4
Literature ‘1. Dyerberg and K. A. Jorgensen, Prog. Lipid Res. 21, 255 119821. H. C. Bromgeest-Schoute, C. M. van Gent, J. B. Luten and A. Ruiter, Amer. J. Clin. Nutr. 34, 1752 [1981]. S. H . GoodnQht, W S. Harris, W E. Connor and D.J. Illingworth, Arteriosclerosis 2, 87 [1982]. A. Leaf and I? C. Weber, New Eng. J. Med. 318,549 [1988]. I? G. Norris, C. J. H. Jones and M. J. Weston, Brit. Med. J. 293,104 [1986]. R. G.Ackman, R. D . Bur her and I? M. Jangaard, Can. J. Biochem. Physiol. 41, 1627 [1963f E. H. Jr. Gruger, United States Dept. Interior, Fish and Wildlife Service, Bureau of Commercial Fisheries, Circular 296, Fishery Industrial Research 2, 31 [1962]. 0. S. Plivett, Prog. Chem. Fats Other Lipids 9, 407 [1968]. N . Haagsma, C. M. van Gent,J. B. Luten, R. W deJong and E. van Doom, J. Amer. Oil Chemists’ SOC. 59, 118 [1982]. lo J . L . Iverson and R. W Wick, J. Assoc. Off. Anal. Chem. 50, 111 [1967]. R . G .Ackman, WM. N. Ratnayake and B . Olrson, J. Amer. Oil Che- mists’ SOC. 65,136 [l988]. “A. M. Abu-Nasr, W M. Pot& and R. I: Holman, J. Amer. Oil Chemists’ Soc. 31, 16 [1954]. l3 H. Schlak, Prog. Chem. Fats Other Lipids 11,243 [1954]. l4 R. G.Ackman, WCOT (Capillary) Gas-Liquid Chromatography, in: Analysis of Fats and Oils, edited by R. J. Hamilton and B. A. Rossel, Elsevier Applied Science Publishers, New York, pp. 137- 206,1986. R. G. Ackman, Methods in Enzymology 72D, 205 [1981]. Oct. 8, 1987, in press. D. Rubin, United States Patent No. 4526902 (1985). R. A. Adlof and E. A. Emken, J. Amer. Oil Chemists’ Soc. 63,1592 [1985]. ’’ R. G. Ackman, Acta Med. Scand. 222,99 [1987]. l7 R. G. Ackman and WM. N. Ratnayake, Proc. M.I.T. Seagrant Conf. 2o R.J. Swientek, Food Processing 32, July 1987. S. S. H. RhiJ. A. Danielr, A. L .Benado and J. A. ZoUweg,FoodTech- nology 40,57, July 1986. 22 WB. Nilrton,EJ. Gaug1itzJr.J K.Hu&on, KRStoul andJ. Spinelli, J, Amer. Oil Chemists’ SOC. 65, 109 [1988]. 23 H. J. Passim, Ind. Eng. Chem. 41,280 [1949]. 24 R. G. Ackman, S. N .Hooper and D. L.HooperJ. Amer. Oil Chemists’ 25 A . Grandgirard and R JuUiard, Rev. franq. Corp. Gras. 34, 213 26 R. G. Ackman, Chem. and Ind. (London) (5) 139 (19881. 27 R. C. Wijesundera, W M. N. Ratnayake and R. G. Ackman, 79th Annual Meeting of the American Oil Chemists’ Society,May 8- 12,1988, Phoenix, Arizona. J. K. Kaitaranta and I? J. Ke,J. Amer. Oil Chemists’ SOC. 58,710 [198l]. 29 R . G .Ackman and S. N. Hooper, Comp. Biochem. Physiol. 32,117 [ 19701. 3o R. G.Ackman,J. C. Sipos and S. N. Hooper, J. Amer. Oil Chemists’ Soc. 54, 199 [1977]. R. Ronneberg, G .Holmer and G. Lambertsen, Ann. Nutr. Metab. 31, 160 [1987]. 32 R. G .Ackman, J.-L. Sebedio and M. I. F! Kovacs, Mar. Chem 9,157 [ 19801. 33 R. G. Ackman,FattyAcid Composition of Fish Oils,in: Nutritional Evaluation of Long-Chain Fatty Acids in Fish Oil, edited by S.M. Barlow and M. E. Stamby, Academic Press, London, pp. 25-88, 1982. SOC. 51, 42 [1974]. [1987]. Acknowledgement The cooperation of National Sea Products, Halifax, NS, Canada, and of the Zapata-Haynie Corp., Reedville,VA, USA, in supplying oils is gratefully acknowledged.This work was funded by the Natu- ral Sciences Research and Engineering Council of Canada. Received 20* May 1988. Composition and Mineral Distribution of Rapeseed Varieties Tested for Adaptation in lhrkey* By U. Cakmakli andM. K. Unal** Ege University, Department $Food Engineering, Izmirflurkq, Rapeseed belongs to the world’s most important oilseeds. The nutritive value of rapeseed meal has gradually improved to the point where it has become an acceptable alternative to soybean meal as asource of protein in rations. The objectives of the present work was to assess the composition and mineral distributions of low and high erucic rapeseed cultivars. Ten varieties including a local one were examined for their proximate composi- tion. The fat content ranged between 40.5 and 4.5.6 “/u, while the crude pro- tein content varied from 24.3 to 28.2% on dry matter basis. Mineral analy- sis were conducted on seeds after wet ashing of samples. Total phosphorus content was found to be between 0.60 and 0.84”/0, being nearly twice as compared to soybeans. Total sulphur, which predicts both the levels of S-bearing amino acids and glucosinolates varied greatly, from 0.40 to 1.11 %, in the examined rapeseeds. Important differences among the tested rapeseed cultivars were also valid for other minerals especially iron, man- ganese and calcium contents. *Lecture presented at the Joint Congress of the Deutsche Gesell- schaft fiir Fettwissenschaft (DGF) and the International Society for Fat Research (ISF) in Munster,,September 11, 1986. **Authors’ address: Assoc. Prof. Dr. U. Cakmakli and Assoc. Prof. Dr. M. K. Unal, Ege University, Engineering Faculty, Food Engi- neering Department Bornova, IzrnidTurkey. Zusammensekung und Mineralstofierteilung von Rapssaat-Sorten, die zum Anbau in der Tiirkei geteatet wurdeq, Rapssaat gehort zu den welhveit bedeutendsten Olsaaten. Der N%hrwert von Rapsmehl ist sthdig angestiegen, und Rapsmehl ist mittlenveile eine echte Alternative zum Sojamehl im Hinblick auf seine Eigenschaft als EiweiBquelle. In der vorliegenden Arbeit wurden die Zusammensetzung und die Verteilung der Mineralstoffe von Rapssaaten mit niedrigem und hohem Gehalt an Erucasaure untersucht. Es wurden 10 Sorten einschlieB- lich einer einheimischen Sorte auf ihre ungefAre Zusammensetzung unter- sucht. Der Fettgehalt lag zwischen 40.5 und 45.6%, der Gehalt an Rohei- weiB zwischen 24.3 und 28.2”/0, bezogen aufTrockenmasse. Nach NaOver- aschung der Proben wurden Mineralstoffanalysen an den Saaten durchge- fiihrt. Es zeigte sich, da6 der Gesamtphosphorgehalt zwischen 0.60 und 0.84% lag. Damit war er beinahe doppelt so hoch wie der von Sojabohnen. Der Gesamtgehalt an Schwefel, welcher sowohl die Schwefel enthaltenden Aminosauren als auch die Glucosinolate umfaBt, schwankte bei den unter- suchten Saaten erheblich, und zwarvon 0.40 bis 1.11 Yo. BeachtlicheUnter- schiede zwischen den untersuchten Rapssaaten wurden auch bei anderen Mineralstoffen, besonders bei Eisen, Mangan und Calcium ermittelt. Introduction Rapeseed ranks fifth in total world production of edible, vegetable oils, but cultivation is limited to regions where soyabean and subtropical oilseed crops are poorly adapted. In Turkey between 1950 and 1960 rapeseed was harvested Fat Sci. Technol. 90.Jahrgang Nr. 10 1988 386

