Continuum Dislocation Theory Size

Embed Size (px)

Citation preview

  • 8/18/2019 Continuum Dislocation Theory Size

    1/78

    Continuum dislocation theory: size effects and

    formation of microstructure

    K.C. Le

    Lehrstuhl für Mechanik - MaterialtheorieRuhr-Universität Bochum, 44780 Bochum, Germany

    Workshop on ”Multiscale Material Modeling”, Bad Herrenalb 2012

    Collaborators: V. Berdichevsky, D. Kochmann, Q.S. Nguyen,P. Sembiring, B.D. Nguyen

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 1 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    2/78

    Outline of my lecture

    Size effects in crystal plasticity and formation of microstructure

    Why continuum dislocation theory?

    Thermodynamic framework of CDT

    Antiplane constrained shear

    Plane constrained shear

    Double slip systems

    Mechanism of twin formation

    Continuum model of deformation twinning

    Bending

    Polygonization

    Conclusion

    Further works

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 2 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    3/78

    Size effects in crystal plasticity and formation of 

    microstructures

    Hall-Petch relation

    Indentation

    Shear, torsion, bending

    Deformation twinning

    Polygonization

    Recrystallization

    Grain growth

    Texturing

    ect.

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 3 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    4/78

    Hall-Petch relation

    σY  ∝ σY 0 +   λ√ d 

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 4 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    5/78

    Indentation test

    H  =  F 

    A

      (Hardness)

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 5 / 78

    T i f i

  • 8/18/2019 Continuum Dislocation Theory Size

    6/78

    Twin formation

    TEM micrograph of the [1̄11] oriented single crystal under tension. Strain

    30%, Karaman et al., 2000

  • 8/18/2019 Continuum Dislocation Theory Size

    7/78

    Polygonization

    Polygonized state of a bent single crystal beam

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 7 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    8/78

    View along intersections of slip planes with polygon boundaries in a

    polygonized zinc crystal, Gilman, 1955

  • 8/18/2019 Continuum Dislocation Theory Size

    9/78

    Why continuum dislocation theory?

    Plastic deformations are due to nucleation, multiplication and motion

    of dislocationsDislocations appear to reduce energy of crystals

    Motion of dislocations produces energy dissipation which causes theresistance to their motion

    Under favorable condition the rearrangement of dislocations bydislocation climbing and gliding may reduce further energy of crystals

    Deformation twinning and polygonization are low energy dislocationstructures

    Continuum description is dictated by high dislocation densities(108-1014m−2). To compare: dislocation density 4×1011m−2 meansthat the total length of dislocation loops in one cubic meter of crystalequals the distance from the earth to the moon

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 9 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    10/78

    Related literature

    Continuum dislocation theory: Kondo,1952; Nye,1953; Bilby  et 

    al.,1955; Kröner,1955,1958; Berdichevsky & Sedov,1967; Le &Stumpf,1996a,b,c; Ortiz & Repetto,1999; Ortiz  et al.,2000;Acharya,2001; Svendsen,2002; Gurtin,2002,2004; Berdichevsky,2006;Berdichevsky & Le,2007; Le & Sembiring,2008a,b,2009; Kochmann &Le,2008,2009a,b; Le &Nguyen,2010,2011; Le & Nguyen,2012.

    Strain gradient plasticity: Fleck  et al.,1994; Shu & Fleck,1999; Gao  et al.,1999; Acharya & Bassani,2000; Huang  et al.,2000,2004; Fleck &Hutchinson,2001; Han  et al.,2005; Aifantis & Willis,2005.

    Statistical mechanics of dislocations: Le & Berdichevsky,2001,2002;

    Groma  et al.,2003,2005; Berdichevsky,2005,2006.Discrete dislocation simulations: Needleman & Van der Giessen,2001;Shu  et al.,2001; Yefimov  et al.,2004.

