46
Coccidia of New World passerine birds (Aves: Passeriformes): a review of Eimeria Schneider, 1875 and Isospora Schneider, 1881 (Apicomplexa: Eimeriidae) Bruno P. Berto Walter Flausino Douglas McIntosh Walter L. Teixeira-Filho Carlos W. G. Lopes Received: 28 December 2010 / Accepted: 26 May 2011 Ó Springer Science+Business Media B.V. 2011 Abstract In the New World, the avian order Pass- eriformes comprises 47 families and 2,453 species, yet to date only 21 (45%) of the families and 58 (2%) of the species have been examined for coccidia, and from these only two species of Eimeria Schneider, 1875 and 81 species of Isospora Schneider, 1881 have been described. This review contributes to our understanding of the morphology and systematics of coccidian parasites of passeriforms, providing a scientific basis for the identification of sporulated oo ¨cysts recovered from the faeces of passerine birds from North, Central and South America. To this end, the coccidia were organised and grouped according to the family of the host, following the widely recog- nised concept of family-specificity and the updated systematics of the class Aves. Details of 83 eimeriid species are presented along with an illustration and tabulated data. Introduction The order Passeriformes includes [ 5,000 species worldwide and accounts for[ 50% of all avian species. The New World passerine birds are mostly endemic and occupy, in the case of South America, a large number of ecological niches, which, in other conti- nents, are inhabited by other groups of birds. At present a total of 1,023 species are found in Brazil, of which 170 are endemic (CBRO, 2011). A small number of families have numerical predominace, with the families Tyrannidae, Formicariidae and Furnariidae (Sick, 1997; IUCN, 2011) demonstrating the greatest levels of species diversity. In common with other vertebrates, passerine birds can be infected by coccidia, primarily by species of Isospora Schneider, 1881 and, to a lesser extent, Eimeria Schneider, 1875. These parasites generally have intestinal life-cycles, although some species present extra-intestinal life-history stages. At present, our knowledge of the systematics and morphology of coccidian parasites (i.e. species of Isospora and Eimeria) of Passeriformes in the Americas is widely distributed throughout an exten- sive body of literature which spans three centuries. The aims of the current review are firstly to assemble the salient information into a single text, which will hopefully serve to facilitate the study of the parasites B. P. Berto (&) W. Flausino D. McIntosh W. L. Teixeira-Filho C. W. G. Lopes Departamento de Parasitologia Animal, Instituto de Veterina ´ria, Universidade Federal Rural do Rio de Janeiro (UFRRJ), BR-465 km 7, 23890-000 Serope ´dica, RJ, Brazil e-mail: [email protected] W. Flausino e-mail: fl[email protected] D. McIntosh e-mail: [email protected] W. L. Teixeira-Filho e-mail: [email protected] C. W. G. Lopes e-mail: [email protected] 123 Syst Parasitol (2011) 80:159–204 DOI 10.1007/s11230-011-9317-8

Coccidia de Passeriformes da América

Embed Size (px)

Citation preview

Page 1: Coccidia de Passeriformes da América

Coccidia of New World passerine birds (Aves:Passeriformes): a review of Eimeria Schneider, 1875and Isospora Schneider, 1881 (Apicomplexa: Eimeriidae)

Bruno P. Berto • Walter Flausino •

Douglas McIntosh • Walter L. Teixeira-Filho •

Carlos W. G. Lopes

Received: 28 December 2010 / Accepted: 26 May 2011

� Springer Science+Business Media B.V. 2011

Abstract In the New World, the avian order Pass-

eriformes comprises 47 families and 2,453 species,

yet to date only 21 (45%) of the families and 58 (2%)

of the species have been examined for coccidia, and

from these only two species of Eimeria Schneider,

1875 and 81 species of Isospora Schneider, 1881

have been described. This review contributes to our

understanding of the morphology and systematics of

coccidian parasites of passeriforms, providing a

scientific basis for the identification of sporulated

oocysts recovered from the faeces of passerine birds

from North, Central and South America. To this end,

the coccidia were organised and grouped according to

the family of the host, following the widely recog-

nised concept of family-specificity and the updated

systematics of the class Aves. Details of 83 eimeriid

species are presented along with an illustration and

tabulated data.

Introduction

The order Passeriformes includes [5,000 species

worldwide and accounts for[50% of all avian species.

The New World passerine birds are mostly endemic

and occupy, in the case of South America, a large

number of ecological niches, which, in other conti-

nents, are inhabited by other groups of birds. At present

a total of 1,023 species are found in Brazil, of which

170 are endemic (CBRO, 2011). A small number of

families have numerical predominace, with the families

Tyrannidae, Formicariidae and Furnariidae (Sick, 1997;

IUCN, 2011) demonstrating the greatest levels of species

diversity. In common with other vertebrates, passerine

birds can be infected by coccidia, primarily by species of

Isospora Schneider, 1881 and, to a lesser extent,

Eimeria Schneider, 1875. These parasites generally

have intestinal life-cycles, although some species

present extra-intestinal life-history stages.

At present, our knowledge of the systematics and

morphology of coccidian parasites (i.e. species of

Isospora and Eimeria) of Passeriformes in the

Americas is widely distributed throughout an exten-

sive body of literature which spans three centuries.

The aims of the current review are firstly to assemble

the salient information into a single text, which will

hopefully serve to facilitate the study of the parasites

B. P. Berto (&) � W. Flausino � D. McIntosh �W. L. Teixeira-Filho � C. W. G. Lopes

Departamento de Parasitologia Animal, Instituto de

Veterinaria, Universidade Federal Rural do Rio de Janeiro

(UFRRJ), BR-465 km 7, 23890-000 Seropedica,

RJ, Brazil

e-mail: [email protected]

W. Flausino

e-mail: [email protected]

D. McIntosh

e-mail: [email protected]

W. L. Teixeira-Filho

e-mail: [email protected]

C. W. G. Lopes

e-mail: [email protected]

123

Syst Parasitol (2011) 80:159–204

DOI 10.1007/s11230-011-9317-8

Page 2: Coccidia de Passeriformes da América

in question, and secondly to provide an updated

scientific basis for the identification of sporulated

oocysts recovered from the faeces of passerine birds

in North, Central and South America.

Eimeria Schneider, 1875

Species of Eimeria parasitising Passeriformes in the

Americas were first described only recently, when

Berto et al. (2008c, 2009d) described two species

from two species of the Tyrannidae in southeastern

Brazil. Morphometric data for the sporulated oocysts

of these coccidia are presented in Table 1.

Eimeria divinolimai Berto, Flausino, Ferreira &

Lopes, 2008 (Fig. 1a)

Type-host: Casiornis rufus (Vieillot) (Tyrannidae),

rufous casiornis.

Type-locality: Brazil.

Remark: This was the first description of a species of

Eimeria from New World passerine birds (Berto

et al., 2008c).

Eimeria sicki Berto, Luz, Flausino, Ferreira &

Lopes, 2009 (Fig. 1b)

Type-host: Myiarchus ferox (Gmelin) (Tyrannidae),

short-crested flycatcher.

Type-locality: Brazil.

Remarks: Eimeria sicki oocysts are larger than those

of E. divinolimai. In addition, E. divinolimai contains

a polar granule which is not present in E. sicki (see

Berto et al., 2009d) (Table 1).

Isospora Schneider, 1881

Hundreds of species of Isospora have been described

from passerine birds; however, the majority of these

were recorded from Eurasia. To date, 21 families of

Passeriformes have been recognised as hosts for

Isospora spp. in the New World. These are: (1) the

Dendrocolaptidae, (2) Furnariidae and (3) Thamno-

philidae of the parvorder Furnariida, infraorder

Tyranni; (4) the Cotingidae and (5) Tyrannidae of

the parvorder Tyrannida, infraorder Tyranni; (6) the

Corvidae and (7) Meliphagidae of the parvorder

Corvida, infraorder Passeri; (8) the Cardinalidae, (9)

Coerebidae, (10) Emberizidae, (11) Estrildidae, (12) Ta

ble

1C

om

par

ativ

em

orp

ho

log

yo

fE

imer

iasp

p.

reco

rded

fro

mN

ewW

orl

dp

asse

rin

eb

ird

so

fth

efa

mil

yT

yra

nn

idae

Co

ccid

iaH

ost

ost

Ref

eren

ceO

ocy

sts

Sp

oro

cyst

s

Sh

ape

Mea

sure

men

ts

(lm

)

Sh

ape

ind

ex

Wal

l(l

m)

Po

lar

gra

nu

le

Sh

ape

Mea

sure

men

ts

(lm

)

Sti

eda

bo

dy

Su

bst

ied

a

bo

dy

Res

idu

um

E.

div

ino

lim

ai

Ca

sio

rnis

rufu

sB

erto

etal

.

(20

08

c)

sub

-

sph

eric

al

17

.89

15

.9

(16

–2

09

14

–1

8)

1.1 (1

.0–

1.2

)

bi-

lay

ered

,

c.2

pre

sen

to

vo

id1

5.0

97

.5

(14

–1

69

7–

8)

pro

min

ent

abse

nt

dif

fuse

E.

sick

iM

yia

rch

us

fero

xB

erto

etal

.

(20

09

d)

sub

-

sph

eric

al

30

.39

28

.5

(29

–3

29

26

–3

0)

1.1 (1

.0–

1.2

)

bi-

lay

ered

,

c.1

.3

abse

nt

elli

pso

idal

18

.49

10

.0

(18

–1

99

9–

11

)

flat

ten

edp

rom

inen

td

iffu

se

160 Syst Parasitol (2011) 80:159–204

123

Page 3: Coccidia de Passeriformes da América

Fringillidae, (13) Hirundinidae, (14) Icteridae, (15)

Parulidae, (16) Passeridae, (17) Sturnidae, (18)

Thraupidae, (19) Timaliidae, (20) Turdidae and (21)

Zosteropidae of the parvorder Passerida, infraorder

Passeri.

The sections which follow provide descriptions

and illustrations of species of Isospora arranged

according to the family, parvorder and infraorder of

their passerine hosts, following the widely recognised

concept of family-specificity and the updated sys-

tematics (IUCN, 2011) of the class Aves. The

comparative morphometric data for the sporulated

oocysts of all Isospora species recorded from New

World passerine birds are provided in Tables 2–12.

Host: Infraorder Tyranni Wetmore & Miller

Host: Parvorder Furnariida Sibley, Ahlquist

& Monroe

Host: Family Dendrocolaptidae Gray

Isospora concentrica McQuistion & Capparella,

1995 (Fig. 1c)

Type-host: Dendrocolaptes certhia radiolatus (Sclater,

Salvin), Amazonian barred woodcreeper.

Other host: Dendrocolaptes sanctithomae colombi-

anus (Lafresnaye), northern barred woodcreeper.

Type-locality: Ecuador, Provincia de Sucumbios,

Imuya Cocha (0�340S, 75�170W).

Remark: This was the first description from New

World dendrocolaptid birds (McQuistion & Cappa-

rella, 1995) (Table 2).

Isospora magna McQuistion & Capparella, 1995

(Fig. 1d)

Type-host: Dendrocolaptes certhia radiolatus (Sclater,

Salvin), Amazonian barred woodcreeper.

Type-locality: Ecuador, Provincia de Sucumbios,

Imuya Cocha (0�340S, 75�170W).

Remark: Isospora magna oocysts present similar

dimensions to those of I. concentrica; however, they

can be distinguished by differences in the Stieda and

substieda bodies (McQuistion & Capparella, 1995)

(Table 2).

Isospora ocellati McQuistion, Walden &

Capparella, 1997 (Fig. 1e)

Type-host: Xiphorhynchus ocellatus napensis (Spix),

ocellated woodcreeper.

Type-locality: Ecuador, Provincia de Morona-Santi-

ago, c.5 km southwest of Taisha (2�220S, 77�300W).

Remark: Isospora ocellati oocysts are smaller than

those of I. magna and I. concentrica (McQuistion

et al., 1997) (Table 2).

Isospora striata McQuistion, Walden & Capparel-

la, 1997 (Fig. 1f)

Type-host: Xiphorhynchus ocellatus napensis (Spix),

ocellated woodcreeper.

Type-locality: Ecuador, Provincia de Morona-Santi-

ago, c.5 km southwest of Taisha (2�220S, 77�300W).

Remarks: Isospora striata oocysts have similar

dimensions to those of I. ocellati; however, they

can be distinguished via differences in the Stieda

and substieda bodies (McQuistion et al., 1997)

(Table 2).

Isospora ubique McQuistion & Capparella, 1997

(Fig. 1g)

Type-host: Glyphorynchus spirurus (Vieillot),

wedge-billed woodcreeper.

Type-locality: Ecuador, Provincia de Morona-Santi-

ago, c.5 km SW of Taisha (2�220S, 77�300W).

Remarks: Isospora ubique oocysts are smaller than

those of both I. magna and I. concentrica, but larger

than those of I. ocellati and I. striata. In addition, I.

ubique lacks a substieda body (McQuistion &

Capparella, 1997) (Table 2).

Isospora dendrocinclae McQuistion, Galewsky,

Capparella & Rebling, 2010 (Fig. 1h)

Type-host: Dendrocincla merula merula (Lichten-

stein), white-chinned woodcreeper.

Other host: Dendrocincla merula barletti (Chubb),

white-chinned woodcreeper.

Type-locality: Guyana, Iwokrama Reserve, Kabocalli

Landing, West bank of Essequibo River, c.45 river

miles SE Kurupukari (4�170N, 58�310W).

Other locality (D. m. barletti): Peru, Loreto Departa-

mento, 79 km WNW of Contamana, c.400 m eleva-

tion (7�80S 75�410W).

Remark: The oocysts of I. dendrocinclae present

similar dimensions to those of I. ocellati and I.

striata; however, they can be distinguished by

examination of the Stieda and substieda bodies

(McQuistion et al., 2010) (Table 2).

Syst Parasitol (2011) 80:159–204 161

123

Page 4: Coccidia de Passeriformes da América

162 Syst Parasitol (2011) 80:159–204

123

Page 5: Coccidia de Passeriformes da América

Host: Family Furnariidae Gray

Isospora hyloctistum McQuistion & Capparella,

1994 (Fig. 1i)

Type-host: Hyloctistes subulatus assimilis (Ber-

lepsch, Taczanowski), striped woodhaunter.

Type-locality: Ecuador, Provincia de Esmeraldas,

c.20 road km NNW of Alto Tambo, 275 m elevation.

Remark: This represented the first description from

New World furnariid birds (McQuistion & Capparel-

la, 1994) (Table 2).

Isospora scleruri McQuistion & Capparella, 1994

(Fig. 1j)

Type-host: Sclerurus mexicanus obscurior (Hartert),

Tawny-throated leaftosser.

Other host: Sclerurus caudacutus brunneus (Sclater),

black-tailed leaftosser.

Type-locality: Ecuador, Provincia de Esmeraldas,

c.20 road km NNW of Alto Tambo.

Other locality (S. m. brunneus): Ecuador, Provincia

de Morona-Santiago, c.5 km SW of Taisha.

Remarks: Isospora scleruri presents oocysts which

are larger than those of I. hyloctistum. Moreover, they

can be distinguished based on differences in their

Stieda and substieda bodies (McQuistion & Cappa-

rella, 1994) (Table 2).

Isospora automoli McQuistion, Barber & Cappa-

rella, 1999 (Fig. 1k)

Type-host: Automolus ochrolaemus turdinus (Pelzeln),

buff-throated foliage-gleaner.

Other host: Automolus infuscatus infuscatus (Sclater),

olive-backed foliage-gleaner.

Type-locality: Ecuador, Provincia de Sucumbios,

c.20 km NE of Lumbaqui.

Remark: Isospora automoli oocysts present similar

dimensions to those of I. scleruri; however, they can

be distinguished based on the morphology of the

substieda body (McQuistion et al., 1999) (Table 2).

Host: Family Thamnophilidae Swainson

Isospora sagittulae McQuistion & Capparella,

1992 (Fig. 1l)

Type-host: Hylophylax naevioides naevioides (Laf-

resnaye), spotted antbird.

Type-locality: Ecuador, Provincia de Esmeraldas,

c.20 road km NNW of Alto Tambo.

Remark: This is the single Isospora species described

to date from New World thamnophilid birds

(McQuistion & Capparella, 1992a) (Table 2).

Host: Parvorder Tyrannida Wetmore &

Miller

Host: Family Cotingidae Bonaparte

Isospora araponga Dolezalova, Torres, Fernandez

& Modry, 2004 (Fig. 2a)

Type-host: Procnias nudicollis (Vieillot), bare-

throated bellbird.

Type-locality: Brazil. Exact locality not known.

Remarks: Dolezalova et al. (2004) recovered

oocysts of this species from the faeces of bare-

throated bellbirds in Spain. The birds had been

recently imported from Brazil by The Barcelona

City Zoo and were examined because they were in

quarantine. At present, this is the only Isospora

species described from New World cotingid birds

(Table 3).

Host: Family Tyrannidae Vigors

Isospora feroxis Berto, Luz, Flausino, Ferreira &

Lopes, 2009 (Fig. 2b)

Type-host: Myiarchus ferox (Gmelin), short-crested

flycatcher.

Fig. 1 Line drawings of coccidia recorded from New World

passerine birds: a. Eimeria divinolimai [adapted from Berto et al.

(2008c)]; b. E. sicki [reproduced from Systematic Parasitology,

74, 75–80 with permission]; c. Isospora concentrica [reproduced

from Acta Protozoologica, 34, 299–302 with permission]; d.

I. magna [reproduced from Acta Protozoologica, 34, 299–302

with permission]; e. I. ocellati [adapted from McQuistion et al.

(1997)]; f. I. striata [adapted from McQuistion et al. (1997)]; g.

I. ubique [reproduced from Acta Protozoologica, 36, 75–78 with

permission]; h. I. dendrocinclae [reproduced from Acta Proto-zoologica, 49, 121–124 with permission]; i. I. hyloctistum[reproduced from Transactions of the American MicroscopicalSociety, 113, 90–95 with permission]; j. I. scleruri [reproduced

from Transactions of the American Microscopical Society, 113,

90–95 with permission]; k. I. automoli [reproduced fromSystematic Parasitology, 44, 71–73 with permission]; l.

I. sagittulae [reproduced from Transactions of the AmericanMicroscopical Society, 111, 365–368 with permission]. Accord-

ing to McQuistion & Capparella (1992a), McQuistion &

Capparella (1994), McQuistion & Capparella (1995; 1997),

McQuistion et al. (1997; 1999; 2010), Berto et al. (2008c,

2009d). Scale-bar: 10 lm

b

Syst Parasitol (2011) 80:159–204 163

123

Page 6: Coccidia de Passeriformes da América

Ta

ble

2C

om

par

ativ

em

orp

ho

log

yo

fIs

osp

ora

spp

.re

cord

edfr

om

New

Wo

rld

pas

seri

ne

bir

ds

of

the

infr

aord

erT

yra

nn

i,p

arv

ord

erF

urn

arii

da

Co

ccid

iaH

ost

(s)

Ref

eren

ceO

ocy

sts

Sp

oro

cyst

s

Sh

ape

Mea

sure

men

ts(l

m)

Sh

ape

ind

exW

all

(lm

)P

ola

rg

ran

ule

Sh

ape

Mea

sure

men

ts(l

m)

Sti

eda

bo

dy

Su

bst

ied

ab

od

yR

esid

uu

m

I.co

nce

ntr

ica

Den

dro

cola

pte

sce

rth

iara

dio

latu

s(D

end

roco

lap

tid

ae);

Den

dro

cola

pte

ssa

nct

ith

om

ae

colo

mb

ian

us

(Den

dro

cola

pti

dae

)

McQ

uis

tio

n& C

app

arel

la(1

99

5)

ov

oid

26

.99

22

.7(2

4–

30

92

1–

25

)

1.2

(1.0

–1

.4)

bi-

lay

ered

,c.

2.0

pre

sen

t,1

to2

ov

oid

toel

lip

soid

al1

7.2

91

1.0

(15

–1

89

9–

12

)

blo

ck-

shap

edb

ub

ble

-sh

aped

com

pac

t

I.m

ag

na

D.

c.ra

dio

latu

s(D

end

roco

lap

tid

ae)

McQ

uis

tio

n& C

app

arel

la(1

99

5)

ov

oid

29

.79

24

.9(2

6–

31

92

3–

26

)

1.2

(1.1

–1

.3)

bi-

lay

ered

,c.

2.0

pre

sen

to

vo

id1

5.8

91

2.6

(15

–2

09

11

–1

4)

nip

ple

-li

ke

wav

yb

ord

erco

mp

act

I.o

cell

ati

Xip

ho

rhyn

chu

so

cell

atu

sn

ap

ensi

s(D

end

roco

lap

tid

ae)

McQ

uis

tio

net

al.

(19

97

)

ov

oid

20

91

7(1

8–

21

91

5–

19

)

1.2 (1

.09

1.3

)b

i-la

yer

ed,

c.1

.5p

rese

nt

ov

oid

12

98

(11

–1

39

7–

9)

do

me-

lik

eel

lip

soid

ald

iffu

seo

rco

mp

act

I.st

ria

taX

.o

.n

ap

ensi

s(D

end

roco

lap

tid

ae)

McQ

uis

tio

net

al.

(19

97

)

ov

oid

18

91

6(1

6–

20

91

5–

17

)

1.2

(1.1

–1

.2)

bi-

lay

ered

,c.

1.5

pre

sen

to

vo

id1

19

8(1

1–

12

97

–8

)

nip

ple

-li

ke

rect

ang

ula

rco

mp

act

I.u

biq

ue

Gly

ph

ory

nch

us

spir

uru

s(D

end

roco

lap

tid

ae)

McQ

uis

tio

n& C

app

arel

la(1

99

7)

sub

-sp

her

ical

too

vo

id

23

.49

21

.8(2

1–

27

91

9–

24

)

1.1

(1.0

–1

.2)

bi-

lay

ered

,c.

2.0

pre

sen

to

vo

id1

4.8

91

0.1

(14

–1

69

9–

11

)

nip

ple

-li

ke

abse

nt

dif

fuse

or

com

pac

t

I.d

end

roci

ncl

ae

Den

dro

cin

cla

mer

ula

mer

ula

(Den

dro

cola

pti

dae

);

D.

m.

ba

rlet

ti(D

end

roco

lap

tid

ae)

McQ

uis

tio

net

al.