Composition and Mineral Distribution of Rapeseed Varieties Tested for Adaptation in Turkey

Embed Size (px)

Citation preview

Page 1: Composition and Mineral Distribution of Rapeseed Varieties Tested for Adaptation in Turkey

L i t e r a t u r e ‘1. Dyerberg and K. A. Jorgensen, Prog. Lipid Res. 21, 255 119821.

H. C. Bromgeest-Schoute, C. M. van Gent, J. B. Luten and A. Ruiter, Amer. J. Clin. Nutr. 34, 1752 [1981]. S. H. GoodnQht, W S. Harris, W E. Connor and D.J. Illingworth, Arteriosclerosis 2, 87 [1982]. A. Leaf and I? C. Weber, New Eng. J. Med. 318,549 [1988]. ’ I? G. Norris, C. J. H. Jones and M. J. Weston, Brit. Med. J. 293,104 [1986]. R. G. Ackman, R. D . Bur her and I? M. Jangaard, Can. J. Biochem. Physiol. 41, 1627 [1963f E. H. Jr. Gruger, United States Dept. Interior, Fish and Wildlife Service, Bureau of Commercial Fisheries, Circular 296, Fishery Industrial Research 2, 31 [1962]. 0. S. Plivett, Prog. Chem. Fats Other Lipids 9, 407 [1968]. N. Haagsma, C. M. van Gent,J. B. Luten, R. W de Jong and E. van Doom, J. Amer. Oil Chemists’ SOC. 59, 118 [1982].

lo J. L . Iverson and R. W Wick, J. Assoc. Off. Anal. Chem. 50, 1 1 1 [1967]. R. G. Ackman, W M . N. Ratnayake and B. Olrson, J. Amer. Oil Che- mists’ SOC. 65,136 [l988].