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 10 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    11/78

    Thermodynamic framework of CDT

    Kinematics

    s

    m

    p

    e

    = +e p

    Small strain theory: unknown functions  u i (x ), β ij (x )Plastic distortion:   β ij  =

    na=1 β a(x )s 

    a

    i  ma

     j 

    Total (compatible) strain:   εij   =  12 (u i , j  + u  j ,i )

    Plastic (incompatible) strain:   εp ij  =  12 (β ij  + β  ji )

    Elastic (incompatible) strain:   εe ij  = εij  −

    εp ij 

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 11 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    12/78

    Dislocation density

    da

     Bi=αijn jda

    1   2   3   4   5

    6

    7

    89101112

    13

    1   2   3 4   5

    6

    7

    891011

    12

    13

    14   14

     b

    a)   b)

    Dislocation density:   αij  =  jkl β il ,k 

    Geometrical interpretation: Stokes theorem

     S αij n j  da =

     L β ij τ  j  ds  = B i 

    B i  is the resultant Burgers vector of all GND (excess dislocations), whosedislocation lines cuts the area S . For single slip the scalar dislocationdensity is  ρ =   1

    | jkl β ,k ml n j 

    |.

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 12 / 78

    E ti

  • 8/18/2019 Continuum Dislocation Theory Size

    13/78

    Energetics

    State variables: elastic strain  εe ij  and dislocation density  αij  (plastic strainand its gradient are history dependent and are not the state variables)

    Free energy density (Kröner)

    ψ(εij  − εp ij , αij ) = ψ0(εij  − εp ij ) + ψm(αij )Elastic energy of the crystal lattice

    ψ0(εe ij ) = 12C ijkl εe ij ε

    e kl 

    Energy of microstructure (single slip system, Berdichevsky, 2006)

    ψm(αij ) = µk  ln  1

    1 − ρ/ρs Small up to moderate dislocation density

    ψm(αij ) µk ρ

    ρs +

     1

    2

    ρ2

    ρ2s K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 13 / 78

    V i ti l i i l f CDT

  • 8/18/2019 Continuum Dislocation Theory Size

    14/78

    Variational principles of CDT

    Negligible resistance to dislocation motion: the energy minimization

    I (u i , β ij ) = 

    Ω ψ(εij  − εp 

    ij , αij )dx  → minu ,βFinite resistance to dislocation motion: Variational equation (Sedov,Berdichesky, 1967)

    δ I  + 

    Ω∂ D ∂  β̇ ij 

    δβ ij  dx  = 0

    implying the evolution equation (of Biot type) for the plastic distortion

    ∂ D 

    ∂  β̇ ij = −

    δ εψ

    δβ ij  ≡ −∂ψ

    ∂β ij  +  ∂ 

    ∂ x k 

    ∂ψ

    ∂β ij ,k 

    Note that, if the dissipation potential  D  = D ( β̇ ij ) is a homogeneousfunction of first order (rate-independent theory), the variational equation

    reduces to the minimization of “relaxed” energy.K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 14 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    15/78

    Antiplane constrained shear

     x

     y

    a

     z 

    h L

    A single crystal strip is placed in a “hard” device with the prescribed

    displacements at the boundary

    u z  = γ y 

    γ  overall shear strain (control parameter)

    Assumption:   a h, a LK.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 15 / 78

    Single slip system

  • 8/18/2019 Continuum Dislocation Theory Size

    16/78

    Single slip system

    Plastic distortion

    β zy   = β (x )

    Since dislocation cannot reach the boundary  x  = 0, a, the plastic distortionβ (y ) satisfies the constraints:

    β (0) = β (a) = 0

    The plastic strains are given by

    εp yz  = εp zy   =

     1

    2β (x ).

    The only non-zero component of tensor of dislocation density is

    αzz  = β ,x .

    The free energy density of the crystal with dislocations takes a simple form

    ψ = 1

    2µ(γ − β )2 + µk ( |β ,x |

    ρs b   +

    β 2,x ρ2s b 

    2),

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 16 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    17/78

    Energy minimization

    If the resistance to dislocation motion is negligible, the true plastic

    distortion minimizes the total energy

    I [β (x )] = hL

       a0

    1

    2µ(γ − β )2 + µk ( |β ,x |

    ρs b   +

    β 2,x ρ2s b 

    2)

     dx 

    Introducing the dimensionless quantities

    x̄  = xb ρs ,   ā = ab ρs ,   E   =  b ρs µhL

    to rewrite the energy functional in the form

    E [β (x )] =

       a0

    1

    2(γ − β )2 + k (|β | + 1

    2β 2)

     dx 

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 17 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    18/78

    Energetic threshold

     x

    Β

    Ε   aa-Ε

    Β

    E  = 1

    2(γ − β 0)2a + 2k |β 0|

    Minimization of this function shows that there exists the threshold value

    γ en  =   2k ab ρs 

    Size effect (typical to all gradient theories): the threshold value is inverselyproportional to the size  a  of the specimen.

