32
International Scholarly Research Network ISRN Mathematical Analysis Volume 2012, Article ID 904169, 31 pages doi:10.5402/2012/904169 Research Article Convergence and Divergence of Higher-Order Hermite or Hermite-Fej ´ er Interpolation Polynomials with Exponential-Type Weights Hee Sun Jung, 1 Gou Nakamura, 2 Ryozi Sakai, 3 and Noriaki Suzuki 3 1 Department of Mathematics Education, Sungkyunkwan University, Seoul 110-745, Republic of Korea 2 Science Division, Center for General Education, Aichi Institute of Technology, Yakusa-cho, Toyota 470-0392, Japan 3 Department of Mathematics, Meijo University, Nagoya 468-8502, Japan Correspondence should be addressed to Hee Sun Jung, [email protected] Received 30 December 2011; Accepted 26 February 2012 Academic Editors: B. Ricceri and W. Yu Copyright q 2012 Hee Sun Jung et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Let R −∞, , and let w ρ x |x| ρ e Qx , where ρ> 1/2 and Q C 1 R : R R 0, is an even function. Then we can construct the orthonormal polynomials p n w 2 ρ ; x of degree n for w 2 ρ x. In this paper for an even integer ν 2 we investigate the convergence theorems with respect to the higher-order Hermite and Hermite-Fej´ er interpolation polynomials and related approximation process based at the zeros {x k,n,ρ } n k1 of p n w 2 ρ ; x. Moreover, for an odd integer ν 1, we give a certain divergence theorem with respect to the higher-order Hermite-Fej´ er interpolation polynomials based at the zeros {x k,n,ρ } n k1 of p n w 2 ρ ; x. 1. Introduction Let R −∞, , and let Q C 1 R : R R 0, be an even function. Consider the weight wx expQx, and define, for ρ> 1/2, w ρ x : |x| ρ wx, x R. 1.1 Suppose that 0 x n w ρ xdx < , for all n 0, 1, 2,.... Then we can construct the orthonormal

Convergence and Divergence of Higher-Order Hermite or ...downloads.hindawi.com/journals/isrn/2012/904169.pdf · with respect to the higher-order Hermite and Hermite-Fejer interpolation

  • Upload
    others

  • View
    16

  • Download
    0

Embed Size (px)

Citation preview

  • International Scholarly Research NetworkISRN Mathematical AnalysisVolume 2012, Article ID 904169, 31 pagesdoi:10.5402/2012/904169

    Research ArticleConvergence and Divergence of Higher-OrderHermite or Hermite-Fejér InterpolationPolynomials with Exponential-Type Weights

    Hee Sun Jung,1 Gou Nakamura,2Ryozi Sakai,3 and Noriaki Suzuki3

    1 Department of Mathematics Education, Sungkyunkwan University,Seoul 110-745, Republic of Korea

    2 Science Division, Center for General Education, Aichi Institute of Technology,Yakusa-cho, Toyota 470-0392, Japan

    3 Department of Mathematics, Meijo University, Nagoya 468-8502, Japan

    Correspondence should be addressed to Hee Sun Jung, [email protected]

    Received 30 December 2011; Accepted 26 February 2012

    Academic Editors: B. Ricceri and W. Yu

    Copyright q 2012 Hee Sun Jung et al. This is an open access article distributed under the CreativeCommons Attribution License, which permits unrestricted use, distribution, and reproduction inany medium, provided the original work is properly cited.

    Let R � �−∞,∞�, and let wρ�x� � |x|ρe−Q�x�, where ρ > −1/2 and Q ∈ C1�R� : R → R� � �0,∞�is an even function. Then we can construct the orthonormal polynomials pn�w2ρ;x� of degreen for w2ρ�x�. In this paper for an even integer ν ≥ 2 we investigate the convergence theoremswith respect to the higher-order Hermite and Hermite-Fejér interpolation polynomials and relatedapproximation process based at the zeros {xk,n,ρ}nk�1 of pn�w2ρ;x�. Moreover, for an odd integerν ≥ 1, we give a certain divergence theorem with respect to the higher-order Hermite-Fejérinterpolation polynomials based at the zeros {xk,n,ρ}nk�1 of pn�w2ρ;x�.

    1. Introduction

    Let R � �−∞,∞�, and let Q ∈ C1�R� : R → R� � �0,∞� be an even function. Consider theweight w�x� � exp�−Q�x��, and define, for ρ > −1/2,

    wρ�x� :� |x|ρw�x�, x ∈ R. �1.1�

    Suppose that∫∞0 x

    nwρ�x�dx < ∞, for all n � 0, 1, 2, . . .. Then we can construct the orthonormal

  • 2 ISRN Mathematical Analysis

    polynomials pn,ρ�x� � pn�w2ρ;x� of degree n for w2ρ�x�; that is,

    ∫∞

    −∞pn,ρ�x�pm,ρ�x�w2ρ�x�dx � δm,n �Kronecker delta�. �1.2�

    We write pn,ρ�x� by

    pn,ρ�x� � γnxn � · · ·, γn � γn,ρ > 0, �1.3�

    and denote the zeros of pn,ρ�x� by

    −∞ < xn,n,ρ < xn−1,n,ρ < · · · < x2,n,ρ < x1,n,ρ < ∞. �1.4�

    Let Pn denote the class of polynomials with degree at most n. For f ∈ C�R� we definethe higher-order Hermite-Fejér interpolation polynomial Ln�ν, f ;x� ∈ Pνn−1 based at the zeros{xk,n,ρ}nk�1 as follows:

    L�i�n

    (ν, f ;xk,n,ρ

    )� δ0,if

    (xk,n,ρ

    )for k � 1, 2, . . . , n, i � 0, 1, . . . , ν − 1. �1.5�

    We note that Ln�1, f ;x� is the Lagrange interpolation polynomial, Ln�2, f ;x� is theordinary Hermite-Fejér interpolation polynomial, and Ln�4, f ;x� is the Krylov-Stayermannpolynomial. For the general cases Kanjin and Sakai �1, 2� started to investigate the so-calledFreud-type weights. The fundamental polynomials hk,n,ρ�ν;x� ∈ Pνn−1 for the higher-orderHermite-Fejér interpolation polynomial Ln�ν, f ;x� are defined as follows:

    hk,n,ρ�ν;x� � lνk,n,ρ�x�ν−1∑

    i�0

    ei�ν, k, n�(x − xk,n,ρ

    )i,

    lk,n,ρ�x� �pn(w2ρ;x

    )

    (x − xk,n,ρ

    )p′n(w2ρ;xk,n,ρ

    ) ,

    hk,n,ρ(ν;xp,n,ρ

    )� δk,p, h

    �i�k,n,ρ

    (ν;xp,n,ρ

    )� 0,

    k, p � 1, 2, . . . , n, i � 1, 2, . . . , ν − 1.

    �1.6�

    Using them, we can write

    Ln(ν, f ;x

    )�

    n∑

    k�1

    f(xk,n,ρ

    )hk,n,ρ�ν;x�. �1.7�

  • ISRN Mathematical Analysis 3

    Furthermore, we extend the operator Ln�ν, f ;x�. Let l be a nonnegative integer, and letν − 1 � l. For f ∈ Cl�R� we define the �l, ν�-order Hermite-Fejér interpolation polynomialsLn�l, ν, f ;x� ∈ Pνn−1 as follows: for each k � 1, 2, . . . , n,

    Ln(l, ν, f ;xk,n,ρ

    )� f

    (xk,n,ρ

    ),

    L�j�n

    (l, ν, f ;xk,n,ρ

    )� f �j�

    (xk,n,ρ

    ), j � 1, 2, . . . , l,

    L�j�n

    (l, ν, f ;xk,n,ρ

    )� 0, j � l � 1, l � 2, . . . , ν − 1.

    �1.8�

    Especially, Ln�0, ν, f ;x� is equal to Ln�ν, f ;x�, and for each P ∈ Pνn−1 we see Ln�ν−1, ν, P ;x� �P�x�; that is, for f ∈ C�ν−1��R�, Ln�ν − 1, ν, f ;x� is the Hermite interpolation polynomial. Thefundamental polynomials hs,k,n,ρ�l, ν;x� ∈ Pνn−1, k � 1, 2, . . . , n, of Ln�l, ν, f ;x� are defined by

    hs,k,n,ρ�l, ν;x� � lνk,n,ρ�x�ν−1∑

    i�s

    es,i�ν, k, n�(x − xk,n,ρ

    )i,

    h�j�s,k,n,ρ

    (l, ν;xp,n,ρ

    )� δs,jδk,p, j, s � 0, 1, . . . , ν − 1, p � 1, 2, . . . , n.

    �1.9�

    Then we have

    Ln(l, ν, f ;x

    )�

    n∑

    k�1

    l∑

    s�0

    f �s�(xk,n,ρ

    )hs,k,n,ρ�l, ν;x�. �1.10�

    For the ordinary Hermite and Hermite-Fejér interpolation polynomial Ln�1, 2, f ;x�,Ln�2, f ;x� and the related approximation process, Lubinsky �3� gave some interestingconvergence theorems.

    Our purpose in this paper is to study Ln�ν, f ;x� and Ln�l, ν, f ;x� as certain analogiesof the Lubinsky theorems in �3� and the related approximation process for the exponential-type weights. Kasuga and Sakai �4–8� investigated the convergence and divergence theoremsfor the Freud-type weights. Then for an even integer ν ≥ 2 we give the convergence theoremsfor them; moreover, for an odd integer ν � 1, we obtain a certain divergence theoremwith respect to Ln�ν, f ;x�. In Section 1, we give the preliminaries for these studies, and inSection 2 we write some preliminary description. In Section 3 we report our theorems withsome lemmas, and in Section 4 we prove the theorems. Finally, in Section 5, for an odd integerν � 1 we obtain a certain divergence theorem with respect to Ln�ν, f ;x�.