“ A . M. Abu-Nasr, W M. Pot& and R. I: Holman, J. Amer. Oil Chemists’ Soc. 31, 16 [1954].

l3 H. Schlak, Prog. Chem. Fats Other Lipids 11,243 [1954]. l4 R. G. Ackman, WCOT (Capillary) Gas-Liquid Chromatography,

in: Analysis of Fats and Oils, edited by R. J. Hamilton and B. A . Rossel, Elsevier Applied Science Publishers, New York, pp. 137- 206,1986.

R. G. Ackman, Methods in Enzymology 72D, 205 [1981].

Oct. 8, 1987, in press. D. Rubin, United States Patent No. 4526902 (1985). R. A . Adlof and E. A . Emken, J. Amer. Oil Chemists’ Soc. 63,1592 [1985].

’’ R. G. Ackman, Acta Med. Scand. 222,99 [1987].

l 7 R. G. Ackman and WM. N. Ratnayake, Proc. M.I.T. Seagrant Conf.

2o R.J. Swientek, Food Processing 32, July 1987.

S. S. H. R h i J . A. Danielr, A. L. Benado and J. A. ZoUweg,FoodTech- nology 40,57, July 1986.

22 W B . Nilrton,EJ. Gaug1itzJr.J K.Hu&on, KRStoul andJ. Spinelli, J, Amer. Oil Chemists’ SOC. 65, 109 [1988].

23 H. J. Passim, Ind. Eng. Chem. 41,280 [1949]. 24 R. G. Ackman, S. N. Hooper and D. L. HooperJ. Amer. Oil Chemists’

25 A. Grandgirard and R JuUiard, Rev. franq. Corp. Gras. 34, 213

26 R. G. Ackman, Chem. and Ind. (London) (5) 139 (19881. 27 R. C. Wijesundera, W M. N. Ratnayake and R. G. Ackman, 79th

Annual Meeting of the American Oil Chemists’ Society, May 8- 12,1988, Phoenix, Arizona.

J. K. Kaitaranta and I? J. Ke,J. Amer. Oil Chemists’ SOC. 58,710 [198l].

29 R. G. Ackman and S. N. Hooper, Comp. Biochem. Physiol. 32,117 [ 19701.

3o R. G. Ackman,J. C. Sipos and S. N. Hooper, J. Amer. Oil Chemists’ Soc. 54, 199 [1977]. R. Ronneberg, G. Holmer and G. Lambertsen, Ann. Nutr. Metab. 31, 160 [1987].

32 R. G. Ackman, J.-L. Sebedio and M. I. F! Kovacs, Mar. Chem 9,157 [ 19801.

33 R. G. Ackman,FattyAcid Composition of Fish Oils,in: Nutritional Evaluation of Long-Chain Fatty Acids in Fish Oil, edited by S.M. Barlow and M. E. Stamby, Academic Press, London, pp. 25-88, 1982.

SOC. 51, 42 [1974].

[1987].

A c k n o w l e d g e m e n t The cooperation of National Sea Products, Halifax, NS, Canada,

and of the Zapata-Haynie Corp., Reedville,VA, USA, in supplying oils is gratefully acknowledged.This work was funded by the Natu- ral Sciences Research and Engineering Council of Canada.

Received 20* May 1988.

Composition and Mineral Distribution of Rapeseed Varieties Tested for Adaptation in lhrkey*

By U. C a k m a k l i andM. K. U n a l * * Ege University, Department $Food Engineering, Izmirflurkq,

Rapeseed belongs to the world’s most important oilseeds. The nutritive value of rapeseed meal has gradually improved to the point where it has become an acceptable alternative to soybean meal as asource of protein in rations. The objectives of the present work was to assess the composition and mineral distributions of low and high erucic rapeseed cultivars. Ten varieties including a local one were examined for their proximate composi- tion. The fat content ranged between 40.5 and 4.5.6 “/u, while the crude pro- tein content varied from 24.3 to 28.2% on dry matter basis. Mineral analy- sis were conducted on seeds after wet ashing of samples. Total phosphorus content was found to be between 0.60 and 0.84”/0, being nearly twice as compared to soybeans. Total sulphur, which predicts both the levels of S-bearing amino acids and glucosinolates varied greatly, from 0.40 to 1.11 %, in the examined rapeseeds. Important differences among the tested rapeseed cultivars were also valid for other minerals especially iron, man- ganese and calcium contents.

