74
CMX Sectional Controls Application Guide 536 Revised 3/95 Vickers ® Directional Controls

CMX 100 Applic

Embed Size (px)

DESCRIPTION

control valve

Citation preview

  • CMX Sectional ControlsApplication Guide

    536Revised 3/95

    VickersDirectional Controls

  • Third generation closed center load sensing is here...today

    !

    "

    ###

    $%

    &

    '

    (

    !

    )

    !

    )

    *$

    )

    )

    )+

    $

    $

    ,

    -#

    .+

    /$!

    $0

    *

    $#$

    0

    )

    Additional assistance with your CMX valve requirements is as nearas your local Vickers distributor.With Vickers EZSpec CMXProgram, which incorporates theuse of pre-engineered components,he can quickly design, price,assemble, test, and ship valvebanks that satisfy the requirementsof most applications.

    1

    1

  • 2

    3

    4

    56 4

    +. 7

    8 7

    # 9

    5# 9

    ,

    # :4

    ,

    :9

    5 ;

    ==

    # =?

    +# =?

    ## =7

    =9

    - ?;

    ?:

    ! ?2

    "# ?3

  • 3General DescriptionThe CMX sectional valve is a stackable, load sensing, proportionaldirectional control valve, and can beoperated by hydraulic remote control(HRC) or electronic remote control(ERC) via integral electrohydraulicreducing valves.

    A characteristic feature of the CMXvalve line is the concept of separatemeter-in and meter-out elements (Figure 1). The meter-in element is apilot operated, flow force, pressurecompensated, proportional sliding spooland controls fluid from the pump to theactuator. The meter-out elements arepilot controlled metering poppets, andcontrol exhaust fluid from the actuator totank. Each meter-out poppet functionsas a variable orifice between one of theactuators ports and the tank port, withthe degree of opening proportional tothe pilot signal.

    5:"

    / "

    ,

    # #

    #

    The separation of the meter-in andmeter-out elements, plus the valvesmodular design, permits a broad rangeof control options to meet a variety ofload requirements. This is especiallydesirable for a stackable mobile valve,where a single valve bank must handlemany different functions.

    The CMX sectional valve family consistsof two basic series with different flowratings the CMX100 and the CMX160.These valves are functionally identical,with most differences being due to thedifferences in their physical size.

    A CMX valve bank is made up of aninlet body, from one to eight valvesections, and an end cover (Figure 2).The valve sections are connectedinternally to common pressure, tank,load sense, pilot supply and pilot drainpassages. Face seals between thesections seal the connecting passages,and the sections are held together by tierods and nuts. Threaded mounting boltholes are provided on the inlet body andend cover.

    The pump, tank, load sense andelectrohydraulic pilot supply passagesare terminated in the inlet body, and thepilot drain is terminated in the end cover.Connections for the actuator and theHRC are made at each section.Electrical connections for electro-hydraulic valves are made at each coil.HRC and ERC controlled valves can beused in the same valve bank.

    Figure 2

  • 4Operating Valve SectionThe CMX valve section consists of threebasic parts: the main valve body, whichcontains the main flow passages andmain control elements, and two controlcaps that contain the pilot circuitry. Theone-piece control cap gaskets (Figure3), which provide a seal between thecontrol caps and the main valve body,are also part of the pilot circuit, providinga passage from the meter-in springchamber to the relief valve pilot stageand the meter-out servo. This formatallows for a wide variety of controloptions from relatively few basic parts;thus the valve can be tailored to theapplication at minimal extra cost. It alsomakes the valve quick and easy to finetune for a specific application.

    Flow Path/ActuationHydraulically Actuated(Refer to following page.)When pilot pressure is applied to Port

    C1, pump flow is to Port B.When pilot pressure is applied to Port

    C2, pump flow is to Port A.

    Electrohydraulically Actuated (Click here for illustrations.)When Solenoid A is energized, pump

    flow is to Port A.When Solenoid B is energized, pump

    flow is to Port B.

    Figure 3

    Control Cap GasketPilot relief valve (electrohydraulic models)

    Meter-out servo

    Drain Pilot relief valve (hydraulic models)

    Restriction (orifice)Pilot supply passage(electrohydraulic models)

    Electrohydraulic pilot spool

    Meter-in spring chamber

  • =Operating Valve SectionCutaway views of the hydraulic andelectrohydraulic versions of the CMXare shown in Figures 4 and 5, along

    with schematic diagrams. The reliefvalve pilot stages are shown in detail inthe schematic diagrams used in this

    discussion to promote a betterunderstanding of the valves operation.

    Actuator Port A Actuator Port BMeter-outPoppet

    LoadSensingCheckValves

    PilotPressurePort C1

    Meter-inSpool

    Meter-inChambers

    Return Port

    ControlCap

    Load DropCheck

    PilotRelief

    PilotPressurePort C2

    GasketVent ValveInlet Port

    Hydraulic Valve Section

    C1

    DR T LS P DR

    C2

    AB

    Figure 4

  • ?B Solenoid

    Electrohydraulic Valve Section

    PLST

    BA

    PSDR PS DR

    Load SensingCheck Valves

    Vent Meter-inSpool

    Meter-in Chambers

    Valve InletPort

    Gasket

    Pilot SupplyPassages

    A Solenoid

    Pilot Relief(As shown inFigure 4,precedingpage.)

    Load Drop Check

    Actuator Port B

    Actuator Port A

    Return PortMeter-out Poppet

    Electro-hydraulicReducingValveSpool

    Figure 5

    Adjustable Relief (optional)

    Sol. ASol. B

  • 7Operating Valve SectionThe main valve body is available as anarrow body with an actuator portpressure rating of 290 bar (4200 psi)and an inlet port pressure rating 250 bar(3625 psi), or as a wide body with anactuator port pressure rating of 380 bar(5510 psi) and an inlet port pressurerating of 350 bar (5075 psi). Valvesections with different pressure ratingscan be used in the same valve bank.Valve section sizes and ratings areshown below.

    Click here for port and mounting hole sizes.

    Valve Section SizesCMX100-S2 (narrow body and290 bar (4200 psi) rating)Hydraulic Actuation -Dimensions: 201 mm (7.9 in) long x 47,0 mm (1.85 in) wide x 149 mm (5.87 in) high.Weight: 7,3 kg (16.2 lbs)

    Electrohydraulic Actuation -Dimensions: 366 mm (14.4 in) long x 47,0 mm (1.85 in) wide x 149 mm (5.87 in) high.Weight: 9,0 kg (19.8 lbs)

    CMX100-F2 (wide body and380 bar (5510 psi) rating)Hydraulic Actuation -Dimensions: 201 mm (7.9 in) long x 59,0 mm (2.32 in) wide x 144 mm (5.67 in) high.Weight: 8,7 kg (19.2 lbs)

    Electrohydraulic Actuation -Dimensions: 366 mm (14.4 in) long x 59,0 mm (2.32 in) wide x 144 mm (5.67 in) high.Weight: 10,4 kg (22.8 lbs)CMX160-S2 (narrow body and290 bar (4200 psi) rating)Hydraulic Actuation -Dimensions: 243 mm (9.6 in) long x 51,0 mm (2.01 in) wide x 172 mm (6.77 in) high.Weight: 10,2 kg (22.5 lbs)

    Electrohydraulic Actuation -Dimensions: 386 mm (15.2 in) long x 51,0 mm (2.01 in) wide x 172 mm (6.77 in) high.Weight: 11,8 kg (26.1 lbs)

    CMX160-F2 (wide body and380 bar (5510 psi) rating)Hydraulic Actuation -Dimensions: 243 mm (9.6 in) long x 75,0 mm (2.95 in) wide x 165 mm (6.50 in) high.Weight: 13,4 kg (29.6 lbs)

    Electrohydraulic Actuation -Dimensions: 386 mm (15.2 in) long x 75,0 mm (2.95 in) wide x 165 mm (6.50 in) high.Weight: 15,1 kg (33.2 lbs)

    Notes: Dimensions and weights for G and Wsections are identical to F sections.

