11
Compliance monitoring pilot for Marpol Annex VI Inversion Tools Ari Karppinen, Res. Man., FMI Jari Härkönen Juha Nikmo Timo Mäkelä Jukka-Pekka Jalkanen Lasse Johansson

Compliance monitoring pilot for Marpol Annex VI - … · Compliance monitoring pilot for Marpol Annex VI Inversion Tools Ari Karppinen, Res. Man., FMI Jari Härkönen Juha Nikmo Timo

Embed Size (px)

Citation preview

Compliance monitoring pilot for Marpol Annex VI

Inversion Tools

Ari Karppinen, Res. Man., FMIJari HärkönenJuha NikmoTimo MäkeläJukka-Pekka JalkanenLasse Johansson

Rautatiealan sääntelyelin

Integrated use of models and data

Monitoring Models Satellite

Goal: operational system taking into account all sources of information

Rautatiealan sääntelyelin

ECMWFHIRLAMRCR

HARMONIE LAPS

Weather prediction models Dispersion models - long-

range, regional

Dispersion and effects models

– urban, local

PALM FINFLO,FLUENT(CFD),

DNS-code development

SILAM LRT, meso-

scale, radioactivity , pollen

Modelling system - FMI

OSPM (NERI), street canyon

UDM-FMI, urban

CAR-FMI, roadside

Aerosol process models: UHMA (U Helsinki, FMI)

MONO32 (U Helsinki, Stadia)

SALSA(UH,UKU,FMI)

SILAM-APMs

MPP-FMI, Meteorological pre-

processing model

ESCAPE, chemical accidents

BUOYANT, fires

EXPAND (FMI, YTV)

population exposure

FMI- EnFuser

Rautatiealan sääntelyelin

Jalkanen, J.-P., L. Johansson, and J. Kukkonen, 2016. A comprehensive inventory of ship traffic exhaust

emissions in the European sea areas in 2011. Atmos. Chem. Phys., 16, 71–84, 2016. http://www.atmos-chem-

phys.net/16/71/2016/acp-16-71-2016.pdf.

Rautatiealan sääntelyelin

Local inversion: in theory trivial..but..

13/12/2016 5

u-vS

rM0

vM-vS

SL r2(tS2) r0(tS0) r1(tS1)=rM0 + vM tS1

GL

vM rS(tS0) vS

𝐶 𝑥𝑤,𝑦𝑤, 𝑧 = 𝑓1 𝑥𝑤 ∗ 𝑓2 𝑥𝑤 *𝑓3 𝑥𝑤 , where (2a)

𝑓1 𝑥𝑤 =𝑄

2∗𝜋∗𝜎𝑦 𝑥𝑤 ∗𝜎𝑧 𝑥𝑤 ∗ 𝒖−𝒗𝑺 (2b)

𝑓2 𝑥𝑤 = 𝑒𝑥𝑝 −0.5 ∗ 𝑦𝑤 𝑥𝑤

𝜎𝑦 𝑥𝑤

2

(2c)

𝑓3 𝑥𝑤 = 𝑒𝑥𝑝 −0.5 ∗ 𝑧−ℎ

𝜎𝑧 𝑥𝑤

2

+ 𝑒𝑥𝑝 −0.5 ∗ 𝑧+ℎ

𝜎𝑧 𝑥𝑤

2

(2d)

Rautatiealan sääntelyelin

First complication: measurements (concentration & met)

13/12/2016 6

..part of the problemcan be in most cases handledwith simple filtering/smoothing

The “modeled” signal is the filtered line from which discrete values are

sampled at raw observation times. The maximum of the signal is monitored 2016-01-27 17:38:20.

Rautatiealan sääntelyelin

..the major problem : turbulent flow /meteorology is hard to handle in small time sclaes like this

• Dierect analytical solution does not

genarally work:

Possible solutions:

1.The ”normal” one : use tracer(s) to eliminante (?!) the problems with disperson

2. Formulate the problem as an optimisation problem

• Minimize ~|| measured- modeled ||

• For time of transform & and speed & heading of the ship

• Solve ship emsissions (least squares) basedon equations (2*)

13/12/2016 7

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1.10.1.12.31.1. 1.4. 1.6. 1.8. 1.10.1.12.31.1.

S %

Marraskuu 2015-2016

2.6.2016 1.76%

1,76

0,0

0,5

1,0

1,5

2,0

09

01

80

27

03

60

1.10. 1.12. 31.1. 1.4. 1.6. 1.8. 1.10. 1.12. 31.1.

S-%

Tu

ule

n s

uu

nta

Utö, 1 year ”standard” method

wind dir ⁰ polttoaineneen-S %

Rautatiealan sääntelyelin

Utö test (with NOx )

Constraints:

• Ship speed = ShipSpd(STEAM2) 2 m/s

• Ship heading = ShipDir(STEAM2) 30o

All dirty details given in the final report.. here we just jump to one of the conclusions

13/12/2016 8

~FAC5

N=66FAC2 ~50%>FAC5~15 %

Rautatiealan sääntelyelin

Conclusions from the Utö excersise

13/12/2016 9

Simple local scale modelling toolstogether with ”simple” optimisationroutines can be used for INDICATIVEemsssion inversion EVEN without the knowledge/measurements on CO2

Utö is quite an ideal case for modeller..but.. still some problems in asessingthe plume rise & mixing height & long distance from ship route to monitorslead to relatitvely high uncertainty on the final optimisation

Rautatiealan sääntelyelin

Final conclusions

• The local scale inversion-tool can givean (strong) indication on ships notobeying the regulations

• The method is unfortunately verysensitive to availability of detailedmeteorological information, so canwork well only in locations wherethese good quality measurements areavailbale (like Utö)

The method also requires smoothterrain/no major obstacles: complexterrain would require methods which areseveral orders of magnitude heavier

13/12/2016 10

These type of existing measurementsshould always be utilized as an additional info to other methods:

modelling tools required/developed in CompMon are easy and cheap to install/test

Naturally the ”official” solution:

adding a parallel CO2 measurement as close as possible to the SO2/NOX

measurements is always the prefereedoption/ uncertainty with this methodespecially with NOx should however becarefully asessed

Compliance monitoring pilot for Marpol Annex VI

www.compmon.eu

Partners