18
Combined Heat Combined Heat and Power and Power ITT experience in Coal Technologies ITT experience in Coal Technologies Andrzej Ziębik Institute of Thermal Technology, SUT

Combined Heat and Power ITT experience in Coal Technologies Andrzej Ziębik Institute of Thermal Technology, SUT

Embed Size (px)

Citation preview

Page 1: Combined Heat and Power ITT experience in Coal Technologies Andrzej Ziębik Institute of Thermal Technology, SUT

Combined HeatCombined Heat

and Powerand Power

ITT experience in Coal TechnologiesITT experience in Coal Technologies

Andrzej ZiębikInstitute of Thermal Technology, SUT

Page 2: Combined Heat and Power ITT experience in Coal Technologies Andrzej Ziębik Institute of Thermal Technology, SUT

Andrzej ZiębikCombined Heat and Power, ITT experience

Gliwice, November 22, 2005

Institute of Thermal TechnologySilesian University of Technology

Staff:- 11 full professors- 3 associate professors- 17 assistant professors- 26 masters of science (assistants, PhD students)

Divisions:

Division of Thermodynamics and Gas Energy

Division of Energy Management and Refrigeration

Division of Combustion Technologyand Internal Combustion Engines

Division of Heat Transfer, Nuclear Engineeringand Renewable Energy Resources

Group of Computer Methods in Thermal Engineering

Selected activities:• exergy – theory and practice• cogeneration• simulation and optimisation of power units

• numerical heat transfer• computational fluid dynamics• HTAC (High Temperature Air Combustion)

Page 3: Combined Heat and Power ITT experience in Coal Technologies Andrzej Ziębik Institute of Thermal Technology, SUT

Andrzej ZiębikCombined Heat and Power, ITT experience

Gliwice, November 22, 2005

Institute of Thermal Technology – selected books

Page 4: Combined Heat and Power ITT experience in Coal Technologies Andrzej Ziębik Institute of Thermal Technology, SUT

Andrzej ZiębikCombined Heat and Power, ITT experience

Gliwice, November 22, 2005

Gliwice

TU Berlin

UMSICHTOberhausen

TU Clausthal

INternational Cooperation on Researchin EnvironmentAl protection, process Safetyand Energy Technology

Optimization of the Application of gas and steam CPH Plants in

Polish Industial

Control Systems of Operation of Power

and CPH Units

Investigation of the Combustion

Processes in Highly Preheated Air

Optimization of Energy Management of Industrial Furnaces

Coal Mine Gas from Abandoned Mines in Upper Silesian Basin

Polish – German

scientific network

1997-2003

Page 5: Combined Heat and Power ITT experience in Coal Technologies Andrzej Ziębik Institute of Thermal Technology, SUT

Andrzej ZiębikCombined Heat and Power, ITT experience

Gliwice, November 22, 2005

Institu to Superior Tecn ico

S w iss F ed era l In stitu teo f Te chn o lo g y - Lau sa nne

U niversita degli S tud id i Frenze

University of Rom eLa Sapienza

National Technical University of A thens

Nova G oricaPolytechnic

Energoprojekt Katow ice S.A .

Rybnik Power P lant

Association of PolishCounties - Warsaw

Association of PolishC ities - Poznań

O polePower P lant

Tam pere University of Technology

Technical University of Berlin

Southern EnergyConcern

M oscow Power Engineering Institute

Institute of Therm alTechnology

U nive rs ity 'Po litechnica 'of B ucharest

N ationa l M eta llurg ica lA cadem y of U kra ine

Techn ica l U nive rsityof K osice

ABB C orporate R esearch

U niversity o f W a lesSw ansea

Brunel Univers ity

U niversity o f U ls ter

U niversity o f Leeds

U niversite catholiquede Louvain

Techn ische U niversita t C laustha l

U niversity of M agdeburg

..