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 18 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    19/78

    Minimizer

    Ansatz (based on the feature of dislocation pile-up)

    β (x ) =

    β 1(x ) for   x  ∈ (0, l ),β m   for   x  ∈ (l , a − l ),β 1(a − x ) for   x  ∈ (a − l , a),

    Functional

    E  = 2

       l 0

    1

    2(γ − β 1)2 + k 

    β 1 +

     1

    2β 21

     dx  +

     1

    2(γ − β m)2(a − 2l ).

    Function β 1(x ) is subject to the boundary conditions

    β 1(0) = 0, β 1(l ) = β m.

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 19 / 78

    V i hi f i l i h β ( ) b i h E l

  • 8/18/2019 Continuum Dislocation Theory Size

    20/78

    Varying this energy functional with respect to  β 1(x ) we obtain the Eulerequation for  β 1(x ) on the interval (0, l )

    γ 

    −β 1 + k β 

    1   = 0.

    The variation of energy functional with respect to  β m  and   l  yields the twoadditional boundary conditions at  x  = l 

    β 1(l ) = 0,   2k  = (γ 

    −β m)(a

    −2l ).

    Solution

    β 1(x ) = γ − γ (cosh   x √ k − tanh   l √ 

    k sinh

      x √ k 

    ),   0 ≤ x  ≤ l .

    Transcendental equation to determine   l 

    f   (l ) ≡ 2l  + 2 k γ 

     cosh  l √ 

    k = a.

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 20 / 78

    Evolution of plastic distortion

  • 8/18/2019 Continuum Dislocation Theory Size

    21/78

    Evolution of plastic distortion

    0.05 0.10 0.15   0.20 0.25 0.30   0.35

    0.002

    0.004

    0.006

    0.008

     x

    β

    a

     b

    c

    Evolution of  β : a)γ  = 0.001, b)γ  = 0.005, c)γ  = 0.01

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 21 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    22/78

    Stress strain curve

    0.001 0.002   0.003 0.004   0.005

    0.0002

    0.0004

    0.0006

    0.0008

    σ/μ

    γO

    A

    B

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 22 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    23/78

    Non-zero dissipation

    For the case with dissipation ( ˙β > 0) we have to solve the evolutionequation

    γ − β  + k β ,xx  = γ c , β (0) = β (a) = 0,

    with γ c 

     = K /µ. Introduce the deviation of  γ (t ) from the critical shear, γ c 

    ,γ r   = γ − γ c  > 0

    γ r  − β  + k β  = 0.

    Thus,  β  = γ r β 1. Similarly, for  β̇

  • 8/18/2019 Continuum Dislocation Theory Size

    24/78

    g p g

    t

    c

    Loading path

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 24 / 78

    Hysteresis and Bauschinger effect

  • 8/18/2019 Continuum Dislocation Theory Size

    25/78

    g

    -0.0005 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

    -0.0004

    -0.0002

    0.0002

    0.0004

    O

    A

    B

    C

    D

    σ/μ

    γ

    Average shear stress versus shear strain curve

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 25 / 78

    Plane strain constrained shear

  • 8/18/2019 Continuum Dislocation Theory Size

    26/78

    Plane strain constrained shear

    0

     y

     x

    h

    sm

    a

     L

     z 

    γh

    A single crystal strip is placed in a “hard” device with the prescribed

    displacements at the boundary

    u  = γ y ,   v  = 0 at  y  = 0, h

    γ  overall shear strain (control parameter)

    Assumption:   h a LK.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 26 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    27/78

    Single slip system

    The plastic distortion tensor

    β ij  = β (y )s i m j 

    where

    s = (cos ϕ, sin ϕ, 0),   m = (− sin ϕ, cos ϕ, 0)

    Since dislocation cannot reach the boundary  y  = 0, h, the plasticdistortion β (y ) satisfies the constraints:

    β (0) = β (h) = 0

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 27 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    28/78