    In what follows we abbreviate several notations as xk,n :� xk,n,ρ, hkn�x� :� hk,n,ρ�ν, x�,lkn�x� :� lk,n,ρ�x�, hskn�x� :� hs,k,n,ρ�ν, x� and pn�x� :� pn,ρ�x� if there is no confusion. Forarbitrary nonzero real-valued functions f�x� and g�x�, we write f�x� ∼ g�x� if there existconstants C1, C2 > 0 independent of x such that C1g�x� � f�x� � C2g�x� for all x. Forarbitrary positive sequences {cn}∞n�1 and {dn}∞�1, we define cn ∼ dn similarly.

    Throughout this paper C,C1, C2, . . . denote positive constants independent of n, x, t, orpolynomials Pn�x�, and the same symbol does not necessarily denote the same constant indifferent occurrences.

  • 4 ISRN Mathematical Analysis

    2. Preliminaries

    A function f : R� → R� is said to be quasi-increasing if there exists C > 0 such that f�x� �Cf�y� for 0 < x < y.

    Definition 2.1 �see �9��. Let Q : R → R� be a continuous even function satisfying thefollowing properties.

    �a� Q′�x� is continuous in R and Q�0� � 0.

    �b� Q′′�x� exists and is positive in R \ {0}.�c� limx→∞Q�x� � ∞.�d� The function

    T�x� :�xQ′�x�Q�x�

    , x /� 0, �2.1�

    is quasi-increasing in �0,∞�, with T�x� � Λ > 1 for x ∈ R� \ {0}.�e� There exists C1 > 0 such that

    Q′′�x�|Q′�x�| � C1

    |Q′�x�|Q�x�

    , a.e. x ∈ R \ {0}. �2.2�

    Then we say thatw � exp�−Q� is in the classF�C2�. Besides, if there exist a compactsubinterval J�� 0� of R and C2 > 0 such that

    Q′′�x�|Q′�x�| � C2

    |Q′�x�|Q�x�

    , a.e. x ∈ R \ J, �2.3�

    then we say that w � exp�−Q� is in the class F�C2��.

    Example 2.2. We present some typical examples of Q�x� satisfying w � exp�−Q� ∈ F�C2��.

    �1� If a continuous exponential Q�x� satisfies

    1 < Λ1 ��xQ′�x��′

    Q′�x�� Λ2 �2.4�

    with some constants Λi, i � 1, 2, then w�x� � exp�−Q�x�� is called a Freud weight.The class F�C2�� contains the Freud weights.

    �2� �See �9�� For α > 1 and a nonnegative integer r, we put

    Q�x� � Qr,α�x� :� expr(|x|α) − expr�0�, �2.5�

  • ISRN Mathematical Analysis 5

    where, for r � 1,

    expr�x� :� exp(exp

    (exp

    (· · · exp x) · · · )) �r-times� �2.6�

    and exp0�x� :� x.

    �3� �See �10�� For m � 0, α � 0 with α �m > 1, we put

    Q�x� � Qr,α,m�x� :� |x|m{expr

    (|x|α) − α∗expr�0�}, �2.7�

    where for r > 0 we suppose α∗ � 0 if α � 0; α∗ � 1 otherwise. For r � 0 we supposem > 1 and α � 0.

    �4� �See �10�� For α > 1, we put

    Q�x� � Qα�x� :� �1 � |x|�|x|α − 1. �2.8�

    For x > 0, we define the Mhaskar-Rakhmanov-Saff number ax by the equation

    x �2π

    ∫1

    0

    axuQ′�axu�

    �1 − u2�1/2du. �2.9�

    We have the following estimates for the coefficients es,i�ν, k, n��ei�ν, k, n� :� e0,i�ν, k, n�� in�1.6� or �1.9�.

    Lemma 2.3 �see �11, Theorem 2.6��. Let w�x� � exp�−Q�x�� ∈ F�C2��. For each k � 1, 2, . . . , nand s � 0, 1, . . . , ν − 1, we have e0,0�ν, k, n� � e0�ν, k, n� � 1,

    |es,i�ν, k, n�| � C

    ⎜⎝

    n√a22n − x2k,n

    ⎟⎠

    i−s

    , s � 1, 2, . . . , ν − 1, i � s, s � 1, . . . , ν − 1. �2.10�

    If we consider the higher-order Hermite-Fejér interpolation polynomial Ln�ν, f ;x� ona certain finite interval, then we can see a remarkable difference between the parity of ν, forexample, the Lagrange interpolation polynomial Ln�1, f ;x� and the ordinary Hermite-Fejérinterpolation polynomial Ln�2, f ;x� ��12–17��. Also, we can see a similar phenomenon in thecase of the infinite intervals ��1, 2, 4–8��. To describe these aspects, however, we need a furtherstrengthened definition for ν � 2 than Definition 2.1.

    Definition 2.4. Let w�x� � exp�−Q�x�� ∈ F�C2��, and let ν � 1 be an integer. Assume thatQ�x� is a ν-times continuously differentiable function on R and satisfies the following.

    �a� Q�ν�1��x� exists and Q�i��x�, 0 � i � ν � 1, are positive for x > 0.

  • 6 ISRN Mathematical Analysis

    �b� There exist constants Ci > 0 such that

    ∣∣∣Q�i�1��x�

    ∣∣∣ � Ci

    ∣∣∣Q�i��x�

    ∣∣∣|Q′�x�|Q�x�

    , x ∈ R \ {0}, i � 1, 2, . . . , ν. �2.11�

    �c� There exist 0 � δ < 1 and c1 > 0 such that

    Q�ν�1��x� � C(1x

    )δ, x ∈ �0, c1�. �2.12�

    Then we say that w�x� � exp�−Q�x�� is in the class Fν�C2��.�d� Suppose one of the following.

    �d-1� Q′�x�/Q�x� is quasi-increasing on a certain positive interval �c2,∞�.�d-2� Q�ν�1��x� is nondecreasing on a certain positive interval �c2,∞�.�d-3� There exist constants C > 0 and 0 � δ < 1 such that Q�ν�1��x� � C�1/x�δ on

    �0,∞�.Then one says that w�x� � exp�−Q�x�� is in the class F̃ν�C2��.

    Example 2.5 �cf. �10, Theorem 3.1��. Let ν be a positive integer, and let Qr,α,m be defined in�2.7�.

    �1� Let m and α be nonnegative even integers with m � α > 1. Then w�x� �exp�−Qr,α,m� ∈ Fν�C2��.�a� If r > 0, then we see that Q′r,α,m�x�/Qr,α,m�x� is quasi-increasing on a certain

    positive interval �c1,∞� and Qr,0,m�x� is nondecreasing on �0,∞�.�b� If r � 0, then we see that Q0,0,m�x�, m � 2, is nondecreasing on �0,∞�.

    Hence, w�x� � exp�−Qr,α,m� ∈ F̃ν�C2��.�2� Let m � α − ν > 0. Then w�x� � exp�−Qr,α,m� ∈ Fν�C2��, and one has the following.

    �c� If r � 2 and α > 0, then there exists a constant c1 > 0 such thatQ′r,α,m�x�/Qr,α,m�x� is quasi-increasing on �c1,∞�.

    �d� Let r � 1. If α � 1, then there exists a constant c2 > 0 such thatQ′1,α,m�x�/Q1,α,m�x� is quasi-increasing on �c2,∞�, and, if 0 < α < 1, thenQ′1,α,m�x�/Q1,α,m�x� is quasi-decreasing on �c2,∞�.

    �e� Let r � 1 and 0 < α < 1, then Q�ν�1�1,α,m�x� is nondecreasing on a certain positiveinterval on �c2,∞�.Hence, w�x� � exp�−Qr,α,m� ∈ F̃ν�C2��.

    Definition 2.6. One uses the following notation:

    ϕu�x� �

    ⎧⎪⎨

    ⎪⎩

    auu

    1 − |x|/a2u√1 − |x|/au � δu

    , |x| � au;

    ϕu�au�, au < |x|,δu � �uT�au��−2/3, u > 0. �2.13�

  • ISRN Mathematical Analysis 7

    Lemma 2.7 �see �18, Corollary 4.5��. Let wρ�x� � |x|ρexp�−Q�x��, exp�−Q� ∈ F̃ν�C2��. Ifxk,n /� 0 and |xk,n| � an�1 � δn�, then e0�ν, k, n� � 1 and, for i � 1, 2, . . . , ν − 1,

    |ei�ν, k, n�| � C{T�an�an

    �∣∣Q′�xk,n�

    ∣∣ �

    1|xk,n|

    }〈i〉( na2n − |xk,n| �

    T�an�an

    )i−〈i〉, �2.14�

    where

    〈i〉 �{1, i: odd,0, i: even.

    �2.15�

    For xk,n � 0 one has

    e0�ν, k, n� � 1, |ei�ν, k, n�| � C(

    n

    an

    )i, i � 1, 2, . . . , ν − 1. �2.16�

    Remark 2.8. In �19, Theorem 2.2� we see that x1,n < an if n is large enough. ThereforeLemma 2.7 holds for all xk,n, k � 1, 2, . . . , n.

    Levin and Lubinsky �see �9, Lemma 3.7�� showed that there exists C > 0 such that forsome ε > 0 and for large enough t,

    T�at� � Ct2−ε. �2.17�

    In �20� we have the following estimations.