*Lecture presented at the Joint Congress of the Deutsche Gesell- schaft fiir Fettwissenschaft (DGF) and the International Society for Fat Research (ISF) in Munster,,September 11, 1986.

**Authors’ address: Assoc. Prof. Dr. U. Cakmakli and Assoc. Prof. Dr. M . K. Unal, Ege University, Engineering Faculty, Food Engi- neering Department Bornova, IzrnidTurkey.

Zusammensekung und Mineralstofierteilung von Rapssaat-Sorten, die zum Anbau in der Tiirkei geteatet wurdeq,

Rapssaat gehort zu den welhveit bedeutendsten Olsaaten. Der N%hrwert von Rapsmehl ist s thdig angestiegen, und Rapsmehl ist mittlenveile eine echte Alternative zum Sojamehl im Hinblick auf seine Eigenschaft als EiweiBquelle. In der vorliegenden Arbeit wurden die Zusammensetzung und die Verteilung der Mineralstoffe von Rapssaaten mit niedrigem und hohem Gehalt an Erucasaure untersucht. Es wurden 10 Sorten einschlieB- lich einer einheimischen Sorte auf ihre ungefAre Zusammensetzung unter- sucht. Der Fettgehalt lag zwischen 40.5 und 45.6%, der Gehalt an Rohei- weiB zwischen 24.3 und 28.2”/0, bezogen aufTrockenmasse. Nach NaOver- aschung der Proben wurden Mineralstoffanalysen an den Saaten durchge- fiihrt. Es zeigte sich, da6 der Gesamtphosphorgehalt zwischen 0.60 und 0.84% lag. Damit war er beinahe doppelt so hoch wie der von Sojabohnen. Der Gesamtgehalt an Schwefel, welcher sowohl die Schwefel enthaltenden Aminosauren als auch die Glucosinolate umfaBt, schwankte bei den unter- suchten Saaten erheblich, und zwarvon 0.40 bis 1.11 Yo. BeachtlicheUnter- schiede zwischen den untersuchten Rapssaaten wurden auch bei anderen Mineralstoffen, besonders bei Eisen, Mangan und Calcium ermittelt.

I n t r o d u c t i o n Rapeseed ranks fifth in total world production of edible,

vegetable oils, but cultivation is limited to regions where soyabean and subtropical oilseed crops are poorly adapted. In Turkey between 1950 and 1960 rapeseed was harvested

Fat Sci. Technol. 90.Jahrgang Nr. 10 1988 386

Page 2: Composition and Mineral Distribution of Rapeseed Varieties Tested for Adaptation in Turkey

annually 2000-3000 tons per year from 2500-3500 hec- tars. After 1976, the cultivation area of rapeseed rised tre- mendously, reaching 27 000 hectars in 1979 with a produc- tion of 43 000 tons. But in the following years its cultivation was forbidden by Turkish Government because of high erucic acid content of the grown varieties. However accord- ing to a reliable estimation, rapeseed could be cultivated in 250 000 hectars in Turkey. This means annually 400 000 tons of rapeseed which would provide 160 000 tons of oil.

Rapeseed, originally was grown in some countries, be- cause of its high quality of vegetable oil which could be uti- lized in the margarine industry. In recent years, however as the interest regarding food production has deviated into the production of protein-rich crops, a new interest has been devoted to rapeseed as a protein source. Unfortunately so far rapeseed protein has not found notable application in human nutrition due to the presence in rapeseed meal of several antinutritive substances, mainly glucosinolates and undesirable factors such as hi h levels of crude fibre, dark

limit also its use as feed. However majority of these factors are removed upto certain extent by means of breeding selections or might be eliminated via different chemical or processing methods.

In order to improve the quality of a crop for either indus- trial or nutritional purposes, it is first necessary to under- stand the chemistry of the seed components. Although many investigations concerning the composition of rape- seed were carried out, little work has been done in this area. The aim of this study is therefore to assess the chemical compositions and mineral distribution of some low erucic acid rapeseed cultivars tested in Turkey.

pigments and strong flavors 5 . Principally glucosinolates

M a t e r i a l a n d M e t h o d s Ten varieties of rapeseed, including a domestic (native)

one grown in adaptation trials at Egean Region were used in the present study.