    Click here for port dimensions. Click here for valve bank dimensions.

    $

    $%&

    '#()#*

    +

    %

    $

    (*

    ,

    $

    (*

    -"$(*

    :;;156@6A :;;B=C ?? 24;B4;?4C 27;B44:;C 24B4;7C

    :;;1+ :;;B=C 44 4;B2=4C 9;B3;;C 24B4;7C

    :=;156@6A :=;B3C :3 24;B4;?4C 27;B44:;C 24B4;7C

    :=;1+ :=;B3C 79 4;B2=4C 9;B3;;C 24B4;7C

    * At 14 bar (200 psi) load-sensing pressure drop.

  • 9The operating elements in the CMXsectional valve can be divided into fivefunctional groups: meter-in, meter-out,load drop check valves, load sensecheck valves and relief valve pilotstages. The electrohydraulic versionincludes additional solenoid operatedproportional reducing valves to provide pilot control pressure. Eachfunctional group is described in thefollowing pages.

    Meter-in elementThe meter-in element ports fluid fromthe valve inlet port to the A or Bmeter-in chamber. The meter-in elementis a pilot operated, spring centered,proportional sliding spool. The inlet portis closed in neutral. Two differentsprings are available to provide differentmeter-in cracking pressures (the pilotpressure required to begin flow from theinlet to an actuator port). The area gain(or slope of the metering curve) is thesame for both springs. The meter-inelement is available as a flow controltype (S*0**) or a pressure control type(S***).Low flow spool options are available forboth the flow control meter-in element(L*0**) and the pressure control meter-inelement (L***). The low flow optionprovides finer metering and lower flowcapability than the standard S*** spoolfor functions where the full flowcapability of the valve is not desired.Low flow spools are available for theCMX100 only.

    Flow control meter-in elementsS*0 and L*0

    The flow control element (shown on thefollowing page) provides nearly constantflow for a given command signal,independent of pressure drop across themeter-in spool and independent of loadpressure. Flow is proportional tocommand pilot pressure differential.Pressure compensation, which isachieved by utilizing flow forces,minimizes load interaction caused bythe simultaneous operation of more thanone function.

    $

    0

    )

    In the standard vented spool, fluidpasses through an orifice to the centerof the spool to the pilot pressure ports,where it is drained to tank via the HRC (hydraulic pilot models) or thereducing valve (electrohydraulicmodels). Ball check valves preventreverse flow through the vent when pilotpressure is applied to spools.

    #5

    ,

    :;;#

    ,

    :;;

  • :;

    Operating Valve Section

    Command Port C1

    Figure 6

    PLST

    BA

    PSDR PS DR

    PLST

    BA

    PSDR PS DR

    Meter-in Spool Inlet

    Spring Meter-in ChambersVent

    Ball Check

    Standard (SD) Model

    Non-vented (SN) Model

    CommandPort C2

    Meter-inElement

    Check ValvesFor VentedMeter-in Spool

    C1 C2

    C1 C2

    Pilot Supply Thru Holes

  • ::

    5?

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    300

    250

    200

    150

    100

    50

    0

    CMX160 S*O**CMX100 S*O**CMX100 L*O**

    06 SPRING

    12 SPRING

    0 100 200 300 400

    0 5 10 15 20 25 30

    2000 400 600 800 1000 1200 1400

    0 100 200 300 400 500 600 700

    Command Pressure, bar

    CommandCurrrent,

    mA

    (12V coil)

    (24V coil)

    psi

    gpm

    lpm

    CMX Meter-In Flow vs. Commandat 20 bar P-LS Pressure Differential

  • :

    Operating Valve Section

    CMX100 Meter-In Pressure CompensationModel S006 Meter-in Element

    Pressure Drop (PLS), bar

    gpm

    lpm

    200

    150

    100

    50

    0

    50

    40

    30

    20

    10

    00 50 100 150 200 250 300 350

    0 1000 2000 3000 4000 5000psi

    22 bar (319 psi)20 bar (290 psi)18 bar (261 psi)

    16 bar (232 psi)14 bar (203 psi)12 bar (174 psi)10 bar (145 psi)

    8 bar (116 psi)

    Pressure Drop (PLS), bar

    gpm

    lpm

    200

    150

    100

    50

    0

    50

    40

    30

    20

    10

    00 50 100 150 200 250 300 350

    0 1000 2000 3000 4000 5000psi

    Command Pressure28 bar (406 psi)

    26 bar (377 psi)24 bar (348 psi)22 bar (319 psi)20 bar (290 psi)18 bar (261 psi)

    16 bar (232 psi)

    14 bar (203 psi)

    Figure 8a

    Figure 8b

    CMX100 Meter-In Pressure CompensationModel S012 Meter-in Element

    Command Pressure

  • :2

    Operating Valve Section

    Figure 8c

    200

    150

    100

    50

    0

    50

    40

    30

    20

    10

    0

    Command Pressure

    20 bar (290 psi)

    10 bar (145 psi)

    0 50 100 150 200 250 300 350

    0 1000 2000 3000 4000 5000

    CMX100 Low Flow M-I Pressure CompensationModel L006 Meter-in Element

    psi

    Pressure Drop (P-LS), bar

    lpm

    gpm

  • :3

    Operating Valve Section

    59

    CMX160 Meter-In Pressure Compensation(Flow Force Compensation)Model S006 Meter-in Element

    CMX160 Meter-In Pressure Compensation(Flow Force Compensation)Model S012 Meter-in Element

    59

    0 1000 2000 3000 4000 5000

    0 50 100 150 200 250 300 350Pressure Drop (PLS), bar

    gpm

    lpm

    100

    80

    60

    40

    0

    100

    200

    300

    400

    psi

    0 1000 2000 3000 4000 5000

    0 50 100 150 200 250 300 350Pressure Drop (PLS), bar

    Command Pressuregpm

    lpm

    100

    80

    60

    40

    20

    00

    100

    200

    300

    400

    20 bar (290 psi)

    psi

    16 bar (232 psi)

    26 bar (377 psi)

    12 bar (174 psi)

    Command Pressure

    18 bar (261 psi)16 bar (232 psi)14 bar (203 psi)12 bar (174 psi)

    2010 bar (145 psi)

    08 bar (116 psi)

    20 bar (290 psi)

    24 bar (348 psi)

    22 bar (319 psi)

  • :4

    Operating Valve Section

    Pressure control meter-inelement S****This element (Figure 10) is similar to theflow control element, except thepressure control spool has a feedbackpiston on each end. The meter-inchamber pressure acts on the area ofthe piston and opposes the pilotpressure opening the spool. The result is that, for a given input signal(pilot pressure), the flow decreases asthe load pressure increases until themaximum pressure is reached at zero flow. By changing the input signal, the maximum load pressure canbe changed.

