2019 Convex Analysis and Optimization Mit

    121/300

    PROOFOFTHEOREMI(CONTINUED) Step2: M doesnotcontainanyverticallines.If this were not so, (0,1) would be a directionof recession of cl(M). Because (0, w ) cl(M),theentirehalfline (0, w )|0 belongstocl(M),contradictingStep1. Step3: Forany >0,since(0, w )/cl(M),thereexistsanonverticalhyperplanestrictlysepa-rating(0, w )andM. Thishyperplanecrossesthe(n +1)staxisatavector(0, )withw

    w, so w q w . Since can be arbitrarilysmall, itfollowsthatq =w .

    u

    w

    M

    M(0, w )

    (0, w )0

    q()(0, )

    (, 1)

    StrictlySeparatingHyperplane

  • 7/27/2019 Convex Analysis and Optimization Mit

    122/300

    PROOF OF THEOREM II

    Notethat(0, w)isnotarelativeinteriorpointof M. Therefore, by the Proper Separation Theorem, there is a hyperplane that passes through(0, w),containsM inoneofitsclosedhalfspaces,butdoesnotfullycontainM,i.e.,forsome(,) =(0,0)

    w u+w, (u,w)M ,w 0, and we canassume

    that

    =

    1.

    It

    follows

    that

    w

    (u,winf)M{u+w}=q()q

    Since the inequality q w holds always, wemust

    have

    q() =

    q

    =

    w.

  • 7/27/2019 Convex Analysis and Optimization Mit

    123/300

    NONLINEARFARKASLEMMAn : X Let X , f : X , and gj ,j= 1, . . . , r,beconvex. Assumethat

    f(x)0, xX withg(x)0Let

    Q = |0, f(x) + g(x)0, xX .ThenQ isnonemptyandcompact ifandonly if

    there exists a vector x X such that gj(x)

  • 7/27/2019 Convex Analysis and Optimization Mit

    124/300

    PROOFOFNONLINEARFARKASLEMMA ApplyMC/MCtoM = (u,w)|there isxX s.t.g(x)u,f(x)w

    (, 1)0 u

    w

    (0, w )

    D

    suchthatg(x)u, f(x)w

    (g(x), f(x))|x X

    h th tM =

    (u, w)|thereexistsx X

    g(x), f(x)

    ( )

    M isequaltoM andisformedastheunionofpositiveorthantstranslatedtopoints g(x), f(x) ,xX. TheconvexityofX,f,andgj impliesconvexityofM. MC/MCTheoremIIapplies: wehaveD= u|thereexistsw with(u,w)M

    and0int(D),because (g(x), f(x) M.

  • 7/27/2019 Convex Analysis and Optimization Mit

    125/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    126/300

    MC/MC TH. III - POLYHEDRAL Consider the MC/MC problems, and assumethat< w and:

    (1) M isahorizontaltranslationofM byP,M =M (u,0)|uP ,

    whereP: polyhedralandM: convex.

    0} u

    Mw

    u0}

    w

    w(,1)

    q()u0}

    w

    M =M (u,0)|uP

    P

    (2) Wehaveri(D)P =,whereD = u|thereexistsw with(u,w)M}

    Then q = w, there is a max crossing solution,and all max crossing solutions satisfy d 0foralldRP. ComparisonwithTh.II:SinceD=DP,thecondition0ri(D)ofTheoremIIis

    ri(D)ri(P) =

  • 7/27/2019 Convex Analysis and Optimization Mit

    127/300

    PROOF OF MC/MC TH. IIIonsiderthedisjointconvexsetsC1 = (u,v) |C v > w forsome(u,w)M andC2 =(u,w)

    u P [u P and (u,w) M with w > w|contradictsthedefinitionofw]

    (,)

    0 u

    v

    C1

    C2

    M

    w

    P

    Since C2 is polyhedral, there exists a separatinghyperplanenotcontainingC1, i.e.,a(,) =(0,0)suchthat

    w +zv+x, (x,v)C1, zPinf v+x

  • 7/27/2019 Convex Analysis and Optimization Mit

    128/300

    PROOF (CONTINUED)Hence,w +z inf zP,

    (u,v)C1{v+u},

    sothatinf v+(uz)w (u,v)C1, zP

    = inf(u,v)MP{v+u}

    = inf(u,v)M

    {v+u}=

    q()

    Using q (weak duality), we have q() = wq =w.

    Proofthatallmaxcrossingsolutionssatisfyd

    0foralld

    RP: followsfrom

    q()= inf v+(uz)(u,v)C1, zP

    sothatq() =ifd >0. Q.E.D. Geometrical intuition: every (0,d) with dRP,isdirectionofrecessionofM.

  • 7/27/2019 Convex Analysis and Optimization Mit

    129/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    130/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    131/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    132/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    133/300

    PROOF OF LP DUALITY (CONTINUED)

    Feasible Set

    x

    a1a2

    c= 1a1+ 2a2

    Cone D (translated to x)

    Let x be a primal optimal solution, and let

    J ={j |ajx =bj}. Then,cy0forally intheconeoffeasibledirections

    D={y|ajy0,jJ}ByFarkasLemma,forsomescalars

    j 0,ccan

    beexpressedasr

    c=jaj, j0, jJ, j = 0, j /J.j=1

    Taking

    inner

    product

    with

    x,

    we

    obtain

    cx

    =

    b,whichinviewofq f,showsthatq =fandthat isoptimal.

  • 7/27/2019 Convex Analysis and Optimization Mit

    134/300

    LINEAR PROGRAMMING OPT. CONDITIONSApairofvectors(x

    ,

    )formaprimalanddualoptimal solution pair if and only if x is primal-feasible, isdual-feasible,and

    j(bj ajx) = 0, j= 1,...,r. ()Proof: If x is primal-feasible and is dual-feasible,then

    +j=1

    j=1

    r ()

    =cx + j(bj ajx)j=1

    SoifEq.(*)holds,wehaveb =cx,andweakduality implies that x is primal optimal and isdualoptimal.