Humidity and crude protein content were determined according to AOCS method2.Total sugar was estimated by the anthrone colorimetric method4. Ash and total fat con- tent were determined according to AACC method3 and AOCS method *, respectively. Preparation of methylesters of rapeseed oils were effectuated according to Unal and ~akmakl i7 . Perkin Elmer 881 Model Gas Chromatograph was used for analysing methylesters of rapeseed oils under the working conditions cited in our previous paper '.

Mineral analyses were run after wet-ashing of samples with concentrated perchloric-nitric acid mixture. Total sulphur was determined by subsequent turbidimetric analy- sis of barium sulphate 536. Total phosghorus was evaluated employing the colorimetric method -lo. Calcium, sodium and potassium were analysed by flame photometric meth- od lo. Magnesium, iron, manganese and cupper contents were determined by means of Atomic Absorption Spectro- scopy I I .

Resu l t s a n d D i s c u s s i o n Proximate chemical composition of the ten rapeseed cul-

tivars is given in Table l. As shown in Table l, moisture con- tent of samples was quite low, ranging from 3.74 to 4.72%.

As seen inTable 1, the cultivar samples whose adaptation trials were carried out, had oil contents, varying from 40.98 to 45.51 %.The highest oil content was evaluated for the cul-

Fat Sci. Technol. 9O.Jahrgang Nr. 10 1988

Table 1

Proximate composition of ten ra eseed cultivars agronomically tested in $ir@

Cultivar Moisture No. (Ole)

1 4.57 2 4.15 3 4.72 4 4.02 5 3.82 6 4.03 7 3.81 8 3.74 9 4.09

10 4.20

Vo on dry basis Crude Total sugar Total

Oil Protein (ethanol- mineral (Nx6.25) soluble) matter

41.88 27.90 8.52 4.28 41.25 24.31 9.73 6.25 45.51 26.00 31.10 4.82 44.20 27.55 8.4 1 3.85 42.25 24.03 8.72 4.61 41.55 26.57 9.30 4.35 40.98 27.68 9.32 4.21 45.11 24.56 10.20 4.10 42.91 25.06 9.71 4.54 40.52 28.17 9.24 5.42

tivar number 3, which is a local variety rich in erucic acid. The cultivar samples 8 and 4 followed it with values of 45.11 and 44.20 Yo, respectively. As shown in Table 1, all the agro- nomically tested samples had oil contents over 40% since these examined samples were all grown under the same environmental conditions inTurkey, the variation in oil con- tents may be due to genetic differences of cultivars. It should be also noted that the higher oil contents have been incorporated into Brmsica napus cultivars via breeding12. The oil contents evaluated in this study are within the ranges cited in the relevant literature. We should point out that rapeseed contain two times or even more oil than soya- bean.

As shown in Table 1, the crude protein content of the ten rapeseed samples varied from 24.31 to 28.17% (on dry basis). The cultivars 10 and 1 had highest crude protein values (28.17 and 27.9 %, respectively), whereas the samples 5 and 2 contained less amounts of crude protein (24.03 and 24.31 %, respectively). In the rapeseed meals, the qeldahl value multiplied by 6.25 gves commonly 39.44% crude protein although some of N is present in compounds other than proteins. The values of our study agree with those drawn from different investigations 13-15.1t is worth mention- ing that amino acid pattern of the total protein of rapeseed is well balanced and further more its protein is especially rich in the sulphur-bearing amino acids and lysine.

As seen in Table 1 the amount of ethanol-soluble sugars varied from 8.52 to 13.1%. Apart from the domestic variety (sample 3), which had the greatest total sugar content, all the examined cultivar samples had roughly similar total sugar values. These values coincide with those cited in the litera- ture I6-I8. Anjou et al. I5 reported in a study conducted in Swe- den that the total amount of low molecular carbohydrates determined by GLC was 8.9-11.7% in the six samples. In contrast to soyabean, sucrose is the principal sugar in rape- seed followed by stachyose and limited amounts of raff- nose. We should indicate here that rapeseed meals are much poorer, as compared to soyabean meals, in the above cited oligosaccharides which have been implicated as cansative factors for flatulence.

Total mineral matter ranged from 3.85 to 5.25% in the ten cultivar samples. Samples 2 and 10 had the highest ash contents.