(20

10

)

sub

-sp

her

ical

too

vo

id

19

.29

16

.5(1

5–

23

91

4.5

–1

9)

1.2

(1.1

–1

.3)

bi-

lay

ered

pre

sen

to

vo

id1

2.9

98

.3(1

2–

14

97

–1

0)

smal

l,k

no

b-

lik

e

slig

htl

yla

rger

than

the

Sti

eda

bo

dy

and

sub

-g

lob

ula

r

com

pac

t

I.h

ylo

ctis

tum

Hyl

oct

iste

ssu

bu

latu

sa

ssim

ilis

(Fu

rnar

iid

ae)

McQ

uis

tio

n& C

app

arel

la(1

99

4)

ov

oid

17

.59

16

.0(1

5–

21

91

4–

19

)

1.1

(1.0

–1

.3)

bi-

lay

ered

pre

sen

to

vo

id1

2.4

98

.0(1

1–

15

96

–1

1)

nip

ple

-li

ke

smal

l,re

ctan

gu

lar

com

pac

t

I.sc

leru

riS

cler

uru

sm

exic

an

us

ob

scu

rio

r(F

urn

arii

dae

);

S.

cau

da

cutu

sb

run

neu

s(F

urn

arii

dae

)

McQ

uis

tio

n& C

app

arel

la(1

99

4)

ov

oid

23

.19

19

.2(2

2–

25

91

9–

20

)

1.2 (1

.19

1.3

)b

i-la

yer

edp

rese

nt,

1to

2o

vo

id1

69

10

(15

–1

79

10

)

rou

nd

ed,

nip

ple

-li

ke

wav

yb

ord

erco

mp

act

164 Syst Parasitol (2011) 80:159–204

123

Page 7: Coccidia de Passeriformes da América

Type-locality: Brazil, State of Rio de Janeiro, Mar-

ambaia Island (23�040S, 43�530W).

Remark: This was the first description of an Isospora

species from New World tyrannids (Berto et al.,

2009d) (Table 3).

Isospora mionectesi Berto, Flausino, Luz, Ferreira

& Lopes, 2009 (Fig. 2c)

Type-host: Mionectes rufiventris (Cabanis), grey-

hooded flycatcher.

Type-locality: Brazil, State of Rio de Janeiro, Mar-

ambaia Island (23�040S, 43�530W).

Remarks: Isospora mionectesi can be easily distin-

guished from I. feroxis based on the shape of the

oocysts and sporocysts. Specifically, I. feroxis oocysts

are smaller than those of I. mionectesi and present a

sub-spherical shape (Berto et al., 2009e) (Table 3).

Host: Infraorder Passeri L.

Host: Parvorder Corvida Wagler

Host: Family Corvidae Leach

Isospora brachyrhynchi Wobester & Cawthorn,

1985 (Fig. 2d)

Type-host: Corvus brachyrhynchos (Brehm), Amer-

ican crow.

Type-locality: Canada, Province of Saskatchewan.

Remark: This was the first species described from

New World corvids (Wobester & Cawthorn, 1985)

(Table 4).

Isospora cyanocoracis Upton, Current & Clubb,

1985 (Fig. 2e)

Type-host: Cyanocorax chrysops (Vieillot), plush-

crested jay.

Type-locality: Argentina. Exact locality not known.

Remarks: Upton et al. (1985) described this species

from birds in Florida imported from Argentina. The

oocysts of I. cyanocoracis are larger than those of

I. brachyrhynchi (see Upton et al., 1985) (Table 4).

Isospora calocitta Upton, Wright & Langen, 1995

(Fig. 2f)

Type-host: Calocitta formosa formosa (Swainson),

white-throated magpie-jay.

Type-locality: Costa Rica, Guanacaste Conservation

Area, Santa Rosa National Park, (10�450N, 85�350W).

Remark: Isospora calocitta oocysts present similar

dimensions to those of I. cyanocoracis; however, theTa

ble

2co

nti

nu

ed

Co

ccid

iaH

ost

(s)

Ref

eren

ceO

ocy

sts

Sp

oro

cyst

s

Sh

ape

Mea

sure

men

ts(l

m)

Sh

ape

ind

exW

all

(lm

)P

ola

rg

ran

ule

Sh

ape

Mea

sure

men

ts(l

m)

Sti

eda

bo

dy

Su

bst

ied

ab

od

yR

esid

uu

m

I.a

uto

mo

liA

uto

mo

lus

och

rola

emu

stu

rdin

us

(Fu

rnar

iid

ae);

A.

infu

sca

tus

infu

sca

tus

(Fu

rnar

iid

ae)

McQ

uis

tio

net

al.

(19

99

)

sub

-sp

her

ical

too

vo

id

23

.49

21

.3(1

8–

28

91

7–

24

)

1.1

(1.0

–1

.2)

bi-

lay

ered

pre

sen

to

vo

id1

5.4

99

.9(1

4–

17

98

–1

1)

nip

ple

-li

ke

smal

lco

mp

act

I.sa

git

tula

eH

ylo

ph

yla

xn

aev

ioid

esn

aev

ioid

es(T

ham

no

ph

ilid

ae)

McQ

uis

tio

n& C

app

arel

la(1

99

2a)

ov

oid

toel

lip

soid

al2

7.5

92

1.8

(25

–3

09

21

–2

4)

1.3

(1.2

–1

.4)

bi-

lay

ered

pre

sen

t,1

to3

sub

-sp

her

ical

too

vo

id

14

.89

12

.4(1

3–

16

91

2–

13

)

den

setr

ian

gu

lar

dif

fuse

Syst Parasitol (2011) 80:159–204 165

123

Page 8: Coccidia de Passeriformes da América

166 Syst Parasitol (2011) 80:159–204

123

Page 9: Coccidia de Passeriformes da América

sporocysts are larger and the sporozoites possess

elongated refractile bodies rather than the spherical

form observed in I. cyanocoracis (Upton et al.,

1995a) (Table 4).

Host: Family Meliphagidae Vigors

Isospora samoaensis Adamczyk, McQuistion &

LaPointe, 2004 (Fig. 2g)

Type-host: Foulehaio carunculatus (Gmelin), wattled

honeyeater.

Type-locality: American Samoa, Tau village on Tau

Island (14�1400100S, 169�3005200W).

Remark: This is the single Isospora species described

to date from New World meliphagid birds (Adam-

czyk et al., 2004) (Table 4).

Host: Parvorder Passerida L.

Host: Family Cardinalidae Ridgway

Isospora vanriperorum Levine, 1982 (Fig. 2h)

Syn. Isospora cardinalis Levine, Van Riper & Van

Riper, 1980 nec Gottschalk, 1972

Type-host: Cardinalis cardinalis (L.), northern

cardinal.

Other host: Saltator similis (Lafresnaye d’Orbigny),

green-winged saltator.

Type-locality: USA, Hawaii.

Other locality: Brazil, State of the Rio de Janeiro,

Rio de Janeiro City.

Remarks: This species was the first coccidium

described from the family Cardinalidae and was

initially named I. cardinalis by Levine et al. (1980).

However, it was subsequently renamed I. vanripero-

rum by Levine (1982b), since the name I. cardinalis

had previously been ascribed to the coccidium

parasite of an extinct passerine, Lophospingus pusil-

lus, described in East Germany by Gottschalk (1972).

Lopes et al. (2007) recovered oocysts, which they

considered identical to those of I. vanriperorum, from

the green-winged saltator Saltator similis in Brazil

(Table 5). According to Carvalho (2009), it is

possible that cross-transmission to a second genus

in the family took place following the introduction of

northern cardinals into South America for captive

breeding purposes.

Isospora pityli McQuistion & Capparella, 1992

(Fig. 2i)

Type-host: Saltator grossus saturatus (Todd), slate-

coloured grosbeak.

Type-locality: Ecuador, Provincia de Esmeraldas,

c.20 road km NNW of Alto Tambo.

Remarks: The I. pityli oocysts are smaller than those

of I. vanriperorum. In addition, it does not present a

polar granule (McQuistion & Capparella, 1992b)

(Table 5).

Isospora formarum McQuistion & Capparella,

1992 (Fig. 2j–k)

Type-host: Saltator grossus grossus (L.), slate-col-

oured grosbeak.

Other host: Saltator grossus saturatus (Todd), slate-

coloured grosbeak.

Type-locality: Ecuador, Provincia de Esmeraldas,

c.20 road km NNW of Alto Tambo.

Remark: Isospora formarum oocysts share similar

dimensions with those of I. vanriperorum; however,

it can be clearly distinguished by the presence of a

characteristic large, triangular or conical substieda

body (McQuistion & Capparella, 1992b) (Table 5).

Isospora saltatori Berto, Balthazar, Flausino &

Lopes, 2008 (Fig. 3a)

Type-host: Saltator similis (Lafresnaye d’Orbigny),

green-winged saltator.

Type-locality: Brazil, State of the Rio de Janeiro,

Teresopolis City (22�250S, 42�590W).

Remark: The oocyst dimensions of I. pityli are

similar to those of I. saltatori; however, the former

species does not present a substieda body (Berto

et al., 2008d) (Table 5).

Fig. 2 Line drawings of coccidia recorded from New World

passerine birds: a. Isopora araponga [adapted from Dolezalova

et al. (2004)]; b. I. feroxis [reproduced from SystematicParasitology, 74, 75–80 with permission]; c. I. mionectesi[adapted from Berto et al. (2009e)]; d. I. brachyrhynchi [adapted

from Wobester & Cawthorn (1985)]; e. I. cyanocoracis[reproduced from Systematic Parasitology, 7, 227–229 with per-

mission]; f. I. calocitta [reproduced from Systematic Parasitol-ogy, 31, 195–199 with permission]; g. I. samoaensis [adapted

from Adamczyk et al. (2004)]; h. I. vanriperorum [reproduced

from Journal of Protozoology, 27, 258–259 with permission]; i.

I. pityli [reproduced from Journal of Parasitology, 78, 805–807

with permission]; j–k. I. formarum [reproduced from Journal ofParasitology, 78, 805–807 with permission]. According to

Levine et al. (1980), Wobester & Cawthorn (1985), Upton et al.

(1985), McQuistion & Capparella (1992), Upton et al. (1995a),

Adamczyk et al. (2004), Dolezalova et al. (2004), Berto et al.

(2009d, e). Scale-bar: 10 lm

b

Syst Parasitol (2011) 80:159–204 167

123

Page 10: Coccidia de Passeriformes da América

Ta

ble

3C

om

par

ativ

em

orp

ho

log

yo

fIs

osp

ora

spp

.re

cord

edfr

om

New

Wo

rld

pas

seri

ne

bir

ds

of

the

infr

aord

erT

yra

nn

i,p

arv

ord

erT

yra

nn

ida

Co

ccid

iaH

ost

Ref

eren

ceO

ocy

sts

Sp

oro

cyst

s

Sh

ape

Mea

sure

men

ts(l

m)

Sh

ape

ind

exW

all

(lm

)P

ola

rg

ran

ule

Sh

ape

Mea

sure

men

ts(l

m)

Sti

eda

bo

dy

Su

bst

ied

ab

od

yR

esid

uu

m

I.a

rap

on

ga

Pro

cnia

sn

ud

ico

llis

(Co

tin

gid

ae)

Do

leza

lov

aet

al.

(20

04)

sub

-sp

her

ical

to elli

pso

idal

19

.59

15

.5(1

7–

22

91

4–

16

)

1.3 (1

.1–

1.4

)b

i-la

yer

ed,

c.1

.0p

rese

nt

elli

pso

idal

12

.59

8.5

(12

–1

3

97

–9

)

ind

isti

nct

abse

nt

com

pac

t

I.fe

roxi

sM

yia

rch

us

fero

x(T

yra

nn

idae

)B

erto

etal

.(2

00

9d

)su

b-s

ph

eric

al1

8.7

91

8.0

(18

–2

09

17

–2

0)

1.1 (1

.0–

1.1

)b

i-la

yer

ed,

c.1

.2p

rese

nt,

1o

r2

ov

oid

11

.79

8.5

(11

–1

39

8–

10

)

flat

ten

edp

rom

inen

td

iffu

se

I.m

ion

ecte

siM

ion

ecte

sru

five

ntr

is(T

yra

nn

idae

)

Ber

toet

al.

(20

09

e)el

lip

soid

al2

8.3

92

1.2

(26

–3

19

19

–2

3)

1.3 (1

.2–

1.4

)b

i-la

yer

ed,

c.1

.3p

rese

nt,

1o

r2

elli

pso

idal

and

elo

ng

ated

19

.79

11

.7(1

7–

22

91

0–

13

)

rou

nd

edp

rom

inen

tco

mp

act

Ta

ble

4C

om

par

ativ

em

orp

ho

log

yo

fIs

osp

ora

spp

.re

cord

edfr

om

New

Wo

rld

pas

seri

ne

bir

ds

of

the

infr

aord

erP

asse

ri,

par

vo

rder

Co

rvid

a

Cocc

idia

Host

Ref

eren

ceO

ocy

sts

Sporo

cyst

s

Shap

eM

easu

rem

ents

(lm

)

Shap

e

index

Wal

l(l

m)

Pola

r

gra

nule

Shap

eM

easu

rem

ents

(lm

)

Sti

eda

body

Subst

ieda

body

Res

iduum

I.bra

chyr

hyn

chi

Corv

us

bra

chyr

hyn

chos

(Corv

idae

)

Wobes

ter

&

Caw

thorn

(1985)

sub-

spher

ical

20.4

918.9

(15–25

9

14–23)

1.1 (1

.0–1.3

)

c.1.0

pre

sent

alongad

a16.2

910.6

(14–20

9

8–13)

pre

sent

–dif

fuse

I.cy

anoco

raci

sC

yanoco

rax

chry

sops

(Corv

idae

)

Upto

net

al.

(1985)

sub-

spher

ical

28.7

926.8

(25–30

9

24–29)

1.1 (1

.0–1.1

)

bi-

layer

ed,

c.2.0

pre

sent,

1or

2

ovoid

19.3

911.4

(17–21

9

10–12)

pro

min

ent

hom

ogen

eous

com

pac

t

I.ca

loci

tta

Calo

citt

afo

rmosa

form

osa

(Corv

idae

)

Upto

net

al.

(1995a)

sub-

spher

ical

28.8

927.7

(26–31

9

25–29)

1.0 (1

.0–1.1

)

bi-

layer

ed,

c.2.0

pre

sent,

1to

3

ovoid

20.1

912.6

(19–22

9

11–14)

pre

sent

pre

sent

dif

fuse

I.sa

moaen

sis

Foule

haio

caru

ncu

latu

s(M

elip

hag

idae

)

Adam

czyk

etal

.

(2004)

ovoid

28.9

926.1

(25–32

9

23–30)

1.1 (1

.0–1.3

)

bi-

layer

edpre

sent,

1or

2

ovoid

17.1

910.9

(16–18

9

10–11)

larg

ere

tangula

rco

mpac

t

168 Syst Parasitol (2011) 80:159–204

123

Page 11: Coccidia de Passeriformes da América

Ta

ble

5C

om

par

ativ

em

orp

ho

log

yo

fIs

osp

ora

spp

.re

cord

edfr

om

New

Wo

rld

pas

seri

ne

bir

ds

of

the

infr

aord

erP

asse

ri,

par

vo

rder

Pas

seri

da

(Par

t1

)

Co

ccid

iaH

ost

(s)

Ref

eren

ce(s

)sO

ocy

sts

Sp

oro

cyst

s

Sh

ape

Mea

sure

men

ts

(lm

)

Sh

ape

ind

ex

Wal

l(l

m)

Po

lar

gra

nu

le

Sh

ape

Mea

sure

men

ts

(lm

)

Sti

eda

bo

dy

Su

bst

ied

a

bo

dy

Res

idu

um

I.va

nrip

eror

umC

ard

ina

lis

card

ina

lis

(Car

din

alid

ae);

Sa

lta

tor

sim

ilis

(Car

din

alid

ae)

Lev

ine

etal

.

(19

80);

Lo

pes

etal

.

(20

07)

sub

-sp

her

ical

24

92

3

(22

–2

69

20

–2

5)

–o

ne- lay

ered

,

c.0

.8

pre

sen

to

vo

id1

69

10

(15

–1

79

10

)

kn

ob

-lik

ein

dis

tin

ctco

mp

act

I.p

ityl

iS

.g

ross

us

satu

ratu

s(C

ard

inal

idae

)

McQ

uis

tio

n

& Cap

par

ella

(19

92

)

sub

-sp

her

ical

20

.19

18

.8

(20

–2

19

17

–2

0)

1.1 (1

.0–

1.2

)

bi-

lay

ered

,

c.1

.5

abse

nt

ov

oid

14

.79

9.4

(12

–1

79

8–

11

)

nip

ple

-

lik

e

abse

nt

com

pac

t

I.fo

rma

rum

S.

g.

gro

ssu

s(C

ard

inal

idae

);

S.

g.

satu

ratu

s(C

ard

inal

idae

)

McQ

uis

tio

n

& Cap

par

ella

(19

92

)

sub

-sp

her

ical

24

.69

23

.5

(21

–2

79

20

–2

5)

1.0 (1

.0–

1.1

)

bi-

lay

ered

,

c.1

.5

abse

nt

ov

oid

15

.79

11

.3

(14

–1

79

10

–1

3)

smal

l,

nip

ple

-

lik

e

larg

e,

tria

ng

ula

r

or

con

ical

com

pac

t

I.sa

lta

tori

S.

sim

ilis

(Car

din

alid

ae)

Ber

toet

al.

(20

08

d)

sub

-sp

her

ical

18

.39

17

.9

(17

–2

09

16

–2

0)

1.0 (1

.0–

1.1

)

bi-

lay

ered

,

c.1

.1

abse

nt

ov

oid

13

.49

8.9

(12

–1

59

8–

10

)

smal

l,

flat

ten

ed

smal

lco

mp

act

I.tr

inca

ferr

iS

.si

mil

is(C

ard

inal

idae

)

Ber

toet

al.

(20

08

d)

sub

-sp

her

ical

26

.29

23

.6

(24

–2

99

22

–2

5)

1.1 (1

.0–

1.2

)

bi-

lay

ered

,

c.1

.2

pre

sen

to

vo

id1

7.5

91

1.5

(17

–1

89

10

–1

3)

bu

bb

le-

shap

ed

pro

min

ent

dif

fuse

I.ca

ga

seb

iC

oer

eba

fla

veo

la(C

oer

ebid

ae)

Ber

toet

al.

(20

08

b,

20

11

a)

sub

-sp

her

ical

24

.99

24

.5

(23

–2

69

23

–2

5)

1.0

bi-

lay

ered

,

c.1

.4

abse

nt

ov

oid

18

.79

11

.5

(18

–1

99

10

–1

2)

kn

ob

-lik

ep

rom

inen

td

iffu

se

I.co

ereb

ae

C.

fla

veo

la(C

oer

ebid

ae)

Ber

toet

al.

(20

11

a)

sub

-sp

her

ical

24

.89

23

.3

(23

–2

79

21

–2

6)

1.1 (1

.0–

1.1

)

bi-

lay

ered

,

c.1

.2

abse

nt

ov

oid

17

.99

10

.9

(17

–1

99

10

–1

2)

rou

nd

edsm

all

dif

fuse

Syst Parasitol (2011) 80:159–204 169

123

Page 12: Coccidia de Passeriformes da América

170 Syst Parasitol (2011) 80:159–204

123

Page 13: Coccidia de Passeriformes da América

Isospora trincaferri Berto, Balthazar, Flausino &

Lopes, 2008 (Fig. 3b)

Type-host: Saltator similis (Lafresnaye d’Orbigny),

green-winged saltator.

Type-locality: Brazil, State of the Rio de Janeiro,

Teresopolis City (22�250S, 42�590W).

Remark: Isospora trincaferri oocysts are larger than

those of I. pityli and I. saltatori, and they present a

large polar granule and prominent substieda body,

which are not found in I. formarum and I. vanrip-

erorum, respectively (Berto et al., 2008d) (Table 5).

Host: Family Coerebidae Lafresnaye &

d’Orbigny

Isospora cagasebi Berto, Flausino, Luz, Ferreira &

Lopes, 2008 (Fig. 3c)

Type-host: Coereba flaveola (L.), bananaquit.

Type-locality: Brazil, State of the Rio de Janeiro,

Marambaia Island (23�040S, 43�530W).

Remark: This was the first description from New

World coerebids (Berto et al., 2008b) (Table 5).

Isospora coerebae Berto, Flausino, Luz, Ferreira

& Lopes, 2010 (Fig. 3d)

Type-host: Coereba flaveola (L.), bananaquit.

Type-locality: Brazil, State of the Rio de Janeiro,

Marambaia Island (23�040S, 43�530W).

Remark: This species is very similar to I. cagasebi;

however, the two species can be readily distinguished

by examining the details of the Stieda and substieda

bodies (Berto et al., 2011a) (Table 5).

Host: Family Emberizidae Vigors

Isospora paroariae Upton, Current & Clubb, 1985

(Fig. 3e)

Type-host: Paroaria coronata (Miller), red-crested

cardinal.

Type-locality: Argentina. Exact locality not known.

Remarks: Upton et al. (1985) described this species

from birds in Florida imported from Argentina. This

was the first description from New World emberizids

(Table 6).

Isospora rotunda McQuistion & Wilson, 1988

(Fig. 3f)

Type-host: Camarhynchus parvulus (Gould), small

tree-finch.

Type-locality: Galapagos archipelago, Isabela Island,

near Sierra Negra.

Remarks: Isospora rotunda oocysts present a polar

granule, which is absent in I. paroariae. Furthermore,

the geographical isolation of the Galapagos archipel-

ago from continental South America is considered to

represent a segregational factor for species of Isos-

pora (see McQuistion & Wilson, 1988; Ball &

Daszak, 1997; Carvalho-Filho et al., 2005; Silva

et al., 2006; Berto et al., 2009a; Balthazar et al., 2009;

Pereira et al., 2011) (Table 6).

Isospora fragmenta McQuistion & Wilson, 1988

(Fig. 3g)

Type-host: Camarhynchus parvulus (Gould), small

tree-finch.

Type-locality: Galapagos archipelago, Isabela Island,

near Sierra Negra.

Remark: Isospora fragmenta presents oocysts which

are larger than those of I. paroariae and I. rotunda

and can be easily distinguished by the presence of

10–20 polar granules (McQuistion & Wilson, 1988)

(Table 6).

Isospora exigua McQuistion & Wilson, 1988

(Fig. 3h)

Type-host: Camarhynchus parvulus (Gould), small

tree-finch.

Type-locality: Galapagos archipelago, Isabela Island,

near Sierra Negra.

Remarks: Isospora exigua oocysts do not present the

polar granules encountered in I. fragmenta and

I. rotunda. In addition, it can be distinguished from

Fig. 3 Line drawings of coccidia recorded from New World

passerine birds: a. Isospora saltatori [reproduced from ActaProtozoologica, 47, 263–267 with permission]; b. I. trincaferri[reproduced from Acta Protozoologica, 47, 263–267 with

permission]; c. I. cagasebi [adapted from Berto et al. (2011a)];

d. I. coerebae [adapted from Berto et al. (2011a)]; e. I. paroariae[reproduced from Systematic Parasitology, 7, 227–229 with

permission]; f. I. rotunda [reproduced from Journal of Parasi-tology, 35, 98–99 with permission]; g. I. fragmenta [reproduced

from Journal of Parasitology, 35, 98–99 with permission]; h.