    Conversely,if(x, )formaprimalanddualoptimal solution pair, then x is primal-feasible, isdual-feasible,andbythedualitytheorem,wehave b = cx. From Eq. (**), we obtain Eq.(*).

    r rc bjj ajjb x=

  • 7/27/2019 Convex Analysis and Optimization Mit

    135/300

    LECTURE 12LECTURE OUTLINE

    ConvexProgrammingDuality OptimalityConditions

    MixturesofLinearandConvexConstraints

    ExistenceofOptimalPrimalSolutions FenchelDuality ConicDualityReading: Sections5.3.1-5.3.6Line of analysis so far: Convexanalysis(rel. int.,dir.ofrecession,hyperplanes,conjugacy) MC/MC

    NonlinearFarkasLemma Linearprogramming(duality,opt.conditions) We now discuss convex programming, and itsmanyspecialcases(relianceonNonlinearFarkasLemma)

  • 7/27/2019 Convex Analysis and Optimization Mit

    136/300

    CONVEX PROGRAMMINGidertheproblemCons

    minimize f(x)subjectto xX, gj(x)0, j= 1,...,r,

    where X

    n is convex, and f : X

    andgj :X areconvex. Assumef: finite. Recall the connection with the max crossingproblem in the MC/MC framework where M =epi(p)with

    p(u)= inf f(x)xX,g(x)u ConsidertheLagrangianfunction

    L(x,) =f(x) +g(x),thedualfunction

    infxX L(x,) if0,q() = otherwiseandthedualproblemofmaximizinginfxX L(x,)over0.

  • 7/27/2019 Convex Analysis and Optimization Mit

    137/300

    STRONG DUALITY THEOREM

    Assume that f is finite, and that one of thefollowingtwoconditionsholds:(1) ThereexistsxX suchthatg(x)

  • 7/27/2019 Convex Analysis and Optimization Mit

    138/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    139/300

    OPTIMALITY CONDITIONS Wehaveq =f,andthevectorsx and areoptimalsolutionsoftheprimalanddualproblems,respectively, iffx isfeasible, 0,and

    x argminL(x,), jgj(x) = 0, j.xX

    (1)

    Proof: Ifq =f,andx, areoptimal,thenf =q =q()= inf L(x,)L(x, )

    xXr

    =f(x) +jgj(x)

    f(x),

    j=1wherethelastinequalityfollowsfromj 0andgj(x)0forallj. Henceequalityholdsthroughoutabove,and(1)holds.

    Conversely,ifx, arefeasible,and(1)holds,q()= inf L(x,) =L(x, )

    xXr

    =f(x) +jgj(x) =f(x),j=1

    soq =f,andx, areoptimal. Q.E.D.

  • 7/27/2019 Convex Analysis and Optimization Mit

    140/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    141/300

    LINEAR EQUALITY CONSTRAINTS Theproblemis

    minimize f(x)subjectto xX, g(x)0, Ax=b,

    whereX

    is

    convex,

    g(x) =

    g1(x), . . . , gr(x)

    ,f:

    X andgj :X ,j= 1, . . . , r,areconvex. Convert the constraint Ax = b to Ax bandAx b,withcorrespondingdualvariables+ 0and 0. TheLagrangianfunctionis

    f(x) +g(x) + (+)(Axb),andby introducingadualvariable=+,withnosignrestriction, itcanbewrittenas

    L(x,,) =f(x) +g(x) +(Axb). Thedualproblemis

    maximize q(,)

    inf L(x,,)xX

    subjectto 0, m.

  • 7/27/2019 Convex Analysis and Optimization Mit

    142/300

    DUALITY AND OPTIMALITY COND. Pure equality constraints:

    (a) Assumethatf: finiteandthereexistsxri(X)suchthatAx=b. Thenf =q andthereexistsadualoptimalsolution.

    (b)f =q,and(x, )areaprimalanddualoptimalsolutionpairifandonlyifx isfeasible,and

    x argminL(x,)xX

    Note: No complementary slackness for equalityconstraints.

    Linear and nonlinear constraints:(a) Assume f: finite, that there exists x X

    such that Ax = b and g(x)

  • 7/27/2019 Convex Analysis and Optimization Mit

    143/300

    COUNTEREXAMPLE IgDualityCounterexample: Consider Stron

    minimize f(x) =ex1x2subjectto x1 = 0, xX={x|x0}

    Heref

    =1andf isconvex(itsHessianis>0intheinteriorofX). Thedualfunctionisq()= infex1x2 +x1=

    0 if0,

    x0 otherwise,(when 0, the expression in braces is nonnegative for x0 and can approach zero by takingx1 0andx1x2 ). Thusq =0. Therelativeinteriorassumption isviolated. As predicted by the corresponding MC/MC

    framework,theperturbationfunction0 ifu >0,

    p(u)= inf ex1x2 = 1 ifu=0,x1=u,x0 ifu

  • 7/27/2019 Convex Analysis and Optimization Mit

    144/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    145/300

    COUNTEREXAMPLE II Existence of Solutions Counterexample:LetX =, f(x) =x,g(x) =x2.Thenx =0 istheonlyfeasible/optimalsolution,andwehave

    1q()= inf }= , >0,

    x

    {x+x24

    and q() = for 0, so that q =f =0.However, there is no 0 such that q() =q =0. Theperturbationfunction is

    u ifu0,p(u)= inf x=x2u ifu

  • 7/27/2019 Convex Analysis and Optimization Mit

    146/300

    FENCHEL DUALITY FRAMEWORK Considertheproblem

    minimize f1(x) +f2(x)subjectto ,x n

    wheref1 :

    n

    (

    ,

    ]andf2 :

    n

    (

    ,

    ]areclosedproperconvexfunctions. Converttotheequivalentproblemminimize f1(x1) +f2(x2)subjectto x1 =x2, x1

    dom(f1), x2

    dom(f2)

    Thedualfunctionisq()= inf f1(x1) +f2(x2) +(x2x1)

    x1dom(f1), x2dom(f2)= inf f1(x1)

    x1+ inf f2(x2) +

    x2

    x1n x2n

    Dual problem: max{f1()f2()} =min{q()}or

    minimize f1() +f2()subject

    to

    ,

    n

    wheref1 andf2 aretheconjugates.