    Lemma 2.9 �see �20, Theorem 1.6��. Let w � exp�−Q� ∈ F�C2��.�1� Let T�x� be unbounded. Then, for any η > 0, there exists C�η� > 0 such that, for t � 1,

    at � C(η)tη. �2.18�

    �2� Let λ :� C1 be the constant in Definition 2.1(e), that is,

    Q′′�x�Q′�x�

    � λQ′�x�

    Q�x�, a.e. x ∈ R \ {0}. �2.19�

    If λ > 1, then there exists C�λ, η� such that

    T�at� � C(λ, η

    )t2�η�λ−1�/�λ�1�, t � 1, �2.20�

    and, if 0 < λ � 1, then for any η > 0 there exists C�λ, η� such that

    T�at� � C(λ, η

    )tη, t � 1. �2.21�

  • 8 ISRN Mathematical Analysis

    Remark 2.10. �1� If T�x� is bounded, then w is called a Freud-type weight, and, if T�x� isunbounded, then w is called an Erdős-type weight.

    �2� In �2.20� and �2.21�, we set 0 < η < 2 and

    ε �

    ⎧⎪⎨

    ⎪⎩

    2 − η, 0 < λ � 1,2(2 − η)

    �λ � 1�, λ > 1.

    �2.22�

    Then �2.17� holds.�3� If

    lim supx→∞

    Q�x�Q′′�x�

    �Q′�x��2� 1, �2.23�

    then we have �2.21�. Note that all the examples in Example 2.5 satisfy this inequality.�4� For the Freud-type exponent Q�x� � |x|m,m > 1, we have

    T�at� � m, at ∼ t1/m. �2.24�

    �5� The inequality �2.18� implies

    0 < C � nan

    {T�an�an

    }ν−1. �2.25�

    3. Theorems

    In the rest of this paper we assume the following for the weight w.

    Assumption 3.1. Consider the weightwρ�x� � |x|ρ exp�−Q�x��, exp�−Q�x�� ∈ F̃ν�C2��, ρ � 0.�a� �cf. �20, Theorem 1.4�� If T�x� is bounded, then we suppose, for δ in �2.12�,

    an � Cn1/�1�ν−δ�. �3.1�

    �b� There exist 0 � γ < 1 and C�γ� > 0 such that

    T�an� � C(γ)nγ ; �3.2�

    here, if T�x� is bounded, that is, a Freud-type weight, then we set γ � 0, and if T�x�is unbounded, that is, an Erdős-type weight, then we set 0 < γ < 1. Define

    εn :�

    ⎧⎪⎪⎪⎨

    ⎪⎪⎪⎩

    ann,

    T�an�an

    < 1,

    1n1−γ

    ,T�an�an

    � 1.�3.3�

  • ISRN Mathematical Analysis 9

    Remark 3.2. �1� If T�x� is unbounded, then �3.1� holds because of Lemma 2.9 �2.21�.�2� �3.2� holds for

    γ �2(η � λ − 1)

    λ � 1, 0 < λ < 3. �3.4�

    �3� In �3.3�we note that εn log n → 0 as n → ∞.

    We shall state our theorems. Put

    Xn(ν, f ;x

    ):�

    n∑

    j�1

    f(xj,n,ρ

    )lνj,n,ρ�x�

    ν−2∑

    i�0

    ei(ν, j, n

    )(x − xj,n,ρ

    )i,

    Yn(ν, f ;x

    ):�

    n∑

    j�1

    f(xj,n,ρ

    )lνj,n,ρ�x�eν−1

    (ν, j, n

    )(x − xj,n,ρ

    )ν−1,

    Zn(l, ν, f ;x

    ):�

    n∑

    j�1

    l∑

    s�1

    f �s�(xj,n,ρ

    )lνj,n,ρ�x�

    ν−1∑

    i�s

    esi(ν, j, n

    )(x − xj,n,ρ

    )i.

    �3.5�

    Furthermore, we consider the class G � {gs ∈ C�R�, s � l � 1, l � 2, . . . , ν − 1} and construct thefollowing interpolation polynomial:

    Wn�l, ν, G;x� :�n∑

    j�1

    ν−1∑

    s�l�1

    gs(xj,n,ρ

    )lνj,n,ρ�x�

    ν−1∑

    i�s

    esi(ν, j, n

    )(x − xj,n,ρ

    )i. �3.6�

    Then we have

    Ln(ν, f ;x

    )� Xn

    (ν, f ;x

    )� Yn

    (ν, f ;x

    ),

    Ln(l, ν, f ;x

    )� Ln

    (ν, f ;x

    )� Zn

    (l, ν, f ;x

    ),

    L̃n(l, ν, f ⊕G;x) :� Ln

    (ν, f ;x

    )� Zn

    (l, ν, f ;x

    )�Wn�l, ν, G;x�.

    �3.7�

    Define

    Φ�x� :�1

    �1 �Q�x��2/3T�x�. �3.8�

    Here we note that, for some d > 0,

    Φ�x� ∼ Q�x�1/3

    xQ′�x�, |x| � d > 0. �3.9�

    Moreover, we define

    Φn�x� :� max{δn, 1 − |x|

    an

    }, n � 1, 2, 3, . . . . �3.10�

  • 10 ISRN Mathematical Analysis

    Lemma 3.3. Let w � exp�−Q� ∈ F�C2��. Let L > 0 be fixed. Then one has the following:

    �a� (See [9, Lemma 3.5(a)]) Uniformly for t > 0,

    aLt ∼ at. �3.11�

    �b� (See [9, Lemma 3.5(b)]) Uniformly for t > 0,

    Q�j��aLt� ∼ Q�j��at�, j � 0, 1. �3.12�

    Moreover,

    T�aLt� ∼ T�at�. �3.13�

    �c� (See [9, Lemma 3.11 (3.52)]) Uniformly for t > 0,

    ∣∣∣∣1 −aLtat

    ∣∣∣∣ ∼1

    T�at�. �3.14�

    �d� (See [9, Lemma 3.4 (3.17), (3.18)]) Uniformly for t > 0, one has

    Q�at� ∼ t√T�at�

    , Q′�at� ∼t√T�at�at

    . �3.15�

    Lemma 3.4. For x ∈ R, we have

    Φ�x� � CΦn�x�, n � 1. �3.16�

    Proof. Let x � au, u � 1. By Lemma 3.3�d�we have

    u ∼ Q�au�√T�au�. �3.17�

    So, we have

    δ−1u ∼ Q�au�2/3T�au� �auQ

    ′�au�

    Q�au�1/3�

    xQ′�x�Q1/3�x�

    ∼ Φ−1�au�. �3.18�

  • ISRN Mathematical Analysis 11

    Now, if u � n/2, then

    1 − auan

    � 1 − an/2an

    ∼ 1T�an�

    (by Lemma 3.2�c�

    )

    � 1�nT�an��2/3

    � δn(by �2.17�

    ).

    �3.19�

    So, we have

    Φn�x� � 1 − auan

    � 1 − aua2u

    ∼ 1T�au�

    (by Lemma 3.2�c�

    )

    � 1�uT�au��2/3

    � δu ∼ Φ�x�(by �2.17� and �3.18�

    ).

    �3.20�

    Let n/2 < u < n. Then we have

    Φn�x� � δn ∼ δu ∼ Φ�x�(by Lemmas 3.2�a�, �2.17�, and �3.18�

    ). �3.21�

    Let C�f� denote a positive constant depending only on f .

    Assumption 3.5. Letwρ�x� � |x|ρw�x� andw�x� � exp�−Q�x�� ∈ Fν�C2��, ρ � 0. Suppose thefollowing.

    �A-1� Let f ∈ C�R� satisfy that, for a given 0 < δ < 1,

    ∣∣f�x�∣∣wν−δ�x�

    {∣∣Q′�x�∣∣ �

    1|x|

    }� C

    (f), x ∈ R, �3.22�

    where we suppose lim sup|x|→ 0|f�x�/x| � C�f�.

    �A-2� Let f ∈ Cl�R� for a certain 0 < l � ν − 1. Then we suppose that f satisfies

    ∣∣∣f �s��x�∣∣∣{Φ−3/4�x�wρ�x�

    }ν� C

    (f), x ∈ R, s � 1, 2, . . . , l. �3.23�

    �A-3� Let G � {gs ∈ C�R�, s � l � 1, l � 2, . . . , ν − 1}. Then we suppose that there exists aconstant C > 0 such that

    ∣∣gs�x�∣∣{Φ−3/4�x�wρ�x�

    }ν� C�G�, x ∈ R, s � l � 1, l � 2, . . . , ν − 1. �3.24�

  • 12 ISRN Mathematical Analysis

    Remark 3.6. In �3.22�, we have the following.

    �1� f�0� � 0 and

    ∣∣f�x�

    ∣∣{Φ−3/4�x�wρ�x�

    }ν(∣∣Q′�x�

    ∣∣ �

    1|x|

    )� C

    (f), x ∈ R \ {0}. �3.25�

    �2� For some positive constant C, we have |Q′�x�| � 1/|x| � C. Hence, from �3.22�, itfollows that

    ∣∣f�x�

    ∣∣{Φ−3/4�x�wρ�x�

    }ν� C

    (f), x ∈ R. �3.26�

    We have a chain of results under Assumption 3.1.

    Proposition 3.7. Let ν � 1, 2, 3, . . .. For f�x� satisfying �3.26�, one has

    ∥∥∥∥

    {Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ}νXn

    (ν, f ;x

    )∥∥∥∥L∞�R�

    � C(f). �3.27�

    Proposition 3.8. Let ν � 2, 4, 6, . . .. For f�x� satisfying �3.25�, one has

    ∥∥∥∥

    {Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ}νYn(ν, f ;x

    )∥∥∥∥L∞�R�

    � C(f)εn log n, �3.28�

    where εn is defined by �3.3�.