I. exigua [reproduced from Journal of Parasitology, 35, 98–99

with permission]; i. I. temeraria [reproduced from Journal ofParasitology, 35, 98–99 with permission]; j. I. geospizae[reproduced from Systematic Parasitology, 14, 141–144, 1989

with permission]; k. I. daphnensis [reproduced from Journal ofParasitology, 76, 30–32 with permission]; l. I. tiaris [reproduced

from Journal of Parasitology, 83, 465–466 with permission].

According to Upton et al. (1985), McQuistion & Wilson (1988;

1989), McQuistion (1990), Ball & Daszak (1997), Berto et al.

(2008d, 2011a). Scale-bar: 10 lm

b

Syst Parasitol (2011) 80:159–204 171

123

Page 14: Coccidia de Passeriformes da América

I. paroariae via differences in the small Stieda and

substieda bodies (McQuistion & Wilson, 1988)

(Table 6).

Isospora temeraria McQuistion & Wilson, 1988

(Fig. 3i)

Type-host: Camarhynchus parvulus (Gould), small

tree-finch.

Type-locality: Galapagos archipelago, Isabela Island,

near Sierra Negra.

Remark: Isospora temeraria is different from I.

temeraria, I. exigua, I. fragmenta, I. rotunda and I.

paroariae because it presents ellipsoidal and large

oocysts and 1–4 polar granules (McQuistion &

Wilson, 1988) (Table 6).

Isospora geospizae McQuistion & Wilson, 1989

(Fig. 3j)

Type-host: Geospiza fuliginosa (Gould), small

ground-finch.

Other host: Geospiza fortis (Gould), medium ground-

finch.

Type-locality: Galapagos archipelago, Santa Cruz

Island, Puerto Ayora and Los Tuneles region.

Remark: The oocysts of I. geospizae are the smallest

recorded to date among the Isospora species associ-

ated with emberizids (McQuistion & Wilson, 1989)

(Table 6).

Isospora daphnensis McQuistion, 1990 (Fig. 3k)

Type-host: Geospiza fortis (Gould), medium ground-

finch.

Type-locality: Galapagos archipelago, Daphne Major

Island.

Remarks: Isospora temeraria is the closest in terms

of morphological characteristics to I. daphnensis;

however, it can be distinguished by details in the

Stieda body, which is more rounded in I. daphnensis.

Moreover, I. daphnensis presents a rough outer

oocyst wall that causes the oocysts to cluster into

small groups or adhere to faecal debris (McQuistion,

1990) (Table 6).

Isospora tiaris Ball & Daszak, 1997 (Fig. 3l)

Type-host: Tiaris fuliginosus (Wied), sooty grassquit.

Type-locality: Venezuela. Exact locality of origin is

unknown.

Remarks: Ball & Daszak (1997), based in the United

Kingdom, described this species from sooty

grassquits imported from Venezuela. Isospora par-

oariae, I. rotunda, I. exigua and I. geospizae oocysts

are all smaller than those of I. tiaris. In contrast, I.

fragmenta oocysts contain larger sporocysts and

present 10–20 polar granules; I. temeraria presents

a knob-like Stieda body; and I. daphnensis has a

rough outer oocyst wall (Table 6).

Isospora sporophilae Carvalho-Filho, Meireles,

Ribeiro & Lopes, 2005 (Fig. 4a)

Type-host: Sporophila caerulescens (Vieillot), dou-

ble-collared seedeater.

Type-locality: Brazil, State of the Rio de Janeiro,

Seropedica City (22�43023.7900S, 43�42036.9400W).

Remarks: The hosts were held at the Centro de

Triagem de Animais Silvestres (Centre for Triage of

Wild Animals - CETAS/IBAMA) for rehabilitation

and reintroduction into the wild. Isospora sporophi-

lae can be distinguished from the majority of the

other Isospora species described from New World

emberizids by the absence of the substieda body

(Carvalho-Filho et al., 2005) (Table 6).

Isospora flausinoi Carvalho-Filho, Meireles, Ribe-

iro & Lopes, 2005 (Fig. 4b)

Type-host: Sporophila caerulescens (Vieillot), dou-

ble-collared seedeater.

Type-locality: Brazil, State of the Rio de Janeiro,

Seropedica City (22�43023.7900S, 43�42036.9400W).

Remark: In common with I. sporophilae, the substieda

body is absent in I. flausinoi; however, I. flausinoi

oocysts are smaller and present a single large polar gran-

ule body (Carvalho-Filho et al., 2005) (Tables 6, 7).

Isospora teixeirafilhoi Carvalho-Filho, Meireles,

Ribeiro & Lopes, 2005 (Fig. 4c)

Type-host: Sporophila caerulescens (Vieillot), dou-

ble-collared seedeater.

Type-locality: Brazil, State of the Rio de Janeiro,

Seropedica City (22�43023.7900S, 43�42036.9400W).

Remarks: This represented the third species described

by Carvalho-Filho et al. (2005) from double-collared

seedeaters held in captivity at CETAS/IBAMA. It

also lacks a substieda body. However, Isospora

teixeirafilhoi oocysts are smaller than those of I.

sporophilae, and it can be distinguished from I.

flausinoi based on the sporocyst shape, which is

pyriform in I. flausinoi and ovoid in I. teixeirafilhoi

(Tables 6, 7).

172 Syst Parasitol (2011) 80:159–204

123

Page 15: Coccidia de Passeriformes da América

Ta

ble

6C

om

par

ativ

em

orp

ho

log

yo

fIs

osp

ora

spp

.re

cord

edfr

om

New

Wo

rld

pas

seri

ne

bir

ds

of

the

infr

aord

erP

asse

ri,

par

vo

rder

Pas

seri

da

(Par

t2

)

Cocc

idia

Host

(s)

Ref

eren

ceO

ocy

sts

Sporo

cyst

s

Shap

eM

easu

rem

ents

(lm

)

Shap

e

index

Wal

l(l

m)

Pola

r

gra

nule

Shap

eM

easu

rem

ents

(lm

)

Sti

eda

body

Subst

ieda

body

Res

iduum

I.paro

ari

ae

Paro

ari

aco

ronate

(Em

ber

izid

ae)

Upto

net

al.

(1985

)

sub-s

pher

ical

22.3

921.4

(19–26

9

18–24)

1.1 (1

.0–1.1

)

bi-

layer

ed,

c.1.8

abse

nt

ovoid

15.2

910.0

(14–17

9

8–12)

pre

sent

pro

min

ent

com

pac

t

I.ro

tunda

Cam

arh

ynch

us

parv

ulu

s(E

mber

izid

ae)

McQ

uis

tion

&W

ilso

n

(1988

)

sub-s

pher

ical

21.8

920.9

(20–24

9

19–23)

1.0

one-

layer

ed,

c.1.0

pre

sent

ovoid

15

99.7

(13–16

9

9–10)

knob-l

ike

pro

min

ent

com

pac

t

I.fr

agm

enta

C.

parv

ulu

s(E

mber

izid

ae)

McQ

uis

tion

&W

ilso

n

(1988

)

sub-s

pher

ical

25.3

924.2

(24–27

9

23–25)

1.1

one-

layer

ed,

c.1.0

pre

sent,

10

to20

pyri

form

15.4

911.5

(14–17

9

11–12)

knob-l

ike

pro

min

ent

com

pac

t

I.ex

igua

C.

parv

ulu

s(E

mber

izid

ae)

McQ

uis

tion

&W

ilso

n

(1988

)

sub-s

pher

ical

20.4

920.1

(20–23

9

18–23)

1.0

one-

layer

ed,

c.1.0

abse

nt

ovoid

14

99.5

(13–15

9

8–10)

smal

lsm

all

com

pac

t

I.te

mer

ari

aC

.parv

ulu

s(E

mber

izid

ae)

McQ

uis

tion

&W

ilso

n

(1988

)

elli

pso

idal

25.4

921.1

(21–30

9

17–23)

1.2

one-

layer

ed,

c.1.0

pre

sent,

1

to4

pyri

form

15

910

(14–15

9

9–11)

knob-l

ike

pro

min

ent

com

pac

t

I.geo

spiz

ae

Geo

spiz

afu

ligin

osa

(Em

ber

izid

ae);

G.

fort

is(E

mber

izid

ae)

McQ

uis

tion

&W

ilso

n

(1989

)

sub-s

pher

ical

15.5

914.5

(13–17

9

12–17)

1.1 (1

.0–1.1

)

one-

layer

ed,

c.1.0

pre

sent

ovoid

10

97.5

(10–12

9

6–9)

rounded

smal

lco

mpac

t

I.daphnen

sis

G.

fort

is(E

mber

izid

ae)

McQ

uis

tion

(1990

)

elli

pso

idal

27.3

923.6

(22–30

9

20–27)

1.2 (1

.0–1.3

)

bi-

layer

ed,

c.1.5

pre

sent

ovoid

15.2

910.2

(15–16

9

9–11)

nip

ple

-

like,

rounded

smal

lco

mpac

t

I.ti

ari

sT

iari

sfu

ligin

osu

s(E

mber

izid

ae)

Bal

l&

Das

zak

(1997

)

sub-s

pher

ical

27.1

923.8

(25–30

9

21–27)

1.1

bi-

layer

ed,

c.1.0

pre

sent

ovoid

14.7

910.8

(12–17

9

9–12)

pro

min

ent

pro

min

ent

dif

fuse

I.sp

oro

phil

ae

Sporo

phil

aca

erule

scen

s(E

mber

izid

ae)

Car

val

ho-

Fil

ho

etal

.

(2005

)

sub-s

pher

ical

21.6

920.1

(19–23

9

18–23)

1.0 (1

.0–1.1

)

bi-

layer

ed,

c.1.3

pre

sent,

man

y

spli

nte

r-

like

or

com

ma-

like

gra

nule

s

ovoid

15.1

910.7

(13–17

9

8–13)

knob-l

ike

abse

nt

com

pac

t

Syst Parasitol (2011) 80:159–204 173

123

Page 16: Coccidia de Passeriformes da América

174 Syst Parasitol (2011) 80:159–204

123

Page 17: Coccidia de Passeriformes da América

Isopora curio Silva, Literak & Koudela, 2006

(Fig. 4d)

Type-host: Oryzoborus angolensis (L.), lesser seed-

finch.

Type-locality: Brazil, State of the Mato Grosso do

Sul.

Remarks: The oocysts reported in this description

were isolated from the faeces of captive birds.

Isopora curio has no substieda body, and, within this

group, its oocysts are most similar to those of I.

sporophilae. Yet, unlike I. curio, the oocysts of I.

sporophilae present numerous polar granules (Silva

et al., 2006) (Tables 6, 7).

Isospora braziliensis Silva, Literak & Koudela,

2006 (Fig. 4e)

Type-host: Oryzoborus angolensis (L.), lesser seed-

finch.

Type-locality: Brazil, State of the Mato Grosso do

Sul.

Remarks: This was the second species described from

O. angolensis by Silva et al. (2006). The oocysts used

for its description were isolated from the faeces of

captive birds. Isospora braziliensis has no substieda

body and its oocysts are similar to those of I. flausinoi

and I. teixeirafilhoi; however, in I. braziliensis the

oocysts lack a polar granule and the sporocysts are

slightly more elongated than those of both I. flausinoi

and I. teixeirafilhoi (Tables 6, 7).

Isospora paranaensis Silva, Literak & Koudela,

2006 (Fig. 4f)

Type-host: Oryzoborus angolensis (L.), lesser seed-

finch.

Type-locality: Brazil, State of the Mato Grosso do

Sul.

Remarks: This represented the third species described

by Silva et al. (2006). Isospora geospizae oocysts are

smaller than those of I. paranaensis, whereas those of

I. tiaris are larger. Both I. paroariae and I. exigua have

no polar granule, and I. fragmenta and I. temeraria

have more than one; I. rotunda presents a knob-like

Stieda body; I. daphnensis has a rough outer oocyst

wall; and I. sporophilae, I. flausinoi, I. teixeirafilhoi,

I. curio and I. braziliensis have no substieda body.

All these features are absent in I. paranaensis

(Tables 6, 7).

Isospora frontalis Berto, Balthazar, Flausino &

Lopes, 2009 (Fig. 4g)

Type-host: Sporophila frontalis (Verreaux), buffy-

fronted seedeater.

Type-locality: Brazil, State of the Rio de Janeiro,

Teresopolis City (22�250S, 42�590W).

Remarks: The oocysts used for the description of this

species were isolated from the faeces of captive birds.

Sporophila frontalis is categorised as ‘Vulnerable’ by

the International Union for Conservation of Nature

and Natural Resources (IUCN, 2011). Only I. tiaris,

I. daphnensis and I. temeraria share similar dimen-

sions with I. frontalis; however, I. frontalis can be

easily distinguished by its elongate sporocyst and by

the presence of splinter-like or comma-shaped polar

granules (Berto et al., 2009a) (Tables 6, 7).

Isospora teresopoliensis Berto, Balthazar, Flausino

& Lopes, 2009 (Fig. 4h)

Type-host: Sporophila frontalis (Verreaux), buffy-

fronted seedeater.

Type-locality: Brazil, State of the Rio de Janeiro,

Teresopolis City (22�250S, 42�590W).

Remarks: This is the second species described from S.

frontalis by Berto et al. (2009a). The oocysts for its

description were isolated from the faeces of captive

birds. Isospora paranaensis, I. curio, I. tiaris, I.

daphnensis, I. temeraria, I. fragmenta and I. paroariae

all present similar oocyst dimensions to those of I.

teresopoliensis; however, only I. curio and I. paroariae

share with I. teresopoliensis the feature of the absence

of a polar granule. However, I. curio has no substieda

body, and I. teresopoliensis has sporocysts which are

larger than those of I. paroariae (Tables 6, 7).

Fig. 4 Line drawings of coccidia recorded from New

World passerine birds: a. Isospora sporophilae [adapted from

Carvalho-Filho et al. (2005)]; b. I. flausinoi [adapted

from Carvalho-Filho et al. (2005)]; c. I. teixeirafilhoi [adapted

from Carvalho-Filho et al. (2005)]; d. I. curio [adapted from

Silva et al. (2006)]; e. I. braziliensis [adapted from Silva et al.

(2006)]; f. I. paranaensis [adapted from Silva et al. (2006)]; g.

I. frontalis [reproduced from Systematic Parasitology, 73,

65–69 with permission]; h. I. teresopoliensis [reproduced from

Systematic Parasitology, 73, 65–69 with permission]; i. I.chanchaoi [reproduced from Systematic Parasitology, 73,

65–69 with permission]; j. I. ticoticoi [reproduced from ActaProtozoologica, 48, 345–349 with permission]; k. I. boca-montensis [reproduced from Systematic Parasitology, 78,

73–80 with permission]. According to Carvalho-Filho et al.

(2005), Silva et al. (2006), Berto et al. (2009a), Balthazar et al.

(2009b), Pereira et al. (2011). Scale-bar: 10 lm

b

Syst Parasitol (2011) 80:159–204 175

123

Page 18: Coccidia de Passeriformes da América

Ta

ble

7C

om

par

ativ

em

orp

ho

log

yo

fIs

osp

ora

spp

.re

cord

edfr

om

New

Wo

rld

pas

seri

ne

bir

ds

of

the

infr

aord

erP

asse

ri,

par

vo

rder

Pas

seri

da

(Par

t3

)

Cocc

idia

Host

(s)

Ref

eren

ce(s

)O

ocy

sts

Sporo

cyst

s

Shap

eM

easu

rem

ents

(lm

)

Shap

e

index

Wal

l(l

m)

Pola

r

gra

nule

Shap

eM

easu

rem

ents

(lm

)

Sti

eda

body

Subst

ieda

body

Res

iduum

I.flausi

noi

Sporo

phil

a

caer

ule

scen

s

(Em

ber

izid

ae)

Car

val

ho-

Fil

ho

etal

.

(2005)

sub-

spher

ical

17.3

916.5

(14–20

9

14–20)

1.1 (1

.0–1.2

)

bi-

layer

ed,

c.1.0

pre

sent

pyri

form

14.9

910.7

(12–18

9

8–12)

rounded

abse

nt

com

pac

t

I.te

ixei

rafilh

oi

S.

caer

ule

scen

s

(Em

ber

izid

ae)

Car

val

ho-

Fil

ho

etal

.

(2005)

sub-

spher

ical

17.4

916.8

(16––19

9

14–19)

1.0 (1

.0–1.2

)

bi-

layer

ed,

c.1.2

pre

sent

ovoid

11.7

98.1

(9–14

9

6–9)

knob-

like

abse

nt

com

pac

t

I.cu

rio

Ory

zoboru

s

angole

nsi

s

(Em

ber

izid

ae)

Sil

va

etal

.

(2006)

sub-

spher

ical

24.6

923.6

(22–26

9

22–25)

1.0 (1

.0–1.2

)

bi-

layer

ed,

c.1.5

abse

nt

ovoid

13.2

910.9

(15–17

9

10–13)

pre

sent

abse

nt

dif

fuse

I.bra

zili

ensi

sO

.angole

nsi

s

(Em

ber

izid

ae)

Sil

va

etal

.

(2006)

sub-

spher

ical

17.8

916.9

(16–19

9

16–18)

1.1 (1

.0–1.1

)

one- la

yer

ed,

c.1.0

abse

nt

elli

pso

idal

13.2

910.8

(12–14

9

9–12)

flat

tened

abse

nt

dif

fuse

I.para

nae

nsi

sO

.angole

nsi

s

(Em

ber

izid

ae)

Sil

va

etal

.

(2006)

sub-

spher

ical

to elli

pso

idal

24.3

919.8

(22–26

9

18–22)

1.2 (1

.1–1.4

)

one- la

yer

ed,

c.1.5

pre

sent

ovoid

15.7

910.1

(14–18

9

8–12)

pre

sent

pre

sent

com

pac

t

I.fr

onta

lis

Sporo

phil

a

fronta

lis

(Em

ber

izid

ae)

Ber

toet

al.

(2009a)

sub-

spher

ical

27.9

926.9

(27–29

9

25–28)

1.0 (1

.0–1.1

)

bi-

layer

ed,

c.1.4

pre

sent,

man

y

spli

nte

r-li

ke

or

com

ma-

like

gra

nule

s

elongat

e

elli

pso

idal

19.6

911.1

(19–21

9

10–12)

knob-

like

del

icat

edif

fuse

I.te

reso

poli

ensi

sS.

fronta

lis

(Em

ber

izid

ae)

Ber

toet

al.

(2009a)

sub-

spher

ical

25.7

924.3

(24–27

9

23–25)

1.1 (1

.0–1.1

)

bi-

layer

ed,

c.1.3

abse

nt

ovoid

18.8

911.2

(18–20

9

10–12)

nip

ple

-

like

larg

edif

fuse

I.ch

anc

haoi

S.

fronta

lis

(Em

ber

izid

ae);

S.

schis

tace

a

(Em

ber

izid

ae)

Ber

toet

al.

(2009a)

;

Bal

thaz

ar

etal

.

(2009a)

sub-

spher

ical

or

ovoid

24.2

922.0

(23–26

9

21–23)

1.1 (1

.0–1.1

)

bi-

layer

ed,

c.1.2

pre

sent,

1or

2el

lipso

idal

16.1

910.3

(15–17

9

10–11)

nip

ple

-

like

smal

lco

mpac

t

I.ti

coti

coi

Zonot

rich

ia

capen

sis

(Em

ber

izid

ae)

Bal

thaz

ar

etal

.

(2009b

)

sub-

spher

ical

23.3

922.4

(20–25

9

20–24)

1.1 (1

.0–1.1

)

bi-

layer

ed,

c.1.2

usu

alm

ente

abse

nt

elli

pso

idal

17.0

910.8

(15–18

9

10–11)

nip

ple

-

like

wit

h com

par

tmen

t

dif

fuse

I.boca

monte

nsi

sG

uber

nat

rix

cris

tata

(Em

ber

izid

ae)

Per

eira

etal

.

(2011)

sub-

spher

ical

32.1

928.9

(27–34

9

26–32)

1.0 (1

.0–1.2

)

bi-

layer

ed,

c.1.5

usu

ally

abse

nt

elli

pso

idal

17.3

912.2

(16–19

9

11–13)

hal

f- moon-

shap

ed

pro

min

ent

com

pac

t

176 Syst Parasitol (2011) 80:159–204

123

Page 19: Coccidia de Passeriformes da América

Isospora chanchaoi Berto, Balthazar, Flausino &

Lopes, 2009 (Fig. 4i)

Type-host: Sporophila frontalis (Verreaux), buffy-

fronted seedeater.

Other host: Sporophila schistacea (Lawrence), slate-

coloured seedeater.

Type-locality: Brazil, State of the Rio de Janeiro,

Teresopolis City (22�250S, 42�590W).

Remarks: This is the third species described by Berto

et al. (2009a). Subsequently, Balthazar et al. (2009a)

reported S. schistacea as a new host in the same local-

ity. Isospora teresopoliensis, I. paranaensis, I. curio,

I. daphnensis, I. temeraria, I. fragmenta, I. rotunda

and I. paroariae all present similar oocyst dimensions

to I. chanchaoi; however, I. teresopoliensis, I. curio

and I. paroariae have no polar granule, whereas

I. fragmenta has many, I. daphnensis has a rough

outer oocyst wall, and I. paranaensis, I. rotunda and

I. temeraria have ovoid, ovoid and pyriform spo-

rocysts, respectively. All these features are absent in

I. paranaensis (see Berto et al., 2009a) (Tables 6, 7).

Isospora ticoticoi Balthazar, Berto, Flausino &

Lopes, 2009 (Fig. 4j)

Type-host: Zonotrichia capensis (Muller), rufous-

collared sparrow.

Type-locality: Brazil, State of the Rio de Janeiro,

Teresopolis City (22�250S, 42�590W).

Remarks: This species was also reported by Berto

et al. (2009a) in the same locality and also from

captive birds. It has a substieda body with a

compartment, which is an isolated and unique feature

among the Isospora species from emberizids (Bal-

thazar et al., 2009b) (Tables 6, 7).

Isospora bocamontensis Pereira, Berto, Flausino,

Lovato & Lopes, 2011 (Fig. 4k)

Type-host: Gubernatrix cristata (Vieillot), yellow

cardinal.

Type-locality: Brazil, State of the Rio Grande do Sul,

Santa Maria City, Boca do Monte district

(29�38032.2500S, 53�55044.6200W).

Remarks: The oocysts of this species were isolated

from the faeces of captive birds. Gubernatrix cristata

is categorised as ‘Endangered’ by the International

Union for Conservation of Nature and Natural

Resources (IUCN, 2011). Only three species, I.

daphnensis, I. tiaris and I. frontalis have similar

dimensions to I. bocamontensis. In each of these the

substieda body is smaller than in I. bocamontensis.

Furthermore, the ellipsoidal sporocysts of I. boca-

montensis are readily distinguishable (Pereira et al.,

2011) (Tables 6, 7).