    Strain measures

    Total strain

    εxx  = 0, εxy   = 1

    2u ,y , εyy   = v ,y 

    Plastic strains

    εp xx  = −12 β  sin 2ϕ, εp xy   = 12 β  cos 2ϕ, εp yy   = 12 β  sin 2ϕ

    Elastic strain

    εe xx  = 1

    2β  sin 2ϕ, εe xy   =

     1

    2(u ,y 

     −β  cos 2ϕ),

    εe yy   = v ,y  − 1

    2β  sin 2ϕ

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 28 / 78

    Nye’s dislocation density

  • 8/18/2019 Continuum Dislocation Theory Size

    29/78

    da

     Bi=αijn jda

    Non-zero components of dislocation density tensor

    αxz  = β ,y  sin ϕ cos ϕ, αyz  = β ,y  sin2 ϕ

    Scalar dislocation density

    ρ =  1

    b  α2xz  + α

    2yz  =

      1

    b |β ,y || sin ϕ|

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 29 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    30/78

    Energy density

    Energy per unit volume of dislocated crystal

    ψ(εe ij , αij ) = 1

    2 λ (εe ii )2 + µεe ij εe ij  + µk  ln  1

    1 −   ρρs 

    λ, µ  - Lamé constants,  b   - magnitude of Burgers’ vector,  ρs   - saturateddislocation density,  k   - material constant

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 30 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    31/78

    Energy functional

    E  = aL    h

    0 1

    2λv 2,y  +

     1

    2µ(u ,y  − β  cos 2ϕ)2 + 1

    4µβ 2 sin2 2ϕ

    + µ(v ,y  −  12

    β  sin 2ϕ)2 + µk  ln  1

    1 −   |β,y || sinϕ|b ρs 

    dy 

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 31 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    32/78

    Reduced energy functional

    Minimization with respect to  u  and  v   leads to

    E (β ) =aL   h

    0

    µ12

    (1

    −κ)β 2 sin2 2ϕ +

     1

    2

    κ

    β 

    2 sin2 2ϕ

    + 1

    2(γ − β  cos2ϕ)2 + k  ln   1

    1 −   |β,y || sinϕ|b ρs 

    dy 

    where β  =  1

    h h

    0   β (y ) dy 

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 32 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    33/78

    Energy minimization

    If the resistance to dislocation motion is negligible, the true plastic

    distortion minimizes the total energy

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 33 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    34/78

    Energetic threshold

    γ en  =  2k 

    hb ρs 

    | sin ϕ|| cos2ϕ|

    Size effect: the threshold value is inversely proportional to the size  h.

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 34 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    35/78

    Material parameter

    Material   µ  (GPa)   ν    b  (Å)   ρs   (µm−2)   k 

    Aluminum 26.3 0.33 2.5 1.834103 0.000156

    Table:   Material characteristics

    In all simulations  h = 1µm

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 35 / 78

    Evolution of plastic distortion

  • 8/18/2019 Continuum Dislocation Theory Size

    36/78

    0.1 0.2 0.3 0.4

    -0.0075

    -0.005

    -0.0025

    0.0025

    0.005

    0.0075

    a

    b

    c

    d

    e

    f

     y-

    =30°

    =60°

    Β

    Evolution of  β : a,d)γ  = 0.0068, b,e)γ  = 0.0118, c,f)γ  = 0.0168

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 36 / 78

    Stress strain curve

  • 8/18/2019 Continuum Dislocation Theory Size

    37/78

    0.002 0.004   0.006 0.008 0.01

    0.002

    0.004

    0.006

    0.008

    =30°

    =60°

    O

    A

    B

    Γ 

    ΤΜ

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 37 / 78

    N di i i

  • 8/18/2019 Continuum Dislocation Theory Size

    38/78

    Non-zero dissipation

    Non-zero resistance to dislocation motion: energy minimization is replaced

    by the flow rule

    ∂ D 

    ∂  β̇ = −δ γ ψ

    δβ 

    for  β̇  = 0, whereD  = K |β̇ |

    κ 

     ≡ −δ γ ψ

    δβ 

      =

    −∂ψ

    ∂β 

      +  ∂ 

    ∂ y 

    ∂ψ

    ∂β ,y Plastic distortion may evolve only if the yield condition |κ | = K   is fulfilled.If  |κ |

  • 8/18/2019 Continuum Dislocation Theory Size

    39/78

    Yield condition

    Differential equation

    |k β ,yy  sin2 ϕ

    b 2ρ2s − (1 − κ)β  sin2 2ϕ

    − (cos2 2ϕ + κ sin2 2ϕ)β  + γ  cos 2ϕ| = K /µ = γ cr  cos 2ϕBoundary conditions

    β (0) = β (h) = 0

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 39 / 78

    Evolution of plastic distortion

  • 8/18/2019 Continuum Dislocation Theory Size

    40/78

    β (y ) = γ r β 1(y ),   where   γ r   = γ − γ cr 

    _

    1

    Graphs of  β 1(ȳ )