  • 7/27/2019 Convex Analysis and Optimization Mit

    147/300

    FENCHEL DUALITY THEOREMConsidertheFenchelframework:

    (a) Iff isfiniteandridom(f1)ridom(f2)=,thenf =q andthereexistsatleastonedualoptimalsolution.

    (b) Thereholdsf =q,and(x, )isaprimalanddualoptimalsolutionpairifandonlyif

    x arg minf1(x)x, x arg minf2(x)+xxn xn

    Proof: For strong duality use the equality constrainedproblemminimize f1(x1) +f2(x2)subjectto x1 =x2, x1 dom(f1), x2 dom(f2)and

    the

    fact

    ri

    dom(f1)dom(f2)

    =ridom(f1) dom(f2)tosatisfytherelativeinteriorcondition.

    Forpart(b),applytheoptimalityconditions(primalanddualfeasibility,andLagrangianoptimality).

  • 7/27/2019 Convex Analysis and Optimization Mit

    148/300

    GEOMETRIC INTERPRETATION

    f1(x)Slope

    Slope

    x x

    f2(x)

    q()

    f =q

    f1()

    f2()

    When dom(f1) = dom(f2) =n, and f1 andf2 are differentiable, the optimality condition isequivalentto

    =f1(x) =f2(x) Byreversingtherolesofthe(symmetric)primalanddualproblems, weobtainalternativecriteriaforstrongduality: ifq isfiniteandridom(f1)ridom(f)= ,thenf =q andthereexists2

    atleastoneprimaloptimalsolution.

  • 7/27/2019 Convex Analysis and Optimization Mit

    149/300

    Acotion f

    CONIC PROBLEMSnicproblem istominimizeaconvexfunc: n ( , ] subject to a cone con

    straint. Themostuseful/popularspecialcases:

    Linear-conicprogramming Secondorderconeprogramming Semidefiniteprogramming

    involveminimizationofalinearfunctionovertheintersectionofanaffinesetandacone. Can be analyzed as a special case of Fenchel

    duality. Therearemanyinterestingapplicationsofconicproblems,including indiscreteoptimization.

  • 7/27/2019 Convex Analysis and Optimization Mit

    150/300

    CONIC DUALITYrminimizingf(x)overx C,wheref : Conside n (,]isaclosedproperconvexfunction

    andC isaclosedconvexcone inn. WeapplyFencheldualitywiththedefinitions

    f1(x) =f(x), f2(x) =0

    ifif

    x /xC, C.Theconjugatesaref1()= sup

    xf(x), f2()= supx=

    0 ifC,

    xn xC if /C,

    whereC ={|x0,xC}. Thedualproblemis

    minimize f()subjectto C,

    wheref istheconjugateoff andC ={|x0,xC}.

    C andC arecalledthedualandpolarcones.

  • 7/27/2019 Convex Analysis and Optimization Mit

    151/300

  • 7/27/2019 Convex Analysis and Optimization Mit

    152/300

    LINEAR CONIC PROGRAMMING Letf belinearoveritsdomain,i.e.,

    cx ifxX,f(x) = ifx /X,

    wherecisavector,andX=b+S isanaffineset. Primalproblemis

    minimize cxsubjectto xbS, xC.

    Wehave

    f() = sup (c)x=sup(c)(y+b)xbS yS

    (c)b ifcS,= ifc /S.

    Dualproblem isequivalenttominimize b

    subjectto cS, C. If Xri(C) =, there is no duality gap andthereexistsadualoptimalsolution.

  • 7/27/2019 Convex Analysis and Optimization Mit

    153/300

    ANOTHER APPROACH TO DUALITY Considertheproblem

    minimize f(x)subjectto xX, gj(x)0, j= 1, . . . , r

    andperturbationfnp(u)=infxX,g(x)uf(x) RecalltheMC/MCframeworkwithM =epi(p).Assuming thatp is convex and f

  • 7/27/2019 Convex Analysis and Optimization Mit

    154/300

    LECTURE 13LECTURE OUTLINE

    Subgradients Fenchelinequality Sensitivityinconstrainedoptimization

    Subdifferentialcalculus Optimalityconditions

  • 7/27/2019 Convex Analysis and Optimization Mit

    155/300

    Let f :n SUBGRADIENTS (,] be a convex function.A vector g n is a subgradient of f at a point

    xdom(f)iff(z)f(x) + (zx)g, z n

    g isasubgradient ifandonlyiff(z)zgf(x)xg, z n

    sog isasubgradientatxifandonlyifthehyperplanein

    n+1 thathasnormal(

    g,1)andpasses

    throughx,f(x)supportstheepigraphoff.

    0

    (g, 1)

    x, f(x)

    z

    Thesetofallsubgradientsatxisthesubdifferentialoff atx,denotedf(x).