    For a constant load pressure, changingthe input signal will change the velocityof the load. This feature provides the operator with a good feel for the

    system by responding to changes inload pressure. For example, whendriving a load at a given speed, if anobstacle is encountered, the load willslow or even stop. This response,which is typical of traditional open centerbypass control valves, gives theoperator better control of the system.

    The pressure control spool alsoincreases the system damping ratio,which affects system stability andresponse. By selecting the appropriatefeedback piston size (diameter), thesystem damping ratio can be tailored tothe application.

    (Click here for feedback pistondiameters in the model code.)The larger the feedback piston, thegreater the increase in the damping ratiodue to the pressure control spool.

    The pressure-flow relationship is shownin the Q-P diagrams on the followingthree pages. The slope of theconstant-pilot-pressure lines isdependent on feedback piston diameter.The flow is independent of loadpressure at zero load pressure, so aconstant pilot pressure line will interceptthe Q axis at the same point, regardlessof its slope.

    The meter-in chambers are drained byan orifice to the pilot pressure ports in amanner similar to the S*0** flow control spool.

    $

    Command portC1

    SpringFeedback piston

    VentMeterinspool

    Command portC2

    Meterin chambers

    Inlet

    C1 C2

    P

    Figure 10

  • :=

    Operating Valve Section

    5::

    5::

    CMX100 Meter-In Pressure Control SpoolPressure vs. FlowModel S206 Meter-in Element

    CMX100 Meter-In Pressure Control SpoolPressure vs. FlowModel S406 Meter-in Element

    CommandPressure

    22 bar(319 psi)

    350

    300

    250

    200

    150

    100

    50

    0

    5

    4

    3

    2

    1

    0

    kpsi

    bar

    Flow, lpm0

    0 10 20 30 40

    50 100 150

    Command Pressure

    24 bar(348 psi)

    20 bar(290 psi)

    16 bar (232 psi)

    12 bar (174 psi)8 bar

    (116 psi)

    350

    300

    250

    200

    150

    100

    50

    0

    bar

    Flow, lpm0

    0 10 20 30 40

    50 100 150

    28 bar(408 psi)

    32 bar(464 psi)

    34 bar(MAX.)

    gpm

    gpm

    20 bar(290 psi)

    18 bar(261 psi)

    16 bar(232 psi)

    12 bar(174 psi)

    8 bar(116 psi)

    5

    4

    3

    2

    1

    0

    kpsi

  • :?

    Operating Valve Section

    5:

    CMX160 Meter-In Pressure Control SpoolPressure vs. FlowModel S206 Meter-in Element

    CMX160 Meter-In Pressure Control SpoolPressure vs. FlowModel S406 Meter-in Element

    gpm

    Flow, lpm

    350

    300

    250

    200

    150

    100

    50

    0

    bar

    Flow, lpm0 50 100 150

    gpm0 10 20 30 40 50 60

    32 bar(464 psi)

    28 bar(406 psi)

    24 bar(348 psi)

    20 bar(290 psi)

    16 bar(232 psi)

    12 bar(174 psi)

    8 bar(116 psi)

    200 250

    5

    4

    3

    2

    1

    0

    kpsi

    Command Pressure

    5:

    350

    300

    250

    200

    150

    100

    50

    0

    bar

    0 50 100 150

    0 10 20 30 40 50 60

    200 250

    5

    4

    3

    2

    1

    0

    kpsi

    20 bar(290 psi)

    16 bar(232 psi)

    12 bar(174 psi)

    8 bar(116 psi)

    22 bar(319 psi)

    Command Pressure

  • :7

    Operating Valve Section

    CMX160 Meter-In Pressure Control ElementPressure vs. FlowModel S506 meter-in element

    bar

    gpm

    5

    4

    3

    2

    1

    0

    350

    300

    250

    200

    150

    100

    50

    00 50 100 150 200 250

    Flow, lpm

    kpsi

    12 bar(174 psi)

    20 bar(290 psi)

    24 bar(348 psi)

    28 bar(406 psi)

    28 bar(406 psi)

    34 bar(Max.)

    Command Pressure

    Figure 12c

    0 10 20 30 40 50 60

    16 bar(232 psi)

    8 bar(116 psi)

  • :9

    Operating Valve Section

    S*** spool pressurecompensationThe pressure control spool is pressurecompensated by flow forces to provide

    constant flow independent of supplypressure, to minimize functioninterference. Since the spool doesrespond to load pressure and thepressure compensation curve is not

    perfectly flat, changes in load pressurewill cause slight changes in the pressureflow relationship, as shown below(Figure 13).

    Pressure Drop (PLS), bar

    5:2

    CMX100 Meter-In Pressure CompensationModel S406 meter-in element

    CMX100 Meter-In Pressure Control SpoolModel S406 meter-in element

    (40 bar PLS diff.)

    (200 bar PLS diff.)

    (20 bar PLS diff.)gpm

    lpm

    200

    150

    100

    50

    0

    50

    45

    40

    35

    30

    25

    20

    15

    10

    5

    0

    0 1000 2000 3000 4000 5000

    0 50 100 150 200 250 300 350

    psi

    350

    300

    250

    200

    150

    100

    50

    0

    5

    4

    3

    2

    1

    0

    0

    0 50 100 150

    10 20 30 40

    Command Pressure20 bar(290 psi)

    gpm

    Flow, lpm

    bar

    kpsi

    Command Pressure20 bar(290 psi)

    (200 bar PLS diff.)

    (20 bar PLS diff.)

    (40 bar PLS diff.)

  • ;

    Operating Valve Section

    Flow limitation orificeFlow to a work function can be limitedby the installation of a restricting orificein the pump supply port of the valvesection. Since the orifice will restrict flow

    to all sections downstream, its use isnormally limited to the last valve in abank. The orifice is only effective if thelimited flow function is the highestpressure function for the pump. Theorifice reduces the pressure drop across

    the meter-in element, while the pumpmaintains a constant pressuredifferential between pressure and loadsensing. The flow limitation orifice isavailable as a special order only.

    5:3

    CMX160 Meter-In Pressure Control Element5.5 Dia. Flow Limitation OrificeModel S506 Meter-in Element

    350

    300

    250

    200

    150

    100

    50

    0

    5

    4

    3

    2

    1

    00

    0 5 10 15

    5 10 15 20 25 30 35 40 45 50 55 60 65 70

    28 bar(406 psi)

    24 bar(348 psi)

    16 bar(232 psi)

    12 bar(174psi)

    Flow, lpmPLS Pressure Differential = 20 bar constant

    kpsi

    bar

    gpm

    Command Pressure

    8 bar(116 psi)

    20 bar(290 psi)

  • :

    Operating Valve Section

    Meter-In Flow LimitationOrifice Selection ChartMaximum Flow vs. Inlet Orifice Diameter

    5:3

    ,

    5

    5:3

    12

    11

    10

    9

    8

    7

    6

    5

    40 50 100 150 200 250

    0 10 20 30 40 50 60

    CMX100CMX160

    gpm

    in

    mm

    Maximum Flow, lpm

    10 bar15 bar

    20 bar25 bar

    .200

    .250

    .300

    .350

    .400

    .450

  • Operating Valve Section

    Load sensing check valves standard designThe -25 design CMX sectional valvesare equipped with load sense checkvalves (Figure 15) that are different fromthe load sense shuttle valves providedon earlier models. The function of theload sense check valves is to supply thehighest active load pressure to the loadsense passage, while isolating lowerpressure meter-in chambers from theload sense passage. The load dropcheck valves prevent the load pressure

    from overrunning loads or inactive(neutral) sections from reaching themeter-in chambers. When one or moreof the sections in a valve bank isenergized, the highest meter-in pressureis presented to the load sense port, which in turn controls the pump output pressure.

