29
Denition: Let D ( = ) R and let f : D R.

Continuity Slides

Embed Size (px)

Citation preview

Page 1: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 1/28

Definition: Let D (= ∅) ⊂ R and let f  : D → R.

Page 2: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 2/28

Definition: Let D (= ∅) ⊂ R and let f  : D → R.

We say that f  is continuous at x 0 ∈ D  if for each ε > 0, there

exists δ > 0 such that |f (x ) − f (x 0)| < ε for all x ∈ D satisfying

|x − x 0| < δ.

Page 3: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 3/28

Definition: Let D (= ∅) ⊂ R and let f  : D → R.

We say that f  is continuous at x 0 ∈ D  if for each ε > 0, there

exists δ > 0 such that |f (x ) − f (x 0)| < ε for all x ∈ D satisfying

|x − x 0| < δ.

We say that f  : D → R is continuous if f  is continuous at each

x 0 ∈ D .

Page 4: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 4/28

Definition: Let D (= ∅) ⊂ R and let f  : D → R.

We say that f  is continuous at x 0 ∈ D  if for each ε > 0, there

exists δ > 0 such that |f (x ) − f (x 0)| < ε for all x ∈ D satisfying

|x − x 0| < δ.

We say that f  : D → R is continuous if f  is continuous at each

x 0 ∈ D .

Definition: Let D ⊂ R and let x 0 ∈ R such that for some h > 0,

(x 0 − h , x 0 + h ) \ {x 0} ⊂ D .

Page 5: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 5/28

Definition: Let D (= ∅) ⊂ R and let f  : D → R.

We say that f  is continuous at x 0 ∈ D  if for each ε > 0, there

exists δ > 0 such that |f (x ) − f (x 0)| < ε for all x ∈ D satisfying

|x − x 0| < δ.

We say that f  : D → R is continuous if f  is continuous at each

x 0 ∈ D .

Definition: Let D ⊂ R and let x 0 ∈ R such that for some h > 0,

(x 0 − h , x 0 + h ) \ {x 0} ⊂ D .

If f  : D → R, then ∈ R is said to be the limit of f  at x 0 if for

each ε > 0, there exists δ > 0 such that |f (x ) − | < ε for all

x ∈ D satisfying 0 < |x − x 0| < δ.

Page 6: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 6/28

Definition: Let D (= ∅) ⊂ R and let f  : D → R.

We say that f  is continuous at x 0 ∈ D  if for each ε > 0, there

exists δ > 0 such that |f (x ) − f (x 0)| < ε for all x ∈ D satisfying

|x − x 0| < δ.

We say that f  : D → R is continuous if f  is continuous at each

x 0 ∈ D .

Definition: Let D ⊂ R and let x 0 ∈ R such that for some h > 0,

(x 0 − h , x 0 + h ) \ {x 0} ⊂ D .

If f  : D → R, then ∈ R is said to be the limit of f  at x 0 if for

each ε > 0, there exists δ > 0 such that |f (x ) − | < ε for all

x ∈ D satisfying 0 < |x − x 0| < δ.

We write: limx →x 0

f (x ) = .

Page 7: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 7/28

Similarly we define: limx →x 0+

f (x ) = and limx →x 0−

f (x ) = .

Page 8: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 8/28

Similarly we define: limx →x 0+

f (x ) = and limx →x 0−

f (x ) = .

Result: Let D ⊂ R and let x 0 ∈ D such that for some h > 0,

(x 0 − h , x 0 + h ) ⊂ D . Then f  : D → R is continuous iff

limx →x 0

f (x ) = f (x 0).

Page 9: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 9/28

Similarly we define: limx →x 0+

f (x ) = and limx →x 0−

f (x ) = .

Result: Let D ⊂ R and let x 0 ∈ D such that for some h > 0,

(x 0 − h , x 0 + h ) ⊂ D . Then f  : D → R is continuous iff

limx →x 0

f (x ) = f (x 0).

Similarly the other two cases.

Page 10: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 10/28

Similarly we define: limx →x 0+

f (x ) = and limx →x 0−

f (x ) = .