Host: Family Estrildidae Bonaparte

Isospora ivensae Levine, Van Riper & Van Riper,

1980 (Fig. 5a)

Type-host: Lonchura punctulata (L.), scaly-breasted

Munia.

Type-locality: USA, Hawaii.

Remark: This was the first species of Isospora

described from New World estrildid birds (Levine

et al., 1980) (Table 8).

Isospora lyonensis Upton, Marchiondo & Wil-

liams, 1988 (Fig. 5b)

Type-host: Lonchura punctulata (L.), scaly-breasted

Munia.

Type-locality: USA, Hawaii, Oahu, Manoa Valley,

Lyon Arboretum.

Remark: Isospora lyonensis can easily be distin-

guished from I. ivensae by the presence of a substieda

body, which is absent in I. ivensae (see Upton et al.,

1988) (Table 8).

Host: Family Fringillidae Leach

Isospora canaria Box, 1975 (Fig. 5c)

Type-host: Serinus canaria (L.), island canary.

Type-locality: USA. Exact locality not known.

Remarks: The oocysts upon which this description

was based were isolated from the faeces of captive

birds. This was the first description from New World

fringillids (Box, 1975) (Table 8).

Isospora serini (Aragao, 1933) Box, 1975 (Fig. 5d)

Syns Haemogregarina serini Aragao, 1933; Lanke-

sterella serini (Aragao, 1933) Lainson, 1959;

Atoxoplasma serini (Aragao, 1933) Levine, 1982

Type-host: Serinus canaria (L.), island canary.

Type-locality: USA. Exact locality not known.

Remarks: Isospora serini was the second species

described by Box (1975). It can be distinguished from

I. canaria by differences in the Stieda and substieda

bodies. In additional to morphological differences,

subsequent studies by Box (1977; 1981) demonstrated

that I. serini has an extra-intestinal cycle (Table 8).

Syst Parasitol (2011) 80:159–204 177

123

Page 20: Coccidia de Passeriformes da América

178 Syst Parasitol (2011) 80:159–204

123

Page 21: Coccidia de Passeriformes da América

Isospora lacazei (Labbe, 1893) Levine, 1982

(Fig. 5e)

Type-host: Carduelis carduelis (L.), European

goldfinch.

Other hosts: Carduelis chloris (L.), European green-

finch; Fringilla coelebs (L.), Eurasian chaffinch.

Type-locality: Spain, Province of Cordoba.

Other locality: England, Berkshire, Ascot, College

Field Station.

Remarks: The overwhelming majority of reports of

coccidia in passerines refer to I. lacazei. Moreover,

the introduction of C. carduelis and C. chloris into

the Americas (United States, Brazil, Uruguay and

Argentina) (IUCN, 2011), coupled with reports of

Isospora sp. from fringilids in the USA by Boughton

et al. (1938), supports the likely presence of this

coccidian species in the New World. Levine (1982a)

classified this coccidium as a parasite of C. carduelis,

in view of the description of Hernandez-Rodriguez

et al. (1976a,b). This description is similar to that of

oocysts recorded from C. chloris and F. coelebs by

Anwar (1966b). The oocysts of I. lacazei can be

distinguished from those of I. canaria and I. serini by

its pyriform sporocysts (Table 8).

Isospora loxopis Levine, Van Riper & Van Riper,

1980 (Fig. 5f)

Type-host: Hemignathus virens (Cabanis), common

amakihi.

Type-locality: USA, Hawaii.

Remark: Isospora loxopis is different from the other

species because its oocysts have no polar granule or

substieda body (Levine et al., 1980) (Table 8).

Isospora atrata Rossi, Macchione & Perrucci, 1996

(Fig. 5g)

Type-host: Carduelis atrata (Lafresnaye d’Orbigny),

black siskin.

Type-locality: Bolivia and Peru. Exact locality not

known.

Remarks: Rossi et al. (1996) recovered oocysts of

this species from the faeces of black siskins imported

from South America into Spain. Oocysts of I. atrata

are smaller than those of I. loxopis. In addition, it can

be distinguished from I. canaria, I. serini and I.

lacazei by the shape of its substieda body, which is

trapezoidal with a linear base (Table 8).

Isospora gryphoni Olson, Gissing, Barta & Mid-

dleton, 1998 (Fig. 5h)

Type-host: Carduelis tristis (L.), American goldfinch.

Type-locality: Canada, Province of Ontario, Guelph,

University of Guelph arboretum.

Other locality: Canada, Province of Ontario, Eden

Mills.

Remark: Only I. lacazei presents similar dimensions

to I. gryphoni; however, they can be distinguished by

the charactistic ovoid sporocyst of I. gryphoni (see

Olson et al., 1998) (Table 8).

Host: Family Hirundinidae Rafinesque

Isospora petrochelidon Stabler & Kitzmiller, 1972

(Fig. 5i)

Type-host: Petrochelidon pyrrhonota (Vieillot), cliff

swallow.

Type-locality: USA, Colorado, Douglas County.

Remarks: At present this is the only Isospora species

described from New World hirundinids (Stabler &

Kitzmiller, 1972) (Table 9).

Host: Family Icteridae Vigors

Isospora divitis Pellerdy, 1967 (Fig. 5j)

Type-host: Dives atroviolaceus (Lafresnaye d’Orbi-

gny), cuban blackbird.

Type-locality: Cuba, Havana Zoo.

Remark: This was the first description from New

World icterid birds (Pellerdy, 1967) (Table 9).

Isospora cacici Lainson, 1994 (Fig. 6a)

Type-host: Cacicus cela cela (L.), yellow-rumped

cacique.

Fig. 5 Line drawings of coccidia recorded from New World

passerine birds: a. Isospora ivensae [reproduced from Journal ofProtozoology, 27, 258–259 with permission]; b. I. lyonensis[reproduced from Systematic Parasitology, 12, 81–85 with

permission]; c. I. canaria [reproduced from Journal ofProtozoology, 22, 165–169 with permission]; d. I. serini[reproduced from Journal of Protozoology, 22, 165–169 with

permission]; e. I. lacazei [reproduced from Journal of Proto-zoology, 13, 84–90 with permission]; f. I. loxopis [reproduced

from Journal of Protozoology, 27, 258–259 with permission]; g.

I. atrata [reproduced from Journal of Eukaryotic Microbiology,

43, 489–491 with permission]; h. I. gryphoni [reproduced from

Journal of Parasitology, 84, 153–156 with permission];

i. I. petrochelidon [adapted from Stabler & Kitzmiller (1972)];

j. I. divitis [adapted from Pellerdy (1967)]. According to Anwar

(1966b), Pellerdy (1967), Stabler & Kitzmiller (1972), Box

(1975), Levine et al. (1980), Upton et al. (1988), Rossi et al.

(1996), Olson et al. (1998). Scale-bar: 10 lm

b

Syst Parasitol (2011) 80:159–204 179

123

Page 22: Coccidia de Passeriformes da América

Ta

ble

8C

om

par

ativ

em

orp

ho

log

yo

fIs

osp

ora

spp

.re

cord

edfr

om

New

Wo

rld

pas

seri

ne

bir

ds

of

the

infr

aord

erP

asse

ri,

par

vo

rder

Pas

seri

da

(Par

t4

)

Cocc

idia

Host

(s)

Ref

eren

ce(s

)O

ocy

sts

Sporo

cyst

s

Shap

eM

easu

rem

ents

(lm

)

Shap

e

index

Wal

l(l

m)

Pola

r

gra

nule

Shap

eM

easu

rem

ents

(lm

)

Sti

eda

body

Subst

ieda

body

Res

iduum

I.iv

ensa

eL

onch

ura

punct

ula

ta(E

stri

ldid

ae)

Lev

ine

etal

.

(1980)

sub-

spher

ical

26

925

–one-

layer

ed,

c.0.6

pre

sent

ovoid

18

912

(18

9

11–12)

pre

sent

abse

nt

dif

fuse

I.ly

onen

sis

L.

punct

ula

ta(E

stri

ldid

ae)

Upto

net

al.

(1988)

sub-

spher

ical

24

923

(21–27

9

21–27)

1.0 (1

.0–1.1

)

bi-

layer

ed,

c.1.5

pre

sent

ovoid

17.5

911.5

(16–21

9

10–12)

pre

sent

larg

e,

hom

ogen

eous

dif

fuse

I.ca

nari

aSer

inus

canari

a(F

ringil

lidae

)

Box

(1975

)su

b-

spher

ical

to elli

pso

idal

24.6

921.8

(17–30

9

17–30)

1.1 (1

.0–1.2

)

one-

layer

ed,

c.1.0

pre

sent

lem

on-

shap

ed

18.1

911.5

(17–22

9

10–13)

nip

ple

-

like

pre

sent

com

pac

t

I.se

rini

S.

canari

a(F

ringil

lidae

)

Box

(1975

)su

b-

spher

ical

20.1

919.2

(13–23

9

13–23)

1.0 (1

.0–1.1

)

one-

layer

ed,

c.1.0

pre

sent

elli

pso

idal

15.2

99.4

(13–16

9

8–11)

pro

min

ent

bar

ely

dis

cern

ible

dif

fuse

or

com

pac

t

I.la

caze

iC

ard

uel

isca

rduel

is(F

ringil

lidae

);C

.ch

lori

s(F

ringil

lidae

);F

ringil

laco

eleb

s(F

ringil

lidae

)

Anw

ar

(1966b);

Her

nan

dez

-

Rodri

guez

etal

.

(1976a,

b)

sub-

spher

ical

26.8

924.5

(20–34

9

18–30)

1.1 (1

.0–1.5

)

bi-

layer

ed,

c.1.0

pre

sent,

1or

2

pyri

form

(15–199

9–12)

pre

sent

pre

sent

dif

fuse

or

com

pac

t

I.lo

xopis

Hem

ignath

us

vire

ns

(Fri

ngil

lidae

)

Lev

ine

etal

.

(1980)

sub-

spher

ical

26

923

(25–26

9

22–25)

–bi-

layer

ed,

c.0.8

abse

nt

ovoid

16

913

(16–17

9

12–13)

knob-l

ike

abse

nt

dif

fuse

I.atr

ata

C.

atr

ata

(Fri

ngil

lidae

)

Ross

iet

al.

(1996)

sub-

spher

ical

21

920.3

(19–24

9

18–22)

1.0 (1

.0–1.1

)

bi-

layer

ed,

c.1.2

pre

sent,

1or

2

elli

pso

idal

18.8

910.3

(17–19

9

9–11)

del

icat

etr

apez

oid

al

wit

hli

nea

r

bas

is

dif

fuse

or

com

pac

t

I.gry

phoni

C.

tris

tis

(Fri

ngil

lidae

)

Ols

on

etal

.

(1998)

sub-

spher

ical

30.7

929.2

(28–34

9

25–33)

1.0 (1

.0–1.1

)

bi-

layer

edpre

sent,

2to

4

ovoid

22.2

913.4

(15–25

9

12–15)

smal

lin

dis

tinct

com

pac

t

180 Syst Parasitol (2011) 80:159–204

123

Page 23: Coccidia de Passeriformes da América

Type-locality: Brazil, State of the Para, Serra dos

Carajas (Amazonian Brazil).

Remark: Isospora loxopis is different from I. divitis

because its oocysts contain one or two polar granules

and a prominent substieda body (Lainson, 1994)

(Table 9).

Isospora bellicosa Upton, Stamper & Whitaker,

1995 (Fig. 6b)

Type-host: Sturnella bellicosa (Filippi), Peruvian

meadowlark.

Type-locality: Peru, at an unknown location west of

the Andes mountains.

Remarks: Upton et al. (1995b) described this coccid-

ium from Peruvian meadowlarks housed at the

National Aquarium in Baltimore, Maryland, USA.

These passerines had been wild-caught as adults in

Peru. This species can be distinguished from other

Isospora species from this host-family owing to its

elongate sporocysts and Stieda and substieda bodies

(Table 9).

Isospora icterus Upton & Whitaker, 2000 (Fig. 6c)

Type-host: Icterus icterus (L.), Venezuelan troupial.

Type-locality: USA, Maryland, Baltimore, National

Aquarium.

Remarks: Upton & Whitaker (2000) described this

species from the same locality as Upton et al.

(1995b); however, in their report, the origin of the

hosts was given as unknown. Oocysts of I. icterus are

morphologically similar to I. cacici and I. bellicosa;

however, it can be distinguished because it presents

an oocyst residuum and a large substieda body

(Upton & Whitaker, 2000) (Table 9).

Isospora graceannae Upton & Whitaker, 2000

(Fig. 6d)

Type-host: Icterus graceannae (Cassin), white-edged

oriole.

Type-locality: USA, Maryland, Baltimore, National

Aquarium.

Remarks: This was the second species described by

Upton & Whitaker (2000). It is the only species,

from the host-family Icteridae, which has a substi-

eda body with a compartment; a feature which

makes it readily distinguishable (Upton & Whitaker,

2000) (Table 9).

Host: Family Parulidae Wetmore et al.

Isospora piacobrai Berto, Flausino, Luz, Ferreira

& Lopes, 2009 (Fig. 6e)

Type-host: Geothlypis aequinoctialis (Gmelin),

masked yellowthroat.

Type-locality: Brazil, State of Rio de Janeiro, Mar-

ambaia Island (23�040S. 43�530W).

Remark: To date, this is the only Isospora species

described from New World parulids (Berto et al.,

2009f) (Table 9).

Host: Family Passeridae Rafinesque

Isospora passeris Levine, 1982 (Fig. 6f)

Type-host: Passer domesticus (L.), house sparrow.

Type-locality: USA. Exact locality of origin is

unknown.

Remarks: Levine (1982a) proposed this name for an

intestinal species of Isospora described from house

sparrows, using the oocysts features reported previ-

ously by Levine & Mohan (1960). This is the only

Isospora species so far described from New World

passerids (Table 10).

Host: Family Sturnidae Rafinesque

Isospora graculai Bhatia, Chauhan, Arora &

Agrawal, 1973 (Fig. 6g)

Type-host: Gracula religiosa (L.), hill myna.

Type-locality: India, Delhi Zoo.

Other locality: USA (imported for commercial sale

as household pets).

Remarks: Isospora graculai was originally described

by Bhatia et al. (1973). Upton et al. (1984) subse-

quently re-described this species, providing more

features, when they recovered morphologically sim-

ilar oocysts in the faeces of hill mynas imported from

Southeast Asia into the USA. This represented the

first description from New World sturnids (Table 10).

Isospora rothschildi Upton, Wilson, Norton &

Greiner, 2001 (Fig. 6h)

Type-host: Leucopsar rothschildi (Stresemann), Bali

starling.

Type-locality: Indonesia, Bali.

Other locality: USA, Kansas, Topeka, Topeka Zoo-

logical Park.

Syst Parasitol (2011) 80:159–204 181

123

Page 24: Coccidia de Passeriformes da América

182 Syst Parasitol (2011) 80:159–204

123

Page 25: Coccidia de Passeriformes da América

Remarks: Isospora rothschildi was described from

starlings hatched at the Topeka Zoological Park, but

derived from parents originally captured live in Bali.

This coccidium is easily distinguished from I. gracu-

lai owing to it having a substieda body with a

compartment (Upton et al., 2001) (Table 10).

Host: Family Thraupidae Cabanis

Isospora thraupis Lainson, 1994 (Fig. 6i)

Type-host: Thraupis palmarum melanoptera (Sclat-

er), palm tanager.

Type-locality: Brazil, State of the Para, Serra dos

Carajas (Amazonian Brazil).

Remarks: This was the first species of Isospora

reported from New World thraupids (Lainson, 1994;

Berto et al., 2010c) (Table 10).

Isospora andesensis Templar, McQuistion &

Capparella, 2004 (Fig. 7a)

Type-host: Chlorospingus ophthalmicus (Du Bus

Gisignies), common bush-tanager.

Type-locality: Peru, San Martin Departamento,

c.24 km ENE of Florida (village) (5 4302300S,

77�4500100W).

Remarks: Isospora andesensis oocysts have a polar

granule and are slightly larger than those of I.

thraupis. Futhermore, I. thraupis has an inconspicu-

ous Stieda body and a small substieda body, wheras I.

andesensis presents a prominent, triangular Stieda

body and lacks a substieda body (Templar et al.,

2004; Berto et al., 2010c) (Table 10).

Isospora iridosornisi Metzelaars, Spaargaren,

McQuistion & Capparella, 2005 (Fig. 7b)

Type-host: Iridosornis analis (Tschudi), yellow-

throated tanager.

Type-locality: Peru, San Martin Departamento, ca.

24 km ENE of Florida (village) (5�4100900S, 77�450

1600W).

Remark: Isospora iridosornisi oocysts have a polar

granule and similar dimensions to those of I. andes-

ensis; however, they can be easily distinguished by

comparing their Stieda and substieda bodies (Metz-

elaars et al., 2005; Berto et al., 2010c) (Table 10).

Isospora tiesangui Berto, Flausino, Luz, Ferreira

& Lopes, 2008 (Fig. 7c)

Type-host: Ramphocelus bresilius dorsalis (Sclater),

Brazilian tanager.

Other hosts: Thraupis palmarum (Wied), palm tan-

ager; Dacnis cayana (L.), blue dacnis.

Type-locality: Brazil, State of the Rio de Janeiro,

Marambaia Island (23�040S, 43�530W).

Remarks: In the original description, this coccidium

was reported to parasitise only R. b. dorsalis;

however, Berto et al. (2010a) subsequently recorded

T. palmarum and D. cayana as new hosts on

Marambaia Island. Oocysts of I. tiesangui lacks the

polar granule found in I. andesensis and I. iridos-

ornisi, and this species can be differentiated from

I. thraupis owing to its large, prominent substieda

body (Berto et al., 2008a, 2010a,c, 2011b)

(Table 10).

Isospora marambaiensis Berto, Flausino, Luz,

Ferreira & Lopes, 2008 (Fig. 7d)

Type-host: Ramphocelus bresilius dorsalis (Sclater),

Brazilian tanager.

Type-locality: Brazil, State of the Rio de Janeiro,

Marambaia Island (23�040S, 43�530W).

Remarks: This was the second species described from

R. b. dorsalis on Marambaia Island. Oocysts of

I. marambaiensis are larger than those of I. tiesangui,

I. andesensis, I. iridosornisi and I. thraupis (Berto

et al., 2008a, 2010c, 2011b) (Table 10).

Isospora sepetibensis Berto, Flausino, Luz, Ferreira

& Lopes, 2008 (Fig. 7e)

Type-host: Ramphocelus bresilius dorsalis (Sclater),

Brazilian tanager.

Other host: Dacnis cayana (L.), blue dacnis.

Type-locality: Brazil, State of the Rio de Janeiro,

Marambaia Island (23�040S, 43�530W).

Remarks: This was the third species described from

R. b. dorsalis on Marambaia Island. Thereafter, Berto

Fig. 6 Line drawings of coccidia recorded from New World

passerine birds: a. Isospora cacici [adapted from Lainson

(1994)]; b. I. bellicosa [adapted from Upton et al. (1995b)];

c. I. icterus [adapted from Upton & Whitaker (2000)]; d.

I. graceannae [adapted from Upton & Whitaker (2000)]; e.

I. piacobrai [reproduced from Systematic Parasitology, 75,

225–230 with permission]; f. I. passeris [reproduced from

Journal of Parasitology, 46, 733–741 with permission]; g. I.graculai [reproduced from Systematic Parasitology, 6, 237–240

with permission]; h. I. rothschildi [reproduced from SystematicParasitology, 48, 47–53 with permission]; i. I. thraupis[adapted from Lainson (1994)]. According to Levine (1982a),

Upton et al. (1984), Lainson (1994), Upton et al. (1995b), Upton

& Whitaker (2000), Upton et al. (2001), Berto et al. (2009f).

Scale-bar: 10 lm

b

Syst Parasitol (2011) 80:159–204 183

123

Page 26: Coccidia de Passeriformes da América

Ta

ble

9C

om

par

ativ

em

orp

ho

log

yo

fIs

osp

ora

spp

.re

cord

edfr

om

New

Wo

rld

pas

seri

ne

bir

ds

of

the

infr

aord

erP

asse

ri,

par

vo

rder

Pas

seri

da

(Par

t5

)

Cocc

idia

Host

Ref

eren

ceO

ocy

sts

Sporo

cyst

s

Shap

eM

easu

rem

ents

(lm

)

Shap

ein

dex

Wal

l(l

m)

Pola

rgra

nule

Shap

eM

easu

rem

ents

(lm

)

Sti

eda

body

Subst

ieda

body

Res

iduum

I.pet

roch

elid

on

Pet

roch

elid

on

pyr

rhonota

(Hir

undin

idae

)

Sta

ble

r&

Kit

zmil

ler

(1972

)

elli

pso

idal

toovoid

25.2

922.2

(23–30

9

19–25)

–one- la

yer

ed,

c.1.0

pre

sent

lem

on-

shap

ed

18.4

910.8

(16–22

9

10–12)

pro

min

ent

elli

pso

idal

com

pac

t

I.div

itis

Div

es

atr

ovi

ola

ceus

(Ict

erid

ae)

Pel

lerd

y

(1967

)

sub-

spher

ical

(22–30

9

20–28)

––

abse

nt

elongat

ed17

913

consp

icuous

–dif

fuse

I.ca

cici

Caci

cus

cela

cela

(Ict

erid

ae)

Lai

nso

n

(1994

)

sub-

spher

ical

26.5

923.7

(22–28

9

20–26)

1.1 (1

.0–1.2

)

one- la

yer

ed,

c.1.5

pre

sent,

1or

2

elli

pso

idal

17.7

912.5

(17–19

9

11–14)

pro

min

ent,

stopper

-

shap

ed

pro

min

ent

com

pac

t

I.bel

lico

saStu

rnel

la

bel

lico

sa

(Ict

erid

ae)

Upto

net

al.

(1995b

)

elli

pso

idal

,

ovoid

or

oblo

ng

29.4

923.5

(26–32

9

21–26)

1.2 (1

.1–1.4

)

bi-

layer

ed,

c.1.1

pre

sent,

1or

2

elli

pso

idal

17.8

910.7

(17–19

9

10–11)

larg

ehom

ogen

eous,

elli

pso

idal

dif

fuse

I.ic

teru

sIc

teru

sic

teru

s

(Ict

erid

ae)

Upto

n&

Whit

aker

(2000

)

sub-

spher

ical

28.9

927.2

(27–32

9

25–30)

1.1 (1

.0–1.1

)

bi-

layer

ed,

c.1.8

pre

sent

(res

iduum

consi

stin

g

of

asm

all

pie

ceof

deb

ris)

elli

pso

idal

17.8

912.8

(17–19

9

12–14)

smal

l,

nip

ple

-

like

larg

e,

hom

ogen

eous

dif

fuse

I.gra

ceannae

Icte

rus

gra

ceannae

(Ict

erid

ae)

Upto

n&

Whit

aker

(2000

)

sub-

spher

ical

23.9

922.3

(20–26

9

19–25)

1.1 (1

.0–1.2

)

bi-

layer

ed,

c.2.1

pre

sent

elli

pso

idal

15.5

910.7

(14–16

9

10–11)

robust

wit

h com

par

tmen

t

dif

fuse

I.pia

cobra

iG

eoth

lypis

aeq

uin

oct

iali

s

(Par

uli

dae

)

Ber

toet

al.