    The load sensing pumps supplied byVickers normally produce an outputpressure between 13.8 bar (200 psi)and 41.4 bar (600 psi) above the loadsense pressure. When all the sections

    are centered (or whenever the meter-inload sense signal decreases), all theload sense check valves close, trappingfluid in the load sense passage. Aprovision to vent this trapped fluid mustbe provided to allow the load sensesignal to decay and the pump outputpressure to return to standby. Valvebank end covers are available with aprovision to vent the load sense port to drain.

    Click here to see model code.

    5:4

    .

    ,

    $ $

    + ,

  • 2

    Operating Valve Section

    On systems which utilize the 0.5 mmbleed orifice, it is recommended foroptimum performance that the orifice belocated at the end of the valve bankopposite the pump connection. Onmultiple valve bank systems, the loadsense connections should be made inseries, with the orifice located as farfrom the pump as possible. Onmidinlet valve banks, the loadsense-to-pump connection should bemade at one end cover, and the bleedorifice located at the opposite end cover.The reasons for the aboverecommendations are as follows:

    Flow in the load sense passage to theload sense bleed orifice causes a

    pressure drop through each section.The cumulative effect of the pressuredrop through each section can besignificant, especially at higher loadsense pressures, higher fluid viscosities,and when many sections are present.The higher load sense pressures causea higher bleed flow rate, and higher fluidviscosities (such as cold oil) cause ahigher pressure drop. If the bleed flowis toward the pump load sense port(Figure 16b), the pressure dropsubtracts from the load sense signal.For example, assume a 200 bar (2900psi) load, and a pump load sense settingof 13.8 bar (200 psi). When the valve isenergized, the 200 bar is presented to

    the load sense passage. If flow to thebleed orifice causes a pressure loss of0.7 bar (10 psi) per section, and thereare eight sections between the valveand the pump, then the pump will sensea load sense signal of 194.4 bar (2820psi), and maintain an output pressure of194.4 + 13.8 = 208.2 bar, which is only 8.2 bar (119 psi) above the loadpressure. The result will be sloweroperation for that function. If the bleedflow is away from the pump load sense(Figure 16a), then the actual load sensepressure is supplied to the pump without flow induced pressurelosses, and consistent performance canbe achieved.

    /

    /

    '-8>->'E>E

    $/.,/$/$

    5%/

    5%/

    5%"

    5%"

    5:=

    5:=

    E

  • 3

    Operating Valve Section

    Load drop check valves standardThe load drop check valves (Figure 17)isolate the meterin spool and the loadsense check valves from the actuatorports. This feature makes it possible tomaintain very low cylinder port leakageindependent of meter-in spool-to-bore

    clearance. Therefore, meter-inspool-to-bore clearances are relativelylarge, minimizing hysteresis and makingmeter-in spools fully interchangeable.

    Bleed orificeCertain applications, such as brakerelease circuits and counterbalance

    circuits, require low actuator portpressure to be maintained in neutral.Load drop check valves with a bleedorifice are available to vent fluid trappedin the actuator ports to the meter-inchambers. This feature requires ameter-in element with drain orifices andis available as a special order only.

    .

    BA

    $ $

    Passage to actuator port ASpring

    Retainer

    Load drop check valve poppetMeterin chamber

    Bleed orifice(when reqd)

    5:?

    Load dropcheck valve

    Passage to actuator port B

    Meterin spool

    Load sensecheck valve

    Meterin chamber

  • 4

    Operating Valve Section

    5:7

    0 10 20 30 40 50 60 70 80

    0 50 100 150 200 250 300Flow, lpm

    250

    200

    150

    100

    50

    0

    15

    10

    5

    0

    bar

    psi

    d

    gpm

    CMX100

    CMX160

    CMX Sectional Valve Load Drop CheckFlow vs. Pressure Drop

  • =

    Operating Valve Section

    Meter-out elementsMeter-out control is achieved by using apilot poppet-stem along with amodulating meter-out poppet to form asimple hydromechanical bleed servo(Figure 19). Actuator port pressure actson the annular differential area betweenthe major outside diameter of themeter-out poppet and the meter-outpoppet skirt (or seat) diameter, andtends to push the meter-out poppetopen. The pressure in the springchamber acts on the full major O.D.area of the meter-out poppet, and tendsto close the meter-out poppet. Whenthe meter-out element is closed, thepressure in the spring chamber isequalized to actuator port pressure via a

    0.75 mm (.030 in.) orifice in themeter-out poppet. Since the pressure inthe spring chamber is only partiallyoffset by the actuator port pressureacting on the annular area, themeter-out poppet remains closedprovided tank pressure is below actuatorport pressure.

    To open the meter-out poppet, pilotpressure applied to the meter-in springchamber is transmitted by a passage inthe control cap gasket to the meter-outpiston. The force against the meteroutpiston moves the poppet-stem from itsseat and against the opposing spring,opening a passage from the meter-outspring chamber to the tank passage.Fluid then passes from the actuator port

    through the orifice in the meter-outpoppet to the spring chamber and thento tank. This flow develops a pressuredifferential across the orifice in themeter-out poppet, which subtracts fromthe actuator port pressure, reducing themeter-out spring chamber pressure.When the pressure in the meter-outspring chamber falls low enough, theactuator port pressure acting on theannular area will overcome themeter-out spring chamber pressure andopen the meter-out poppet, moving ittoward the poppet stem. This motion willtend to close the poppet-stem against itsseat, reducing the flow-inducedpressure drop across the orifice andincreasing the pressure in the meter-outspring chamber.

    PLST

    BA

    PSDR PS DR

    *,

    #

    /-+

    ,#

    Figure 19. The meter-out element is not pressure compensated,so interaction problems with the meter-in element are avoided.

    Meter-out element

  • ?

    Operating Valve Section

    The meter-out poppet will assume aposition where the poppet stem-to-seatrestriction is such that the reducedpressure in the meter-out springchamber balances the forces on themeter-out poppet. The net effect is thatthe meter-out poppet follows thepoppet-stem position. The movement ofthe poppet-stem is controlled only by thepilot signal and the spring it movesagainst. The position feedback gain ofthe meter-out poppet is high, so a smallchange in position of the meter-outpoppet away from the balanced-force

    position results in a large increase inforces acting to return the meter-outpoppet to the balanced-force position.These forces are high compared to flowforces, so the meter-out poppet will notclose prematurely due to flow forces.

    Several different meter-out poppets areavailable which provide different areagains. A high gain poppet (low P atrated flow) provides better control whenlowering a light load. A low gain poppet(high P at rated flow) provides bettercontrol when lowering heavy loads.