Result: Let D ⊂ R and let x 0 ∈ D such that for some h > 0,

(x 0 − h , x 0 + h ) ⊂ D . Then f  : D → R is continuous iff

limx →x 0

f (x ) = f (x 0).

Similarly the other two cases.

Sequential criterion of continuity: f  : D → R is continuous at

x 0 ∈ D  iff for every sequence (x n ) in D such that x n  → x 0, we

have f (x n ) → f (x 0).

Page 11: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 11/28

Similarly we define: limx →x 0+

f (x ) = and limx →x 0−

f (x ) = .

Result: Let D ⊂ R and let x 0 ∈ D such that for some h > 0,

(x 0 − h , x 0 + h ) ⊂ D . Then f  : D → R is continuous iff

limx →x 0

f (x ) = f (x 0).

Similarly the other two cases.

Sequential criterion of continuity: f  : D → R is continuous at

x 0 ∈ D  iff for every sequence (x n ) in D such that x n  → x 0, we

have f (x n ) → f (x 0).

Similar criterion for limit.

Page 12: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 12/28

Examples:

1. f (x ) =

3x + 2 if x  < 1,4x 2 if x  ≥ 1.

Page 13: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 13/28

Examples:

1. f (x ) =

3x + 2 if x  < 1,4x 2 if x  ≥ 1.

2. f (x ) =

x sin 1

x if x  = 0,

0 if x  = 0.

Page 14: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 14/28

Examples:

1. f (x ) =

3x + 2 if x  < 1,4x 2 if x  ≥ 1.

2. f (x ) =

x sin 1

x if x  = 0,

0 if x  = 0.

3. f (x ) =

sin1

x  if x  = 0,0 if x  = 0.

Page 15: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 15/28

Examples:

1. f (x ) =

3x + 2 if x  < 1,4x 2 if x  ≥ 1.

2. f (x ) =

x sin 1

x if x  = 0,

0 if x  = 0.

3. f (x ) =

sin1

x  if x  = 0,0 if x  = 0.

4. f (x ) =

1 if x  ∈ Q,0 if x  ∈ R \Q.

Page 16: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 16/28

Examples:

1. f (x ) =

3x + 2 if x  < 1,4x 2 if x  ≥ 1.

2. f (x ) =

x sin 1

x if x  = 0,

0 if x  = 0.

3. f (x ) =

sin1

x  if x  = 0,0 if x  = 0.

4. f (x ) =

1 if x  ∈ Q,0 if x  ∈ R \Q.

5. f (x ) =

x  if x  ∈ Q,−x  if x  ∈ R \Q.

Page 17: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 17/28

Result: Let f ,g  : D → R be continuous at x 0 ∈ D . Then

(i) f + g , fg and |f | are continuous at x 0

,

(ii) f /g  is continuous at x 0 if g (x 0) = 0.

Page 18: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 18/28

Result: Let f ,g  : D → R be continuous at x 0 ∈ D . Then

(i) f + g , fg and |f | are continuous at x 0

,

(ii) f /g  is continuous at x 0 if g (x 0) = 0.

Ex. Similar results for discontinuous functions?

Page 19: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 19/28

Result: Let f ,g  : D → R be continuous at x 0 ∈ D . Then

(i) f + g , fg and |f | are continuous at x 0

,

(ii) f /g  is continuous at x 0 if g (x 0) = 0.

Ex. Similar results for discontinuous functions?

Ex. If f  : D → R is continuous at x 0 and if f (x 0) = 0, then show

that there exists δ > 0 such that f (x ) = 0 for allx ∈ (x 0 − δ,x 0 + δ).

Page 20: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 20/28

Result: Let f ,g  : D → R be continuous at x 0 ∈ D . Then

(i) f + g , fg and |f | are continuous at x 0

,

(ii) f /g  is continuous at x 0 if g (x 0) = 0.

Ex. Similar results for discontinuous functions?