(2009f)

sub-

spher

ical

or

ovoid

23.5

921.6

(21–26

9

20–24)

1.1 (1

.1–1.1

)

bi-

layer

ed,

c.1.2

pre

sent

ovoid

15.8

910.5

(15–17

9

9–12)

knob-l

ike

larg

e,

trap

ezoid

al

dif

fuse

184 Syst Parasitol (2011) 80:159–204

123

Page 27: Coccidia de Passeriformes da América

Ta

ble

10

Co

mp

arat

ive

mo

rph

olo

gy

of

Iso

spo

rasp

p.

reco

rded

fro

mN

ewW

orl

dp

asse

rin

eb

ird

so

fth

ein

frao

rder

Pas

seri

,p

arv

ord

erP

asse

rid

a(P

art

6)

Co

ccid

iaH

ost

(s)

Ref

eren

ce(s

)O

ocy

sts

Sp

oro

cyst

s

Sh

ape

Mea

sure

men

ts

(lm

)

Sh

ape

ind

ex

Wal

l(l

m)

Po

lar

gra

nu

le

Sh

ape

Mea

sure

men

ts

(lm

)

Sti

eda

bo

dy

Su

bst

ied

a

bo

dy

Res

idu

um

I.p

ass

eris

Pa

sser

do

mes

ticu

s(P

asse

rid

ae)

Lev

ine

&

Mo

han

(19

60

);

Lev

ine

(19

82

a)

sub

-

sph

eric

al

or

elli

pso

idal

24

92

2

(18

–2

99

17

–2

7)

–o

ne- la

yer

ed,

c.1

.0

pre

sen

t,

1o

r

mo

re

ov

oid

or

lem

on

-

shap

ed

16

91

0

(13

–2

09

9–

12

)

pre

sen

tp

rese

nt

dif

fuse

I.g

racu

lai

Gra

cula

reli

gio

sa(S

turn

idae

)

Bh

atia

etal

.

(19

73

);

Up

ton

etal

.

(19

84

)

sub

-

sph

eric

al

24

.69

22

.4

(20

–2

89

20

–2

4)

1.1 (1

.0–

1.2

)

on

e- lay

ered

,

c.1

.5

pre

sen

t,

1o

r2

ov

oid

17

.79

11

.6

(15

–2

19

10

–1

3)

smal

l,

dar

kn

ess

ho

mo

gen

eou

sco

mp

act

I.ro

thsc

hil

di

Leu

cop

sar

roth

sch

ild

i(S

turn

idae

)

Up

ton

etal

.

(20

01

)

sub

-

sph

eric

al

22

.39

21

.6

(20

–2

69

19

–2

3)

1.0 (1

.0–

1.2

)

bi-

lay

ered

,

c.1

.6

pre

sen

t,

1o

r

mo

re

ov

oid

15

.99

10

.6

(15

–1

89

9–

11

)

pre

sen

tw

ith com

par

tmen

t

com

pac

t

I.th

rau

pis

Th

rau

pis

pa

lma

rum

mel

an

op

tera

(Th

rau

pid

ae)

Lai

nso

n

(19

94

);

Ber

to

etal

.

(20

10

c)

sub

-

sph

eric

al

19

.99

19

.0

(19

–2

19

19

–2

0)

1.0 (1

.0–

1.1

)

on

e- lay

ered

,

c.0

.6

abse

nt

py

rifo

rm1

4.2

99

.2

(14

–1

69

9–

10

)

inco

nsp

icu

ou

ssm

all

com

pac

t

I.a

nd

esen

sis

Ch

loro

spin

gu

so

ph

tha

lmic

us

(Th

rau

pid

ae)

Tem

pla

r

etal

.

(20

04

);

Ber

to

etal

.

(20

10

c)

sub

-

sph

eric

al

or

ov

oid

22

.69

18

.7

(20

–2

49

17

–2

0)

1.2 (1

.1–

1.3

)

bi-

lay

ered

pre

sen

to

vo

id1

4.1

98

.5

(13

–1

59

8–

9)

tria

ng

ula

r,

pro

min

ent

abse

nt

dif

fuse

I.ir

isid

orn

isi

Irid

oso

rnis

an

ali

s(T

hra

up

idae

)

Met

zela

ars

etal

.

(20

05

);

Ber

to

etal

.

(20

10

c)

ov

oid

22

.19

18

.9

(20

–2

59

16

–2

3)

1.2 (1

.1–

1.3

)

bi-

lay

ered

pre

sen

to

vo

id1

3.6

99

.0

(9–

17

9

8–

11

)

bu

bb

le-

shap

ed

coll

ar-s

hap

edd

iffu

se

I.ti

esa

ng

ui

Ra

mp

ho

celu

sb

resi

liu

sd

ors

ali

s(T

hra

up

idae

);

T.

pa

lma

rum

(Th

rau

pid

ae);

Da

cnis

caya

na

(Th

rau

pid

ae)

Ber

toet

al.

(20

08

a,

20

10

a,c)

sub

-

sph

eric

al

24

.29

23

.4

(22

–2

69

21

–2

6)

1.0 (1

.0–

1.1

)

bi-

lay

ered

,

c.1

.3

abse

nt

ov

oid

17

.79

11

.5

(17

–1

99

11

–1

3)

flat

ten

edla

rge,

pro

min

ent

dif

fuse

Syst Parasitol (2011) 80:159–204 185

123

Page 28: Coccidia de Passeriformes da América

et al. (2011b) reported D. cayana as a new host in the

same locality. Oocysts of I. sepetibensis have similar

dimensions to those of I. iridosornisi; however,

I. sepetibensis is slightly larger, usually presents two

polar granules and its sporocysts are large and

ellipsoidal (Berto et al., 2008a, 2010c, 2011b)

(Table 10).

Isospora cadimi Berto, Flausino, Luz, Ferreira &

Lopes, 2009 (Fig. 7f)

Type-host: Ramphocelus bresilius dorsalis (Sclater),

Brazilian tanager.

Type-locality: Brazil, State of the Rio de Janeiro,

Marambaia Island (23�040S, 43�530W).

Remarks: This was the fourth species described from

R. b. dorsalis on Marambaia Island. It is the only

Isospora species from the host-family Thraupidae

containing a substieda body with a compartment

(Berto et al., 2009b, 2010c, 2011b) (Tables 10, 11).

Isospora navarroi Berto, Flausino, Luz, Ferreira &

Lopes, 2009 (Fig. 7g)

Type-host: Ramphocelus bresilius dorsalis (Sclater),

Brazilian tanager.

Other host: Thraupis palmarum (Wied), palm tanager

Type-locality: Brazil, State of the Rio de Janeiro,

Marambaia Island (23�040S, 43�530W).

Remarks: This was the fifth species described from

R. b. dorsalis on Marambaia Island. Berto et al.

(2011b) subsequently reported T. palmarum as a new

host in the same locality. Oocysts of Isospora

navarroi have no polar granule and present a small

substieda body. Only I. thraupis shares these features;

however, these species can be distinguished because

I. navarroi has ellipsoidal sporocysts and a single

robust refractile body in the sporozoite (Berto et al.,

2009b, 2010c, 2011b) (Tables 10, 11).

Isospora ramphoceli Berto, Flausino, Luz, Ferreira

& Lopes, 2010 (Fig. 7h)

Type-host: Ramphocelus bresilius dorsalis (Sclater),

Brazilian tanager.

Type-locality: Brazil, State of the Rio de Janeiro,

Marambaia Island (23�040S, 43�530W).

Remarks: This was the sixth species described from

R. b. dorsalis on Marambaia Island. It lacks both a

polar granule and a large substieda body. Only

I. tiesangui also has these features; however, they can

be distinguished because in I. ramphoceli the StiedaTa

ble

10

con

tin

ued

Co

ccid

iaH

ost

(s)

Ref

eren

ce(s

)O

ocy

sts

Sp

oro

cyst

s

Sh

ape

Mea

sure

men

ts

(lm

)

Sh

ape

ind

ex

Wal

l(l

m)

Po

lar

gra

nu

le

Sh

ape

Mea

sure

men

ts

(lm

)

Sti

eda

bo

dy

Su

bst

ied

a

bo

dy

Res

idu

um

I.m

ara

mb

aie

nsi

sR

.b

.d

ors

ali

s(T

hra

up

idae

)

Ber

toet

al.

(20

08

a,

20

10

c)

sub

-

sph

eric

al

29

.49

27

.9

(27

–3

19

26

–2

9)

1.0 (1

.0–

1.1

)

bi-

lay

ered

,

c.1

.5

abse

nt

elli

pso

idal

22

.69

13

.0

(21

–2

49

12

–1

4)

flat

ten

edsm

all

dif

fuse

I.se

pet

iben

sis

R.

b.

do

rsa

lis

(Th

rau

pid

ae)

Ber

toet

al.

(20

08

a,

20

10

c)

sub

-

sph

eric

al

to elli

pso

idal

25

.59

23

.8

(24

–2

99

22

–2

6)

1.1 (1

.0–

1.2

)

bi-

lay

ered

,

c.1

.4

pre

sen

t,

1o

r2

elli

pso

idal

16

.99

11

.0

(16

–1

89

10

–1

2)

kn

ob

-lik

ep

rom

inen

tla

tera

l

186 Syst Parasitol (2011) 80:159–204

123

Page 29: Coccidia de Passeriformes da América

body is knob-like and the sporocysts are less elongate

(Berto et al., 2010b,c, 2011b) (Tables 10, 11).

Isospora sanhaci Berto, Balthazar, Flausino &

Lopes, 2009 (Fig. 7i)

Type-host: Thraupis sayaca (L.), sayaca tanager.

Type-locality: Brazil, State of the Rio de Janeiro,

Teresopolis City (22�250S, 42�590W).

Remarks: The oocysts of this species were isolated

from the faeces of captive birds. In common with

I. tiesangui and I. ramphoceli, I. sanhaci also lacks a

polar granule and a large substieda body; however,

I. tiesangui has a flattened Stieda body and I.

ramphoceli has an ellipsoidal or slightly ovoid

sporocyst. In contrast, I. sanhaci has an elongate

sporocyst and nipple-like Stieda body (Berto et al.,

2009c, 2010c) (Tables 10, 11).

Isospora sayacae Berto, Balthazar, Flausino &

Lopes, 2009 (Fig. 7j)

Type-host: Thraupis sayaca (L.), sayaca tanager.

Type-locality: Brazil, State of the Rio de Janeiro,

Teresopolis City (22�250S, 42�590W).

Remarks: This was the second species described by

Berto et al. (2009c) from T. sayaca. Only I.

marambaiensis has similar dimensions to I. sayacae;

however, I. sayacae has bottle-shaped sporocysts, a

prominent Stieda body and a large substieda body

(Berto et al., 2009c, 2010c) (Tables 10, 11).

Isospora silvasouzai Berto, Balthazar, Flausino &

Lopes, 2009 (Fig. 8a)

Type-host: Thraupis sayaca (L.), sayaca tanager.

Type-locality: Brazil, State of the Rio de Janeiro,

Teresopolis City (22�250S, 42�590W).

Remarks: This was the third species described by

Berto et al. (2009c) from T. sayaca. Oocytes of

I. silvasouzai have a polar granule, a delicate Stieda

body and a small substieda body. These features are

not shared with any other species of this host-family

(Berto et al., 2009c, 2010c) (Tables 10, 11).

Host: Family Timaliidae Horsfield & Vigors

Isospora leiothrixi McQuistion, McAllister &

Buice, 1996 (Fig. 8b)

Type-host: Leiothrix lutea (Scopoli), Pekin robin.

Type-locality: USA, Hawaii.

Other locality: USA, Texas, Dallas, Dallas Count,

Dallas Zoo.

Remarks: Isospora leiothrixi was described from

birds housed at the Dallas Zoo, but is believed to have

originated from the Hawaiian Islands. To date, this is

the only Isospora species described from New World

timaliids (McQuistion et al., 1996) (Table 11).

Host: Family Turdidae Rafinesque

Isospora phaeornis Levine, Van Riper & Van

Riper, 1980 (Fig. 8c)

Type-host: Myadestes obscurus (Gmelin), omao.

Type-locality: USA, Hawaii.

Remark: This was the first species of Isospora

described from New World turdids (Levine et al.,

1980) (Table 12).

Isospora robini McQuistion & Holmes, 1988

(Fig. 8d)

Type-host: Turdus migratorius (L.), American robin.

Type-locality: USA, Wildlife Rehabilitation Center

of Illinois.

Remarks: This coccidium was described from Amer-

ican robins captured in central Illinois. Despite the

similarity between I. robini and I. phaeornis, they can

be distinguished by the shape of the sporocyst and

Stieda and substieda bodies (McQuistion & Holmes,

1988) (Table 12).

Isospora tucuruiensis Lainson & Shaw, 1989

(Fig. 8e)

Type-host: Turdus albicollis (Vieillot), white-necked

thrush.

Type-locality: Brazil, State of the Para, Island of

Tocantins.

Remark: The oocysts of I. tucuruiensis are the

smallest among the Isospora species of the host-

family Turdidae in the New World (Lainson & Shaw,

1989) (Table 12).

Isospora albicollis Lainson & Shaw, 1989 (Fig. 8f)

Type-host: Turdus albicollis (Vieillot), white-necked

thrush.

Type-locality: Brazil, State of the Para, Island of

Tocantins.

Remarks: This was the second species described by

Lainson & Shaw (1989) from T. albicollis. The

ooccysts of I. albicollis have a micropyle. This

Syst Parasitol (2011) 80:159–204 187

123

Page 30: Coccidia de Passeriformes da América

188 Syst Parasitol (2011) 80:159–204

123

Page 31: Coccidia de Passeriformes da América

feature is unique among the Isospora species from

turdids (Table 12).

Host: Family Zosteropidae Bonaparte

Isospora brayi Levine, Van Riper & Van Riper,

1980 (Fig. 8g)

Type-host: Zosterops japonicus (Temminck, Schle-

gel), Japanese white-eye.

Type-locality: USA, Hawaii.

Remark: This was the first species of Isospora

described from New World zosteropids (Levine

et al., 1980; Upton et al., 1988) (Table 12).

Isospora manoaensis Upton, Marchiondo & Wil-

liams, 1988 (Fig. 8h)

Type-host: Zosterops japonicus (Temminck, Schle-

gel), Japanese white-eye.

Type-locality: USA, Hawaii, Oahu, Manoa Valley,

Lyon Arboretum.

Remark: Isospora manoaensis differs from I. brayi

by virtue of its rounded sporocyst and the presence of

numerous splinter-like polar granules (Upton et al.,

1988) (Table 12).

Isospora mejiro Upton, Marchiondo & Williams,

1988 (Fig. 8i)

Type-host: Zosterops japonicus (Temminck, Schle-

gel), Japanese white-eye.

Type-locality: USA, Hawaii, Oahu, Manoa Valley,

Lyon Arboretum.

Remarks: Isospora mejiro has a single (rarely two)

large polar granule, which is not present in the other

two coccidians recorded from this host-family (Upton

et al., 1988) (Table 12).

Discussion

Coccidia were among the first microorganisms

observed, as spherical forms in the bile of a rabbit,

by Antonie van Leeuwenhoek using a rudimentary

microscope in 1674. Nowadays, it is generally

accepted that those forms were in fact oocysts of

Eimeria stiedae (Lindemann, 1865) Kisskalt & Hart-

mann, 1907 (Wenyon, 1926; Duszynski et al., 1999).

Hake (1839) must have been the first scientist to

have viewed oocysts in greater detail; however, this

author regarded them as globules of pus. Kloss (1846)

observed coccidian parasites of a snail which were

subsequently named Klossia helicina Schneider,

1875. Almost 20 years later, Lindemann (1865),

studying oocysts in the bile of a rabbit, described

the species Monocystis stiedae Lindemann, 1865,

considering it to be a gregarine.

The first description of a coccidian in birds is

accredited to Rivolta (1869), who recovered coccidia

from fowls and other birds. Although this author had

noted the division of the contents of some oocysts

into two masses, these were neither distinguished nor

characterised, being described simply as Psorosper-

mium avium Rivolta, 1869. Indeed, Rivolta (1873)

and Rivolta & Silvestrini (1873) also referred to this

coccidium, considering all coccidia from birds as

belonging to this single taxon.

The asexual stage of the life-cycle of coccidia was

originally described by Eimer (1870) for a coccidium

found in mice. Five years later, Schneider (1875)

observed this same coccidium and proposed the

genus Eimeria, after Theodor Eimer, and named the

type-species E. falciformis Schneider, 1875.

In addition to his studies with birds, Rivolta

described coccidian parasites of frogs, calves and

dogs (Rivolta, 1878), establishing the genus Cyto-

spermium Rivolta, 1878; however, it is now recog-

nised that these parasites should have been included

within Eimeria.

Leuckart (1879), without prior knowledge of the

studies of Lindemann (1865), Eimer (1870) and

Schneider (1875), described coccidia encountered in

the bile of rabbits as Coccidium oviforme Leuckart,

1879. This species was subsequently considered a

synonym of E. stiedae.

Isospora was proposed by Schneider (1881) for

oocysts recovered from a slug. The species was

Fig. 7 Line drawings of coccidia recorded from New World

passerine birds: a. Isospora andesensis [adapted from Templar

et al. (2004)]; b. I. iridosornisi [adapted from Metzelaars et al.

(2005)]; c. I. tiesangui [adapted from Berto et al. (2008a)]; d. I.marambaiensis [adapted from Berto et al. (2008a)]; e. I.sepetibensis [adapted from Berto et al. (2008a)]; f. I. cadimi[adapted from Berto et al. (2009b)]; g. I. navarroi [adapted

from Berto et al. (2009b)]; h. I. ramphoceli [reproduced from

Zootaxa, 2650, 57–62 with permission]; i. I. sanhaci [adapted

from Berto et al. (2009c)]; j. I. sayacae [adapted from Berto

et al. (2009c)]. According to Templar et al. (2004), Metzelaars

et al. (2005), Berto et al. (2008a, 2009b,c, 2010b). Scale-bar:

10 lm

b

Syst Parasitol (2011) 80:159–204 189

123

Page 32: Coccidia de Passeriformes da América

Ta

ble

11

Co

mp

arat

ive

mo

rph

olo

gy

of

Iso

spo

rasp

p.

reco

rded

fro

mN

ewW

orl

dp

asse

rin

eb

ird

so

fth

ein

frao

rder

Pas

seri

,p

arv

ord

erP

asse

rid

a(P

art

7)

Cocc

idia

Host

Ref

eren

ce(s

)O

ocy

sts

Sporo

cyst

s

Shap

eM

easu

rem

ents

(lm

)

Shap

e

index

Wal

l(l

m)

Pola

r

gra

nule

Shap

eM

easu

rem

ents

(lm

)

Sti

eda

body

Subst

ieda

body

Res

iduum

I.ca

dim

iR

am

phoce

lus

bre

sili

us

dors

ali

s(T

hra

upid

ae)

Ber

toet

al.

(2009b,

2010c)

sub-

spher

ical

24

.29

22.9

(22–26

9

21–24)

1.1 (1

.0–1

.1)

bi-

layer

ed,

c.1.1

abse

nt

ovoid

16.9

911.6

(15–18

9

10–13)

nip

ple

-

like

wit

h

com

par

tmen

t

dif

fuse

I.nava

rroi

R.

b.

dors

ali

s(T

hra

upid

ae)

Ber

toet

al.

(2009b,

2010c)

sub-

spher

ical

21

.49

20.6

(19–24

9

18–23)

1.1 (1

.0–1

.1)

bi-

layer

ed,

c.1.1

abse

nt

elli

pso

idal

16.1

910.2

(14–19

9

9–12)

flat

tened

smal

ldif

fuse

I.ra

mphoce

liR

.b.

dors

ali

s(T

hra

upid

ae)

Ber

toet

al.

(2010b,c

)

sub-

spher

ical

23

.79

22.8

(22–26

9

21–24)

1.0 (1

.0–1

.1)

bi-

layer

ed,

c.1.1

abse

nt

elli

pso

idal

or

ovoid

16.0

911.4

(14–18

9

10–13)

knob-l

ike

larg

e,

hom

ogen

eous

dif

fuse

I.sa

nhaci

Thra

upis

saya

ca(T

hra

upid

ae)

Ber

toet

al.

(2009c,

2010c)

sub-

spher

ical

22

.19

21.0

(19–24

9

17–23)

1.1 (1

.0–1

.1)

bi-

layer

ed,

c.1.0

abse

nt

ovoid

17.0

99. 9

(15–19

9

9–11)

nip

ple

-

like

larg

e,

pro

min

ent

dif

fuse

I.sa

yaca

eT

.sa

yaca

(Thra

upid

ae)

Ber

toet

al.

(2009c,

2010c)

sub-

spher

ical

28

.99

27.4

(28–30

9

24–29)

1.1 (1

.0–1

.1)

bi-

layer

ed,

c.1.3

abse

nt

bott

le-

shap

ed

23.4

911.8

(23–25

9

11–12)

pro

min

ent

larg

edif

fuse

I.si

lvaso

uza

iT

.sa

yaca

(Thra

upid

ae)

Ber

toet

al.

(2009c,

2010c)

sub-

spher

ical

25.5

922.6

(22–28

9

19–25)

1.1 (1

.0–1

.2)

bi-

layer

ed,

c.1.0

pre

sent

pyri

form

17.6

910.5

(17–18

9

10–11)

del

icat

esm

all

com

pac

t

I.le

ioth

rixi

Lei

oth

rix

lute

a(T

imal

iidae

)

McQ

uis

tion

etal

.

(1996)

elli

pso

idal

28

.09

16.6

(24–32

9

15–18)

1.5 (1

.3–1

.8)

bi-

layer

ed,

c.1.0

pre

sent,

1or

2

ovoid

15.5

910.3

(12–20

9

7–12)

nip

ple

-

like

pro

min

ent

com

pac

t

190 Syst Parasitol (2011) 80:159–204

123

Page 33: Coccidia de Passeriformes da América

Syst Parasitol (2011) 80:159–204 191

123

Page 34: Coccidia de Passeriformes da América

named as I. rara Schneider, 1881. The line drawings

and photomicrographs of the oocysts of this descrip-

tion were of low resolution; however, they demon-

strated the presence of only two sporocysts in each

oocyst, justifying the description of a new genus.

Rivolta & Delprato (1881) were the first to

mention specimens of Isospora from passerine birds.

These authors recovered oocysts from the faeces of

Sylvia atricapilla (L.), Erithacus rubecula (L.) and

Passer domesticus (L.). However, no species was

described or named.