    Proposition 3.9. Let ν � 1, 2, 3, . . .. For f�x� satisfying �3.23�, one has

    ∥∥∥∥

    {Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ}νZn(l, ν, f ;x

    )∥∥∥∥L∞�R�

    � C(f)an logn

    n, �3.29�

    and for f�x� satisfying �3.24� one has

    ∥∥∥∥

    {Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ}νWn�l, ν, G;x�

    ∥∥∥∥L∞�R�

    � C�G�an logn

    n. �3.30�

    Proposition 3.10. Let ν � 1, 2, 3, . . .. Let P ∈ Pm be fixed. Then one has∥∥∥∥

    {Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ}ν�Ln�ν, P, x� − P�x��

    ∥∥∥∥L∞�R�

    −→ 0 as n −→ ∞. �3.31�

    Proposition 3.11. Let ν � 2, 4, 6, . . .. Let P ∈ Pm with P�0� � 0 be fixed. Then one has∥∥∥∥

    {Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ}ν�Xn�ν, P ;x� − P�x��

    ∥∥∥∥L∞�R�

    −→ 0 as n −→ ∞. �3.32�

  • ISRN Mathematical Analysis 13

    Theorem 3.12. Let ν � 2, 4, 6, . . .. For f�x� satisfying �3.22�, one has

    ∥∥∥∥

    {Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ}ν(Ln(ν, f ;x

    ) − f�x�)∥∥∥∥L∞�R�

    −→ 0 as n −→ ∞. �3.33�

    Theorem 3.13. Let ν � 2, 4, 6, . . .. For f�x� satisfying �3.22� and �3.23�, one has

    ∥∥∥∥

    {Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ}ν(Ln(l, ν, f ;x

    ) − f�x�)∥∥∥∥L∞�R�

    −→ 0 as n −→ ∞. �3.34�

    Corollary 3.14. Let ν � 2, 4, 6, . . .. For f�x� satisfying �3.22�, one has

    ∥∥∥∥

    {Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ}ν(Xn

    (ν, f ;x

    ) − f�x�)∥∥∥∥L∞�R�

    −→ 0 as n −→ ∞. �3.35�

    Theorem 3.15. Let ν � 2, 4, 6, . . .. For f�x� satisfying �3.22�, �3.23� and �3.24�, one has

    ∥∥∥∥

    {Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ}ν(L̃n(l, ν, f ⊕G;x) − f�x�

    )∥∥∥∥L∞�R�

    −→ 0 as n −→ ∞. �3.36�

    Define

    In[k,Hn

    (f)]

    :�∫∞

    −∞k�x�Hn

    (f ;x

    )dx, �3.37�

    where Hn�f� equals to one of the following:

    Ln(ν, f

    ), Ln

    (l, ν, f

    ), L̃n

    (l, ν, f ⊕G), Xn

    (ν, f

    ). �3.38�

    One also defines

    I[k, f

    ]:�∫∞

    −∞k�x�f�x�dx. �3.39�

    Theorem 3.16. Let ν � 2, 4, 6, . . .. Let f�x� satisfy �3.22�, �3.23� and �3.24�. If

    ∫∞

    −∞k�x�

    {Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ}−νdx < ∞, n � 1, 2, 3, . . . , �3.40�

    then we have

    limn→∞

    In[k,Hn

    (f)]

    � I[k, f

    ]. �3.41�

  • 14 ISRN Mathematical Analysis

    For example, we can take k�x� in the following way. If T�x� is unbounded, we have,for Δ ∈ R,

    ∫∞

    1�1 � |x|�−ΔΦ3ν/4�x�dx �

    ∫∞

    1�1 � |x|�−Δ

    (1

    T�x�Q�x�2/3

    )3ν/4dx < ∞ �3.42�

    �see �10, Lemma 2.1�b���. Then we set

    k�x� :� �1 � |x|�ρν−Δ{Φ3/2�x�w�x�

    }ν. �3.43�

    If T�x� is bounded andw�x� � exp�−|x|β�, β > 1, then we takeΔ as νβ/2�Δ > 1 so that �3.43�can hold. Then k�x� defined by �3.43� satisfies �3.40�.

    4. Proof of Theorems

    For constants C,C1 > 0, the same symbol does not necessarily denote the same constant indifferent occurrences.

    Lemma 4.1. One has the following. �1� (See [19, Theorem 2.3]) Let w�x� � exp�−Q�x�� ∈ F�C2�and ρ > −1/2. Then, uniformly for n � 1 one has

    supx∈R

    ∣∣pn,ρ�x�w�x�∣∣(|x| � an

    n

    )ρ∣∣∣x2 − a2n∣∣∣1/4 ∼ 1, �4.1�

    and for w�x� � exp�−Q�x�� ∈ F�C2��,

    supx∈R

    ∣∣pn,ρ�x�w�x�∣∣(|x| � an

    n

    )ρ∼ a−1/2n �nT�an��1/6. �4.2�

    �2� (See [19, Theorem 2.5(d)]) Let w ∈ F�C2�� and ρ > −1/2. Let 1 � j � n − 1 andx ∈ �xj�1,n, xj,n�. Then

    ∣∣pn�x�w�x�∣∣(|x| � an

    n

    )ρ∼ min{∣∣x − xj,n

    ∣∣,∣∣x − xj�1,n

    ∣∣}ϕn(xj,n

    )−1∣∣∣a2n − x2j,n∣∣∣−1/4

    . �4.3�

    �3� (See [19, Theorem 2.5(c)]) Let w ∈ F�C2�� and ρ > −1/2. Then one has

    maxx∈R

    ∣∣∣∣∣pn�x�w�x��|x| � an/n�ρ

    (x − xj,n

    )p′n(xj,n

    )w(xj,n

    )(∣∣xj,n∣∣ � an/n

    ∣∣∣∣∣

    � maxx∈R

    ∣∣∣∣ljn�x�w�x�(|x| � an

    n

    )ρ∣∣∣∣w−1(xj,n

    )(∣∣xj,n

    ∣∣ �ann

    )ρ∼ 1.

    �4.4�

  • ISRN Mathematical Analysis 15

    �4� (See [19, Theorem 2.5(a)]) Let w ∈ F�C2�� and ρ > −1/2. For 1 � j � n we have

    ∣∣p′nw∣∣(xj,n

    )(∣∣xj,n

    ∣∣ �ann

    )ρ∼ ϕ−1n

    (xj,n

    )∣∣∣a2n − x2j,n

    ∣∣∣−1/4

    . �4.5�

    Lemma 4.2 �see �19, Theorem 2.2��. Let w�x� � exp�−Q�x�� ∈ F�C2�� and ρ > −1/2. For thezeros xj,n � xj,n,ρ, one has the following:

    �1� For n � 1 and 1 � j � n − 1,

    xj,n − xj�1,n ∼ ϕn(xj,n

    ),

    ϕn(xj,n

    ) ∼ ϕn(xj�1,n

    )�see ��19, Lemma A.1�A.3����.

    �4.6�

    �2� For the minimum positive zero x�n/2�,n (�n/2� is the largest integer � n/2), one has

    x�n/2�,n ∼ ann−1, �4.7�

    and for large enough n,

    1 − x1,nan

    ∼ δn. �4.8�

    �3� (See [19, Lemma 4.7]) bn � γn−1/γn ∼ an ∼ x1,n, where γn is defined by �1.3�.

    Lemma 4.3. Let w ∈ F�C2��. Then there exist C1, C2 > 0 such that

    supx∈R

    ∣∣pn,ρ�x�w�x�∣∣(|x| � an

    n

    )ρΦ1/4�x� � C1 sup

    x∈R

    ∣∣pn,ρ�x�w�x�∣∣(|x| � an

    n

    )ρΦ1/4n �x�

    � C2a−1/2n .�4.9�

    Proof. The first inequality follows from Lemma 3.4. We show the second inequality. Noting�4.8�, from Lemma 4.1 �4.1�we have

    C � sup|x|�x1,n

    ∣∣pn,ρ�x�w�x�∣∣(|x| � an

    n

    )ρ∣∣∣x2 − a2n∣∣∣1/4

    ∼ sup|x|�x1,n

    ∣∣pn,ρ�x�w�x�∣∣(|x| � an

    n

    )ρa1/2n Φ

    1/4n �x�.

    �4.10�

  • 16 ISRN Mathematical Analysis

    From �4.2�we see that

    a−1/2n � C sup|x|>x1,n

    ∣∣pn,ρ�x�w�x�

    ∣∣(|x| � an

    n

    )ρδ1/4n

    ∼ C sup|x|>x1,n

    ∣∣pn,ρ�x�w�x�

    ∣∣(|x| � an

    n

    )ρΦ1/4n �x�.

    �4.11�

    Therefore we have the result.

    Proof of Proposition 3.7. We recall the definition of Xn�ν, f ;x�:

    Xn(ν, f ;x

    )�

    n∑

    j�1

    f(xj,n

    )lνjn�x�

    ν−2∑

    i�0

    ei(ν, j, n

    )(x − xj,n

    )i

    �ν−2∑

    i�0

    n∑

    j�1

    f(xj,n

    )lνjn�x�

    (x − xj,n

    )iei(ν, j, n

    ).