The fatty acid composition of the oils is shown in Table 2 as 'Yo for total fatty acids. The native variety (sample 3) and sample 9 had highest erucic acid in their oils with values 42.03 and 34.36, respectively. Sample 10 and 4 came next

387

Page 3: Composition and Mineral Distribution of Rapeseed Varieties Tested for Adaptation in Turkey

Table 2

Thcfatty acid composition o the rapeseed varieties a onomically tested in ~ u r k q , f as % f i r total fatty a c i h y

Cultivar No. C16:O clS:O c18:l C18:2 c18:3 c20:l c 2 2 : l

2 5.93 2.44 50.72

3.51 1.42 16.88 3 (domestic) 4 4.39 1.89 57.41 5 4.53 2.07 64.28 6 4.43 1.99 63.73 7 4.51 1.91 63.85 9 4.07 1.53 26.38

10 4.73 1.51 54.70

30.86

17.00

19.05 19.08 19.21 18.41 13.76 19.68

10.03 0.71 0.71

17.09 0.51 411.03

9.80 0.83 5.96 7.90 0.94 0.40 8.15 0.69 0.43 9.84 0.80 0.52

17.28 0.66 34.36 12.62 0.71 7.35

with regard of this fatty acid with much lower values 7.35 and 5.96, respectively. All the other analysed samples con- tained less than 1 O/o erucic acid in their oils. The high erucic acid domestic variety had lowest amount of oleic acid in its oil. Low levels of palmitic acid, ranging from 5.93 to 3.51%, found also in this research, is considered as a classical char- acteristic of Brassica oils. European high erucic acid varie- ties contain 55 o/o by weight of erucic acid ", 34-45 0% is also reported". In a study in Turkey concerning winter-type rapeseed, Colukoglu and Unal had also noted low values for palmitic acid in the oils of rapeseed varieties2'.

The other distinctive component of rapeseed oil is the linolenic acid, which is present in about the same propor- tion as in soyabean oil. As regard to this fatty acid, the oils of the agronomically tested varieties contained 7.9-17.28%, high erucic acid oils had the greatest values (little more than 17%). The analysed rapeseed cultivar samples contained 0.51-0.83 Yo C20:1 monounsaturated fatty acid in their oils. In Table 2, only the major fatty acids having notable values are included. Linoleic acid content varied between 13.76 and 30.86% in the oils of samples. However apart from the sample 2 having 30.86% linoleic acid, and to a certain extent, sample 9 (13.76%), the other had perhaps nutritio- nally the most important chance to increase the content of linoleic acid, an essential component also in animal diets, while reducing at the same time the level of the easily oxi- dized fatty acid linolenic. Some studies indicate that rapid advance to this dual goal could be possible and it should be

were observed in the samples 10 and 8 having 1.15 and 1.04 %,respectively. In a study conducted in Polope, Lader- novski et al. 22 reported the average content of rapeseeds har- vested at 1973-1974 as 0.18%. As known, total sulphur is an indication for the levels of glucosinolates and sulphur-bear- ing amino acids present in rapeseeds.

Calcium levels, as shown in Table 3, were close to each other in the examined cultivars, being 0.35-0.45%. Magne- sium contents were lower than calcium levels in the rape- seed samples ranging from 0.10 to 0.18%.

As seen in Table 3 total phosphorus level ranged from 0.60 to 0.84"/0 in the agronomically tested rapeseed culti- vars. With the exception of the sample 4, total phosphorus contents didn't differ greatly. FinluysonZ3 reported the aver- age P content of eleven rapeseed cultivars as 1.1% dry weight of the meals (defatted). Ladmovski et al. indicated that for two varieties cultivated at different locations in 1973 and 1974 P level varied from 0.48 to 0.89% with a mean 0.68%. Though rapeseed, especially their meals are quite rich in phosphorus, most of this element is found as phytin compound in the form of phytic A and as its Mg and Ca salt which affect unfavourably the solubility of proteins and mineral utilization in the organism.

Manganese and iron concentrations, both trace ele- ments, vaned considerably from 0.32 to 0.79 and from 10.5 to 19.1 respectively. As seen in Table 3 the variation is much higher for Mn. It is interesting to point out that the "domest- ic"variety sample was found to be richest in both Mn and Fe levels. '

C o n c l u s i o n The agronomically tested low erucic rapeseeds for Turk-

ish sole were found to be rich in oil content. Though rape- seed meals contain undesirable components, such as gluco- sinolates, high levels of phytic acid, fibre, phenolic com- pounds, their use not only as feed but also for food would be enhanced via appropriate chemical or technological proce- dures of removing them. It should be mentioned that breed- ing for zero erucic acid and double low glucosinolates has opened the door for rapeseed. Therefore the authorities should permit the cultivation of the cited rapeseed cultivars, but under the strict control, in Turkey.