  • 7/27/2019 Convex Analysis and Optimization Mit

    156/300

    EXAMPLES OF SUBDIFFERENTIALS Someexamples:

    f(x)

    f(x)

    0 x x

    xx

    f(x) = max

    0, (1/2)(x2 1)

    f(x) =|x|

    1

    1

    1-1

    -1

    -10

    0

    0

    Iff isdifferentiable,thenf(x) ={f(x)}.Proof: Ifgf(x),then

    f(x+z)f(x) +gz, z n.Applythiswithz=f(x)g, ,anduse1storderTaylorseriesexpansiontoobtain

    f(x)g2 o(),

  • 7/27/2019 Convex Analysis and Optimization Mit

    157/300

    EXISTENCE OF SUBGRADIENTS NotetheconnectionwithMC/MC

    M =epi(fx), fx(z) =f(x+z)f(x)

    0

    (g, 1)

    f(z)

    x, f(x)

    z

    0

    z

    (g, 1)

    Epigraph offEpigraph off Translated

    fx(z)

    Let f : n (,] be a proper convexfunction. Foreveryxridom(f)),

    f(x) =S +G,where:

    Sisthesubspacethatisparalleltotheaffinehullofdom(f)

    G isanonemptyandcompactset. Furthermore, f(x) isnonemptyandcompact

    ifandonly ifxisinthe interiorofdom(f).

  • 7/27/2019 Convex Analysis and Optimization Mit

    158/300

    EXAMPLE:SUBDIFFERENTIALOF INDICATO LetC beaconvexset,andC be its indicatorfunction. For x /C,C(x) = ,byconvention. For xC, we have gC(x) iff

    C(z)C(x) + g(zx), zC,orequivalentlyg(zx)0 forallzC. Thus C(x) is the normal cone of C at x, denotedNC(x):

    NC(x) = g|g(zx)0,zC .

    CNC(x)

    x CNC(x)

    x

  • 7/27/2019 Convex Analysis and Optimization Mit

    159/300

    EXAMPLE:POLYHEDRALCASE

    NC(x)

    Ca1

    a2

    x

    ForthecaseofapolyhedralsetC={x|a

    ixbi, i= 1, . . . , m},wehave

    0 ifxNC(x) = { } int(C),cone {ai |aix=bi} ifx /int(C).

  • 7/27/2019 Convex Analysis and Optimization Mit

    160/300

    FENCHEL INEQUALITY Let f : , ] be proper convex andn (let f be its conjugate. Using the definition ofconjugacy,wehaveFenchels inequality:

    nxy f(x) + f(y), x n, y . ConjugateSubgradientTheorem: Thefol-lowing two relations are equivalent for a pair ofvectors(x, y):

    (i) xy=f(x) + f(y).(ii) y f(x).

    Iff isclosed,(i)and(ii)areequivalentto(iii) x f(y).

    f(x)

    Epigraphoff

    0 x 0 y(y,1)

    (x, 1)

    f(x)

    x y0 0

    i hEpgrap off

    (x, 1)(y,1)

    f(y)

    Epigraphoff

    f(y) f(x)

  • 7/27/2019 Convex Analysis and Optimization Mit

    161/300

    MINIMA OF CONVEX FUNCTIONSApplication: Let f be closed proper convex

    and let X be the set of minima of f over n.Then:

    (a)X =f(0).(b)X isnonempty if0ridom(f

    ).(c)X isnonempty andcompact if andonly if

    0intdom(f).Proof: (a)Fromthesubgradient inequality,

    x minimizesf iff 0

    f(x),andsince

    0f(x) iff x f(0),

    wehave

    x minimizesf iff x f(0),

    (b)f(0)isnonemptyif0ri

    dom(f)

    .

    (c)f

    (0)is

    nonempty

    and

    compact

    if

    and

    only

    if0intdom(f). Q.E.D.

  • 7/27/2019 Convex Analysis and Optimization Mit

    162/300

    SENSITIVITY INTERPRETATION ConsiderMC/MCforthecaseM =epi(p).

    Dualfunction isq()= inf p(u) +u=p(),

    mu

    wherep istheconjugateofp. Assumep is proper convex and strong dualityholds,sop(0)=w =q =sup p().mLetQ bethesetofdualoptimalsolutions,

    Q= |p(0)+p() = 0.

    From Conjugate Subgradient Theorem, Qifandonly if p(0),i.e.,Q =p(0). Ifpisconvexanddifferentiableat0,p(0)isequal

    to

    the

    unique

    dual

    optimal

    solution

    .

    Constrainedoptimizationexample

    p(u)= inf f(x),xX,g(x)u

    Ifpisconvexanddifferentiable,p(0)j = uj , j= 1,...,r.

  • 7/27/2019 Convex Analysis and Optimization Mit

    163/300

    EXAMPLE: SUBDIFF. OF SUPPORT FUNCTIO Consider the support function X(y) of a setX. TocalculateX(y)atsomey,we introduce

    r(y) =X(y+y), .y n

    WehaveX(y) =r(0)=argminx

    n r(x).

    Wehaver(x)=supyn{yxr(y)},orr(x)= sup

    yn{yxX(y+y)}=(x)yx,

    where isthe indicatorfunctionofclconv(X). HenceX(y)=argminxn (x)yx,or

    X(y)=arg maxxcl

    conv(X)

    yx

    0

    y1

    y2

    X

    X(y2)

    X(y1)

  • 7/27/2019 Convex Analysis and Optimization Mit

    164/300

    EXAMPLE: SUBDIFF. OF POLYHEDRAL FNLet

    f(x)=max{a1x+b1, . . . , arx+br}. Forafixedx n,consider

    Ax =j|ajx+bj =f(x)andthefunctionr(x)=maxajx|jAx.

    f(x)

    x0

    Epigraph off

    (g, 1)

    x x0

    (g, 1)r(x)

    Itcanbeseenthatf(x) =r(0). Sincer isthesupportfunctionofthefiniteset{aj |jAx},weseethat

    f(x) =r(0)=conv{aj |jAx}

  • 7/27/2019 Convex Analysis and Optimization Mit

    165/300

    CHAIN RULE Letf :

    m

    (

    ,

    ]beconvex,andAbeamatrix. ConsiderF(x) =f(Ax)andassumethatF is proper. If either f is polyhedral or else therangeofR(A)ri(dom(f))=,wehave

    F(x) =Af(Ax), x n.Proof: ShowingF(x)Af(Ax)issimpleanddoesnotrequiretherelative interiorassumption.Forthereverseinclusion,letdF(x)soF(z)F(x) + (zx)d0orf(Az)zdf(Ax)xdforallz,so(Ax,x)solves

    minimize f(y)zdsubjectto ydom(f), Az=y.