    Meter-out poppets are rated accordingto the actuator port to tank pressuredrop in bar across the poppet at thevalves rated flow with the poppet fullyopened. Performance data is shownbelow and on the following three pages.

    5;

    250

    200

    150

    100

    50

    0

    60

    50

    40

    30

    20

    10

    0

    0 20 40 60 80 200180160140120100

    0 2 4 6 8 10 12 14Command Pressure, bar

    gpm

    psi

    100 bar(1450 psi)

    20 bar(290 psi)

    10 bar(145 psi)

    CMX100 Meter-out Flow vs. CommandS03 (3 bar) Meter-out High Gain Poppet

    Pressure Drop (actuator port to tank)

    50 bar(725 psi)

    lpm

  • 7

    Operating Valve Section

    Figure 20c

    Figure 20b

    CMX100 Meter-out Flow vs. CommandS14 (14 bar) Meter-out Medium Gain Poppet

    CMX100 Meter-out Flow vs. CommandS90 (90 bar) Meter-out Low Gain Poppet

    250

    200

    150

    100

    50

    0

    60

    50

    40

    30

    20

    10

    0

    0 20 40 60 80 100 120 140 160 180 200

    0 2 4 6 8 10 12 14

    Pressure Drop (actuator port to tank) 200 bar(2900 psi)100 bar

    (1450 psi)

    50 bar(725 psi)

    20 bar(290 psi)

    10 bar(145 psi)

    gpm

    lpm

    Command Pressure, bar

    psi

    250

    200

    150

    100

    50

    0

    60

    50

    40

    30

    20

    10

    0

    0 20 40 60 80 100 120 140 160 180 200

    0 2 4 6 8 10 12 14Command Pressure, bar

    gpm

    lpm

    psi

    350 bar(5075 psi)

    200 bar(2900 psi)

    100 bar(1450 psi)

    50 bar(725 psi)

    Pressure Drop (actuator port to tank)

    20 bar(290 psi)

    10 bar(145 psi)

  • 9

    Operating Valve Section

    Figure 21b

    Figure 21a

    CMX160 Meter-out Flow vs. CommandS04 (4 bar) Meter-out High Gain Poppet

    CMX160 Meter-out Flow vs. CommandS07 (7 bar) Meter-out High Gain Poppet

    Command Pressure, bar

    Command Pressure, bar

    110

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    0 20 40 60 80 100 120 140 160 180 200psi

    110

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    gpm

    400

    300

    200

    100

    00 2 4 6 8 10 12 14

    Pressure Drop(actuator port to tank)

    100 bar(1450 psi)

    50 bar(725 psi) 20 bar(290 psi)

    10 bar(145 psi)lp

    m

    0 20 40 60 80 100 120 140 160 180 200psi

    gpm

    400

    300

    200

    100

    00 2 4 6 8 10 12 14

    Pressure Drop(actuator port to tank)

    200 bar(2900 psi)

    20 bar(290 psi)

    10 bar(145 psi)

    lpm

    50 bar(725 psi)

    100 bar(1450 psi)

  • 2;

    Operating Valve Section

    Command Pressure, bar

    5:

    5:

    CMX160 Meter-out Flow vs. CommandS14 (14 bar) Meter-out Medium Gain Poppet

    CMX160 Meter-out Flow vs. CommandS56 (56 bar) Meter-out Low Gain Poppet

    110

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    110

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    0 20 40 60 80 100 120 140 160 180 200psi

    gpm

    400

    300

    200

    100

    00 2 4 6 8 10 12 14

    Pressure Drop(actuator port to tank)

    200 bar(2900 psi)

    50 bar(725 psi)

    20 bar(290 psi)

    10 bar(145 psi)

    lpm

    Command Pressure, bar

    100 bar(1450 psi)

    0 20 40 60 80 100 120 140 160 180 200psi

    gpm

    400

    300

    200

    100

    00 2 4 6 8 10 12 14

    Pressure Drop(actuator port to tank)

    50 bar(725 psi)

    20 bar(290 psi)

    10 bar(145 psi)

    lpm

    100 bar(1450 psi)

    200 bar(2900 psi)

    350 bar(5075 psi)

  • 5

    302826242220181614121086\420

    400

    300

    200

    100

    0

    S90 Poppet

    S03 PoppetS14 Poppet

    0 50 100 150 200

    0 10 20 30 40 50gpm

    Flow, lpm

    bar

    psi

    CMX100 Anti-Cavitation Check ValvesStandard (Reverse Flow Thru MO Poppets)Flow vs. Pressure Drop (T A)

    2:

    Operating Valve Section

    Anticavitation check valves standardCavitation protection is normallyprovided by reverse flow through themeter-out poppets. In this mode, tankpressure above the actuator portpressure, acting on the meter-outpoppet skirt area, opens the meter-outpoppet. Tank pressure is maintained by a back pressure check in the tankline. Performance (flow vs. pressuredrop) is shown in Figure 22 below andon the following page.

    For meter-out load pressures above 70bar sufficient momentum exchangeoccurs, due to the high velocity jet froman actuator port exhausting fluidimpinging upon the opposite meter-outpoppet, to cause the opposite actuatorport pressure to be higher than the tankpressure. This phenomenon is fairlycomplex, since the opposite portpressure is a function of the loadpressure, load speed (or flow rate), thetank port pressure, the area gains ofboth meter-out poppets (poppet types)and the cylinder area ratio.

    The following example is illustrative: fora CMX160 lowering A to T a load of 138bar (2000 psi), 160 lpm (42 USgpm), 1:1area ratio, open tank (no back pressurecheck valve), a type 56 meter-outpoppet in the A port, and a type 07poppet in the B port; the B portpressure is 12.9 bar (187 psi) and thetank port pressure is 0.5 bar (7 psi). Forthe same conditions with a 2:1 arearatio, the B port pressure would be 7.6bar (110 psi) and the tank pressurewould be 0.7 bar (10 psi).

  • 2

    Operating Valve Section

    5

    CMX160 Anti-Cavitation Check ValvesStandard (Reverse Flow Thru MO Poppets)Flow vs. Pressure Drop (T A)

    40

    30

    20

    10

    0

    500

    400

    300

    200

    100

    0

    0 10 20 30 40 50 60 70

    0 50 100 150 200 250 300Flow, lpm

    bar

    psi

    gpm

    S14 PoppetS56 Poppet

    S04 PoppetS07 Poppet

  • 22

    Operating Valve Section

    The meter-out poppet will remain closedwhen the tank pressure is above theactuator port pressure and the meter-outservo is piloted open. In this case, thepoppet-stem opens and fluid enters thespring chamber from tank. The orifice inthe meter-out poppet restricts the flowleaving the spring chamber, so thespring chamber pressure is nearly equalto the tank pressure. Since the actuatorport pressure is lower than tank, theforce on the annular area of themeter-out poppet due to actuator portpressure is less than the opposing force

    due to tank pressure in the springchamber, and the meter-out poppetcloses and remains closed. Cavitationcan occur under these conditions, whichnormally occur only if the float featureis used, or when reversing the directionof a moving load.