Labbe (1893), without knowledge of the publica-

tion of Schneider (1881), erected Diplospora Labbe,

1893 for coccidian parasites of various birds. The

species were named D. lacazei Labbe, 1893 and

D. rivoltae Labbe, 1893. Subsequently, these species

were transferred to Isospora. Hosoda (1928) rede-

scribed I. lacazei from tree sparrows Passer mont-

anus (L.) in Japan. This identification was later

confirmed by Becker (1934). Boughton (1930),

Henry (1932), Boughton et al. (1938), Rysavy

(1954), Scholtyseck (1954), Levine & Mohan

(1960), Mandal (1965), Anwar (1966a,b), Mandal &

Bhattacharya (1969) and Hernandez-Rodriguez et al.

(1976a,b) all reported I. lacazei from different species

of fringillids and passerids. However, during this

same period, Schwalbach (1959), basing his analysis

on the morphology of the oocysts, described new

species of Isospora from wild birds in Germany.

With regard to the life-history, Anwar (1966b)

described meronts and gametes of I. lacazei from the

small intestine of Carduelis chloris (L.) in England.

Shortly thereafter, Box (1975) described the extrain-

testinal stages of I. serini when she isolated meronts

from mononuclear phagocytes derived from the blood

of Serinus canaria. Later, this species and more than

18 others, all with extra-intestinal life-cycles, were

redescribed and allocated to Atoxoplasma Garnham,

1950 by Levine (1982c). However, the validity of this

genus was questioned by Boulard et al. (1987) and,

more recently, by Carreno & Barta (1999), Schrenzel

et al. (2005), Barta et al. (2005) and Gill & Paperna

(2008).

In 1982, while searching for new combinations to

assist in the identification of coccidia from passerines,

Levine (1982a) suggested the names I. passeris for

parasites of Passer domesticus, and I. lacazei for

parasites of Carduelis carduelis (L.). Moreover, he

presented a list of 60 species of Isospora, each with

their respective hosts. In contrast, Grulet et al. (1982),

via a detailed study on the morphology of the

sporocysts, described 12 new species from P. domes-

ticus in France.

At present, descriptions of new species of coccidia

parasitising passerine birds are frequent. In an

attempt to organise this growing body of information,

Duszynski et al. (1999) assembled hundreds of

species into a database named ‘The Coccidia of the

World’.

Life-cycle

The pioneering studies by Tyzzer (1929) and Tyzzer

et al. (1932) on coccidiosis in poultry established the

conceptual basis of the biology of coccidia. In these

studies, the coccidia were considered homoxenous

parasites of the epithelial cells of the intestinal

mucosa. The described life-cycles were confirmed

in the reviews of Levine (1985) and Ball et al. (1989).

Traditionally, studies on Eimeria spp. in passerines

were limited to descriptions of oocysts. Therefore,

there is a dearth of information in relation to the life-

cycles of Eimeria spp. in passerines (Yakimoff &

Gousseff, 1938; Chakravarty & Kar, 1944; Cerna,

1976; Varghese, 1977; Haldar et al., 1982; Dzerz-

hinskii & Kairullaev, 1989; Berto et al., 2008c,

2009d). Considering other avian orders, it is recog-

nised that the majority of species of Eimeria have

intestinal cycles (Levine, 1985; Ball et al., 1989).

However, there are some exceptions, including those

observed in: E. reichenowi Yakimoff & Matschoulsky,

1935, parasites of the cranes Grus canadensis (L.)

and G. americana (L.); and E. truncata (Railliet &

Fig. 8 Line drawings of coccidia recorded from New World

passerine birds: a. Isospora silvasouzai [adapted from Berto

et al. (2009c)]; b. I. leiothrixi [reproduced from ActaProtozoologica, 35, 73–75 with permission]; c. I. phaeornis[reproduced from Journal of Protozoology, 27, 258–259 with

permission]; d. I. robini [reproduced from Proceedings of theHelminthological Society of Washington, 55, 324–325 with

permission]; e. I. tucuruiensis [adapted from Lainson & Shaw

(1989)]; f. I. albicollis [adapted from Lainson & Shaw (1989)];

g. I. brayi [reproduced from Journal of Protozoology, 27, 258–

259 with permission]; h. I. manoaensis [reproduced from

Systematic Parasitology, 12, 81–85 with permission]; i.

I. mejiro [reproduced from Systematic Parasitology, 12,

81–85 with permission]. According to Levine et al. (1980),

McQuistion & Holmes (1988), Upton et al. (1988), Lainson &

Shaw (1989), McQuistion et al. (1996), Berto et al. (2009c).

Scale-bar: 10 lm

b

192 Syst Parasitol (2011) 80:159–204

123

Page 35: Coccidia de Passeriformes da América

Ta

ble

12

Co

mp

arat

ive

mo

rph

olo

gy

of

Iso

spo

rasp

p.

reco

rded

fro

mN

ewW

orl

dp

asse

rin

eb

ird

so

fth

ein

frao

rder

Pas

seri

,p

arv

ord

erP

asse

rid

a(P

art

8)

Cocc

idia

Host

Ref

eren

ce(s

)O

ocy

sts

Sporo

cyst

s

Shap

eM

easu

rem

ents

(lm

)

Shap

e

index

Wal

l(l

m)

Pola

r

gra

nule

Shap

eM

easu

rem

ents

(lm

)

Sti

eda

body

Subst

ieda

body

Res

iduum

I.phaeo

rnis

Mya

des

tes

obsc

uru

s(T

urd

idae

)

Lev

ine

etal

.

(1980

)

elli

pso

idal

27

919

(25–28

9

18–20)

–one-

layer

ed,

c.0

.8pre

sent

ovoid

16

911

(15–18

9

10–11)

pre

sent

pre

sent

com

pac

t

I.ro

bin

iT

urd

us

mig

rato

rius

(Turd

idae

)

McQ

uis

tion

&H

olm

es

(1988

)

elli

pso

idal

or

ovoid

23

920

(20–28

9

16–22)

1.1

one-

layer

ed,

c.1

.0pre

sent

ovoid

13

.89

9.0

(10–17

9

7–12)

nip

ple

-lik

epro

min

ent

com

pac

t

I.tu

curu

iensi

sT

.alb

icoll

is(T

urd

idae

)

Lai

nso

n&

Shaw

(1989

)

sub-

spher

ical

17

.39

17

.1(1

5–19

9

14–19)

–one-

layer

ed,

c.0

.8pre

sent

elli

pso

idal

11

.89

8.4

(10–13

9

7–10)

nip

ple

-lik

epre

sent

dif

fuse

or

com

pac

t

I.alb

icoll

isT

.alb

icoll

is(T

urd

idae

)

Lai

nso

n&

Shaw

(1989

)

ovoid

24

.59

20

.3(2

2–27

9

19–24)

–one-

layer

ed,

c.0

.8,

wit

h

mic

ropyle

pre

sent

elli

pso

idal

16

.09

11

.2(1

2–15

9

8–10)

nip

ple

-lik

e,

pro

min

ent

pre

sent

dif

fuse

or

com

pac

t

I.bra

yiZ

ost

erops

japonic

us

(Zost

eropid

ae)

Lev

ine

etal

.

(1980

);

Upto

net

al.

(1988

)

sub-

spher

ical

27

926

(26–28

9

25–27)

–one-

layer

ed,

c.0

.5ab

sent

ovoid

or

pyri

form

19

912

(18–21

9

11–13)

pre

sent

pre

sent

com

pac

t

I.m

anoaen

sis

Z.

japonic

us

(Zost

eropid

ae)

Upto

net

al.

(1988

)

sub-

spher

ical

28

926

.5(2

5–31

9

22–29)

1.1 (1

.0–1

.2)

bi-

layer

ed,

c.1

.5pre

sent,

man

y

spli

nte

r-

like

gra

nule

s

ovoid

18

.59

12

(16–20

9

10–14)

pre

sent,

flat

tened

pre

sent

com

pac

t

I.m

ejir

oZ

.ja

ponic

us

(Zost

eropid

ae)

Upto

net

al.

(1988

)

sub-

spher

ical

28.5

927

(25–32

9

25–30)

1.1 (1

.0–1

.1)

bi-

layer

ed,

c.1.5

pre

sent

ovoid

17

911

(16–19

9

10–12)

pre

sent,

dom

e-li

ke

pre

sent

com

pac

t

Syst Parasitol (2011) 80:159–204 193

123

Page 36: Coccidia de Passeriformes da América

Lucet, 1891) Waiselewski, 1904 which parasitises

geese of the genera Anser (Brisson) and Branta

(Scopoli). The former species can cause systemic

disease after crossing the intestinal mucosa by

invading the underlying tissues and muscular layer,

then developing asexually and sexually within organs

such as the liver, spleen, heart and lungs. The oocysts

are later shed from the lungs and ascend into the

pharynx, where they are swallowed and then voided

with the faeces (Novilla et al., 1981; Augustine et al.,

2001). In the life-cycle of E. truncata, the sporozoites

migrate to the kidneys and develop into meronts and

gametocytes in the epithelial cells of the renal tubules

(Entzeroth et al., 1981).

In contrast to Eimeria, the life-cycles of various

Isospora species in passerines have been reported in

detail during in the last four decades. Prior to 1966,

only the intestinal cycle had been recognised; however,

after the pioneering studies of Box (1966, 1967, 1970,

1975, 1977, 1981) and those of Levine (1982c), the

existence of an extra-intestinal cycle was confirmed.

The possibility of an extra-intestinal cycle was

strongly inferred based on the proposed association

between intestinal coccidiosis and forms similar to

sporozoites which had been observed in the spleen of

sparrows Passer domesticus and in the liver of

canaries Serinus canaria (see Box, 1966, 1967).

Subsequent experimental observations suggested that

the species of Atoxoplasma, described by Garnham

(1950) parasitising macrophages of canaries, more

likely represent extra-intestinal stages of Isospora

(see Box, 1970). Previously, in unrelated studies,

Lainson (1958, 1959, 1960) had reported the presence

of the parasite, allocated to Lankesterella Labbe,

1899, from gametocytes obtained from the viscera of

sparrows, noting that transmission occurred via the

mite Dermanyssus gallinae De Geer. Box (1975,

1977, 1981) subsequently confirmed that species

referred to as Atoxoplasma and Lankesterella, from

canaries and sparrows, could not be transmitted either

via blood transfusion or mites, but only by the

ingestion of Isospora oocysts. Thus, Dr Edith D. Box

is credited with having associated extra-intestinal

merogony with Isospora infection.

It should be noted that the parasite which demon-

strated the capacity to cross the intestinal barrier and

infect other tissues was recognised as I. serini, and

that this should be distinguished from I. canaria

which maintains a strictly intestinal life-cycle (Box,

1975, 1977, 1981). This species develops in the

intestinal epithelium and has prepatent and patent

periods of four to five days and two to three weeks,

respectively. In comparison, the sporozoites of I. se-

rini penetrate into macrophages within the lamina

propria of the small intestine and are transported to

various organs, including the liver, spleen and lungs,

where five merogonies into phagocytes take place.

Following this process, I. serini returns to the intestine

in one of two ways, i.e. merozoites can penetrate

directly into intestinal mucosa, or, alternatively,

following the accumulation of merozoites in the

lungs, they can migrate into the digestive tract via the

pharynx and trachea. Within the intestine, new

merogonies, gametogonies and the shedding of the

oocysts take place (Box, 1977, 1981). The patent

period of the extra-intestinal cycle contrasts with the

self-limiting nature of the intestinal cycle, because the

low release of the parasite from macrophages pro-

motes a chronic infection (Box, 1981). Furthermore,

Milde (1979) suggested that the extra-intestinal forms

most likely act as reservoirs, allowing the return of

coccidia to the intestine after the intial infection.

Following a re-evaluation of Atoxoplasma, Levine

(1982c) listed 19 species, including a new combina-

tion for I. serini as A. serini (Aragao, 1933) Levine,

1982. However Box (1966, 1967, 1970, 1975, 1977,

1981) had previously provided compelling evidence

that the forms observed in leukocytes in the viscera of

passerines were in fact developmental phases of

Isospora. Thus, as such forms do not belong to a

distinct species, the recognition of Atoxoplasma and

Lankesterella could not be justified. This assertion

was supported by the work of Boulard et al. (1987),

Upton et al. (2001) and Gill & Paperna (2008).

Finally, Carreno & Barta (1999), Schrenzel et al.

(2005) and Barta et al. (2005), using a combination of

morphological and molecular studies, confirmed that

species of Isospora and Atoxoplasma are closely

related and that these genera are synonyms.

Dynamics of shedding of the oocysts of Isospora

in passerines

Grulet et al. (1982) described 12 species of Isospora

based upon a detailed examination of the morphology

of the oocysts and some aspects of the life-cycles.

Additional observations on the biology of these

species indicated that their development followed a

194 Syst Parasitol (2011) 80:159–204

123

Page 37: Coccidia de Passeriformes da América

circadian rhythm, which, during the summer, resulted

in abundant shedding of the oocysts during the last

hours of the afternoon (Grulet et al., 1986a,b,c). As a

result of these studies, three life-cycle patterns were

proposed.

The first pattern has a prepatent period of four to

five days and a patent period of 12 days. This life-

cycle is limited to the villi of the intestinal epithelium

and was considered similar to that described for

I. canaria. The second pattern results in a chronic

infection and is also limited to the intestine. In this

life-cycle, the gametogony occurs each night, in the

intestinal villi, via merozoites which developed in the

crypts of Lieberkuhn. Finally, the third pattern also

tends to result in a chronic infection due to intense

merogony and gametogony within the intestine

throughout the entire 24 hour period, with merozoites

developing from monocytic-phagocytic complexes.

This third life-cycle is similar to that previously

described by Box (1981) for I. serini (see Grulet

et al., 1986a,b,c).

In the last decade, Brawner & Hill (1999), Dolnik

(1999), Hudman et al. (2000), McQuistion (2000) and

Brown et al. (2001) have confirmed the presence of a

circadian rhythm, which had previously been sug-

gested by Grulet et al. (1986a,b,c). Misof (2004) also

noted a daily fluctuation in the shedding of oocysts in

blackbirds Turdus merula (L.), where both juveniles

and adults shed oocysts predominantly in the late

afternoon. Lopez et al. (2007) affirmed that any study

of the prevalence of coccidia in passerines should be

delineated by taking into consideration the circadian

rhythm of these parasites.

Dolnik (1999), McQuistion (2000), Misof (2004)

and Martinaud et al. (2009) proposed two hypotheses

to explain the dynamics of the shedding of Isospora

oocysts in passeriforms. Firstly, the period of shed-

ding of the oocysts could correspond to a peak in the

feeding activity of the host. As many individuals

share the same feeding patch, it is assumed that

oocysts released in the feeding area will have a higher

probability of transmission after sporulation. How-

ever, it should be considered that, in the humidity of

the tropics, it is possible that the oocysts may be

washed away before sporulation can occur. An

additional weakness in this hypothesis is that, for

many passerine birds, two peaks of feeding activity

are recognised, one in the morning and the other in

the afternoon.

The second hypothesis is based on the resistance

of oocysts to environmental factors, such as temper-

ature and humidity. It is well recognised that

desiccation can reduce the infectivity of oocysts.

Thus, the shedding of the oocysts in the late

afternoon, when temperatures are lower and humidity

levels are higher, could represent an adaptation to

prevent desiccation under natural conditions (Dolnik,

1999; McQuistion, 2000; Misof, 2004; Martinaud

et al., 2009). This hypothesis has recently been tested

using oocysts of I. turdi Schwalbach, 1959, a parasite

of Turdus merula L. (Martinaud et al., 2009). It was

observed that the exposure of the faeces to natural

sunlight reduced the infectivity of the oocysts. These

findings strongly indicated that the shedding of the

oocysts in the late afternoon is indeed an adaptative

trait to protect against the effects of desiccation and

ultraviolet radiation and which results in the reduced

mortality of oocysts in the environment (Martinaud

et al., 2009).

Host-specificity

Prior to 1982, more than 100 species of passerines

had been reported as hosts of I. lacazei. Yet, based on

available descriptions and on the improbability that a

single species could parasitise so many hosts, Levine

(1982a) proposed that each species of bird would

more likely be parasitised by a different species of

Isospora, but that, in some cases, a single species

could possibly parasitise birds of the same genus. In

this sense, the concept of host-specificity in passe-

rines would be genus-specific.

In the case of Eimeira, according to Marquardt

(1981), there is a high degree of host-specificity.

According to this author, closely related species

could host a single species of coccidian; however,

there would also be a remote possibility of cross-

transmission between different genera and families of

birds.

During the past two decades, the descriptions of

coccidia have generally been made in accordance with

the guidelines proposed by Duszynski & Wilber

(1997). These authors put forward the concept of

intra-familial specificity when they suggested that a

new coccidian species should be compared in detail

with the coccidian species that is most structurally

similar to it within the same host family. However,

Tung et al. (2007) considered that this concept should

Syst Parasitol (2011) 80:159–204 195

123

Page 38: Coccidia de Passeriformes da América

be genus-specific based on data from studies of

experimental infection. In these experiments, oocysts

of I. michaelbakeri Grulet, Landau & Baccam, 1982, a

parasite of the sparrow Passer rutilans (Temminck),

were used to inoculate their natural host and the

following birds: the estrildids passerines Lonchura

punctulata (L.) and Padda oryzivora (L.); the fringil-

lid passerine Serinus canaria; the galliform Gallus

gallus (L.); and the anseriform Anas platyrhynchos

(L.). In support of the genus-specific concept, only the

sparrow P. rutilans developed an infection (Tung

et al., 2007).

In contrast, Berto et al. (2010a, 2011b) provided

support for the family-specific concept when they

reported the description of two new hosts for

I. tiesangui, I. sepetibensis and I. navarroi, which

had been recognised as parasites of Ramphocelus

bresilius dorsalis. The new hosts were the palm

tanager Thraupis palmarum (I. tiesangui and

I. navarroi) and the blue dacnis Dacnis cayana

(I. tiesangui and I. sepetibensis), which inhabit the

same biotope as R. b. dorsalis on Marambaia Island.

Consequently, three passerines of the same family,

but distinct genera, were shown to be hosts of the

same coccidian species.

It is worth mentioning that not all studies follow the

guidelines proposed by Duszynski & Wilber (1997). In

this context, two new species of Isospora were recently

described without comparative studies of coccidian

parasites of birds of the same family. Thus, Dolnik &

Loonen (2007) described I. plectrophenaxia Dolnik &

Loonen, 2007, parasitising Plectrophenax nivalis (L.),

by comparing it only with the descriptions of other

coccidia found in this same host genus. Using a similar

experimental approach, the species I. hypoleucae

Dolnik, Ronn & Bensch, 2009 was described from

Ficedula hypoleuca (Pallas) (Dolnik et al., 2009b).

Morphology and diagnosis

The features of the oocyst are commonly used for the

differentiation and identification of Eimeria spp.,

because many species present oocyst walls which are

readily distinguishable, with rough surfaces, spines,

micropyle, micropyle cap, residuum and polar gran-

ules (Casas et al., 1995; Arslan et al., 2002). In

contrast, the Isospora spp. commonly have uniform

oocyst walls, and consequently it is necessary to

observe additional features in order to achieve a

confident identification (Grulet et al., 1982; Berto

et al., 2008a, 2009a,b,c, 2010c, 2011a,b).

The numerous species of Isospora which can

parasitise sparrows, as described by Grulet et al.

(1982), clearly demonstrate the importance of the

structures and features of the sporocysts, particularly

the Stieda and substieda bodies, in identification.

Currently, the sporocysts of new species are

described in minute detail in order to achieve a

definitive identification (Balthazar et al., 2009b;

Berto et al., 2009b,c,d,e,f, 2010b, 2011a,b; Pereira

et al., 2011).

In addition to simple microscopical examination,

histological methods that reveal details of the biology

of coccidia (Abd-Al-Aal et al., 2000) and molecular

methods are highly relevant to both the systematics

and the diagnosis of coccidian parasites, including

those of the Passeriformes (Dolnik et al., 2009a,b;

McQuistion et al., 2010; Schrenzel et al., 2005),

because they may serve to complement data generated

from the morphological examination of sporulated

oocysts. In this context, cases of recent divergence,

such as among species and strains of coccidia, may

not be supported by any morphological variation

whatsoever, but can often be readily detected using

molecular characters (Tenter et al., 2002).

Future studies on coccidia of New World

passerine birds

A number of coccidia have been described in

passerines which inhabit geographically remote areas

and have thus remained isolated. However, the

majority of the passerine hosts demonstrate a wide

geographical distribution. As such, for the study of

the coccidian parasites of New World passerine birds,

the species of coccidia described from birds that

inhabit North, Central and South America are highly

relevant, given that transmission of parasites can

occur between sympatric birds of the same family.

On the other hand, transmission between non-sym-

patric species that inhabit distant continents is

unlikely (Levine et al., 1980; Duszynski & Wilber,

1997; Duszynski et al., 1999; Carvalho-Filho et al.,

2005; Berto et al., 2010c).

Studies aimed at providing descriptions of new

species should be conducted through the detailed

characterisation of the oocysts. Statistical evaluations

can be performed targeting the morphometrics of the

196 Syst Parasitol (2011) 80:159–204

123

Page 39: Coccidia de Passeriformes da América

oocysts of a taxon in comparison with those of other

species. Three statistical methods are commonly

performed: (1) histograms plot the values of length,

width and the shape-index of the oocysts, along with

their frequencies; this method demonstrates tenden-

cies and regularities in the distribution of the

dimensions (Berto et al., 2008e,f,g, 2011b); (2)

analysis of variance (ANOVA), Student’s t-test or

other parametric tests should be used to compare

measurements of length, width and shape-index of

the oocysts and sporocysts in two situations: firstly,

comparing species recovered from the host-family

and, secondly, comparing the same species recovered

from different host-species (Gomez et al., 1982;

Berto et al., 2008e,f,g, 2011b); and (3) linear

regression analyses plot measurements of width on

length of oocysts; when different host-species shed

oocysts, regressions can be performed for each host

individual and later plots from several hosts can be

superimposed for a better visualisation (Norton &

Joyner, 1981; Berto et al., 2008e,f,g, 2011b). The

application of these types of morphometric

approaches to the coccidia recorded in tanagers from

Marambaia Island revealed trends, patterns, regular-

ities and, more importantly, which species can or

cannot be reliably identified by morphometry and

how (Berto et al., 2011b).