    IfR(A)ri(dom(f))=,bystrongdualitytheorem,thereisadualoptimalsolution,suchthat(Ax,x)

    arg min f(y)zd+(Azy)

    ym, zn

    Since the min over z is unconstrained, we haved=A,soAxargminymf(y)y,or

    f(y)f(Ax) +(yAx), y m.Hencef(Ax),sothatd=AAf(Ax).ItfollowsthatF(x)Af(Ax). Inthepolyhedralcase,dom(f)ispolyhedral. Q.E.D.

  • 7/27/2019 Convex Analysis and Optimization Mit

    166/300

    SUM OF FUNCTIONS Letfi :n (,],i= 1, . . . , m,beproperconvexfunctions,andlet

    F =f1 + +fm.

    Assumethat

    m ridom(fi)=

    .1=1

    ThenF(x) =f1(x) + +fm(x), . x n

    Proof: WecanwriteF intheformF(x) =f(Ax),whereAisthematrixdefinedbyAx= (x,...,x),andf :mn (,]isthefunction

    f(x1, . . . , xm) =f1(x1) + +fm(xm). Usetheproofofthechainrule.

    Extension: Ifforsomek,thefunctionsfi,i=1,...,k,arepolyhedral,itissufficienttoassume

    ki=1 dom(fi)

    mi=k+1 ridom(fi)

    =.

  • 7/27/2019 Convex Analysis and Optimization Mit

    167/300

    CONSTRAINED OPTIMALITY CONDITION

    Letf : n ( , ]beproperconvex,letX beaconvexsubsetofn,andassumethatoneofthefollowingfourconditionsholds:

    (i) ridom(f)ri(X) =.(ii) f ispolyhedralanddom(f)

    ri(X) =.

    (iii) X ispolyhedralandridom(f)X= .(iv) f andX arepolyhedral,anddom(f)X= .

    Then, a vector x minimizes f over X iff thereexists g f(x) such that g belongs to thenormal

    cone

    NX(x),i.e.,

    g(xx)0, xX.Proof: x minimizes

    F(x) =f(x) +X(x)if and only if 0 F(x). Use the formula forsubdifferentialofsum. Q.E.D.

  • 7/27/2019 Convex Analysis and Optimization Mit

    168/300

    LLUSTRATIONOFOPTIMALITYCONDITION

    LevelSetsoff

    xf(x

    )

    LevelSetsoffx

    NC(x)NC(x)

    C Cg

    f(x)

    Inthefigureontheleft,f isdifferentiableandtheconditionisthat

    f(x)NC(x),whichisequivalentto

    f(x)(xx)0, xX. Inthefigureontheright,f isnondifferentiable,andtheconditionisthat

    gNC(x) forsomegf(x).

  • 7/27/2019 Convex Analysis and Optimization Mit

    169/300

    LECTURE 14LECTURE OUTLINE

    Min-MaxDualityExistenceofSaddlePoints

    Given :XZ , where X n, Z mconsider

    minimize sup(x,z)zZ

    subjectto x

    Xand

    maximize inf (x,z)xX

    subjectto zZ.

  • 7/27/2019 Convex Analysis and Optimization Mit

    170/300

    REVIEW Minimax inequality(holdsalways)

    sup inf (x,z) inf sup(x,z)zZxX xX zZ

    Importantissueiswhetherminimaxequalityholds. Definition: (x, z) iscalledasaddlepointofif(x, z)(x, z)(x,z), xX,zZ

    Proposition: (x, z) isasaddlepoint ifand

    onlyiftheminimaxequalityholdsandx argminsup(x,z), z argmax inf (x,z)

    xX zZ zZ xX

    Connectionw/constrainedoptimization: Strongdualityisequivalentto

    inf supL(x,)=sup inf L(x,)xX 0 0xX

    whereListheLagrangianfunction.Optimal primal-dual solution pairs (x, )

    arethesaddlepointsofL.

  • 7/27/2019 Convex Analysis and Optimization Mit

    171/300

    MC/MC FRAMEWORK FOR MINIMAX UseMC/MCwithM =epi(p)wherep:m [,] istheperturbationfunction

    p(u)= inf sup(x,z)uz,xX zZ u m

    Importantfact:pisobtainedbypartialmin. Note that w =p(0) = infsup and (, z):convexforallz impliesthatM isconvex. If(x,) isclosedandconvex,thedualfunctioninMC/MC is

    q(z)= inf (x,z), q =supinfxX

    u

    w

    (, 1)

    q()

    M= epi(p)

    0

    w = infxX

    supzZ

    (x, z)

    q = supzZ

    infxX

    (x, z)

    (, 1)

    q()

    u

    w

    0

    M= epi(p)

    w = infxX

    supzZ

    (x, z)

    q = supzZ

    infxX

    (x, z)

  • 7/27/2019 Convex Analysis and Optimization Mit

    172/300

    MINIMAX THEOREM Ithat:andZ areconvex.