Ex. If f  : D → R is continuous at x 0 and if f (x 0) = 0, then show

that there exists δ > 0 such that f (x ) = 0 for allx ∈ (x 0 − δ,x 0 + δ).

Result: Composition of two continuous functions is continuous.

Page 21: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 21/28

Result: Let f ,g  : D → R be continuous at x 0 ∈ D . Then

(i) f + g , fg and |f | are continuous at x 0

,

(ii) f /g  is continuous at x 0 if g (x 0) = 0.

Ex. Similar results for discontinuous functions?

Ex. If f  : D → R is continuous at x 0 and if f (x 0) = 0, then show

that there exists δ > 0 such that f (x ) = 0 for allx ∈ (x 0 − δ,x 0 + δ).

Result: Composition of two continuous functions is continuous.

Further examples of continuous functions:

Polynomial function, Rational function, sine function, cosine

function, etc.

Page 22: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 22/28

Result: If f  : [a ,b ] → R is continuous and if f (a ) · f (b ) < 0, then

there exists c ∈ (a ,b ) such that f (c ) = 0.

Page 23: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 23/28

Result: If f  : [a ,b ] → R is continuous and if f (a ) · f (b ) < 0, then

there exists c ∈ (a ,b ) such that f (c ) = 0.

Intermediate value theorem: Let I be an interval of R and let

f  : I → R be continuous. If a ,b ∈ I with a < b and if

f (a ) < k  < f (b ), then there exists c ∈ (a ,b ) such that f (c ) = k .

Page 24: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 24/28

Result: If f  : [a ,b ] → R is continuous and if f (a ) · f (b ) < 0, then

there exists c ∈ (a ,b ) such that f (c ) = 0.

Intermediate value theorem: Let I be an interval of R and let

f  : I → R be continuous. If a ,b ∈ I with a < b and if

f (a ) < k  < f (b ), then there exists c ∈ (a ,b ) such that f (c ) = k .

Examples:

1. The equation x 2 = x sin x + cos x  has at least two real roots.

Page 25: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 25/28

Result: If f  : [a ,b ] → R is continuous and if f (a ) · f (b ) < 0, then

there exists c ∈ (a ,b ) such that f (c ) = 0.

Intermediate value theorem: Let I be an interval of R and let

f  : I → R be continuous. If a ,b ∈ I with a < b and if

f (a ) < k  < f (b ), then there exists c ∈ (a ,b ) such that f (c ) = k .

Examples:

1. The equation x 2 = x sin x + cos x  has at least two real roots.

2. If f  : [0, 1] → [0, 1] is continuous, then there exists x 0 ∈ [0, 1]such that f (x 0) = x 0.

Page 26: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 26/28

Result: If f  : [a ,b ] → R is continuous and if f (a ) · f (b ) < 0, then

there exists c ∈ (a ,b ) such that f (c ) = 0.

Intermediate value theorem: Let I be an interval of R and let

f  : I → R be continuous. If a ,b ∈ I with a < b and if

f (a ) < k  < f (b ), then there exists c ∈ (a ,b ) such that f (c ) = k .

Examples:

1. The equation x 2 = x sin x + cos x  has at least two real roots.

2. If f  : [0, 1] → [0, 1] is continuous, then there exists x 0 ∈ [0, 1]such that f (x 0) = x 0.

3. If f  : [0, 2] → R is continuous such that f (0) = f (2), then

there exist x 1, x 2 ∈ [0, 2] such that x 1 − x 2 = 1 andf (x 1) = f (x 2).

Page 27: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 27/28

Result: If f  : [a ,b ] → R is continuous, then f  : [a ,b ] → R is

bounded.

Page 28: Continuity Slides

8/7/2019 Continuity Slides

http://slidepdf.com/reader/full/continuity-slides 28/28

Result: If f  : [a ,b ] → R is continuous, then f  : [a ,b ] → R is

bounded.

Result: If f  : [a ,b ] → R is continuous, then there exist

x 0, y 0 ∈ [a ,b ] such that f (x 0) ≤ f (x ) ≤ f (y 0) for all x  ∈ [a ,b ].