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 40 / 78

    Dislocation density

  • 8/18/2019 Continuum Dislocation Theory Size

    41/78

    α(y ) = γ r α1(y )

    y _

    1

    Graphs of  α1(ȳ )

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 41 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    42/78

    Size effect for hardening rate

    It is interesting to calculate the shear stress  τ  which is a measurablequantity. During the loading, we have for the normalized shear stress

    τ 

    µ  = γ cr  + γ r 

    1 −1 − 2tanh  ηh2

    ηh

    β 1p  cos 2ϕ

    where  β 1p   is calculated from the solution. The second term of thisequation causes the hardening due to the dislocations pile-up anddescribes the size effect in this model.

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 42 / 78

    Comparison

  • 8/18/2019 Continuum Dislocation Theory Size

    43/78

    ΤΤ

    h/d=1.15

    h/d=2.3h/d=80with dissipationenergy minimization

    Γ 

    Shear stress vs. shear strain curve

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 43 / 78

    Comparison

  • 8/18/2019 Continuum Dislocation Theory Size

    44/78

     y/h

    h/d=2.3h/d=80energy minimizationwith dissipation

    Γ

    Γ

    Γ

    Γ

    u ,y

    Shear strain profile

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 44 / 78

    Loading program

  • 8/18/2019 Continuum Dislocation Theory Size

    45/78

    Γ

    Γ

    Γ

    O

    A

    B

    C

    Loading path

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 45 / 78

    Bauschinger effect

  • 8/18/2019 Continuum Dislocation Theory Size

    46/78

    -0.002 0.002 0.004 0.006 0.008 0.01-0.002

    0.002

    0.004

    0.006

    0.008

    O

    A

    B

    C

    D

    Γ 

    ΤΜ

    Normalized shear stress versus shear strain curve for  ϕ = 60◦

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 46 / 78

    Double slip system

  • 8/18/2019 Continuum Dislocation Theory Size

    47/78

    r l

    h

    0

    z

    x a

    L

    h

    sl

     m l

     m r 

    sr 

    Tensor of plastic distortion

    β ij (y ) = β l (y )s l i ml  j  + β r (y )s r i  mr  j 

    with  β l (y ) and  β r (y ) satisfying

    β l (0) = β l (h) = β r (0) = β r (h) = 0

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 47 / 78

    Strain measures

  • 8/18/2019 Continuum Dislocation Theory Size

    48/78

    Total strain

    εxx  = 0, εxy   = 1

    2

    u ,y , εyy   = v ,y 

    Plastic strains

    εp xx  = −1

    2(β l  sin 2ϕl  + β r  sin 2ϕr ),

    εp xy   = 1

    2

    (β l  cos 2ϕl  + β r  cos 2ϕr ),

    εp yy   = 1

    2(β l  sin 2ϕl  + β r  sin 2ϕr )

    Elastic strain

    ε

    xx  =

     1

    2 (β l  sin 2ϕl  + β r  sin 2ϕr ),

    εe xy   = 1

    2(u ,y  − β l  cos 2ϕl  − β r  cos 2ϕr ),

    εe yy   = v ,y  − 1

    2(β l  sin 2ϕl  + β r  sin 2ϕr )

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 48 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    49/78

    Nye’s dislocation density

    Non-zero components of Nye’s dislocation density tensor

    αxz  = β l ,y  sin ϕl  cos ϕl  + β r ,y  sin ϕr  cos ϕr 

    αyz  = β l ,y  sin2 ϕl  + β r ,y  sin

    2 ϕr 

    Scalar dislocation density

    ρ =  ρl  + ρr 

    =  1

    b |β l ,y  sin ϕl 

    |+

     1

    b |β r ,y  sin ϕr 

    |

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 49 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    50/78

    Energetic threshold

    γ en  =  2k 

    hb ρs 

    | sin ϕ|| cos2ϕ|

    Size effect: the threshold value is inversely proportional to the size  h.Mention that the energetic threshold value for the symmetric double slip isequal to that of the single slip found in (Le & Sembiring, 2007).