    Assume

    (1) X(2)p(0)=infxX supzZ(x,z)

  • 7/27/2019 Convex Analysis and Optimization Mit

    173/300

    MINIMAX THEOREM IIssumethat:(1) X andZ areconvex.(2)p(0)=infxX supzZ(x,z)>.

    A

    (3) ForeachzZ,thefunction(, z)isconvex.(4) Foreachx

    X,thefunction

    (x, ) :Z

    isclosedandconvex.(5) 0liesintherelativeinteriorofdom(p).

    Then,theminimaxequalityholdsandthesupremuminsupzZ infxX (x,z)isattainedbysomezZ. [Alsothesetofzwherethesupisattainediscompactif0 is intheinteriorofdom(p).]

    Proof: Applythe2ndMinCommon/MaxCrossingTheorem. Counterexamples of strong duality and existenceofsolutions/saddlepointscanbeconstructedfromcorrespondingconstrainedminexamples.

  • 7/27/2019 Convex Analysis and Optimization Mit

    174/300

    EXAMPLE I

    = (x1, x2) x 0 and Z = z Let X | { |z0},andlet(x,z) =ex1x2 +zx1,

    whichsatisfytheconvexityandclosednessassumptions. Forallz0,

    infex1x2 +zx1= 0,x0

    sosupz0infx0(x,z) = 0.Also,forallx0,supex1x2 +zx1=

    1 ifx1 =0,

    z0 ifx1 >0,soinfx0supz0(x,z)=1.

    Herep(u)= inf supex1x2 +z(x1u)

    x0z0

    epi(p)

    u

    p(u)

    1

    0

  • 7/27/2019 Convex Analysis and Optimization Mit

    175/300

    EXAMPLE II

    ,Z= z z 0 ,andlet LetX= { | }(x,z) =x+zx2,

    whichsatisfytheconvexityandclosednessassumptions. Forallz0,

    1/(4z) ifz >0,infx{x+zx2}= ifz=0,

    sosupz0infx(x,z) = 0.Also,forallx ,

    0

    ifx

    =

    0,

    z0{x+zx2sup }= otherwise,

    so infxsupz0(x,z)=0. However,thesup isnotattained, i.e.,thereisnosaddlepoint.

    Here

    p(u)= inf sup uz}z0

    {x+zx2x

    u ifu0,= ifu

  • 7/27/2019 Convex Analysis and Optimization Mit

    176/300

    SADDLE POINT ANALYSIS Theprecedinganalysisindicatestheimportanceoftheperturbationfunction

    p(u)= inf F(x,u),xn

    where

    F(x,u) =

    supzZ

    (x,z)uz ifxX, ifx /X.

    Itsuggestsatwo-stepprocesstoestablishtheminimax

    equality

    and

    the

    existence

    of

    asaddle

    point:

    (1)Showthatpisclosedandconvex,thereby

    showingthattheminimaxequalityholdsbyusingthefirstminimaxtheorem.

    (2)VerifythattheinfofsupzZ(x,z)overxX,andthesupofinfxX (x,z)overzZ are attained, thereby showing thatthesetofsaddlepointsisnonempty.

  • 7/27/2019 Convex Analysis and Optimization Mit

    177/300

    SADDLE POINT ANALYSIS (CONTINUED) Step(1)requirestwotypesofassumptions:

    (a) Convexity/concavity/semicontinuityconditionsofMinimaxTheoremI(sotheMC/MCframeworkapplies).

    (b) Conditionsforpreservationofclosednessbythepartialminimization in

    p(u)= inf F(x,u)xn

    e.g.,forsomeu,thenonemptylevelsets

    x|F(x,u)arecompact.

    Step(2)requiresthateitherWeierstrassThe

    oremcanbeapplied,orelseoneoftheconditionsforexistenceofoptimalsolutionsdevelopedsofarissatisfied.

  • 7/27/2019 Convex Analysis and Optimization Mit

    178/300

    CLASSICAL SADDLE POINT THEOREM Assumeconvexity/concavity/semicontinuityof and that X and Z are compact. Then the setofsaddlepointsisnonemptyandcompact. Proof: F isconvexandclosedbytheconvexity/concavity/semicontinuityof,sopisalsoconvex.

    Using

    the

    compactness

    of

    Z,

    F

    is

    real-valued

    over X m, and from the compactness of X,it follows thatp is also real-valued and thereforecontinuous. Hence,theminimaxequalityholdsbythefirstminimaxtheorem.

    Thefunctionsupz

    Z(x,z)isequaltoF(x,0),soitisclosed,andthesetofitsminimaoverxXis nonempty and compact by Weierstrass Theorem. Similarlythesetofmaxima ofthe functioninfxX (x,z) over z Z is nonempty and compact. Hencethesetofsaddlepoints isnonemptyandcompact. Q.E.D.

  • 7/27/2019 Convex Analysis and Optimization Mit

    179/300

    ANOTHER THEOREM Use the theory of preservation of closednessunderpartialminimization. Assumeconvexity/concavity/semicontinuityof. Considerthefunctions

    t(x) =F(x,0)=supzZ(x,z) ififx /xX, X,

    andr(z) =

    infxX (x,z) ifzZ,

    if

    z /

    Z.

    Ifthe levelsetsoftarecompact,theminimaxequalityholds,andtheminoverxof

    sup(x,z)zZ

    [which is t(x)] is attained. (Take u = 0 in thepartialmintheoremtoshowthatpisclosed.) Ifthelevelsetsoftandrarecompact,thesetofsaddlepoints isnonemptyandcompact. Various extensions: Use conditions for preservationofclosednessunderpartialminimization.

  • 7/27/2019 Convex Analysis and Optimization Mit

    180/300

    SADDLE POINT THEOREMssumetheconvexity/concavity/semicontinuityconA

    ditions,andthatanyoneofthefollowingholds:(1)X andZ arecompact.(2)Z iscompactandthereexistsavectorzZ

    and a scalar such that the level setxX |(x,z)

    isnonemptyandcompact.