    �4.12�

    Using Lemma 2.3, we may estimate, for i � 0, 1, . . . , ν − 2 and 1 � j � n,

    Ai,j�x� :�(Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)ν∣∣f(xj,n

    )∣∣∣∣ljn�x�∣∣ν∣∣x − xj,n

    ∣∣i

    ⎜⎝

    n√a22n − x2j,n

    ⎟⎠

    i

    . �4.13�

    Let �xm�1,n � xm,n�/2 < x � xm,n or xm,n � x < �xm−1,n � xm,n�/2. For simplicity, we assumex > 0, and let x0,n :� x1,n � δϕn�x1,n� for a fixed δ > 0 small enough. Then we can assume thatthere exists a constant c > 0 such that

    x0,n :� x1,n � δϕn�x1,n� < an − cδn. �4.14�

    Assume that x < x0,n. Then we first estimate Ai,m�x�. By Lemma 4.1�3� and the definition ofϕn�x�, we have

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)ν|lmn�x�|ν � CΦ3ν/4�x�

    (w�xm,n�

    (|xm,n| � an

    n

    )ρ)ν, �4.15�

    |x − xm,n|i⎛

    ⎜⎝

    n√a22n − x2m,n

    ⎟⎠

    i

    � C

    ⎜⎝

    nϕn�xm,n�√a22n − x2m,n

    ⎟⎠

    i

    � C(√

    1 − |xm,n|/a2n√1 − |xm,n|/an

    )i, �4.16�

    and by Remark 3.6

    ∣∣f�xm,n�∣∣ � C

    (f)Φ3ν/4�xm,n�

    (w�xm,n �

    (|xm,n| � an

    n

    )ρ)−ν. �4.17�

  • ISRN Mathematical Analysis 17

    Therefore, we have

    Ai,m�x� � C(f)Φ3ν/4�x�Φ3ν/4�xm,n�

    (√1 − |xm,n|/a2n

    √1 − |xm,n|/an

    )i

    � C(f)Φ3ν/4�x�

    (max

    {1 − |xm,n|

    an, δn

    })3ν/4(√1 − |xm,n|/a2n√1 − |xm,n|/an

    )i

    � C(f)Φ3ν/4�x�

    (1 − |xm,n|

    an

    )3ν/4−i/2⎛

    1 − |xm,n|a2n

    i

    � C(f).

    �4.18�

    Next, we estimate∑

    1�j�n,j /�m Ai,j�x�. For 1 � j � n, j /�m, we have, by Lemma 4.3 andLemma 4.1�4�,

    (Φ3/4�x�w�x��|x| � an/n�ρ

    )ν∣∣ljn�x�∣∣ν∣∣x − xj,n

    ∣∣i

    � Φν/2�x�

    ∣∣∣∣∣pn�x�Φ1/4�x�w�x��|x| � an/n�ρp′n(xj,n

    )w(xj,n

    )(∣∣xj,n∣∣ � an/n

    ∣∣∣∣∣

    ν (w(xj,n

    )(∣∣xj,n∣∣ � an/n

    )ρ)ν

    ∣∣x − xj,n∣∣ν−i

    � Φν/2�x�a−ν/2n ϕνn

    (xj,n

    )∣∣∣a2n − x2j,n∣∣∣ν/4

    (w(xj,n

    )(∣∣xj,n∣∣ � an/n

    )ρ)ν

    ∣∣x − xj,n∣∣ν−i

    .

    �4.19�

    Then, since we know from Remark 3.6 that

    ∣∣f(xj,n

    )∣∣ � C(f)Φ3ν/4

    (xj,n

    )(w�xj,n�

    (∣∣xj,n∣∣ �

    ann

    )ρ)−ν, �4.20�

    we have, by Lemma 3.4,

    j /�m

    Ai,j�x� � C(f)∑

    j /�m

    Φν/2n �x�Φ3ν/4n

    (xj,n

    )ϕνn(xj,n

    )

    ×(

    1 −∣∣xj,n

    ∣∣

    an

    )ν/4(1

    ∣∣x − xj,n∣∣

    )ν−i⎛

    ⎜⎝

    n√a22n − x2j,n

    ⎟⎠

    i

    .

    �4.21�

    By the definition of ϕn�x� and by Lemma 3.3�a� a2n ∼ an, we have

    ϕνn(xj,n

    )

    ⎜⎝

    n√a22n − x2j,n

    ⎟⎠

    i

    � C(ann

    )ν−i(

    1 −∣∣xj,n

    ∣∣

    a2n

    )ν−i/2(

    1 −∣∣xj,n

    ∣∣

    an

    )−ν/2. �4.22�

  • 18 ISRN Mathematical Analysis

    By Lemma 4.2�1�, we have

    1∣∣x − xj,n

    ∣∣ � C

    1∑

    j�s�m�1 or m−1�s�j ϕn�xs,n�

    � C n/an∑j�s�m�1 or m−1�s�j�1 − |xs,n|/a2n�/�1 − |xs,n|/an � δn�1/2

    � C n/an∑j�s�m�1 or m−1�s�j�1 − |xs,n|/an�/�1 − |xs,n|/an � δn�1/2

    � C n/an∣∣m − j∣∣(1 −max{|x|, ∣∣xj,n

    ∣∣}/an

    )1/2 .

    �4.23�

    Here, we note from �4.14� and �4.8� that

    Φn�x� ∼(1 − |x|

    an

    ), Φn

    (xj,n

    ) ∼(

    1 −∣∣xj,n

    ∣∣

    an

    )

    . �4.24�

    Thus, we have, for j /�m,

    Φν/2n �x�Φ3ν/4n

    (xj,n

    )ϕνn(xj,n

    )(

    1 −∣∣xj,n

    ∣∣

    an

    )ν/4(1

    |x − xj,n|

    )ν−i⎛

    ⎜⎝

    n√a22n − x2j,n

    ⎟⎠

    i

    � C(1 − |x|

    an

    )ν/2(

    1 − |xj,n|an

    )ν/2(

    1 − |xj,n|a2n

    )ν−i/2

    ×⎛

    ⎝ 1

    |m − j|(1 −max{|x|, ∣∣xj,n∣∣}/an

    )1/2

    ν−i

    � C(

    1|m − j|

    )ν−i.

    �4.25�

    Therefore, we have

    1�j�n,j /�m

    Ai,j�x� � C(f)∑

    j /�m

    (1

    ∣∣m − j∣∣

    )ν−i� C

    (f), �4.26�

    because of ν − i � 2.

    Remark 4.4. If we consider the estimate of∑n

    i�1 Ai,ν−1�x� with �4.13�, then we obtain

    n∑

    i�1

    Ai,ν−1�x� � C(f)log n. �4.27�

  • ISRN Mathematical Analysis 19

    We continue the proof Proposition 3.7. We need to estimate∑n

    j�1 Ai,j�x� for |x| > x0,n.Now, suppose x > x0,n. Then similarly to �4.23�, we have

    1∣∣x0,n − xj,n

    ∣∣ � C

    1∑

    1�s�j ϕn�xs,n�� C n/an

    j�1 − x0,n/an�1/2� C 1

    jδ1/2n

    n

    an. �4.28�

    Similarly to �4.21�, we have using �4.22�

    ∑Ai,j�x� � C

    (f)∑

    j

    Φν/2�x�Φ3ν/4n(xj,n

    )ϕνn(xj,n

    )

    ×(

    1 −∣∣xj,n

    ∣∣

    an

    )ν/4(1

    |x0,n − xj,n|

    )ν−i⎛

    ⎜⎝

    n√a22n − x2j,n

    ⎟⎠

    i

    � C(f)∑

    j

    Φν/2n �x�

    (

    1 −∣∣xj,n

    ∣∣

    an

    )ν/2(

    1 − |xj,n|a2n

    )ν−i/2(1

    jδ1/2n

    )ν−i

    � C(f)∑

    j

    1jν−i

    C(f),

    �4.29�

    because of ν − i � 2 and Φν/2�x�δ−�ν−i�/2n � δν/2n δ−�ν−i�/2n � C. Consequently we achieve theresult.

    Remark 4.5. The above proof implies the following: there exists a constant C > 0 such that

    n∑

    j�1

    ∣∣hj,n,ρ�ν;x�∣∣ �

    n∑

    j�1

    ∣∣ljn�x�∣∣ν

    ν−2∑

    i�0|ei�ν, k, n�|

    ∣∣x − xj,n∣∣i � C, x ∈ R. �4.30�

    Proof of Proposition 3.8. We use the same method to prove of Proposition 3.7. So, we let�xm�1,n � xm,n�/2 < x � xm,n or xm,n � x < �xm−1,n � xm,n�/2. For simplicity, we assumex > 0, and let x0,n :� x1,n � δϕn�x1,n� for a fixed δ > 0 small enough and there exists a constantδ1 > 0 such that x0,n :� x1,n � δϕn�x1,n� < an − δ1δn. Assume that x < x0,n. Since f�0� � 0,we may leave out the term with xj,n � 0. Hence we consider only the term of xj,n /� 0. NotingAssumption 3.1, �3.2�, and Lemma 2.7, we estimate

    ∑nj�1 Bν−1,j�x�, where

    Bν−1,j�x� :�(Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)ν

    × ∣∣f(xj,n)∣∣∣∣ljn�x�

    ∣∣ν∣∣x − xj,n∣∣ν−1

    {T�an�an

    �∣∣Q′

    (xj,n

    )∣∣ �1

    ∣∣xj,n∣∣

    }(n

    a2n −∣∣xj,n

    ∣∣

    )ν−2.

    �4.31�

  • 20 ISRN Mathematical Analysis

    First we estimate Bν−1,m�x�. By Lemma 4.2, �4.16�, and the definition of ϕn�x�, we have

    |x − xm,n|ν−1⎛

    ⎜⎝

    n√a22n − x2m,n

    ⎟⎠

    ν−2

    � Cϕn�xm,n�(√

    1 − |xm,n|/a2n√1 − |xm,n|/an

    )ν−2

    � Cann

    (1 − |xm,n|

    a2n

    )1/2(√1 − |xm,n|/a2n√1 − |xm,n|/an

    )ν−1.