Table 3

Mineral distribution in the see& of rapeseed cultivars (as % of w t )

Cultivar Total Total No. S Calcium P Na K Mg Mn Fe c u

1 2 3 4 5 6 7 8 9

10

0.61 0.35 0.72 0.007 0.57 0.11 0.77 0.43 0.84 0.016 0.61 0.10 0.70 0.45 0.82 0.018 0.61 0.15 0.91 0.30 0.60 0.025 0.53 0.18 0.69 0.45 0.84 0.007 0.62 0.16 0.41 0.41 0.81 0.007 0.66 0.10 0.91 0.41 0.72 0.007 0.58 0.17 1.04 0.36 0.72 0.010 0.53 0.10 0.73 0.40 0.82 0.015 0.59 0.11 1.15 0.35 0.78 0.02 0.58 0.12

0.0044 0.005 1 0.0079 0.0045 0.0038 0.0042 0.0032 0.0035 0.0041 0.0059

0.0156 0.0142 0.0191 0.0129 0.0128 0.0121 0.0107 0.0139 0.0105 0.0148

0.0006 0.00065 0.0007 0.0012 0.00055 0.0006 0.0005 0.0075 0.0008 0.0007

entirely feasible to combine a level of over 30% linoleic with a 3-5 o/o level of linolenic in an agronomically accep- table cultivar 12.

The mineral distribution of cultivar samples is given in Table 3.Total sulphur content varied significantly from 0.41 to 1.15"/0 among the tested cultivars.The highest levels of S

Li r a t r e 'J. D. Jones, Rapeseed flours, concentrates, isolates: status and prospects, in: Proceedings of the Symposium: Rapeseed Oil, Meal and By-Product Utilization, Rapeseed Assoc. of Canada, 1977, pp. 112-123. Anon., Official and Tentative Methods of the b e f i c a Oil Chemists' Society, AOCS, 3rd Ed., Minneapolis, USA, 1971.

388 Fat Sci. Technol. 90. Jahrgang Nr. 10 1988

Page 4: Composition and Mineral Distribution of Rapeseed Varieties Tested for Adaptation in Turkey

Anon., American Association of Cereal Chemists - Approved Methods, 7'h Ed., AACC, Minneapolis, USA, 1972. F: A. Loewus, An Improvement in Anthrone Method for Determi- nation of Carbohydrates, Anal. Chem. 24,219 [1952]. L. Chesmin and C. H. Yien,Turbidimetric determination of avail- able sulfat, Soil Sci. Soc. Ann. Roc. 15, 149 [1951]. B. Butters and B. M. Chenery, A rapid method for the detemina- tion of total S in soils and plants, Analyst 84,234 [1959]. K. h a 1 and 0. Cakmakli, Adap,psyonu Yapilan Bazi Soya Cepit- lerinin Bilegimi ve Teknolojik Ozellikleri Uzerine Arqtirmalar, Tubitak T.O.A.G. 482 No'lu Proje kesin raporu, 1984. R. E. Kitson and M. S. Mellow, Colorimetric determination of phosphorus as molydovanadophosphoric acid, Ind. Eng. Chem. Anal. Ed. 10,379 [1944]. C. J. Barton, Photometric analysis of phosphate rock, Ind. Eng. Chem. Anal. Ed. 20,1068 [1948].

"Anon., Official Methods on Analysis of the AOAC, 12* Ed. AOAC, Washington, USA.

I ' Anon., Analyhcal Methods for Flame Spectroscopy,VarianTech- tron, Australia, 1972.

I' R. K. Downq, and A.J. Klrrrren, Rapeseed improvement through plant breeding, in: Proceedings of the Symposium: Rapeseed Oil, Meal and By-Product Utilization, Rapeseed Assoc. of Canada, 1977, Publ. No. 45, pp. 4-11.

l3 R. Zkzchuk, Oil and protein analysis of whole rapeseed kernels by Near Infrared Reflectance Spectroscopy, J. Amer. Oil Che- mists' SOC. 58, 819 [1981].

I 4 L. A. Appelqvht and K. Ohlson (Eds.), Rapeseed cultivation, com- position, processing and utilization, Elsevier Publ., Amsterdam, 1972.

K. Anjou, B. Lonnerdal, B. Uppstrom and I? Amon, Composition of seeds from some Brassica cultivars, Swedish J. agric. Res. 7,169 [1977]. I. R. Siddigni, PJ. Wood and G. Khnada, Low molecular weight carbohydrates from rapeseed (B. campestris) meal, J. Sci. Food Agric. 24, 1427 [1973].

I 7 0. TZeander and P Amon, Low-molecular carbohydrates in rape- seed and turnip meals, Swedish J. Agric. Res. 6, 81 [1976]. A. Rutkowski and H. Ko$ows$, Chemical constituents and pro- tein food rocessing of rapeseedJ. Amer. Oil Chemists'Soc. 56,

R. G.Ackman,Rapeseed Oil: Chemical and Physical Characteris- tics, in: Proceedings of the Symposium: Rapeseed Oil, Meal and By-Product Utilization, Rapeseed Assoc. of Canada, 1977, Publ.

2" B. M. Craiy, Proceedings of the International Conference on Rapeseed, St. Adele, ,Quebec 1970, pp. 158-169.