    (3)XiscompactandthereexistsavectorxXand a scalar such that the level setz Z |(x,z)isnonemptyandcompact.

    (4) Thereexistvectorsx

    X andz

    Z,andascalar suchthatthelevelsets

    xX |(x,z), zZ |(x,z),arenonemptyandcompact.

    Then,theminimaxequalityholds,andthesetofsaddlepointsofisnonemptyandcompact.

  • 7/27/2019 Convex Analysis and Optimization Mit

    181/300

    LECTURE 15LECTURE OUTLINE

    ProblemStructures Separableproblems Integer/discreteproblemsBranch-and-bound Largesumproblems Problemswithmanyconstraints

    ConicProgramming SecondOrderConeProgramming

    SemidefiniteProgramming

  • 7/27/2019 Convex Analysis and Optimization Mit

    182/300

    SEPARABLE PROBLEMS Considertheproblem

    m

    minimize fi(xi)i=1

    ms.

    t.

    gji(xi)

    0, j= 1,...,r, xi Xi, ii=1

    where fi :ni and gji :ni are givenfunctions,andXi aregivensubsetsofni. Formthedualproblem

    m m rmaximize inf fi(xi) +qi()

    xiXijgji(xi)

    i=1 i=1 j=1subjectto 0 Importantpoint: Thecalculationofthedualfunction has been decomposed into n simplerminimizations. Moreover, the calculation of dualsubgradients is a byproduct of these minimizations(thiswillbediscussedlater) Anotherimportantpoint: IfXi isadiscreteset (e.g., Xi ={0,1}), the dual optimal value isa lower bound to the optimal primal value. It isstillusefulinabranch-and-boundscheme.

  • 7/27/2019 Convex Analysis and Optimization Mit

    183/300

    LARGE SUM PROBLEMSConsidercostfunctionoftheform m

    f(x) =fi(x), misvery large,i=1

    wherefi :n areconvex. Someexamples: Dual cost of a separable problem.

    Data analysis/machine learning: x is parametervectorofamodel;eachfi correspondstoerrorbetweendataandoutputofthemodel.

    Leastsquaresproblems(fi quadratic).

    1-regularization

    (least

    squares

    plus

    1

    penalty):

    m n

    min(ajxbj)2 + xix | |j=1 i=1

    Thenondifferentiablepenaltytendstosetalargenumberofcomponentsofxto0.

    MinofanexpectedvalueEF(x,w),wherew is a random variable taking a finite but verylargenumberofvalueswi,i= 1, . . . , m,withcorrespondingprobabilitiesi. Stochastic programming:

    minF1(x) +Ew{minF2(x,y,w)

    x y Specialmethods,calledincrementalapply.

  • 7/27/2019 Convex Analysis and Optimization Mit

    184/300

    PROBLEMS WITH MANY CONSTRAINTSProblemsoftheform

    minimize f(x)subjectto ajxbj, j= 1,...,r,

    wherer: very large. One possibility isapenaltyfunctionapproach:Replaceproblemwith

    rminf(x) +c

    P(ajxbj)

    x

    n

    j=1

    where P() is a scalar penalty function satisfyingP(t)=0ift0,andP(t)>0ift >0,andcisapositivepenaltyparameter. Examples: ThequadraticpenaltyP(t) =max{0, t}2. ThenondifferentiablepenaltyP(t)=max{0, t}.

    Another possibility: Initially discard some oftheconstraints, solvea less constrained problem,and

    later

    reintroduce

    constraints

    that

    seem

    to

    be

    violatedattheoptimum(outerapproximation). Alsoinnerapproximationoftheconstraintset.

  • 7/27/2019 Convex Analysis and Optimization Mit

    185/300

    CONIC PROBLEMS Aconicproblem istominimizeaconvexfunction f : n (,] subject to a cone constraint. Themostuseful/popularspecialcases:

    Linear-conicprogramming Secondorderconeprogramming Semidefiniteprogramming

    involveminimizationofalinearfunctionovertheintersectionofanaffinesetandacone. Can be analyzed as a special case of Fenchel

    duality. Therearemanyinterestingapplicationsofconicproblems,including indiscreteoptimization.

  • 7/27/2019 Convex Analysis and Optimization Mit

    186/300

    PROBLEM RANKING INASING PRACTICAL DIFFICULTYINCRE

    Linearand(convex)quadraticprogramming. Favorablespecialcases.

    Second order cone programming. Semidefinite programming. Convexprogramming.

    Favorablespecialcases. Geometricprogramming.

    Quasi-convexprogramming.Nonlinear/nonconvex/continuousprogramming.

    Favorablespecialcases. Unconstrained. Constrained.

    Discreteoptimization/Integerprogramming Favorablespecialcases.

  • 7/27/2019 Convex Analysis and Optimization Mit

    187/300

    CONIC DUALITY Considerminimizingf(x)overxC,wheref :n (,]isaclosedproperconvexfunctionandC isaclosedconvexcone inn. WeapplyFencheldualitywiththedefinitions

    f1(x) =f(x), f2(x) =0 ifx

    C,

    ifx /C.Theconjugatesare

    0 ifC,

    f1()= supxf(x), f2

    ()= supx=if /C,xn xC

    where C ={ | x 0, x C} is the polarconeofC. Thedualproblemis

    minimize f()subjectto C,

    wheref istheconjugateoff andC ={|x0,xC}.

    C =C iscalledthedualcone.

  • 7/27/2019 Convex Analysis and Optimization Mit

    188/300

    LINEAR-CONIC PROBLEMS Let f be affine, f(x) = cx, with dom(f) being an affine set, dom(f) = b+S, where S is asubspace. Theprimalproblem is

    minimize cx

    subjectto xbS, xC. Theconjugateis

    f() = sup (c)x=sup(c)(y+b)x

    b

    S y

    S(c)b ifcS,

    = ifc /S,sothedualproblemcanbewrittenas

    minimize bsubjectto cS, C.