    �4.32�

    Since here |Q′�xm,n�| � 1/|xm,n| � C for some positive constant C, we know that(T�an�an

    �∣∣Q′�xm,n�

    ∣∣ �

    1|xm,n|

    )� Cmax

    {1,

    T�an�an

    }(∣∣Q′�xm,n�

    ∣∣ �

    1|xm,n|

    ), �4.33�

    and by �3.25�

    ∣∣f�xm,n�∣∣ � C

    (f)Φ3ν/4�xm,n�

    (w�xm,n�

    (|xm,n| � an

    n

    )ρ)−ν(∣∣Q′�xm,n�∣∣ �

    1|xm,n|

    )−1. �4.34�

    Therefore, using �3.3� and �4.15�, we have

    Bν−1,m�x� � C(f)max

    {1,

    T�an�an

    }Φ3ν/4n �x�Φ

    3ν/4n �xm,n�

    ann

    (1 − |xm,n|

    a2n

    )1/2

    ×(√

    1 − |xm,n|/a2n√1 − |xm,n|/an

    )ν−1

    � C(f)εnΦ3ν/4n �x�Φ

    3ν/4n �xm,n�

    (1 − |xm,n|

    a2n

    )1/2(√1 − |xm,n|/a2n√1 − |xm,n|/an

    )ν−1.

    �4.35�

    Noting �4.24�, we have

    Bν−1,m�x� � C(f)εnΦ3ν/4n �x�

    (1 − |xm,n|

    an

    )�ν�2�/4(1 − |xm,n|

    a2n

    )ν/2� C

    (f)εn. �4.36�

    Next, we estimate∑

    j /�m Bν−1,j�x�. Noting �4.19� and �4.22�, we have

    (Φ3/4n �x�w�x�

    (|x| � an

    n

    )ρ)ν∣∣ljn�x�∣∣ν∣∣x − xj,n

    ∣∣ν−1

    � Φν/2n �x�a−ν/2n ϕ

    νn

    (xj,n

    )∣∣∣a2n − x2j,n∣∣∣ν/4

    (w(xj,n

    )(∣∣xj,n∣∣ � an/n

    )ρ)ν∣∣x − xj,n

    ∣∣ ,

    ϕνn(xj,n

    )

    ⎜⎝

    n√a22n − x2j,n

    ⎟⎠

    ν−2

    � C(ann

    )2(

    1 − |xj,n|an

    )−ν/2(

    1 − |xj,n|a2n

    )ν/2�1.

    �4.37�

  • ISRN Mathematical Analysis 21

    Then by �4.33� and �3.25� �noting �4.34��, using the notation �3.3� and �4.24�, we have

    Bν−1,j�x� � C(f)max

    {1,

    T�an�an

    }(ann

    )2Φν/2n �x�Φ

    3ν/4n

    (xj,n

    )a−ν/2n

    ∣∣∣a2n − x2j,n

    ∣∣∣ν/4

    × 1∣∣x − xj,n∣∣

    (

    1 −∣∣xj,n

    ∣∣

    an

    )−ν/2(

    1 −∣∣xj,n

    ∣∣

    a2n

    )ν/2�1

    � C(f)εn

    annΦν/2n �x�Φ

    3ν/4n

    (xj,n

    )(

    1 −∣∣xj,n

    ∣∣

    an

    )−ν/4(

    1 −∣∣xj,n

    ∣∣

    a2n

    )ν/2�11

    ∣∣x − xj,n

    ∣∣

    � C(f)εn

    ann

    (1 − |x|

    an

    )ν/2(

    1 −∣∣xj,n

    ∣∣

    an

    )ν/2(

    1 − |xj,n|a2n

    )ν/2�11

    ∣∣x − xj,n

    ∣∣ .

    �4.38�

    Therefore, since we know from �4.23� that

    1∣∣x − xj,n

    ∣∣ � Cn/an

    ∣∣m − j∣∣(1 −max{|x|, ∣∣xj,n∣∣}/an

    )1/2 , �4.39�

    noting �4.24�, we have

    j /�m

    Bν−1,j�x� � C(f)εn

    (1 − |x|

    an

    )ν/2∑

    j /�m

    (1 − ∣∣xj,n

    ∣∣/an)ν/2(1 − ∣∣xj,n

    ∣∣/a2n)ν/2�1

    ∣∣m − j∣∣(1 −max{|x|, ∣∣xj,n∣∣}/an

    )1/2

    � C(f)εn

    (1 − |x|

    an

    )�ν−1�/2∑

    j /�m

    (1 − |xj,n|/an

    )�ν−1�/2(1 − ∣∣xj,n∣∣/a2n

    )ν/2�1∣∣m − j∣∣

    � C(f)εn∑

    j /�m

    1∣∣m − j∣∣ � C

    (f)εn log n.

    �4.40�

    Finally, we estimate∑n

    j�1 Bν−1,j�x� for x > x0,n. Suppose x > x0,n. Then similar to the abovecomputations, we have

    Bν−1,j�x� � C(f)εn

    annΦν/2�x�Φ3ν/4n

    (xj,n

    )(

    1 −∣∣xj,n

    ∣∣

    an

    )−ν/4(

    1 −∣∣xj,n

    ∣∣

    a2n

    )ν/2�11

    ∣∣x0,n − xj,n∣∣

    � C(f)εn

    annΦν/2�x�

    (

    1 −∣∣xj,n

    ∣∣

    an

    )ν/2(

    1 −∣∣xj,n

    ∣∣

    a2n

    )ν/2�11

    ∣∣x0,n − xj,n∣∣ .

    �4.41�

    Then, since we know by �4.28� that

    1∣∣x0,n − xj,n

    ∣∣ � C1

    jδ1/2n

    n

    an, �4.42�

  • 22 ISRN Mathematical Analysis

    we have

    Bν−1,j�x� � C(f)εnΦν/2�x�

    (

    1 −∣∣xj,n

    ∣∣

    an

    )ν/2(

    1 −∣∣xj,n

    ∣∣

    a2n

    )ν/2�11

    jδ1/2n. �4.43�

    Then, since Φν/2�x�δ−1/2n < C for x > x0,n, we have

    n∑

    j�1

    Bν−1,j�x� � C(f)εn

    n∑

    j�1

    1j

    � C(f)εn log n. �4.44�

    Therefore, the result is proved.

    Proof of Proposition 3.9. By Lemma 2.3 we see that, for a constant C1 > 0,

    ∣∣Zn(l, ν, f ;x

    )∣∣ � C1n∑

    j�1

    l∑

    s�1

    ∣∣∣f �s�(xj,n

    )∣∣∣∣∣ljn�x�

    ∣∣νν−1∑

    i�s

    ⎜⎝

    n√a22n − x2j,n

    ⎟⎠

    i−s∣∣x − xj,n

    ∣∣i

    � C1ann

    n∑

    j�1

    l∑

    s�1

    ∣∣∣f �s�(xj,n

    )∣∣∣∣∣ljn�x�

    ∣∣νν−1∑

    i�s

    ⎜⎝

    n√a22n − x2j,n

    ⎟⎠

    i

    ∣∣x − xj,n∣∣i

    � C1ann

    l∑

    s�1

    ν−1∑

    i�0

    n∑

    j�1

    ∣∣∣f �s�(xj,n

    )∣∣∣∣∣ljn�x�

    ∣∣ν∣∣x − xj,n∣∣i

    ⎜⎝

    n√a22n − x2j,n

    ⎟⎠

    i

    �:ann

    l∑

    s�1

    ν−1∑

    i�0

    Ci,s�x�,

    �4.45�

    where,

    Ci,s�x� :�n∑

    j�1

    ∣∣∣f �s�(xj,n

    )∣∣∣∣∣ljn�x�

    ∣∣ν∣∣x − xj,n∣∣i

    ⎜⎝

    n√a22n − x2j,n

    ⎟⎠

    i

    . �∗�

    We set

    Xi,s,n(ν, f ;x

    ):�

    n∑

    j�1

    f �s�(xj,n

    )lνjn�x�ei

    (ν, j, n

    )(x − xj,n

    )i, i � 0, 1, . . . , ν − 1, �4.46�

    and hereafter we wrote �∗� as |X|i,s,n�ν, f ;x�. Now, we repeat the proof of Proposition 3.7 byexchanging f�x� with f �s��x�, s � 1, 2, . . . , ν − 1, and we note �3.23� �and �3.26��. Then, for0 � i � ν − 2 we obtain

    {Φ3/4n �x�w�x�

    (|x| � an

    n

    )}ν|X|i,s,n

    (ν, f ;x

    )� C1C

    (f). �4.47�

  • ISRN Mathematical Analysis 23

    For i � ν − 1, we use the estimate for lmn�x� in the proof of Proposition 3.7; furthermore weuse Remark 4.4. Then we have

    {Φ3/4n �x�w�x�

    (|x| � an

    n

    )}ν|X|ν−1,s,n

    (ν, f ;x

    )� C1C

    (f)log n. �4.48�

    Consequently, we have

    {Φn�x�3/4w�x�

    (|x| � an

    n

    )}ν∣∣Zn

    (l, ν, f ;x

    )∣∣ � C1C(f)an log n

    n. �4.49�

    Similarly, we have

    {Φ�x�3/4w�x�

    (|x| � an

    n

    )}ν|Wn�l, ν, G;x�| � C1C�G�

    an log nn

    . �4.50�

    Proof of Proposition 3.10. Let P ∈ Pm be fixed. From Proposition 3.9 we see

    ∥∥∥∥

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)ν{Ln�ν, P� − P}

    ∥∥∥∥L∞�R�

    �∥∥∥∥

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)ν{Ln�ν, P� − Ln�ν − 1, ν, P�}

    ∥∥∥∥L∞�R�

    �∥∥∥∥

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)νZn�ν − 1, ν, P�

    ∥∥∥∥L∞�R�

    −→ 0 as n −→ ∞.