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 50 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    51/78

    Comparison

    h/d=80

  • 8/18/2019 Continuum Dislocation Theory Size

    52/78

    /energy minimizationwith dissipation

    y  _ 

    h

    u,y 

    The total shear strain profiles

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 52 / 78

    Mechanism of twins formation

  • 8/18/2019 Continuum Dislocation Theory Size

    53/78

    T     T     T     

           T       T       T

    a x 

    y    t   

    hs 

    h (1-s )

    u l 

    rotation

    shear

    T     T     

           T       T

      T  T

         T     T

    The twin phase is formed by a twinning shear produced by the movement

    of pre-existing dislocations to the boundary followed by a rigid rotation.The described mechanism of twin formation is closely related to that of Bullough (1957). The difference is that dislocations need not to glidethrough each lattice plane.

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 53 / 78

    Continuum model of deformation twinning

  • 8/18/2019 Continuum Dislocation Theory Size

    54/78

    Tensor of plastic distortion

    β ij (y ) =

    β s l i m

    l  j    for 0 <  y  

  • 8/18/2019 Continuum Dislocation Theory Size

    55/78

    The in-plane components of the plastic strain tensor  εp ij  =  12 (β ij  + β  ji ) read

    εp xx  = −1

    2β  sin 2ϕ−  1

    2β T  sin 2ϕl ,

    εp xy   = 1

    2β  cos 2ϕ +

     1

    2β T  cos 2ϕl ,

    εp yy   = 1

    2 β  sin 2ϕ + 1

    2 β T  sin 2ϕl ,

    with the following quantities defined in the upper and lower part of thecrystal:

    [β (y ), ϕ, β  T ] =

    [β u (y ), ϕu , β t ]   h(1 − s ) <  y  

  • 8/18/2019 Continuum Dislocation Theory Size

    56/78

    da

     Bi=αijn jda

    Non-zero components of dislocation density tensor

    αxz  = β ,y  sin ϕ cos ϕ, αyz  = β ,y  sin2 ϕ

    Scalar dislocation density

    ρ =  1

     α2xz  + α

    2yz  =

      1

    b |β ,y || sin ϕ|

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 56 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    57/78

    Energy density

    Free energy per unit volume of dislocated crystal

    ψ(ε

    ij , αij ) =

     1

    2 λ (ε

    ii )

    2

    + µε

    ij ε

    ij  + µk  ln

      1

    1 −   ρρs λ, µ  - Lamé constants,  b   - magnitude of Burgers’ vector,  ρs   - saturateddislocation density,  k   - material constant

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 57 / 78

    E f i l

  • 8/18/2019 Continuum Dislocation Theory Size

    58/78

    Energy functional

    E (u , v , β, s ) = aL

       h0

    12 λv 

    2,y  +

      14 µ(β  sin 2ϕ + β T  sin 2ϕl )

    2

    +   12 µ(u ,y  − β  cos 2ϕ − β T  cos 2ϕl )2

    + µ(v ,y  −  1

    2 β  sin 2ϕ −  1

    2 β T  sin 2ϕl )2

    + µk  ln  1

    1 −   |β,y  sinϕ|b ρs 

    dy .

    TWIP-alloys have rather low stacking fault energies, so the contribution of surface energy to this functional can be neglected.

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 58 / 78

    Condensed energy

  • 8/18/2019 Continuum Dislocation Theory Size

    59/78

    0.05 0.1 0.15 0.2 0.25

    0.0001

    0.0002

    0.0003

    0.0004

    0.0005

    0.002 0.004 0.006 0.008 0.01

    0.00001

    0.000012

    s  = 0

    s  = 1

    s  = 0.9

    s  = 0.7

    s  = 0.6

    s  = 0.5

    s  = 0.8

    s  = 0.4

    s  = 0.3

    s  = 0.2

    s  = 0.1

    cond

    E  

    8-6

    ·10

    6-6

    ·10

    4-6

    ·10

    2-6

    ·10

    cond

    E  

    s  = 0

    s  

    Condensed energy  E cond(s , γ ) = minβ E (β, s , γ ) versus overall shear strain

    γ  for various volume fractions  s  (left) with a magnification (right) forsmall values of  s  and small strains (clearly indicating that  s  = 0 minimizesthe energy in that region). The actual energy with evolving  s  follows thepath of least energy

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 59 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    60/78