    Theprimalanddualhavethesameform. If C is closed, the dual of the dual yields theprimal.

  • 7/27/2019 Convex Analysis and Optimization Mit

    189/300

    SPECIAL LINEAR-CONIC FORMSmin c

    x max b

    ,

    Ax=b, xC cACmin cx max b,

    AxbC A=c, Cwherex n, m,c n,b m,A:mn.

    Forthefirstrelation,letxbesuchthatAx=b,andwritetheproblemonthe leftasminimize cxsubjectto xxN(A), xC

    Thedualconicproblem is

    minimize xsubjectto cN(A), C.

    Using N(A) = Ra(A), write the constraintsasc Ra(A)=Ra(A),C,or

    c=A, C, forsome m. Changevariables=cA,writethedualas

    minimize x(cA)subject

    to

    cAC

    discardtheconstantxc,usethefactAx=b,andchangefrommintomax.

  • 7/27/2019 Convex Analysis and Optimization Mit

    190/300

    SOME EXAMPLES Nonnegative Orthant: C={x|x0}.

    The Second Order Cone: Let 2 2

    C= (x1, . . . , xn)|xn x1 + +xn1

    x1

    x2

    x3

    The Positive Semidefinite Cone: Considerthespaceofsymmetricn

    nmatrices,viewedas

    thespacen2 withthe innerproductn n

    =trace(XY) =xijyiji=1 j=1

    Let C be the cone of matrices that are positivesemidefinite.

    Alltheseareself-dual,i.e.,C=C =C.

  • 7/27/2019 Convex Analysis and Optimization Mit

    191/300

    SECOND ORDER CONE PROGRAMMING

    Second order cone programming is the linear-conicproblemminimize cxsubjectto Aixbi Ci, i= 1,...,m,

    where c,bi are vectors, Ai are matrices, bi is avector inni,and

    Ci : thesecondorderconeofniTheconehereis

    C=C1 Cm

    x1

    x2

    x3

  • 7/27/2019 Convex Analysis and Optimization Mit

    192/300

    SECOND ORDER CONE DUALITY Usingthegenericspecialdualityform

    min cx max b,AxbC A=c, C

    andselfdualityofC,thedualproblem ismaximize m

    i=1bii

    subjectto mAii =c, i Ci, i= 1,...,m,

    i=1where= (1, . . . , m). The duality theory is no more favorable thantheonefor linear-conicproblems. Thereisnodualitygapifthereexistsafeasible

    solutionintheinteriorofthe2ndorderconesCi. Generally, second order cone problems can berecognized from the presence of norm or convexquadratic functions in the cost or the constraintfunctions. Therearemanyapplications.

  • 7/27/2019 Convex Analysis and Optimization Mit

    193/300

    EXAMPLE: ROBUST LINEAR PROGRAMMINGminimize cxsubjectto ajxbj, (aj, bj)Tj, j= 1,...,r,wherec n,andTj isagivensubsetofn+1. Weconverttheproblemtotheequivalentform

    minimize cxsubjectto gj(x)0, j= 1,...,r,

    wheregj(x)=sup(aj,bj)Tj{ajxbj}. ForspecialchoicewhereTj isanellipsoid,Tj =(aj+Pjuj, bj+qjuj)| uj 1, uj njwecanexpressgj(x)0intermsofaSOC:

    gj(x)= sup (aj +Pjuj)x(bj +qjuj)uj1= sup (Pjxqj)uj +ajxbj,uj1

    =Pjxqj+ajxbj.Thus,gj(x)0iff(Pjxqj, bjajx)Cj,whereCj istheSOCofnj+1.

  • 7/27/2019 Convex Analysis and Optimization Mit

    194/300

    LECTURE 16LECTURE OUTLINE

    Conicprogramming Semidefiniteprogramming Exactpenaltyfunctions

    Descent methods for convex/nondifferentiableoptimization Steepestdescentmethod

  • 7/27/2019 Convex Analysis and Optimization Mit

    195/300

    LINEAR-CONIC FORMSmin c

    x max b

    ,

    Ax=b, xC

    cACmin cx max b,

    AxbC A=c, Cwherex n, m,c n,b m,A:mn. Secondorderconeprogramming:

    minimize cxsubjectto Aixbi Ci, i= 1,...,m,

    where c,bi are vectors, Ai are matrices, bi is avector inni,and

    Ci : thesecondorderconeofni TheconehereisC=C1 Cm Thedualproblemis

    mmaximize bii

    i=1m

    subjectto Ai =c, i

    Ci, i= 1,...,m,i

    i=1where= (1, . . . , m).

  • 7/27/2019 Convex Analysis and Optimization Mit

    196/300

    SEMIDEFINITE PROGRAMMING Considerthesymmetricnnmatrices. Innerproduct=trace(XY) =ni,j=1xijyij. LetCbetheconeofpos.semidefinitematrices. C isself-dual,anditsinterioristhesetofpositivedefinitematrices. Fix symmetric matrices D, A1, . . . , Am, andvectorsb1, . . . , bm,andconsiderminimize subjectto < Ai, X>=bi, i= 1, . . . , m , XC Viewingthisasalinear-conicproblem(thefirstspecial form), the dual problem (using also self-dualityofC)is

    mmaximize

    bii

    i=1

    subjectto D(1A1 + +mAm)C There is no duality gap if there exists primalfeasiblesolutionthat ispos.definite,orthereexistssuchthatD(1A1+ +mAm)ispos. definite.

  • 7/27/2019 Convex Analysis and Optimizati