    (Click here for float feature.)Special meter-out poppets are availablewith check valves which prevent reverseflow into the meter-out spring chamberand subsequent uncontrolled closing ofthe meter-out poppet. (Not available forCMX160 07 and 56 M-O poppets.)

    Anticavitation moduleFor applications that require minimalback pressure in the tank port, a bolt-onmodule (Figure 23) is available thatprovides anticavitation performancesuperior to the meter-out poppet. Thismodule is only available on models with the SAE 4-bolt flange. Modules are available with single and dualanti-cavitation check valves. Figure 24,on th folloeing page, shows typicalperformance data.

    PLST

    B

    A

    PSDR PS DR

    Figure 23

    Poppet Spring

    Tank Actuator port BActuator port A

    Module

  • 23

    Operating Valve Section

    3.0

    2.0

    1.0

    0.0

    0 10 20 30 40 50gpm

    40

    30

    20

    10

    0

    psid

    bar

    Flow, lpm

    CMX100

    CMX160

    0 50 100 150 200

    Figure 24

    CMX Anti-Cavitation Check ModuleFlow vs. Pressure Differential (T A)

  • 24

    Operating Valve Section

    /

    $

    .

    #$

    #

    ,

    #

    #

    $#

    #

    #

    #

    54

    CMX160 Float PerformanceFlow vs. Pressure Drop (B A)Flow B T A (T Blocked)

    500

    400

    300

    200

    100

    0

    40

    30

    20

    10

    0

    0 10 20 30 40 50gpm

    A Port B PortPoppet Poppet

    S14 S14

    S14 S04

    S04 S04

    60 70

    psi

    bar

    Flow, lpm0 50 100 150 200 250 300

    Figure 25

  • 2=

    Operating Valve Section

    Meter-out spoolA version of the CMX that replaces themeter-out poppets with a spool isavailable.

    (Click here to see model code.) This version does not provide meter-outmetering, load holding or relief valveprotection. This version can be usedwith counterbalance valve circuits. Two

    meter-out spool versions are available;one is open in neutral, the otherprovides restricted flow to tank inneutral. The restriction is equivalent to a0.75 mm (.030 in.) orifice.

    Figure 26

    PLST

    BA

    PSDR PS DR

    Port A Port B

    Meterout spool

  • 2?

    Operating Valve Section

    Figure 27b

    Figure 27a

    CMX100 Meter-out Spool PerformanceFlow vs. Pressure Differential A-TFlow A T

    CMX100 Meter-out Spool PerformanceFlow vs. Pressure Differential A-BFlow A T B (T Blocked)

    0 50 100 150 200

    140

    120

    100

    80

    60

    40

    20

    0

    M00 Spool (Center)M00 Spool (Shift)N00 Spool (Shift)

    10

    9

    8

    7

    6

    5

    4

    3

    2

    1

    0

    psi

    bar

    Flow, lpm0 50 100 150 200

    10

    9

    8

    7

    6

    5

    4

    3

    2

    1

    0

    0 10 20 30 40 50

    bar

    M00 Spool (Center)140

    120

    100

    80

    60

    40

    20

    0

    psi

    0 10 20 30 40 50

    NOTE: Centered spool malfunctions at flows above 200 lpm.

    gpm

    gpm

    Flow, lpm

    NOTE: Centered spool malfunctions at flows above 200 lpm.

  • 27

    Operating Valve Section

    Actuator port relief valveThe actuator port relief valve uses apilot stage to provide a pilot signal to themeter-out servo that, in turn, opens themeter-out poppet to relieve fluid to tank.

    The relief valve pilot stage consists of apoppet, seat and spring (Figure 28).When actuator port pressure overcomesthe relief valve spring force, the reliefvalve poppet moves off its seat and fluidflows into the passage in the control capgasket (on hydraulic models, the reliefvalve poppet seat is incorporated intothe load drop check retainer).

    This is the same passage thatcommunicates the meter-in springchamber to the meter-out piston. Arestriction in the control cap gasket islocated in this passage between therelief valve poppet and the meter-inspring chamber (between the reliefvalve poppet and reducing valve onelectrohydraulic models). Flow from the relief valve through the restrictioncauses pressure to build on the reliefvalve side of the restriction and istransmitted directly to the meter-outpiston, which in turn opens the

    meter-out servo and meter-out poppet,relieving pressure in the actuator port.The relief valve setting is adjustable byshimming the pilot poppet spring, or byusing an optional adjustable relief valve.Relief valve override characteristics aregiven in Figures 29 and 30 on thefollowing four pages.Adjustable relief valves are factorypreset at 210 bar (3000 psi). Theadjustment range is from 100 to 290 bar(1450 to 4200 psi). Adjustmentsensitivity is 45 bar (650 psi) per turn ofthe adjusting screw.

    Meter-in spring chamber

    57

    Actuator port AActuator port B

    Meteroutpoppet

    Meter-in spool

    Control cap

    Load drop check retainer

    Adjustable relief(optional)

    Gasket

    C1

    DR T LS P DR

    C2

    AB

    Restriction incontrol cap gasket

    Actuator portrelief valve

    Actuator portrelief valve

    Relief valve pilot stage poppet

    Meteroutpiston

    Spring

    Shims

    Tank passage

    ,

    PSPS

  • 29

    Operating Valve Section

    59

    59

    CMX100 Sectional ValveRelief Valve OverrideS03 Meter-out Poppet

    CMX100 Sectional ValveRelief Valve OverrideS14 Meter-out Poppet

    5

    4

    3

    2

    1

    0

    400

    300

    200

    100

    00 50 100 150 200

    5

    4

    3

    2

    1

    0

    kpsi

    bar

    Flow, lpm

    0 10 20 30 40 50 60

    Minimum Setting

    gpm

    400

    300

    200

    100

    00 50 100 150 200

    kpsi

    bar

    Flow, lpm

    0 10 20 30 40 50 60gpm

    Minimum Setting

  • 3;

    Operating Valve Section

    CMX100 Sectional ValveRelief Valve OverrideS90 Meter-out Poppet

    0 50 100 150 200

    0 10 20 30 40 50

    Minimum Setting

    400

    300

    200

    100

    0

    bar

    5

    4

    3

    2

    1

    0

    kpsi

    60

    Flow, lpm

    gpm

    Figure 29c

  • 3:

    Operating Valve Section

    52;

    52;

    CMX160 Sectional ValveRelief Valve OverrideS04 Meter-out Poppet

    CMX160 Sectional ValveRelief Valve OverrideS07 Meter-out Poppet

    5

    4

    3

    2

    1

    0

    5

    4

    3

    2

    1

    0

    400

    300

    200

    100

    0

    kpsi

    bar

    Flow, lpm

    0 10 20 30 40 50 60gpm

    Minimum Setting

    gpm

    0 50 100 150 200Flow, lpm

    250 300

    0 50 100 150 200 250 300

    400

    300

    200

    100

    0 Minimum Setting

    kpsi

    bar

    70 80

    0 10 20 30 40 50 60 70 80

  • 3

    Operating Valve Section

    52;

    52;

    CMX160 Sectional ValveRelief Valve OverrideS14 Meter-out Poppet

    CMX160 Sectional ValveRelief Valve OverrideS56 Meter-out Poppet

    5

    4

    3

    2

    1

    0

    400

    300

    200

    100

    0

    kpsi

    bar

    Flow, lpm

    0 10 20 30 40 50 60gpm

    0 50 100 150 200 250 300

    70 80

    0 10 20 30 40 50 60gpm

    70 80400

    300

    200

    100

    0

    bar

    Flow, lpm0 50 100 150 200 250 300

    5

    4

    3

    2

    1

    0

    kpsi

  • 52:

    200

    150

    100

    150

    0

    lpm

    Command pressure, bar0 5 10 15 20 25 30

    50

    40

    30

    20

    10

    0

    gpm

    Test Conditions: S006 Meter-in Element 20 bar (290 psi) LS Pressure Differential 21 cSt (100 SUS) Fluid

    0 435psi

    CMX160 Valve (Hydraulic Actuation)Typical Meter-in Hysteresis

    145 290

    32

    Operating Valve Section

    Hydraulic actuationPilot pressure is supplied to eachsection via two #6 SAE O-ring bossports located on each control cap. Pilotdrain connections must be madeexternal to the reservoir. External drainis always the preferred configurationand MUST be used if tank pressure ishigh due to the installation or a backpressure check valve, or if high pressuretransients (spikes) are likely.It is important to note that the meter-outservo is referenced to the valve bankdrain, while the meter-in spool isreferenced to the opposite portcommand pressure. This requires theHRC drain pressures to be considered,since different drain pressures for thevalve bank and the HRC will altermeter-in and meter-out phasing. Ideally,both the HRC and the CMX valve bankshould be drained directly to thereservoir via generously sized lines.

    Hydraulic actuation data is given below.

    ,,#

    6-BC

    6 %;=&+BC

    6 %:&+BC

    3B=:C

    =B9;C

    ::3B:=4C

    8

    :27B;;C

    :44B4C

    ;?B2;;C

    Tolerance: 1 bar

    Pilot Requirements:Pressure: 34 bar (500 psi) max.Flow: 12 lpm (3 USgpm) recom.Filtration: 25 microns or finer

    Required shift volume (displacement): :;; :=;

    6 BC

    :=2 4=

    6- :;: 4=

  • 33

    Operating Valve Section

    52:

    CMX160 Valve (Hydraulic Actuation)Typical Meter-out HysteresisCommand Pressure vs. M-O Flow

    50

    40

    30

    20

    10

    0

    200

    150

    100

    50

    00

    Test Conditions: S14 Meter-out Poppet 40 bar (580 psi) Load Pressure 21 cSt (100 SUS) Fluid

    gpm

    0 2 4 6 8 10 12 14

    lpm

    Command Pressure, bar

    0 20 40 60 80 100 120 140 160 180 200psi

    Electrohydraulic actuationElectrohydraulic CMX sectional valvesoperate on the same principles as thehydraulic valves, with the addition of anelectrohydraulic proportional reducingvalve (Figure 32) to convert an electricalinput signal to a proportional commandpressure signal that operates the valve.The solenoid provides an output forceproportional to the input current that actson the solenoid end of the pilot spool.

    When the solenoid is energized, thepilot spool is moved away from thesolenoid, closing the command port totank and opening the pilot supply to thecommand port. Command portpressure is supplied to the feedback endof the pilot spool through the passage inthe end cap gasket. When the feedbackpressure begins to balance the solenoidforce, the pilot spool closes the pilotsupply passage.

    As the command pressure rises (due toleakage), the feedback pressureovercomes the solenoid, and the pilotspool moves to open the control port totank. The pilot spool modulates tobalance the feedback pressure againstthe solenoid output force, thus providingan output pressure proportional to thesolenoid input current. The pilot spooland bore are designed for zero overlap,so deadband is minimized.

    The pressure output serves as thecommand pressure to actuate the CMXmeter-in and meter-out elements. Thesignal to the solenoid should beconditioned to a pulse width modulatedvoltage or current signal. DC power, upto the coil rating, may also be used foron-off operation.

    Supply Voltages: 12/24 VDCMaximum Current: 1.4/.7 AMPRecommended PWM Freq. : 100 Hz

    Solenoids are available with DINstandard 43650 plugs, Metri-Packconnector, or flying leads.

    Valves are available with either internalor external pilot supply. On models withthe internal pilot option, pilot pressure issupplied to the proportional reducingvalve by an internal passage that isconnected to the system supplypassage in the inlet body. These modelsrequire that the minimum systempressure be maintained to the specifiedlimits to assure proper valve actuation.

    Electrohydraulic CMX valves may beoperated manually in the event ofelectrical control failure by depressingthe manual override pin, located on theend of each solenoid, with a screwdriveror similar tool.

  • 34

    Operating Valve Section

    52

    PLST

    BA

    PSDR PS DR

    Electrohydraulicproportional reducing valve

    Command pressure passage

    Pilot supplygallery

    Pilot supply passageDrain Coil

    Pole face

    Armature

    Manual override

    Pilot spool

    >

    Push pin

  • 3=

    Operating Valve Section

    Electrohydraulic actuationInternal pilot supplyMinimum system pressure:Valves with Type 06 meter-in spring 19 bar (275 psi)Valves with Type 12 meter-in spring 24 bar (350 psi)External pilot supplyMinimum pressure:Valves with Type 06 meter-in spring 19 bar (275 psi)Valves with Type 12 meter-in spring 24 bar (350 psi)

    Since both electrohydraulic reducingvalves are referenced to a commondrain via the end cover, drain pressureis not critical. Either an internal drain to tank or an external drain (preferred) is available.

    (Click here to see model code.).If high pressure transients are present inthe tank line, an external drain shouldbe used to avoid function interaction. Ifthe tank pressure is above 8.6 bar (125psi), an external drain should be used toavoid exceeding the pressure rating forthe pilot passages (35 bar [500 psi]).

    Under certain operating conditions (highinlet pressure, fully shifted, and openrelief valve), pilot drain flow can be ashigh as 4 lpm (1 USgpm) for each activesection. Total anticipated drain flow mustbe considered when sizing drain lines.

    522

    400

    300

    200

    100

    0

    Test Conditions: Vickers EMVP-**-10 Controller 2.5 V Dither 34 bar (500 psi) External Pilot Pressure 21 cSt (100 SUS) Fluid

    302826242220181614121086420

    0 100 200 300 400 500 600 700

    0 200 400 600 800 1000 1200 1400

    psi

    bar

    Command Current, mA (24V solenoid)

    Electrohydraulic Reducing Valve for CMX Control PressureOutput Pressure vs. Command Current

    Command Current, mA (12V solenoid)

  • 3?

    Operating Valve Section

    523

    0 100 200 300 400 500 600 700 800 900 1000

    5

    4

    3

    2

    1

    0

    kpsi

    300

    200

    100

    0

    Rise Rate =6500 Bar/Sec (93,000 psi/second)

    Test Circuit

    100 L/min

    CMX100C1 C2A B

    This plot demonstrates the actuator port pressure responsewhich can be expected when a load is abruptly applied to anactuator, such as an excavator bucket hitting a rock while theboom is being lowered. The response is system-dependent,so actual performance may vary.

    Elapsed Time, mSec.