    �4.51�

    Proof of Proposition 3.11. Let P ∈ Pm with P�0� � 0. Then P satisfies the condition �A-1�. ByProposition 3.8, we see

    ∥∥∥∥

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)νYn�ν, P�

    ∥∥∥∥L∞�R�

    −→ 0 as n −→ ∞. �4.52�

    So, from Propositions 3.10 and 3.8 �noting �3.3��we have

    ∥∥∥∥

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)ν�Xn�ν, P� − P�

    ∥∥∥∥L∞�R�

    � C1∥∥∥∥

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)ν�Ln�ν, P� − P�

    ∥∥∥∥L∞�R�

    �∥∥∥∥

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)νYn�ν, P�

    ∥∥∥∥L∞�R�

    −→ 0 as n −→ ∞.

    �4.53�

  • 24 ISRN Mathematical Analysis

    Proof of Theorem 3.12. Since f satisfies �3.22�, we see

    lim|x|→∞

    ∣∣f�x�

    ∣∣w�x�ν−δ � 0. �4.54�

    For a given ε > 0, there exists a polynomial P ∈ Pm with P�0� � 0 such that

    supx∈R

    ∣∣f�x� − P�x�∣∣

    {Φ−3/4�x�w�x�

    (|x| � an

    n

    )ρ}ν< ε. �4.55�

    In fact, by �21, Theorem 1.4�, there exists a polynomial R ∈ Pm such that

    supx∈R

    ∣∣f�x� − R�x�∣∣wν−δ�x� < ε2. �4.56�

    Let P�x� :� R�x� − R�0�. Noting that

    {Φ−3/4�x�w�x�

    (|x| � an

    n

    )ρ}ν� Cwν−δ�x�, x ∈ R for some C > 0 �4.57�

    and f�0� � 0, we have

    supx∈R

    ∣∣f�x� − P�x�∣∣{Φ−3/4�x�w�x�

    (|x| � an

    n

    )ρ}ν

    � supx∈R

    ∣∣f�x� − P�x�∣∣wν−δ�x�

    � supx∈R

    ∣∣f�x� − R�x�∣∣wν−δ�x� � ∣∣f�0� − R�0�∣∣wν−δ�0� < ε;

    �4.58�

    that is, we have �4.55�. Here, we know that

    Ln(ν, f

    )�x� − f�x� � Xn

    (ν, f − P) � �Xn�ν, P� − P� �

    (P − f) � Yn

    (ν, f

    ). �4.59�

  • ISRN Mathematical Analysis 25

    Therefore, by Propositions 3.7, 3.11, and 3.8, we have for n large enough

    ∥∥∥∥

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)ν(Ln(ν, f

    ) − f)∥∥∥∥L∞�R�

    � C∥∥∥∥

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)νXn

    (ν, f − P)

    ∥∥∥∥L∞�R�

    �∥∥∥∥

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)ν�Xn�ν, P� − P�

    ∥∥∥∥L∞�R�

    �∥∥∥∥

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)ν(P − f)

    ∥∥∥∥L∞�R�

    �∥∥∥∥

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)νYn(ν, f

    )∥∥∥∥L∞�R�

    �: In � IIn � IIIn � IVn.

    �4.60�

    Here we see that, by Proposition 3.7 with ε :� C�f − P� �constant depending only on f − P�and �4.55�,

    In � Cε, IIIn � ε, �4.61�

    and for n � n0 large enough, we have

    IIn � Cε,(by Proposition 3.9

    ),

    IVn � Cε,(by Proposition 3.6

    ).

    �4.62�

    Consequently, noting �3.3�, we have

    limn→∞

    {In � IIn � IIIn � IVn} � 0. �4.63�

    Then we have Theorem 3.12.

    Proof of Theorem 3.13. From Theorem 3.12 and Proposition 3.9, we have

    ∥∥∥∥

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)ν(Ln(l, ν, f

    ) − f)∥∥∥∥L∞�R�

    � C1∥∥∥∥

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)ν(Ln(ν, f

    ) − f)∥∥∥∥L∞�R�

    �∥∥∥∥

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)νZn(l, ν, f

    )∥∥∥∥L∞�R�

    −→ 0 as n −→ ∞.

    �4.64�

  • 26 ISRN Mathematical Analysis

    Proof of Corollary 3.14. From Theorem 3.12 and Proposition 3.8, we have

    ∥∥∥∥

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)ν(Xn

    (ν, f

    ) − f)∥∥∥∥L∞�R�

    � C1∥∥∥∥

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)ν�Ln�ν, f� − f�

    ∥∥∥∥L∞�R�

    �∥∥∥∥

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)νYn�ν, f�

    ∥∥∥∥L∞�R�

    −→ 0 as n −→ ∞.

    �4.65�

    Proof of Theorem 3.15. From Theorem 3.13 and Proposition 3.10 we have

    ∥∥∥∥

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)ν(L̃n(l, ν, f ⊕G) − f

    )∥∥∥∥L∞�R�

    � C∥∥∥∥

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)ν(Ln(l, ν, f

    ) − f)∥∥∥∥L∞�R�

    �∥∥∥∥

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)νWn�l, ν, G�

    ∥∥∥∥L∞�R�

    −→ 0 as n −→ ∞.

    �4.66�

    Proof of Theorem 3.16. We use Theorems 3.12, 3.13, and Corollary 3.14, and Theorem 3.15.Then we have

    ∣∣In[k,Hn

    (f); f] − I[k, f]∣∣

    �∫∞

    −∞k�x�

    {Hn

    (f)�x� − f�x�}dx

    � C∥∥∥∥

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)ν{Hn

    (f)�x� − f�x�}

    ∥∥∥∥L∞�R�

    ×∫∞

    −∞

    (Φ3/4�x�w�x�

    (|x| � an

    n

    )ρ)νk�x�dx −→ 0 as n −→ ∞.

    �4.67�

    5. Divergence Theorem

    If ν is a positive odd integer, then we obtain the unboundedness of Ln�ν, f ;x�. We define

    Λn�ν,R� � maxx∈R

    n∑

    k�1

    |hkn�x�|. �5.1�

    Theorem 5.1 �cf. �1, Theorem 2��. Let ν > 0 be an odd integer. Then there exists a constant C > 0and n0 > 0 such that for n � n0

    Λn�ν,R� � C log n. �5.2�

  • ISRN Mathematical Analysis 27

    Let −∞ � a < b � ∞, and let us define

    Λn�ν, �a, b�� � maxa�x�b

    n∑

    k�1

    |hkn�x�|. �5.3�

    Then we will show that for n � n0

    Λn�ν, �a, b�� � C log n. �5.4�

    Remark 5.2. For the interpolation polynomial Ln�ν, f ;x�, we can see a remarkable differencebetween the cases of an odd number ν and of an even number ν. Let us consider anycontinuous function f ∈ C��a, b��, 0 < a < b. Then we can extend f to a continuous functionf∗ ∈ C�R� which satisfies �3.22� and f�x� � f∗�x�, x ∈ �a, b�. Then from Theorem 3.12 for aneven positive integer ν, we see

    ∥∥Ln(ν, f∗;x

    ) − f�x�∥∥L∞��a,b�� −→ 0 as n −→ ∞. �5.5�

    On the other hand, the standard argument �cf, �22, Theorem 4.3�� leads us to the following.Theorem 5.1 means that there exists a certain function f∗ ∈ C�R� such that

    ∥∥Ln(ν, f∗;x

    ) − f∗�x�∥∥L∞��a,b�� � 0 as n −→ ∞; �5.6�

    that is, for f�x� :� f∗�x�, a � x � b we see that the interpolation polynomials Ln�ν, f∗;x� donot converge to f . We also remark that the polynomial Ln�ν, f∗;x� interpolates f ∈ C�a, b� atonly {xj,n ∈ �a, b�, 1 � j � n}.

    To prove the theorem we use the following lemma.

    Lemma 5.3 �see �18, Theorem 11��. For j � 0, 1, 2, . . ., there is a polynomial Ψj�x� of degree j suchthat �−1�jΨj�−ν� > 0 for ν � 1, 3, 5, . . ., and the following relation holds. Let 0 < ε < 1. Then one hasan expression for �1/ε��an/n� � |xk,n| � εan and s � 0, 1, . . . , �ν − 1�/2:

    e2s�ν, k, n� � �−1�s{

    1�2s�!

    }Ψs�−ν�βs�n, k�

    (n

    an

    )2s{1 � ηkn�ν, s�

    }, �5.7�

    where for βs�n, k�, n � 1, 2, 3, . . ., k � 1, 2, . . . , n, s � 0, 1, . . . , �ν − 1�/2, there exist the constantsC1, C2 such that

    0 < C1 � βs�n, k� � C2, �5.8�

  • 28 ISRN Mathematical Analysis

    and ηkn�ν, s� satisfies

    ∣∣ηkn�ν, s�

    ∣∣ � ε∗n, ε∗n � ε∗n�ε� −→ 0 as ε −→ 0, �5.9�

    for k with �1/ε��an/n� � |xk,n| � εan, and for s � 0, 1, 2, . . ..