Centro Politecnico Superior Universidad

de Zaragoza

Laboratoired 'E nergetique et de

M ecanique App liquee

Centre of Excellence OPTI_Energy(V Framewrok Progamme of European Commission)

Optimization, simulation and environmental impactof energy systems and processes

• summer schools

• international conferences

• international workshops for PhD students

• seminars for the industry

2003 - 2006

Page 6: Combined Heat and Power ITT experience in Coal Technologies Andrzej Ziębik Institute of Thermal Technology, SUT

Andrzej ZiębikCombined Heat and Power, ITT experience

Gliwice, November 22, 2005

INTRODUCTION 

TRADITIONSOF CO-GENERATION IN POLAND

First back-pressure steam turbine – 1939

After the second world war – repowering of pre-war power stations – condenser operating in a deteriorated vacuum as the first stage of preheating the district heating water

60’s – 70’s

CHP’s equipped with special bleed-condensation and back-pressure turbines

Page 7: Combined Heat and Power ITT experience in Coal Technologies Andrzej Ziębik Institute of Thermal Technology, SUT

Andrzej ZiębikCombined Heat and Power, ITT experience

Gliwice, November 22, 2005

The latest 20 years 

CHP’s with heating units  

Heating units with fluidisation boilers

Power units adapted to district heating purposes

Some medium- and small-scale CHP’s fired with natural gas

Industrial CHP’s fired with hard coal and technological fuel gases or liquid waste fuels

Fundamental fuel in Polish CHP’s - hard coal

Page 8: Combined Heat and Power ITT experience in Coal Technologies Andrzej Ziębik Institute of Thermal Technology, SUT

Andrzej ZiębikCombined Heat and Power, ITT experience

Gliwice, November 22, 2005

The share of electricity produced in district heating and industrial CHP’s

 

19 % 

(together with the condensing part)  

15 – 16 % 

(only co-generation) 

Production of electricity in CHP’s

Production of heat in CHP’s= 27.5 %

Page 9: Combined Heat and Power ITT experience in Coal Technologies Andrzej Ziębik Institute of Thermal Technology, SUT

Andrzej ZiębikCombined Heat and Power, ITT experience

Gliwice, November 22, 2005

Fig. 3 Index of the saving of chemical energy of fuel

0 .1 0 .2 0 .3 0 .4 0 .5-0 .2

-0 .1

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

025.0

11.0

36.0

80.0

h

el

ppE

hpE

σ

QEchΔ

Fig. 5 Decreased of SO2 emission thanks to co-generation

0 .1 0 .2 0 .3 0 .4 0 .50 .2 8

0 .3 0

0 .3 2

0 .3 4

0 .2 9

0 .3 1

0 .3 3

σ

Q

SSO2Δ

GJkg

E CHP = 0.70

Page 10: Combined Heat and Power ITT experience in Coal Technologies Andrzej Ziębik Institute of Thermal Technology, SUT

Andrzej ZiębikCombined Heat and Power, ITT experience

Gliwice, November 22, 2005

A 2 A 2

P C 1P C 2

P C 32

P C 31

P C 4

A 3 A 3

B lok 1

B lok 2

wylo tyb loki 3 ,4

t6 t5

t2

t1 t4

t3

W P S P N P

W P S P N P

Unit 2

Unit 1

Unit 3 and 4

Page 11: Combined Heat and Power ITT experience in Coal Technologies Andrzej Ziębik Institute of Thermal Technology, SUT

Andrzej ZiębikCombined Heat and Power, ITT experience

Gliwice, November 22, 2005

Fig. 7 Savings of chemical energy of fuel due to adopted of power plant to the

production of heat

0.10 0.200.15 0.250.4

0.6

0.8

1.0

1.2

Q

E chΔ

75.0

th

thhpE

36.0 ppE

0 .1 0 0 .2 00 .1 5 0 .2 50 .3 6

0 .3 7

0 .3 8

0 .3 9

0 .4 0

Q

SSO2Δ

GJ

kg

Fig. 8 Decreasing of SO2 emission due to

adopted of power plant to the production of heat

Page 12: Combined Heat and Power ITT experience in Coal Technologies Andrzej Ziębik Institute of Thermal Technology, SUT