    Stress-strain curve

  • 8/18/2019 Continuum Dislocation Theory Size

    61/78

    0.05 0.1 0.15 0.2 0.25   0.3

    0.0002

    0.0004

    0.0006

    0.0008

    0.001

    0.0012

    /

    A

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 61 / 78

    Bending

  • 8/18/2019 Continuum Dislocation Theory Size

    62/78

    a

    hs m 

    A single crystal beam is bent along a rigid cylinder. The displacements of 

    the lower face are prescribed

    u x (x , 0) = r  sin(x /r ) − x ,   u y (x , 0) = r  cos(x /r ) − r 

    Assumption:   h aK.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 62 / 78

    Single slip system

  • 8/18/2019 Continuum Dislocation Theory Size

    63/78

    Tensor of plastic distortion

    β ij  = β (x , y )s i m j ,  s = (cos ϕ, sin ϕ),  m = (− sin ϕ, cos ϕ)Plastic strains

    εp xx  = −1

    2β  sin 2ϕ, εp yy   =

     1

    2β  sin 2ϕ, εp xy   =

     1

    2β  cos 2ϕ

    Dislocation density

    αxz  = β ,x  cos2 ϕ + β ,y  cos ϕ sin ϕ,

    αyz  = β ,x  cos ϕ sin ϕ + β ,y  sin2 ϕ

    Scalar dislocation density

    ρ =  1

     (αxz )2 + (αyz )2 =

      1

    b |β ,x  cos ϕ + β ,y  sin ϕ|

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 63 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    64/78

    Energy density

    Free energy per unit volume of dislocated crystal

    ψ(ε

    ij , αij ) =

     1

    2 λ (ε

    ii )

    2

    + µε

    ij ε

    ij  + µk 

     ln

      1

    1 −   ρρs λ, µ  - Lamé constants,  b   - magnitude of Burgers’ vector,  ρs   - saturateddislocation density,  k   - material constant

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 64 / 78

    Energy functional of the bent beam

  • 8/18/2019 Continuum Dislocation Theory Size

    65/78

    I   =   a

    0

       h0 [

    1

    2 λ(u x ,x  + u y ,y )2

    + µ(u x ,x  +

     1

    2 β  sin 2ϕ)2

    + µ(u y ,y  −  12

    β  sin 2ϕ)2 + 1

    2µ(u x ,y  + u y ,x  − β  cos 2ϕ)2

    + µk  ln  1

    1 −  |β

    ,x  cos ϕ+β,y  sinϕ|b ρs 

    ] dxdy 

    Because of the prescribed displacements at  y  = 0 dislocations cannotreach the lower face of the beam which is in contact with the bending jigin the deformed state, therefore

    β (x , 0) = 0

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 65 / 78

    Reduced energy functional

  • 8/18/2019 Continuum Dislocation Theory Size

    66/78

    Variational-asymptotic analysis reduces the energy functional containingthe small parameter  h/a  to

    E 1  =    a

    0    h

    0[κ(cos

     x 

    r  − 1 + 1

    2β  sin2ϕ)2 + k |β ,y  sin ϕ|

    + 12

    k (β ,y  sin ϕ)2] dxdy 

    where  κ  is given by

    κ =   11 − ν ,

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 66 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    67/78

    Energy minimization

    In the equilibrium state the true plastic distortion minimizes the total

    energy

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 67 / 78

    Smooth minimizer

    The plastic distortion

  • 8/18/2019 Continuum Dislocation Theory Size

    68/78

    β 

    (x , y ) =β 1(x , y ) for  y  ∈

    (0, l (x )),

    β 0(x ) for  y  ∈ (l (x ), h)where

    β 1(x , y ) = β 1p (1

    −cosh χy  + tanh χl (x )sinh χy )

    β 1p  = −   2sin2ϕ

    (cos x 

    r  − 1), χ =

     2κ

    k   cos ϕ

    Transcendental equation to determine   l (x )

    k  sin ϕ + κ[(cos x r  − 1)

    +1

    2β 1p (1 −   1

    cosh χl (x ))]sin2ϕ)sin2ϕ(h − l (x )) = 0.

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 68 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    69/78

    Energetic threshold

    Size effect: the threshold value depends on  a  and  h

    r cr   =  a

    arccos(1−   k 2κh cosϕ)

    Thus, if the radius of the bending jig  r  > r cr , then   l (x ) = 0 and  β  = 0everywhere yielding the purely elastic deformation without dislocations.For  r   x ∗  forming there the boundary layer.