In addition, when possible, studies should examine

all of the developmental phases of species of

Isospora, including merogony, gametogony and spo-

rogony, for the purposes of establishing the sites of

infection and the determination of life-cycles. The

determination of the number of oocysts per gram of

faeces should reveal the intensity of infection, the

duration of the patent period, fluctuations in the

shedding of the oocysts, the number of merogonies

and, therefore, life-cycle patterns (Box, 1977, 1981;

Cardozo et al., 2010). Those species with an extra-

intestinal cycle should be attributed to Isospora,

because Atoxoplasma is considered invalid (Carreno

& Barta, 1999; Barta et al., 2005; Schrenzel et al.,

2005). Invariably, these studies must be conducted

following the death of the passerine host, followed by

necropsy and histological methods. Yet the killing of

wild birds, even for scientific studies, is prohibited in

some countries, including Brazil, where the native

birds are protected by law. As such, molecular

methods that require only small quantities of parasi-

tised cells or tissues, and which may possibly be

collected non-lethally, will most likely play an

increasingly important role in future studies on the

distribution and identification of coccidia in passerine

birds.

It is becoming increasingly clear that molecular

phylogenetic studies need to be conducted on cocci-

dia from passerines, with the principal objectives of

clarifying the position of Isospora and Eimeira

among other parasite groups, revealing inter- and

intra-specific differences, and to resolve taxonomic

discrepencies. DNA sequencing provides another

marker for the investigation of phylogenetic relation-

ships for taxa that cannot unequivocally be classified

based on phenotypic markers, and may provide

solutions to problems of species identity and host-

specificity which cannot be resolved using traditional

approaches. Molecular data have been increasingly

used over the past three decades to infer phylogenetic

relationships between various protozoa, including

eimeriid coccidians (Barta 2001, Schrenzel et al.,

2005, Dolnik et al., 2010), although the number of

studies focused on the coccidia of passerines has been

very limited (Dolnik et al., 2009b; McQuistion et al.,

2010). In an evolutionary sense, molecular characters

can be reasonably assumed to be homologous and

should also provide sufficient variability to generate

character states for analysis. Early molecular studies

of the eimeriid coccidian, for the purpose of inferring

relationships between a variety of taxa, relied almost

exclusively on ribosomal RNA gene sequences and

generated findings which largely supported the major

groupings of taxa recognised using morphological

and life-cycle traits (Barta, 2001). Yet, comparative

analysis of a single molecular sequence, such as that

of the 18S rRNA gene, represents only the phylogeny

of that one gene, which may or may not represent the

phylogeny of the coccidia. Hence, in order to

unequivocally resolve relationships between closely

related species, it is now considered both necessary

and desirable to use multiple sequences from differ-

ent genes, with the choice of genes preferentially

including sequences from both nuclear and non-

nuclear (e.g. mitochondrial) genomes (Barta, 2001).

Moreover, it is recognised that, in order to be

of value, there needs to be concordance between

the phylogenies derived from different molecular

sequences.

The study of Schrenzel et al. (2005), applying

a multi-gene strategy to the characterisation of

Syst Parasitol (2011) 80:159–204 197

123

Page 40: Coccidia de Passeriformes da América

isosporian pathogens of passerine birds clearly dem-

onstrated the potential of molecular methods for

resolving taxonomic inconsistencies and assessing

host-specificity, and also serve as an example of how

future studies on coccidians of New World passerines

could be developed. Sequences obtained by polymer-

ase chain reaction (PCR) based amplification of

regions of the large and small subunit ribosomal RNA

genes of isosporian coccidians, present in the faeces or

tissues, were collected from a total of 59 birds

representing 23 species. Additional sequences derived

from the heat shock protein 70 (hsp70) gene, apicop-

last rRNA and chromosomal 5.8 s were derived from

a subset of the samples. The molecular date revealed

that the isosporian coccidia were monophyletic and

related to Eimeria (Eimeriidae). In addition, they

demonstrated a significant parasite diversity within

individual birds and within groups of birds of the

same species. Interestingly, they also provided evi-

dence suggesting that some of the passerine isospo-

rian coccidians might have low levels of host-fidelity.

The purpose of that study was not to compare

molecular methods with the traditional morphology-

based approach and, as such, no detailed analysis of

morphological characteristics was performed. Clearly,

the lack of such morphological data could be viewed

as a shortcoming and highlights the necessity for a

multi-disciplinary approach to the systematics of

these parasites. We consider it unlikely that morpho-

logical or molecular criteria, when used in isolation,

will result in the establishment of a stable nomen-

clature which will aid communication and avoid

confusion among protozoologists and non-protozool-

ogists. In this context, there appear to have been only

a few attempts to combine molecular and phenotypic

characters for phylogenetic analyses of apicomplexan

protozoa. More intensive and systematic sampling of

the biological diversity found within both the cocci-

dian parasites of passerine birds and the phylum

Apicomplexa as a whole is required at both pheno-

typic and molecular levels (Tenter et al., 2002).

A futher issue for consideration in relation to

genetic studies of the passerine-associated protozoa is

the need to be able to work with a source of genetic

material derived from a single cell. Ideally, the same

individual cell would have been identified using

morphological criteria prior to the extraction of

nucleic acid for molecular analysis. This can be

particularly difficult to achieve when working with

faeces, and for this reason the majority of studies have

traditionally performed their analysis on pooled

nucleic acids, possibly derived from different parasite

species, recovered from faecal samples. However, a

recently reported method (Dolnik et al., 2009) for the

isolation of individual oocysts of Isospora from avian

faeces, followed by sequence analysis of amplicons

generated by the PCR amplification of fragments of

the mitochondrial genome, has great potential as a

means of improving our knowledge of the systematics,

host-specificity, population structure and identifica-

tion of coccidian parasites of passerine birds.

As a final point of interest, the identification of

passerine coccidia can potentially form part of a

classification system for the allocation of bird species

to their correct families, or provide evidence in

support of existing classifications. As an example, the

Coerebidae comprises a single species, Coereba

flaveola; however this family is closely related to

both the Thraupidae and the Emberizidae (Burns

et al., 2003; IUCN, 2011). A recent study examining

birds on Marambaia Island reported the presence of

Isospora cagasebi and I. coerebae in specimens of

C. flaveola, but not in thraupids or emberezids,

despite the fact that these families inhabited the same

biotope. The limited distribution of these coccidian

species provides support for the current classification

of C. flaveola in its own family, since coccidia from

coerebids have not yet been reported in thraupids or

emberezids (Berto et al., 2011a,b). In this sense, in a

first description from a host-family, it appears relevant

that the new coccidium be compared with those

coccidia in other host-families of the same parvorder,

or with those that are morphologically and phyloge-

netically similar (Berto et al., 2008b, 2009d,e,f). The

finding of the same coccidium in two closely related

host-families may suggest the need for a reclassifica-

tion of those two families as one.

It is our hope that this review of the coccidia of New

World passerine birds will serve as a useful tool for

differential diagnosis as well as for the identification of

individual species. Avian systematics has recently

undergone a reorganisation (Cicero & Johnson, 2001;

Birdsley, 2002; Burns et al., 2003; IUCN, 2011) and,

in view of this, the present review was aimed at

clearly elucidating the host-family relationship of

each coccidian and reorganising the species according

to the guidelines proposed by Duszynski & Wilber

(1997). At the same time, we vigorously encourage

198 Syst Parasitol (2011) 80:159–204

123

Page 41: Coccidia de Passeriformes da América

parasitologists to consult the original papers, com-

piled herein for the first time, that describe each of the

species in order to study the photosyntypes, symbio-

types, deposited material and other detailed informa-

tion which was beyond the scope of the current

review.

Acknowledgements We thank the late Dr Steve J. Upton,

Division of Biology, Kansas State University, USA for his help

through the generous provision of access to scientific

publications unavailable in Brazil. In addition, we thank the

following editors and journals for allowing us to reproduce the

drawing of the oocysts: Dr David I. Gibson (Systematic Parasi-tology); Dr Krzysztof Wiackowski (Acta Protozoologica); Dr

Gerald W. Esch (Journal of Parasitology); Dr Portia Holt

(Journal of Eukaryotic Microbiology); Dr Sherman S. Hendrix

(Proceedings of the Helminthological Society of Washington);

Dr Richard S. Jones (Invertebrate Biology); and Dr Zhi-Qiang

Zhang (Zootaxa).

References

Abd-Al-Aal, Z., Ramadan, N. F., & Al-Hoot, A. (2000). Life-

cycle of Isospora mehlhornii sp. nov. (Apicomplexa:

Eimeriidae), parasite of the Egyptian swallow Hirundorubicola savignii. Parasitology Research, 86, 270–278.

Adamczyk, K. J., McQuistion, T. E., & LaPointe, D. (2004). A

new coccidian parasite, Isospora samoaensis, from the

wattled honeyeater (Foulehaio carunculata) from Amer-

ican Samoa. Acta Protozoologica, 43, 179–181.

Anwar, M. (1966a). Cytochemical studies on infections with

Isospora lacazei. Transactions of the Royal Society ofTropical Medicine and Hygiene, 60, 428–429.

Anwar, M. (1966b). Isospora lacazei (Labbe, 1893) and

I. chloridis sp. n. (Protozoa: Eimeriidae) from the English

Sparrow (Passer domesticus), Greenfinch (Chlorischloris) and Chaffinch (Fringilla coelebs). Journal ofProtozoology, 13, 84–90.

Arslan, M. O., Gicik, Y., & Ozcan, K. (2002). The frequency of

Eimeriidae species in the domestic geese in Kars Province

of Turkey. Acta Protozoologica, 41, 353–357.

Augustine, P., Olsen, G., Danforth, H., Gee, G., & Novilla, M.

(2001). Use of monoclonal antibodies developed against

chicken coccidia (Eimeria) to study invasion and devel-

opment of Eimeria reichenowi in Florida sandhill cranes

(Grus canadensis). Journal of Zoo and Wildlife Medicine,32, 65–70.

Ball, S. J., Pittilo, R. M., & Long, P. L. (1989). Intestinal and

extraintestinal life cycles of eimeriid coccidia. Advancesin Parasitology, 28, 1–54.

Ball, S. J., & Daszak, P. (1997). Isospora tiaris n. sp. (Api-

complexa: Eimeriidae) from the sooty grassquit (Tiarisfuliginosa), a passeriform bird of South America. Journalof Parasitology, 83, 465–466.

Balthazar, L. M. C., Berto, B. P., Flausino, W., & Lopes, C. W.

G. (2009a). The slate-colored seedeater, Sporophila

schistacea, a new host for Isospora chanchaoi. RevistaBrasileira de Medicina Veterinaria, 31, 253–255.

Balthazar, L. M. C., Berto, B. P., Flausino, W., & Lopes, C. W.

G. (2009b). Isospora ticoticoi n. sp. (Apicomplexa:

Eimeriidae) from the rufous-collared sparrow Zonotrichiacapensis in South America. Acta Protozoologica, 48,

345–349.

Barta, J. R. (2001). Molecular approaches for inferring

evolutionary relationships among protistan parasites.

Veterinary Parasitology, 101, 175–186.

Barta, J. R., Schrenzel, M. D., Carreno, R., & Rideout, B. A.

(2005). The Genus Atoxoplasma (Garnham 1950) as a

junior objective synonym of the genus Isospora (Schnei-

der 1881) species infecting birds and resurrection of

Cystoisospora (Frenkel 1977) as the correct genus for

Isospora species infecting mammals. Journal of Parasi-tology, 91, 726–727.

Becker, E. R. (1934). Coccidia and coccidiosis of domesti-cated, game and laboratory animals and of man. Ames:

Iowa State College Press, 147 pp.

Berto, B. P., Flausino, W., Luz, H. R., Ferreira, I., & Lopes, C.

W. G. (2008a). Three new coccidian parasites of Brazilian

tanager (Ramphocelus bresilius dorsalis) from South

America. Acta Protozoologica, 47, 77–81.

Berto, B. P., Flausino, W., Luz, H. R., Ferreira, I., & Lopes, C.

W. G. (2008b). Isospora cagasebi sp. nov. (Apicomplexa,

Eimeriidae) from the bananaquit, Coereba flaveola of

Brazil. Acta Parasitologica, 53, 117–119.

Berto, B. P., Flausino, W., Ferreira, I., & Lopes, C. W. G.

(2008c). Eimeria divinolimai sp. n. (Apicomplexa: Eime-

riidae) in the rufous casiornis Casiornis rufus Vieillot,

1816 (Passeriformes: Tyrannidae) in Brazil. Revista Bra-sileira de Parasitologia Veterinaria, 17, 33–35.

Berto, B. P., Balthazar, L. M. C., Flausino, W., & Lopes, C. W.

G. (2008d). Two new coccidian parasites of green-winged

saltator (Saltator similis) from South America. ActaProtozoologica, 47, 263–267.

Berto, B. P., Lopes, B. B., Flausino, W., Teixeira-Filho, W. L., &

Lopes, C. W. G. (2008e). Contribution on the study of

Isospora hemidactyli Carini, 1936 and a report of an adeleid

pseudoparasite of the house gecko Hemidactylus mabouia,

from the Rio de Janeiro Metropolitan Region, Brazil. Re-vista Brasileira de Parasitologia Veterinaria, 17, 150–154.

Berto, B. P., Flausino, W., Almeida, C. R. R., & Lopes, C. W.

G. (2008f). Polymorphism of Tyzzeria parvula (Kotlan,

1933) Klimes, 1963 (Apicomplexa: Eimeriidae) oocysts

from the greylag geese Anser anser L., 1758 conditioned

in two distinct sites. Revista Brasileira de MedicinaVeterinaria, 30, 215–219.

Berto, B. P., Cardozo, S. V., Teixeira-Filho, W. L., Ferreira,

A. M. R., & Lopes, C. W. G. (2008g). Aflatoxin effect

on the oocysts morphometry and contribution on the

morphology of Eimeria bateri Bhatia, Pandey and

Pande, 1965 of the Japanese quail Coturnix japonica in

Brazil. Revista Brasileira de Parasitologia Veterinaria,17, 235–238.

Berto, B. P., Balthazar, L. M. C., Flausino, W., & Lopes, C. W.

G. (2009a). Three new species of Isospora Schneider, 1881

(Apicomplexa: Eimeriidae) from the buffy-fronted seed-

eater Sporophila frontalis Verreaux, 1869 (Passeriformes:

Syst Parasitol (2011) 80:159–204 199

123

Page 42: Coccidia de Passeriformes da América

Emberizidae) from South America. Systematic Parasitol-ogy, 73, 65–69.

Berto, B. P., Flausino, W., Luz, H. R., Ferreira, I., & Lopes, C.

W. G. (2009b). Two new Isospora species from Brazilian

tanager (Ramphocelus bresilius dorsalis) of South

America. Parasitology Research, 105, 635–639.

Berto, B. P., Balthazar, L. M. C., Flausino, W., & Lopes, C. W.

G. (2009c). New isosporoid coccidian parasites of sayaca

tanager, Thraupis sayaca, from South America. ActaParasitologica, 54, 90–94.

Berto, B. P., Luz, H. R., Flausino, W., Ferreira, I., & Lopes, C.

W. G. (2009d). New species of Eimeria Schneider, 1875

and Isospora Schneider, 1881 (Apicomplexa: Eimeriidae)

from the short-crested flycatcher Myiarchus ferox (Gme-

lin) (Passeriformes: Tyrannidae) in South America.

Systematic Parasitology, 74, 75–80.

Berto, B. P., Flausino, W., Luz, H. R., Ferreira, I., & Lopes, C.

W. G. (2009e). Isospora mionectesi sp. nov. (Apicomplexa,

Eimeriidae) from the grey-hooded flycatcher, Mionectesrufiventris in Brazil. Acta Parasitologica, 54, 301–304.

Berto, B. P., Luz, H. R., Flausino, W., Ferreira, I., & Lopes, C.

W. G. (2009f). Isospora piacobrai n. sp. (Apicomplexa:

Eimeriidae) from the masked yellowthroat Geothlypisaequinoctialis (Gmelin) (Passeriformes: Parulidae) in

South America. Systematic Parasitology, 75, 225–230.

Berto, B. P., Luz, H. R., Ferreira, I., Flausino, W., & Lopes, C.

W. G. (2010a). Two new hosts for Isospora tiesanguiBerto, Flausino, Luz, Ferreira & Lopes, 2008 (Apicom-

plexa: Eimeriidae). Revista Brasileira de MedicinaVeterinaria, 32, 168–171.

Berto, B. P., Flausino, W., Luz, H. R., Ferreira, I., & Lopes, C.

W. G. (2010b). Isospora ramphoceli n. sp. from the

Brazilian tanager (Ramphocelus bresilius dorsalis) in

South America. Zootaxa, 2650, 57–62.

Berto, B. P., Luz, H. R., Ferreira, I., Flausino, W., & Lopes, C.

W. G. (2010c). A diagnostic tool to identify species of the

genus Isospora Schneider, 1881 (Apicomplexa: Eimerii-

dae) based on sporulated oocysts from Thaupidae family

(Aves: Passeriformes): a dichotomous key. Revista Bra-sileira de Medicina Veterinaria, 32, 182–186.

Berto, B. P., Flausino, W., Luz, H. R., Ferreira, I., & Lopes, C.

W. G. (2011a). Isospora coerebae n. sp. (Apicomplexa:

Eimeriidae) from the bananaquit Coereba flaveola(Passeriformes: Coerebidae) in South America. RevistaBrasileira de Parasitologia Veterinaria, 20, 22–26.

Berto, B. P., Luz, H. R., Flausino, W., Teixeira-Filho, W. L.,

Ferreira, I., & Lopes, C. W. G. (2011b). Isosporoid coc-

cidia (Apicomplexa: Eimeriidae) parasites of tanagers

(Passeriformes: Thraupidae) from the Marambaia Island,

Brazil. Pesquisa Veterinaria Brasileira. [in press].

Bhatia, B. B., Chauhan, P. P. S., Arora, G. S., & Agrawal, R. D.

(1973). Species composition of coccidia of some mam-

mals and birds at the Zoological Gardens, Dehli and

Lucknow. Indian Journal of Animal Science, 43, 944–947.

Birdsley, J. S. (2002). Phylogeny of the tyrant flycatchers

(Tyrannidae) based on morphology and behavior. TheAuk, 119, 715–734.

Boughton, D. C. (1930). The value of measurements in the

study of a protozoan parasite Isospora lacazei (Labbe).

American Journal of Hygiene, 11, 212–226.

Boughton, D. C., Boughton, R. B., & Volk, J. (1938). Avian

hosts of the genus Isospora (Coccidiida). Ohio Journal ofScience, 38, 149–163.

Boulard, Y., Landau, I., Grulet, O., & Baccam, D. (1987).

Ultrastructure of chronic reticuloendothelial forms of

Isospora of sparrows. Annales de Parasitologie Humaineet Comparee, 62, 181–184.

Box, E. D. (1966). Blood and tissue protozoa of the English

sparrow (Passer domesticus domesticus) in Galveston,

Texas. Journal of Protozoology, 13, 204–208.

Box, E. D. (1967). Influence of Isospora infections on potency

of avian Lankesterella (Atoxoplasma Garhnam, 1950).

Journal of Parasitology, 53, 1140–1147.

Box, E. D. (1970). Atoxoplasma associated with an isosporan

oocyst in canaries. Journal of Protozoology, 17, 391–396.

Box, E. D. (1975). Exogenous stages of Isospora serini (Ara-

gao) and Isospora canaria sp. n. in the canary (Serinuscanarius L.). Journal of Protozoology, 22, 165–169.

Box, E. D. (1977). Life cycles of two Isospora species in the

canary, Serinus canarius L. Journal of Protozoology, 24,

57–67.

Box, E. D. (1981). Isospora as an extraintestinal parasite of

passerine birds. Journal of Protozoology, 28, 244–246.

Brawner, W. R., & Hill, G. E. (1999). Temporal variation

in shedding of coccidial oocysts: implications for sexual-

selection studies. Canadian Journal of Zoology, 77,

347–350.

Brown, M. A., Ball, S. J., & Holman, D. (2001). The period-

icity of isosporan oocyst discharge in the greenfinch

(Carduelis chloris). Journal of Natural History, 35,

945–948.

Burns, K. J., Hackett, S. J., & Nedra, K. K. (2003). Phyloge-

netic relationships of Neotropical honeycreepers and the

evolution of feeding morphology. Journal of Avian Biol-ogy, 34, 360–370.

Cardozo, S. V., Berto, B. P., Ferreira, A. M. R., Macedo, H.

W., & Lopes, C. W. G. (2010). Frequencia de Eimeriabateri em codornas japonesas (Coturnix japonica) desa-

fiadas com dose sub-letal de aflatoxina. Revista Brasileirade Medicina Veterinaria, 32, 211–214.

Carreno, R. A., & Barta, J. R. (1999). An eimeriid origin of

isosporoid coccidia with Stieda bodies as shown by phy-

logenetic analysis of small subunit ribosomal RNA gene

sequences. Journal of Parasitology, 85, 77–83.

Carvalho, J. S. (2009). Cardeal da Virgınia. http://www.

petbrazil.com.br. Cited 22 Dec. 2010.

Carvalho-Filho, P., Meireles, G., Ribeiro, C., & Lopes, C. W.

G. (2005). Three new species of Isospora Schneider, 1881

(Apicomplexa: Eimeriidae) from the double-collared

seedeater, Sporophila caerulescens (Passeriformes: Em-

berizidae), from eastern Brazil. Memorias do InstitutoOswaldo Cruz, 100, 151–154.

Casas, M. C., Duszynski, D. W., & Zalles, L. M. (1995). Three

new eimerians in capybara (Hydrochaeris hydrochaeris)

populations from eastern Bolivia and southern Venezuela.

Journal of Parasitology, 81, 247–251.

CBRO (2011). Lista das aves do Brasil. Rio de Janeiro: Comite

Brasileiro de Registros Ornitologicos, 37 pp.

Cerna, Z. (1976). Two new coccidians from passeriform birds.

Folia Parasitologica, 23, 277–279.

200 Syst Parasitol (2011) 80:159–204

123

Page 43: Coccidia de Passeriformes da América

Chakravarty, M., & Kar, A. B. (1944). Studies on the coccidia

of Indian birds II. Observations on several species of

coccidia of the subfamilies Cyclosporinae and Eimeriinae.

Proceedings of the Indian Academy of Science, 20,

102–114.

Cicero, C., & Johnson, N. K. (2001). Higher-level phylogeny

of New World vireos (Aves: Vireonidae) based on

sequences of multiple mitochondrial DNA genes. Molec-ular Phylogenetics and Evolution, 20, 27–40.

Dolezalova, M., Torres, J., Fernandez, H., & Modry, D. (2004).

Isospora araponga sp. n. (Apicomplexa: Eimeriidae), a

new species of Isospora Schneider from a bare-throated

bellbird, Procnias nudicollis (Vieillot, 1817) (Passerifor-

mes: Cotingidae) from Brazil. Memorias do InstitutoOswaldo Cruz, 99, 829–830.

Dolnik, O. V. (1999). Diurnal periodicity of oocysts release of

Isospora dilatata (Sporozoa: Eimeriidae) from the com-

mon starling (Sturnus vulgaris) in nature. Parazitologiya,33, 74–80. (In Russian).