Andrzej ZiębikCombined Heat and Power, ITT experience

Gliwice, November 22, 2005

INDUSTRIAL CHP’s – SPECIFIC PROBLEMS 

Short statistical information Power rating – 3 GWel

(~9 % of global power rating of NES)

The share of electricity production in global national demand

 5 ~ 5.5 %

 (in co-generation – 4.5 %)

The largest industrial CHP 

300 MWel

Page 13: Combined Heat and Power ITT experience in Coal Technologies Andrzej Ziębik Institute of Thermal Technology, SUT

Andrzej ZiębikCombined Heat and Power, ITT experience

Gliwice, November 22, 2005

PROBABILISTIC APPROACH TO THE DETERMINATION OF THE OPTIMAL STRUCTURE OF A METALLURGICAL CHP FIRED WITH TECHNOLOGICAL FUEL GASES

Net present valueof modernisation of CHP plant

COAL&STEEL

Repowering of traditional CHPby realization of gasand steam cycle

Page 14: Combined Heat and Power ITT experience in Coal Technologies Andrzej Ziębik Institute of Thermal Technology, SUT

Andrzej ZiębikCombined Heat and Power, ITT experience

Gliwice, November 22, 2005

CHP system integrated with metallurgical process Corex The Corex process:

coal gasification

Pig iron and export gasProduction.

M a s s f l o w k g / s 2 5 L H V k J / k g 6 0 0 0 P r e s s u r e k P a 1 5 0 T e m p e r a t u r e O C 5 0 M o la r c o m p o s it io n C O % 4 2 .5 H 2 % 1 8 C H 4 % 1 C O 2 % 3 5 N 2 % 1 .5 H 2 O % 2

M a s s f l o w k g / s 2 5 L H V k J / k g 6 0 0 0 P r e s s u r e k P a 1 5 0 T e m p e r a t u r e O C 5 0 M o la r c o m p o s it io n C O % 4 2 .5 H 2 % 1 8 C H 4 % 1 C O 2 % 3 5 N 2 % 1 .5 H 2 O % 2

M a s s f l o w k g / s 2 5 L H V k J / k g 6 0 0 0 P r e s s u r e k P a 1 5 0 T e m p e r a t u r e O C 5 0 M o la r c o m p o s it io n C O % 4 2 .5 H 2 % 1 8 C H 4 % 1 C O 2 % 3 5 N 2 % 1 .5 H 2 O % 2

M a s s f l o w k g / s 2 5 L H V k J / k g 6 0 0 0 P r e s s u r e k P a 1 5 0 T e m p e r a t u r e O C 5 0 M o la r c o m p o s it io n C O % 4 2 .5 H 2 % 1 8 C H 4 % 1 C O 2 % 3 5 N 2 % 1 .5 H 2 O % 2

Corex gas properties M ass flow kg /s 25 LH V kJ /kg 6000 P ressure kP a 150 Tem pera tu re OC 50

Molar com position C O % 42.5 H 2

% 18 C H 4

% 1 C O 2

% 35 N 2

% 1.5 H 2O % 2

District heat demand:-ironworks,-nearby city.