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 69 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    70/78

    Material parameter

    Material   µ  (GPa)   ν    b  (Å)   ρs   (µm−2)   k 

    Zinc 43 0.25 2.68 145.4 0.000156

    Table:   Material characteristics

    In all simulations  a = 10mm,  h = 1.3mm,  ϕ = 35◦.

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 70 / 78

  • 8/18/2019 Continuum Dislocation Theory Size

    71/78

    2 4   6 8   10

    0.02

    0.04

    0.06

    0.08

     x

    Function  l (x ).

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 71 / 78

    β0

  • 8/18/2019 Continuum Dislocation Theory Size

    72/78

    2 4   6 8   10

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

     x

    Function β 0(x ).

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 72 / 78

    Polygonization

  • 8/18/2019 Continuum Dislocation Theory Size

    73/78

    During annealing dislocations may climb in the transversal direction andthen glide along the slip direction and be rearranged as shown in thisFigure.K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 73 / 78

    After annealing

    In the final polygonized relaxed state the dislocations form low angle tilt

  • 8/18/2019 Continuum Dislocation Theory Size

    74/78

    In the final polygonized relaxed state the dislocations form low angle tiltboundaries between polygons which are perpendicular to the slip direction,

    while inside the polygons there are no dislocations. We want to show thatthis rearrangement of dislocations correspond to a sequence of piecewiseconstant  β̌ (x , y ) reducing energy of the beam. Here and below check isused to denote the polygonized relaxed state after annealing. The jump of β̌  means the dislocations concentrated at the surface, therefore we ascribe

    to each jump point the normalized Read-Shockley surface energy density

    γ ([[β̌ ]]) = γ ∗|[[β̌ ]]| ln   e β ∗|[[β̌ ]]| ,

    with [[β̌ ]](x i ) =  β̌ (x i  + 0) −  β̌ (x i  − 0) denoting the jump of  β̌ (x ),γ ∗ =

      b 4π(1−ν ) , and  β ∗  the saturated misorientation angle.

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 74 / 78

    Energy reducing sequence

    β0

  • 8/18/2019 Continuum Dislocation Theory Size

    75/78

    2 4   6 8   10

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

     x

    β0

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 75 / 78

    Number of polygonsThe number of polygons can be estimated from above by requiring that theincrease of the surface energy is less than the reduction of the bulk energy

  • 8/18/2019 Continuum Dislocation Theory Size

    76/78

    in gradient terms. For the material parameters of zinc, the estimatedaverage polygon distance (taken as the length of the beam divided by thenumber of polygons) is equal to around 2.7 × 10−7 m which is in excellentagreement with the experimental result obtained by Gilman in 1955.

    0 2 4   6 8   10

    0

    20

    40

    60

    80

    100

    ln N 

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 76 / 78

    Conclusions

    CDT enables ones to model dislocation pile-up and size effects

    Th i h h ld l f h di l i l i

  • 8/18/2019 Continuum Dislocation Theory Size

    77/78

    There exists a threshold value for the dislocation nucleationdepending on the grain size

    Work hardening and Bauschinger effect can properly be described

    Deformation twins exhibit another type of non-convexity

    Existence of distinct thresholds for the onset of deformation twinning

    The stress-strain response exhibits a sharp load drop (followed by astress plateau) upon the onset of twinning

    Polygonization occurs due to the smallness of the Read-Shockleysurface energy as compared with the bulk energy of distributeddislocations

    The rearrangement of dislocations is realized by the dislocation climbwith the subsequent dislocation glide.

    High-temperature dislocation climb during annealing is crucial for thekinetics of polygonization

    K.C. Le (Mechanik - Materialtheorie)   CDT: size effects, microstructure   Bad Herrenalb workshop 2012 77 / 78

    Further works

    Indentation

  • 8/18/2019 Continuum Dislocation Theory Size

    78/78

    Bending and torsion

    Particle strengtheningMultiple slip

    CDT for polycrystals

    Hall-Petch relation

    Plastic zone near the crack tip and ductile fracture

    Finite twinning shear and finite rotation

    Parameter identification and applications to TWIP-alloys

    3-D model

    Dislocation climb taking into account the interaction with vacancies

    Kinetics of polygonization

    Formation of dislocation cell structure

    K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 78 / 78