Dolnik, O. V., & Loonen, M. J. J. E. (2007). Isospora plec-trophenaxia n. sp (Apicomplexa: Eimeriidae), a new

coccidian parasite found in snow bunting (Plectrophenaxnivalis) nestlings on Spitsbergen. Parasitology Research,101, 1617–1619.

Dolnik, O. V., Palinauskas, V., & Bensch, S. (2009a).

Individual oocysts of Isospora (Apicomplexa: Coccidia)

parasites from avian faeces: From photo to sequence.

Journal of Parasitology, 95, 169–174.

Dolnik, O. V., Ronn, J. A. V., & Bensch, S. (2009b). Isosporahypoleucae sp. n. (Apicomplexa: Eimeriidae), a new

coccidian parasite found in the pied flycatcher (Ficedulahypoleuca). Parasitology, 19, 1–5.

Duszynski, D. W., Upton, S. J., & Couch, L. (1999). Thecoccidia of the world. http://www.k-state.edu/parasitology/

worldcoccidia/index.html. Cited 22 Dec. 2010.

Duszynski, D. W., & Wilber, P. G. (1997). A guideline for the

preparation of species descriptions in the Eimeridae.

Journal of Parasitology, 83, 333–336.

Dzerzhinskii, V. A., & Kairullaev, K. K. (1989). Coccidia from

wild animals in lower region of the river Turgai. IzvestiyaAkademia Nauk Kazachskoi SSR, seriya BiologicheskaiaNauk, 2, 30–34.

Eimer, T. (1870). Ueber die ei-und Kugelformigen sogenann-ten Psorospermien der Wirbelthiere. Wurzburg: A Stub-

err’s Verlangshandlung, 58 pp.

Entzeroth, R., Scholtyseck, E., & Sezen, I. Y. (1981). Fine

structural study of Eimeria truncata from the domestic

goose (Anser anser dom.). Zeitschrift fur Parasitenkunde,66, 1–7.

Garnham, P. C. C. (1950). Blood parasites of East African

vertebrates, with a brief description of exo-erythrocytic

schizogony in Plasmodium pitmani. Parasitology, 40,

328–337.

Gill, H., & Paperna, I. (2008). Proliferative visceral Isospora(atoxoplasmosis) with morbid impact on the Israeli

sparrow Passer domesticus biblicus Hartert, 1904. Para-sitology Research, 103, 493–499.

Gomez, F. M., Navarrete, I., & Rodriguez, R. L. (1982). In-

fluencia de los factores ambientales sobre diferentes

poblaciones de Isospora lacazei Labbe, 1983 (Protozoa:

Apicomplexa). Revista Iberica de Parasitologia, 42,

185–196.

Gottschalk, C. (1972). Beitrag zur Faunistik der Vogelkokzi-

dien Thuringens und Sachsens. Betrage zur Vogelkunde,18, 61–69.

Grulet, O., Landau, I., & Baccam, D. (1982). Les Isospora du

moineau domestique; multiplicite des especes. Annales deParasitologie Humaine et Comparee, 57, 209–233.

Grulet, O., Landau, I., Millet, P., & Baccam, D. (1986a). Les

Isospora du moineau. I: Complements a l’etude

systematique. Annales de Parasitologie Humaine etComparee, 61, 155–160.

Grulet, O., Landau, I., Millet, P., & Baccam, D. (1986b).

Les Isospora du moineau. II: Etudes sur la biologie.

Annales de Parasitologie Humaine et Comparee, 61,

161–192.

Grulet, O., Landau, I., Millet, P., & Baccam, D. (1986c). Les

Isospora du moineau. III: Action elective de la primaqu-

ine sur les formes d’attente. Annales de ParasitologieHumaine et Comparee, 61, 193–198.

Hake, T. G. (1839). A treatise on varicose capillaries, asconstituting the structure of carcinoma of the hepaticducts, and developing the law and treatment of morbidgrowths. With an account of a new form of the pusglobule. London: Taylor and Walton, 20 pp.

Haldar, D. P., Ray, S. K., & Mandal, R. K. (1982). A new

coccidium, Eimeria anili n. sp. from an Indian passerine

bird. Archiv fur Protistenkunde, 126, 217–219.

Henry, D. P. (1932). Isospora buteonis sp. nov. from the hawk

and owl, and notes on Isospora lacazii (Labbe) in birds.

University of California Publications in Zoology, 37,

291–300.

Hernandez-Rodriguez, S., Calero-Carretero, R., Becerra-Mar-

tell, C., Dominguez-de-Tena, M., Moreno-Montanez, T.,

& Martinez-Gomez, F. (1976a). Ultrastructure of the

intestinal phases of Isospora lacazei Labbe 1893 (Eime-

riidae, parasite) in Carduelis carduelis (goldfinch). Revi-sta Iberica de Parasitologia, 36, 67–79.

Hernandez-Rodriguez, S., Martinez-Gomez, F., Becerra-Mar-

tell, C., Calero-Carretero, R., Moreno-Montanez, T., &

Dominguez-de-Tena, M. (1976b). Isospora lacazei Labbe,

1893 en Passeriformes de la provincia de Cordoba. Re-vista Iberica de Parasitologia, 36, 81–88.

Hosoda, S. (1928). Studien uber Entwicklung und Vermehrung

der Isospora lacazei Labbe. Fukushima Igaku Zasshi, 21,

885–930.

Hudman, S. P., Ketterson, E. D., & Nolan, V. (2000). Effects

of time of sampling on oocyst detection and effects of

age and experimentally elevated testosterone on preva-

lence of coccidia in male dark-eyed Juncos. Auk, 117,

1048–1051.

IUCN (2011). International Union for Conservation of Natureand Natural Resources. http://www.iucnredlist.org. Cited

20 Apr., 2011.

Kloss, G. (1846). Die Freimaurerei in ihrer wahren Bedeutungaus den alten und achten Urkunden der Steinmetzen,Masonen und Freimaurer. Leipzig: Klemm, 358 pp.

Labbe, A. (1893). Sur les coccidies des Oiseaux. ComptesRendus Hebdomadaires des Seances de l’Academie desSciences, 117, 407–409.

Syst Parasitol (2011) 80:159–204 201

123

Page 44: Coccidia de Passeriformes da América

Lainson, R. (1958). Some observations on the life-cycle of

Atoxoplasma, with particular reference to the parasite’s

schizogony and its transmission by the mite Dermanyssusgallinae. Nature, 182, 1250–1251.

Lainson, R. (1959). Atoxoplasma Garnham, 1950, as a syno-

nym for Lankesterella Labbe, 1899. Its life cycle in the

English sparrow (Passer domesticus domesticus, Linn.).

Journal of Protozoology, 6, 360–371.

Lainson, R. (1960). The transmission of Lankesterella(= Atoxoplasma) in birds by the mite Dermanyssusgallinae. Journal of Protozoology, 7, 321–322.

Lainson, R., & Shaw, J. J. (1989). Two new species of

Eimeria and three new species of Isospora (Apicom-

plexa, Eimeriidae) from Brazilian mammals and birds.

Bulletin du Museum National d’Histoire Naturelle, 11,

349–365.

Lainson, R. (1994). Observations on some avian coccidia

(Apicomplexa: Eimeriidae) in Amazonian Brazil. Memo-rias do Instituto Oswaldo Cruz, 89, 303–311.

Leuckart, R. (1879). Die Parasiten des Menschen und die vonihnen herruherenden Krankheiten. Leipzig: Winter,

1000 pp.

Levine, N. D., & Mohan, R. N. (1960). Isospora sp. (Protozoa:

Eimeriidae) from cattle and its relationship to I. lacazeiof the English sparrow. Journal of Parasitology, 46,

733–741.

Levine, N. D., Van Riper, S., & Van Riper, C. (1980). Five new

species of Isospora from Hawaiian Birds. Journal ofProtozoology, 27, 258–259.

Levine, N. D. (1982a). Isospora passeris n. sp. from the house

sparrow Passer domesticus, I. lacazei, and related api-

complexan protozoa. Transactions of the AmericanMicroscopical Society, 101, 66–74.

Levine, N. D. (1982b). Isospora vanriperorum n. nom. for I.cardinalis Levine, Van Riper & Van Riper, 1980, preoc-

cupied. Journal of Protozoology, 29, 653.

Levine, N. D. (1982c). The genus Atoxoplasma (Protozoa,

Apicomplexa). Journal of Parasitology, 68, 719–723.

Levine, N. D. (1985). Veterinary protozoology. Ames: Iowa

State University Press, 414 pp.

Lindemann, K. (1865). Weiteres uber Gregarinen. Bulletin dela Societe Imperiale de Naturalistes, 3, 381.

Lopes, B., do, B., Berto, B. P., Massad, F., & Lopes, C. W. G.

(2007). Isospora vanriperorum Levine, 1982 (Apicom-

plexa: Eimeriidae) in the green-winged saltator, Saltatorsimilis (Passeriformes: Cardinalinae) in southeastern

Brazil. Revista Brasileira de Parasitologia Veterinaria,16, 211–214.

Lopez, G., Figuerola, J., & Soriguer, R. (2007). Time of day,

age and feeding habits influence coccidian oocyst shed-

ding in wild passerines. International Journal for Para-sitology, 37, 559–564.

Mandal, A. K. (1965). Studies on some aspects of avian coc-

cidia (Protozoa: Sporozoa). 6. The occurence of Isosporasp. in goats with redescription of Isospora lacazei (Labbe,

1893) from some common Indian birds. Journal of theAssam Scientific Society, 8, 71–75.

Mandal, A. K., & Bhattacharya, A. (1969). A biometrical study

of the oocysts of Isospora lacazei (Labbe), a common

parasite of the house-sparrow, Passer domesticus L.

Progress in Protozoology, 3, 341–342.

Marquardt, W. C. (1981). Host and site specificity in the

coccidia: a perspective. Journal of Protozoology, 28,

243–244.

Martinaud, G., Billaudelle, M., & Moreau, J. (2009). Circadian

variation in shedding of the oocysts of Isospora turdi(Apicomplexa) in blackbirds (Turdus merula): An adap-

tative trait against desiccation and ultraviolet radiation.

International Journal for Parasitology, 39, 735–739.

McQuistion, T. E. (1990). Isospora daphnensis n. sp. (Api-

complexa: Eimeriidae) from the medium ground finch

(Geospiza fortis) from the Galapagos Island. Journal ofParasitology, 76, 30–32.

McQuistion, T. E. (2000). The prevalence of coccidian para-

sites in passerine birds from South Africa. Transactions ofthe Illinois State Academy of Science, 93(2), 221–227.

McQuistion, T. E., & Capparella, A. (1992a). Isospora sag-ittulae, a new coccidian parasite (Apicomplexa: Eimerii-

dae) from the spotted antbird (Hylophylax naevioides).

Transactions of the American Microscopical Society, 111,

365–368.

McQuistion, T. E., & Capparella, A. (1992b). Two new coc-

cidian parasites from the slate-colored grosbeak (Pitylusgrossus) of South America. Journal of Parasitology, 78,

805–807.

McQuistion, T. E., & Capparella, A. (1994). Two new species

of Isospora (Apicomplexa: Eimeriidae) from ovenbirds

(Passeriformes: Furnariidae) of South America. Transac-tions of the American Microscopical Society, 113, 90–95.

McQuistion, T. E., & Capparella, A. (1995). Two new isosp-

oran parasites (Apicomplexa: Eimeriidae) from the South

American woodcreeper Dendrocolaptes certhia. ActaProtozoologica, 34, 299–302.

McQuistion, T. E., & Capparella, A. (1997). Isospora ubique: a

new coccidian parasite from the wedge-billed woodcree-

per (Glyphorynchus spirurus) from South America. ActaProtozoologica, 36, 75–78.

McQuistion, T. E., & Holmes, B. B. (1988). Isospora robini sp.

n., a new coccidian parasite (Apicomplexa: Eimeriidae)

from the American robin (Turdus migratorius). Proceed-ings of the Helminthological Society of Washington, 55,

324–325.

McQuistion, T. E., & Wilson, M. (1988). Four new species of

Isospora from the small tree finch (Camarhynchus parv-ulus) from the Galapagos Island. Journal of Parasitology,35, 98–99.

McQuistion, T. E., & Wilson, M. (1989). Isospora geospizae, a

new coccidian parasite (Apicomplexa: Eimeriidae) from

the small ground finch (Geospiza fuliginosa) and the

medium ground finch (Geospiza fortis) from the Galapa-

gos Island. Systematic Parasitology, 14, 141–144.

McQuistion, T. E., Barber, C. Y., & Capparella, A. P. (1999).

Isospora automoli, a new coccidian parasite (Apicom-

plexa: Eimeriidae) from the buff-throated foliage-gleaner

Automolus ochrolaemus and the olive-backed foliage

gleaner A. infuscatus from South America. SystematicParasitology, 44, 71–73.

McQuistion, T. E., Galewsky, S., Capparella, A. P., & Rebling,

F. (2010). Isospora dendrocinclae n. sp. (Apicomplexa:

Eimeriidae) from the whitechinned woodcreeper (Den-drocincla merula) from South America. Acta Protozoo-logica, 49, 121–124.

202 Syst Parasitol (2011) 80:159–204

123

Page 45: Coccidia de Passeriformes da América

McQuistion, T. E., McAllister, C. T., & Buice, R. E. (1996). A

new species of Isospora (Apicomplexa) from captive

Pekin robins, Leiothrix lutea (Passeriformes: Sylviidae),

from the Dallas Zoo. Acta Protozoologica, 35, 73–75.

McQuistion, T. E., Walden, K. K. O., & Capparella, A. P.

(1997). Two new species of Isospora (Apicomplexa:

Eimeriidae) from the ocellated woodcreeper, Xiphorhyn-chus ocellatus (Passeriformes: Dendrocolaptidae). Archivfur Protistenkunde, 147, 401–404.

Metzelaars, H., Spaargaren, T., McQuistion, T. E., & Cappa-

rella, A. P. (2005). Isospora iridosornisi, a new coccidian

parasite (Apicomplexa, Eimeriidae) from the yellow-

throated tanager, Iridosornis analis of South America.

Acta Parasitologica, 50, 191–193.

Milde, K. (1979). Light and electron microscopic studies

on isosporan parasites (Sporozoa) in sparrows (Passerdomesticus L). Protistologica, 15, 607–627.

Misof, K. (2004). Diurnal cycle of Isospora spp. oocyst shed-

ding in Eurasian blackbirds (Turdus merula). CanadianJournal of Zoology, 82, 764–768.

Novilla, M. N., Carpenter, J. W., Spraker, T. R., & Jeffers, T.

K. (1981). Parental development of eimerian coccidia in

sandhill and whopping cranes. Journal of Protozoology,28, 248–255.

Norton, C. C., & Joyner, L. P. (1981). Eimeria acervulina and

E. mivati: oocysts, life-cycle and ability to develop in the

chicken embryo. Parasitology, 83, 269–279.

Olson, V. A., Gissing, G. J., Barta, J. R., & Middleton, A. L. A.

(1998). A new Isospora sp. from Carduelis tristis (Aves:

Fringillidae) from Ontario, Canada. Journal of Parasi-tology, 84, 153–156.

Pellerdy, L. (1967). Three new coccidia parasitic in Cuban

birds (Protozoa: Sporozoa). Acta Zoologica AcademiaeScientiarum Hungaricae, 13, 227–230.

Pereira, L. Q., Berto, B. P., Flausino, W., Lovato, M., &

Lopes, C. W. G. (2011). Isospora bocamontensis n. sp.

(Apicomplexa: Eimeriidae) from the yellow cardinal

Gubernatrix cristata (Vieillot) (Passeriformes: Ember-

izidae) in South America. Systematic Parasitology, 78,

73–80.

Prum, R. O. (1990). Phylogenetic analysis of the evolution of

display behavior in the Neotropical manakins (Aves: Pi-

pridae). Ethology, 48, 202–231.

Rivolta, S. (1869). Psorospermi i psorospermosi negli animali

domestici. Il Medico Veterinario, 4, 3.

Rivolta, S. (1873). Dei parassiti vegetali, come introduzionealto studio delle malattie parassitarie e delta alterazionidell’ alimento degli animali domestici. Torino: G. Speirani

f figli, 529 pp.

Rivolta, S. (1878). Della gregarinosi dei polli e dell’ ordina-

mento delle gregarine e dei psorospermi degli animali

domestici. Giornale di Anatomie Fisiol et PatologiaAnimali Pisa, 10, 220.

Rivolta, S., & Delprato, P. (1881). L’ornitoiatria o la medicinadegli ucelli domestici e semidomestici. Pisa: Luigi Lom-

bardini, 515 pp.

Rivolta, S., & Silvestrini, A. (1873). Psorospermi epizootica

nei Gallinacei. Giornale di Anatomie Fisiol et PatologiaAnimali Pisa, 5, 42.

Rossi, G., Perrucci, S., & Macchioni, G. (1996). Isospora atrata(Apicomplexa, Eimeriidae): a new coccidium isolated

from Carduelis atrata (Passeriformes, Fringillidae).

Journal of Eukaryotic Microbiology, 43, 489–491.

Rysavy, B. (1954). Prispevek k poznani kokcidii nasich i

dovezenych obratlovcu. Ceskoslovenska Parasitologie, 1,

131–174.

Schneider, A. (1875). Note sur la psorospermies oviformes du

poulpe. Archives de Zoologie Experimentale et Generale.,9, 387–404.

Schneider, A. (1881). Sur les psorospermies oviformes ou

coccidies. Especes nouvelles ou peu connues. Archives deZoologie Experimentale et Generale, 9, 387–404.

Scholtyseck, E. (1954). Untersuchungen uber die bei einhei-

mischen vogelarten vorkommenden Coccidien der Gat-

tung Isospora. Archiv fur Protistenkunde, 100, 91–112.

Schrenzel, M. D., Maalouf, G. A., Gaffney, P. M., Tokarz, D.,

Keener, L. L., McClure, D., Griffey, S., McAloose, D., &

Rideout, B. A. (2005). Molecular characterization of

isosporoid coccidia (Isospora and Atoxoplasma spp.) in

passerine birds. Journal of Parasitology, 91, 635–647.

Sick, H. (1997). Ornitologia Brasileira. Rio de Janeiro: Nova

Fronteira, 862 pp.

Silva, E., Literak, I., & Koudela, B. (2006). Three new species

of Isospora Schneider, 1881 (Apicomplexa: Eimeriidae)

from the lesser seed-finch, Oryzoborus angolensis (Pass-

eriformes: Emberizidae) from Brazil. Memorias do Insti-tuto Oswaldo Cruz, 101, 573–576.

Stabler, R. M., & Kitzmiller, N. J. (1972). Isospora petroche-lidon sp. n. (Protozoa: Eimeriidae) from the cliff swallow,

Petrochelidon pyrrhonota. Journal of Protozoology, 19,

248–251.

Templar, A. C., McQuistion, T. E., & Capparella, A. P. (2004).

A new coccidian parasite, Isospora andesensis, from the

common bush tanager Chlorospingus ophthalmicus of

South America. Acta Protozoologica, 43, 369–371.

Tenter, A. M., Bartab, J. R., Beveridge, I., Duszynski, D. W.,

Mehlhorn, H., Morrison, D. A.,Thompson R. C. A., &

Conradh, P. A. (2002). The conceptual basis for a new

classification of the coccidia. International Journal forParasitology, 32, 595–616.

Tung, K. C., Liu, J. S., Cheng, F. P., Yang, C. H., Tu, W. C.,

Wang, K. S., Shyu, C. L., Lai, C. H., Chou, C. C., & Lee,

W. M. (2007). Study on the species-specificity of Isosporamichaelbakeri by experimental infection. Acta Veterina-ria Hungarica, 55, 77–85.

Tyzzer, E. E. (1929). Coccidiosis in gallinaceous birds.

American Journal of Hygiene, 10, 269–383.

Tyzzer, E. E., Theiler, H., & Jones, E. E. (1932). Coccidiosis in

gallinaceous birds. II. A comparative study of species of

Eimeria of the chicken. American Journal of Hygiene, 15,

319–393.

Upton, S. J., & Whitaker, B. (2000). New species of Isospora(Apicomplexa, Eimeriidae) from the troupial and white-

edged oriole (Icterus spp.) (Aves, Passeriformes, Icteridae).

Acta Parasitologica, 45, 67–70.

Upton, S. J., Current, W., & Clubb, S. (1985). Two new species

of Isospora (Apicomplexa: Eimeriidae) from passeriform

birds of South America. Systematic Parasitology, 7,

227–229.

Upton, S. J., Erst, J. V., Clubb, S. L., & Current, W. L. (1984).

Eimeria forresteri n. sp. (Apicomplexa: Eimeriidae) from

Ramphastos toco and a redescription of Isospora graculai

Syst Parasitol (2011) 80:159–204 203

123

Page 46: Coccidia de Passeriformes da América

from Gracula religiosa. Systematic Parasitology, 6,

237–240.

Upton, S. J., Langen, T. A., & Wright, T. F. (1995a). A new

species of Isospora Schneider, 1881 (Apicomplexa:

Eimeriidae) from the white-throated magpie jay Calocittaformosa (Passeriformes: Corvidae) from Costa Rica.

Systematic Parasitology, 31, 195–199.

Upton, S. J., Marchiondo, A. A., & Williams, R. N. (1988).

New species of Isospora (Apicomplexa: Eimeriidae) from

passeriform birds of Hawaii. Systematic Parasitology, 12,

81–85.

Upton, S. J., Stamper, M. A., & Whitaker, B. R. (1995b).

Isospora bellicosa sp. n. (Apicomplexa) from a Peruvian

red-breasted meadowlark, Sturnella bellicosa (Passeri-

formes: Icteridae). Archiv fur Protistenkunde, 145,

132–134.

Upton, S. J., Wilson, S. C., Norton, T. M., & Greiner, E. C.

(2001). A new species of Isospora Schneider, 1881

(Apicomplexa: Eimeriidae) from the Bali (Rothschild’s)

mynah Leucopsar rothschildi (Passeriformes: Sturnidae),

and comments concerning the genera AtoxoplasmaGarnham, 1950 and Isospora. Systematic Parasitology,48, 47–53.

Varghese, T. (1977). Eimeria paradisaeai sp. n. and Isosporaraggianai sp. n. from the Raggiana birds of paradise

(Paradisaea raggiana sclater) from Papua New Guinea.

Journal of Parasitology, 63, 887–889.

Wenyon, C. M. (1926). Protozoology. New York: William,

Wood and Company, 1396 pp.

Wobester, G. A., & Cawthorn, R. J. (1985). Exogenous and

endogenous stages of Isospora brachyrhynchi sp. n.

(Protozoa: Eimeriidae) from the American crow Corvusbrachyrhynchos Brehm. Canadian Journal of Zoology,63, 2639–2645.

Yakimoff, W. L., & Gousseff, W. F. (1938). Eimeria balozetin. sp., coccidie nouvelle de Sturnus vulgaris. Archives del’Institut Pasteur de Tunis, 27, 282–283.

204 Syst Parasitol (2011) 80:159–204

123