-30

-20

-10

0

10

20

30

40

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Reduced time o

Am

bie

nt

tem

pera

ture

, OC

MWQ 50max

Ambient temperatureduration curve

Process steamdemand:0.6 MPa, 270OC

Fuelsupply

C om bined cycle

CHP plant

H RSG

DesignOptimizationSimulation

COAL&STEEL

Page 15: Combined Heat and Power ITT experience in Coal Technologies Andrzej Ziębik Institute of Thermal Technology, SUT

Andrzej ZiębikCombined Heat and Power, ITT experience

Gliwice, November 22, 2005

CO2 Removal from Corex Export Gas

purified gas

absorber

recycle gas

CO2

M

M

M

CO2 compressors

dehydrator

flash drum(1)

CO2 cooling

solvent cooler

gas cooling

H2O

electric motor

flash drum(2)

flash drum(3)

flash drum(4)

Selexol solvent

coal

iron ore additive

s

redu

ctio

n sh

aft

melter gasifier

pig iron slag

top gas

Corex export gas

scrubber

scrubber reduction gas

hot gas cyclone

dust

oxygen

cooling gas

settling pond

water sludge

nitrogen

The COREX process

The CO2 removal process

(physical absorption with the Selexol solvent)35% CO2

42% CO18% H2

7600 kJ/m3n

5,2% CO2

62,2% CO26,7% H2

11300 kJ/m3n

COAL&STEEL

Page 16: Combined Heat and Power ITT experience in Coal Technologies Andrzej Ziębik Institute of Thermal Technology, SUT

Andrzej ZiębikCombined Heat and Power, ITT experience

Gliwice, November 22, 2005

Blast furnace process Characteristic features:

• production of pig-iron inbig amount

• high exergy efficiency• basic fuel – coke

(rather high thermoecological cost)

Main purpose of rationalizationof energy management ofblast-furnace plant

decrease of coke consumption

Ways of rationalization

• injection of pulverized coal as auxiliary fuel• increase of blast temperature• enrichment of blast with oxygen• increase of top gas pressure

5

air

oxygen

m ediumpressure

steam

sinter

high pressuresteam

EN

EN b

1 - BLAST FURNACE, 2 - TOP-GAS CLEANING PLANT, 3 - RECOVERY TURBINE,4 - COW PER STOVES, 5 - TURBO BLOW ER

COAL&STEEL

Page 17: Combined Heat and Power ITT experience in Coal Technologies Andrzej Ziębik Institute of Thermal Technology, SUT

Andrzej ZiębikCombined Heat and Power, ITT experience

Gliwice, November 22, 2005

Energy indices

Blast furnace process

0 1 2 3 4 5Chem ical energy of auxiliary fue l, M J/M g p.i

320

360

400

440

480

520

Spe

cific

con

sum

ptio

n of

cok

e, k

g/M

g p.

i.

4400

4600

4800

5000

5200

5400

Chem

ical energy of top

-gas transferredto gas sub-system

of ironwo

rks, MJ/M

g p.i.

t1

t2 t1

t2

t1 = 1100 °Ct2 = 1185 °C

COAL&STEEL

Thermoecological cost

0 1 2 3 4 5

C hem ical energy of auxiliary fue l, M J/M g p.i

27.6

28.0

28.4

28.8

29.2

The

rmo

ecol

ogi

cal c

ost o

f pig

iron

, GJ/

Mg

p.i.

t1 = 1100 °Ct2 = 1185 °C

t1

t2

Page 18: Combined Heat and Power ITT experience in Coal Technologies Andrzej Ziębik Institute of Thermal Technology, SUT

Andrzej ZiębikCombined Heat and Power, ITT experience

Gliwice, November 22, 2005

Biomass co-firing – ITT and Power Plant „Opole”

Impact on boiler and overall plant efficiency- simulation analysis for existing big power units

Method for calculationof „green” energy production

0.3785

0.3790

0.3795

0.3800

0.3805

0.3810

0.3815

0 10 20 30 40 50 60 70

Udział wilgoci w biomasie, stan roboczy, %

Sp

raw

no

ść b

loku

net

to,

el N

0

2

4

6

8

10

12

14

16

18

20

Nel

coalcoal

NLHVG

0

0

Nel

greenel

N

N

biobiocoalcoal

Nel

Nel LHVGLHVG

N

Moisture content in biomass, %

Net

po

wer

uni

t ef

ficie

ncy

idemN Nel