    Proof of Theorem 5.1. To get a lower bound of Λn�ν,R�, it suffices to consider a lower bound�5.4� ofΛn�ν, �a, b��with 0 < a < b < ∞. Let c :� a/2, d :� 2b−a and we consider the intervalsI :� �a, b�, J � �c, d�. If we consider n large enough, then we have �1/ε��an/n� � c < 2b − a �εan. See the expression

    |hkn�x�| �∣∣∣lνkn�x�eν−1�ν, k, n��x − xk,n�ν−1

    ∣∣∣ −

    ∣∣∣∣∣lνkn�x�

    ν−2∑

    i�0

    ei�ν, k, n��x − xk,n�i∣∣∣∣∣. �5.10�

    Then we have

    Λn�ν, �a, b�� � maxx∈I

    xkn∈J

    ∣∣∣lνkn�x�eν−1�ν, k, n��x − xk,n�ν−1∣∣∣

    −maxx∈I

    xkn∈J

    ∣∣∣∣∣lνkn�x�

    ν−2∑

    i�0

    ei�ν, k, n��x − xk,n�i∣∣∣∣∣

    �: maxx∈I

    Fn�x� −maxx∈I

    Gn�x�.

    �5.11�

    It follows from Remark 4.5 that maxa�x�b Gn�x� � C. Hence, it is enough to show thatmaxx∈IFn�x� � C logn. Let xk�1,n, xk,n ∈ J ; then by Lemma 4.2 and the definition of ϕn�xk,n�there exists 0 < α � β < ∞ such that

    αann

    � |xk,n − xk�1,n| � βann. �5.12�

    For x ∈ I we consider only xk,n ∈ J such that, for some positive integer jk,

    (jk − 1

    )αann

    � |xk,n − x| � jkβann. �5.13�

    Then for each x ∈ I we define

    Γ�x� :�{jk;xk,n ∈ J,

    (jk − 1

    )αann

    � |xk,n − x| � jkβann

    }. �5.14�

  • ISRN Mathematical Analysis 29

    Here, we will see that

    {j; 1 � j � d − c

    2βn

    an− 1

    }⊂ Γ�x�. �5.15�

    Let

    xm�1,n < x � xm,n,xk�c��1,n < c � xk�c�,n, xk�d�,n � d < xk�d�−1,n.

    �5.16�

    Then we have

    x − xm�1,n � xm,n − xm�1,n � βann,

    x − xm�2,n � xm,n − xm�2,n � 2βann,

    ...

    x − xk�c�,n � xm,n − xk�c�,n � j�c�βann,

    xm,n − x � xm,n − xm�1,n � βann,

    xm−1,n − x � xm−1,n − xm�1,n � 2βann,

    ...

    xk�d�,n − x � xk�d�,n − xm�1,n � j�d�βann,

    �5.17�

    where j�c� and j�d� are integers. On the other hand,

    (xk�d�,n − xk�c�,n

    )

    (βan/n

    ) �(d − c − 2βan/n

    )

    (βan/n

    ) �d − cβ

    n

    an− 2. �5.18�

    Therefore, we have

    max(j�c�, j�d�

    )� 1

    2

    (d − cβ

    n

    an− 2

    )�

    d − c2β

    n

    an− 1. �5.19�

    Now, we take a positive integer N�n� such that

    N�n� � d − c2β

    n

    an− 1 < N�n� � 1. �5.20�

  • 30 ISRN Mathematical Analysis

    Consequently, we have the following. By Lemmas 4.2�1�, Lemma 4.1�1�, �2�, �4�, andLemma 2.3, we have

    Fn�x� �∑

    xk,n∈J|lkn�x�|ν|eν−1�ν, k, n�||xk,n − x|ν−1

    �∑

    xk,n∈J

    ( ∣∣pn�x�

    ∣∣wρ�x�

    |x − xk,n|∣∣p′n�xk,n�

    ∣∣wρ�xk,n�

    wρ�xk,n�wρ�x�

    )ν|eν−1�ν, k, n�||x − xk,n|ν−1

    �∑

    xk,n∈J

    ( ∣∣pn�x�

    ∣∣wρ�x�

    ∣∣p′n�xk,n�

    ∣∣wρ�xk,n�

    wρ�xk,n�wρ�x�

    )ν|eν−1�ν, k, n�| 1|x − xk,n|

    � C∑

    jk∈Γ�x�

    (a−1/2n

    �n/an�a−1/2n

    wρ�d�wρ�a�

    )ν|eν−1�ν, k, n�| n

    jkβan

    � C∑

    jk∈Γ�x�

    1jk

    (ann

    )ν−1|eν−1�ν, k, n�|.

    �5.21�

    Here, using Lemma 5.3 and �5.15�, we have

    Fn�x� � C∑

    jk∈Γ�x�

    1jk

    (ann

    )ν−1( nan

    )ν−1� C

    1�j�N�n�

    1j. �5.22�

    Here, there exists 0 < η < 1 such that nη � N�n�. Therefore we see

    Fn�x� � C∑

    1�j�nη

    1j

    � C log n. �5.23�

    So we have �5.4�, and consequently the proof of Theorem 5.1 is completed.

    Acknowledgment

    The authors thank the referees for many kind suggestions and comments.

    References

    �1� Y. Kanjin and R. Sakai, “Pointwise convergence of Hermite-Fejér interpolation of higher order forFreud weights,” The Tohoku Mathematical Journal, vol. 46, no. 2, pp. 181–206, 1994.

    �2� Y. Kanjin and R. Sakai, “Convergence of the derivatives of Hermite-Fejér interpolation polynomialsof higher order based at the zeros of Freud polynomials,” Journal of Approximation Theory, vol. 80, no.3, pp. 378–389, 1995.

    �3� D. S. Lubinsky, “Hermite and Hermite-Fejér interpolation and associated product integration ruleson the real line: the L1 theory,” Journal of Approximation Theory, vol. 70, no. 3, pp. 284–334, 1992.

    �4� T. Kasuga and R. Sakai, “Uniform ormean convergence of Hermite-Fejér interpolation of higher orderfor Freud weights,” Journal of Approximation Theory, vol. 101, no. 2, pp. 330–358, 1999.

    �5� T. Kasuga and R. Sakai, “Orthonormal polynomials with generalized Freud-type weights,” Journal ofApproximation Theory, vol. 121, no. 1, pp. 13–53, 2003.

  • ISRN Mathematical Analysis 31

    �6� T. Kasuga and R. Sakai, “Orthonormal polynomials for generalized Freud-type weights and higher-order Hermite-Fejér interpolation polynomials,” Journal of Approximation Theory, vol. 127, no. 1, pp.1–38, 2004.

    �7� T. Kasuga and R. Sakai, “Orthonormal polynomials for Laguerre-type weights,” Far East Journal ofMathematical Sciences, vol. 15, no. 1, pp. 95–105, 2004.

    �8� T. Kasuga and R. Sakai, “Conditions for uniform or mean convergence of higher order Hermite-Fejér interpolation polynomials with generalized Freud-typeweights,” Far East Journal of MathematicalSciences, vol. 19, no. 2, pp. 145–199, 2005.

    �9� A. L. Levin and D. S. Lubinsky, Orthogonal Polynomials for Exponential Weights, Springer, New York,NY, USA, 2001.

    �10� H. S. Jung and R. Sakai, “Specific examples of exponential weights,” Korean Mathematical Society, vol.24, no. 2, pp. 303–319, 2009.

    �11� H. S. Jung and R. Sakai, “The Markov-Bernstein inequality and Hermite-Fejér interpolation forexponential-type weights,” Journal of Approximation Theory, vol. 162, no. 7, pp. 1381–1397, 2010.

    �12� R. Sakai, “Hermite-Fejér interpolation,” in Approximation Theory, vol. 58, pp. 591–601, North-Holland,Amsterdam, The Netherlands, 1990.

    �13� R. Sakai, “The degree of approximation of differentiable functions by Hermite interpolationpolynomials,” Acta Mathematica Hungarica, vol. 58, no. 1-2, pp. 9–11, 1991.

    �14� R. Sakai, “Hermite-Fejér interpolation prescribing higher order derivatives,” in Progress in Approxima-tion Theory, pp. 731–759, Academic Press, Boston, Mass, USA, 1991.

    �15� R. Sakai, “Certain bounded Hermite-Fejer interpolation polynomials operator,” Acta MathematicaHungarica, vol. 59, pp. 111–114, 1992.

    �16� R. Sakai and P. Vértesi, “Hermite-Fejér interpolations of higher order. III,” Studia ScientiarumMathematicarum Hungarica, vol. 28, no. 1-2, pp. 87–97, 1993.

    �17� R. Sakai and P. Vértesi, “Hermite-Fejér interpolations of higher order. IV,” Studia ScientiarumMathematicarum Hungarica, vol. 28, no. 3-4, pp. 379–386, 1993.

    �18� H. S. Jung and R. Sakai, “Derivatives of orthonormal polynomials and coefficients of Hermite-Fejérinterpolation polynomials with exponential-type weights,” Journal of Inequalities and Applications, vol.2010, Article ID 816363, 29 pages, 2010.

    �19� H. S. Jung and R. Sakai, “Orthonormal polynomials with exponential-type weights,” Journal ofApproximation Theory, vol. 152, no. 2, pp. 215–238, 2008.

    �20� H. S. Jung and R. Sakai, “Derivatives of integrating functions for orthonormal polynomials withexponential-type weights,” Journal of Inequalities and Applications, vol. 2009, Article ID 528454, 22pages, 2009.

    �21� D. S. Lubinsky, “A survey of weighted polynomial approximation with exponential weights,” Surveysin Approximation Theory, vol. 3, pp. 1–105, 2007.

    �22� T. J. Rivlin, An Introduction to the Approximation of Functions, Dover, New York, NY, USA, 1981.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of