'I M. colakoglu and K. L h l , Bazi kiplil Kolza tohumu yaglanndaki gliserid ve sterollerin bunyeleri. T.B.T.A.K. 2 Bilim Kongresi, 1975, Izmir, pp. 57-65.

22 R. Lademowski, H. Nowak and K. Babuckowski, Sklad chemiczny nasion rzepaka nisko-Sinus i zeroerukowe o (K. 2040), Zesz. N. Art. Ulst. Techno. Zywmosci 13, 163 [19787.

23 A.J. Finlayson, The Chemistry of the Constituents of Rapeseed Meal, in: Proceedings of the Symposium: Rapeseed Oil, Meal and By-Product Utilization, Rapeseed Assoc. of Canada, 1977,

475 11979r

NO. 45, pp. 13-36.

h b l . NO. 45, pp. 124-136.

Received 151h September 1986.

Die Zusammensetzung der Wglyceride von Kuhmilch und Humanmilch

Kn Karin W e b e r , E. S c h u l t e undH.-P. T h i e r *

Aus dem Institut $r Lebensmittelchemie der Universitat Munster

Die Zusammensetzung der Triglyceride im Fettanteil von Kuhmilch (Winter und Sommer) und reifer Humanmilch wurde aus der Verteilungs- zahl bei der HPLC sowie aus der Kohlenstoffzahl und dem Fettsauremu- ster der HPLC-Fraktionen ermittelt. Die identifizierten Triglyceride (122 in Kuhmilch, 94 in Humanmilch) und ihre Anteile in den HPLC-Fraktio- nen sind tabellarisch dargestellt.

Triglyceride Composition of Bovine and Human Milk The triglyceride composition in the fat portion of bovine milk (winter

and summer) and mature human milk was calculated from the HPLC parti- tion number and from the carbon number and fatty acid pattern in the HPLC fractions. The triglycerides identified (122 in bovine milk, 94 in human milk) and their contents in the HPLC fractions are tabulated.

1. E i n l e i t u n g In einer vorangehenden Arbeit ist eine optimierte Auf-

trennung der Triglyceride von Kuhmilch und Humanmilch durch HPLC beschrieben worden. Gleichzeitig wurden die einzelnen HPLC-Fraktionen durch GC der Triglyceride und der Fettsauremethylester naher charakterisiert.

Aus diesen Analysen standen fiir die 49 Fraktionen bei Kuhmilch und 39 bei Humanmilch jeweils drei Parameter zur Verfiigung. - die Verteilungszahl VZ (Kohlenstoffzahl minus zweimal

Anzahl der Doppelbindungen) aus der HPLC der Trigly- ceride,

- die Verteilung der Kohlenstoffzahlen KZ (Summe der C- Atome in den drei Fettsauren) innerhalb der HPLC- Fraktion aus der GC der Triglyceride,

- das Fettsauremuster innerhalb der HPLC-Fraktion (in Mol-Prozent) aus der GC der Fettsauremethylester. Wir haben nun aus diesen MeBwerten jeweils die Zusam-

* Anschrift der Verfasser: Dr. Karin Weber, Dr. E. Schulte und Prof. Dr. H.-P. TZier, Institut f i r Lebensmittelchemie der Universitkit Munster, Piusallee 7, D-4400 Miinster.

Fat Sc i . Technol. 90.Jahrgang Nr. 10 I988

mensetzung der Triglyceride in den verschiedenen HPLC- Fraktionen berechnet.

2. B e r e c h n u n g Der Weg der Berechnung sol1 an einem Zahlenbeispiel

deutlich gemacht werden: Die HPLC-Fraktion 20 von Kuhmilch liegt im Bereich der VZ 38. Nach der GC der Triglyceride haben davon etwa 70% die KZ 38 und 30% die KZ 40. Da VZ und KZ nur bei gesattigten Triglyceriden ubereinstimmen, enthalt die Fraktion 70 Yo gesattigte Trigly- ceride sowie 30°/o mit einer Doppelbindung bei einer der drei Fettsauren.

Die GC der Fettsauremethylester ergab folgendes Muster (gerundet in Mol-F'rozent): 8% 4:0, 24O/o 6 : 0 , 4% 14 : 0,44"/0 16 : 0,11% 18 : 0,8O/o 18 : 1. Diese sechs Fettsauren konnen nur in den folgenden Kombinationen Triglyceride mit VZ 38 bilden: 6:O - 16:O - 16:O (KZ 38) 6:O - 14:O - 18:O (KZ 38) 4:O - 16:O - 18:O (KZ 38) 6:O - 16:O - 18:l (KZ 40) 4:O - 18:O - 18:l (KZ 40)

389