    CMX100 Relief Valve ResponseActuator Port Pressure vs. Time

    bar

    Relief Valve Setting: 220 bar (3190 psi)

    P T

  • 37

    Operating Valve Section

    523

    CMX100 Relief Valve ResponseActuator Port Pressure vs. Time

    0 100 200 300 400 500 600 700 800 900 1000

    5

    4

    3

    2

    1

    0

    kpsi

    300

    200

    100

    0

    Relief Valve Setting: 220 bar (3190 psi)

    Rise Rate =6000 Bar/Sec (85,000 psi/second)

    Test Circuit

    100 L/min

    CMX100C1 C2A B

    This plot demonstrates the actuator port pressure response which can be expected when a moving load isabruptly stopped by switching the solenoid off. The response is system-dependent, so actual performancemay vary.

    Elapsed Time, mSec.

    PP

    P T

    bar

  • 39

    Operating Valve Section

    523

    CMX100 Relief Valve ResponseActuator Port Pressure vs. Time

    0 100 200 300 400 500 600 700 800 900 1000

    5

    4

    3

    2

    1

    0

    kpsi

    300

    200

    100

    0

    Rise Rate =4500 Bar/Sec (64,000 psi/second)

    Test Circuit

    100 L/min

    CMX100C1 C2A B

    This plot demonstrates the actuator port pressure responsewhich can be expected when a moving load is abruptlystopped by rapidly centering the HRC lever. The responseis system-dependent, so actual performance may vary.

    Elapsed Time, mSec.

    PP

    P T

    Relief Valve Setting: 200 bar (2900 psi)bar

    *8

  • 4;

    Special Features

    Meter-in pressure limitationIn this version (Figure 35), the orificerestriction in the control cap gasket isrelocated to the inlet to the meter-inspring chamber.

    This feature limits meter-in flow at apreset actuator port pressure.

    524

    .

    ,

    $ $

    :;B;3;C

    @

    #

    @

    #

  • CMX100 Meter-in Pressure LimitationActuator Port Pressure vs. Inlet FlowS14 M-O Poppet, Blocked Actuator Ports

    50

    40

    30

    20

    10

    0

    200

    150

    100

    50

    00 50 100 150 200

    Command Current 700 mA

    630 mA

    560 mA

    490 mA

    420 mA

    350 mA

    0 1000 2000psi

    Actuator Port Pressure, barActuator Port Relief = 172 bar (2490 psi)

    Figure 36

    lpm

    gpm

    4:

    Special Features

    Meter-in pressure limitationMeter-out poppet version (withport relief valves)In valves with meter-out poppets, theport relief functions in the normalmanner. But because the orifice hasbeen relocated, the relief valve pilotstage also applies pilot pressure to themeter-in spool, which tends to opposethe command pressure. For example,assume we are driving a clamp cylinderP to A. When the cylinder fullyclamps, the A port relief setting isreached, and the pilot stage opens andbuilds pilot pressure to open themeter-out element. This pilot pressurealso acts on the meter-in spool opposingthe command pressure and tending toclose the meter-in spool, which reducesthe meter-in flow.

    Since a pilot pressure of 4.2 bar (62 psi)is required to open the meter-outpoppet, a significant reduction in flow,equivalent to 4.2 bar (62 psi) commandpressure, through the meter-in spool willoccur before the meter-out poppetopens. From the meter-in command vs.flow diagrams on page 9, the reductionin flow is about 50 lpm (13 USgpm) forthe CMX100, and about 70 lpm (18 USgpm) for the CMX160.The total amount of closing depends onthe command signal and is limited bythe relief valve override. When themeter-out element is opened enough topass the full meter-in flow, furtherincrease in relief valve pilot signal willnot occur and, in turn, further shutoff ofthe meter-in is not possible. In Figure36 the diagram shows the resulting inletflow as the load pressure changes whilethe command current is fixed.

    The meter-in pressure limitation featurelimits horsepower losses through theopen relief valves of a function withrelief settings below the systempressure setting. It is particularlyeffective for swing functions where therelief valves are set to limit maximumtorque. On these applications, with amoving load, meter-in pressurelimitation can prevent any losses overan open port relief valve. The meter-inpressure limitation feature should beused with caution on functions where anoverrunning gravity load is possible.With certain combinations of meter-outpoppets and cylinder area ratios,uncommanded movement may occur. The use of the meter-in pressure limitation feature must beapproved by Vickers SystemsEngineering Department

  • 4

    Special Features

    Meter-in pressure limitationMeter-out spool version (no actuator port relief)In valves with the meter-out spool option(Figure 37), a relief valve pilot stage isadded (no relief pilot stage is present inthe standard configuration), and theorifice is located in the inlet to the

    meter-in spring chamber. When thepilot stage opens, the resulting pilotsignal is applied to both the meter-in andthe meter-out spools, opposing thecommand pilot pressure and tending toclose both spools. Due to the phasingof the meter-in and meter-out spools(the meter-in requires a higher pilotpressure to crack), the meter-in spool

    will completely shutoff flow before themeter-out spool will port fluid to tank.Thus, virtually no horsepower is lostwhen the function is stalled. Thisfeature controls the maximum pressureto a function at a setting below thesystem pressure setting. For a profile ofactuator port pressure versus commandpressure, see Figure 38.

    52?

    .

    ,

    $ $

    Orifice

  • 42

    Special Features

    527

    CMX100 Meter-in Pressure LimitationModel SP006-M0009 (M-O Spool Version)Actuator Port Pressure vs. Command Pressure

    2000

    1500

    1000

    500

    0

    1401301201101009080706050403020100

    0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

    Test Conditions: Inlet: PLS Pressure Differential = 14 bar (203 psi) Blocked Actuator Ports 90 bar pressure setting 21 cSt (100 SUS) Fluid

    NOTE: The pressure setting is definedas the actuator port pressurewith 14 bar (203 psi) commandpressure applied to the oppositecommand port.

    0 100 200 300 400psi

    psib

    ar

    Command Pressure, bar

    Swing drive with free coastThis function utilizes a meter-out spooland a pressure controlling meter-inelement. Combining these featuresprovides acceleration control withminimal braking. Typical applicationsinclude swing drives and propelfunctions where braking control is notrequired or is accomplished by amechanical brake.

    High flow single acting CMXThis option extends the flow range forthe CMX valve on applications requiringonly a three-way valve (Figure 39,following page). The meter-in spool isspring biased to one end of its bore, andas it is piloted open, it ports fluid first tothe A port then to both cylinder portssimultaneously. The meter-out poppetsremain closed when lifting. For lowering,the meter-in spool remains closed.

    For superior metering while lowering,different gain meter-out poppets can be selected.

    Both actuator ports must be connectedtogether externally by the user or by anoptional bolt-on block. The optionalbolt-on block is available only on theflange port sections. An option isavailable which uses only one meter-outpoppet when a large meter-out flow areais not required.

    The dual poppet meter-out version is notavailable for the electrohydraulic narrowbody S2 sections.

    #

    #

  • 43

    Special Features

    529

    .

    ,

    $ $

    High Flow, Single Acting CMX

  • 44

    Special Features

    CMX Single Acting Meter-in Flow vs. Commandat 20 bar P-LS Pressure Differential

    Command Pressure, bar

    CMX100 H006CMX160 H006

    100

    80

    60

    40

    20

    00 5 10 15 20 25 30

    (12V coil)(24V coil)

    0 200 400 600 800 1000 1200 1400

    0 100 200 300 400 500 600 700

    CommandCurrent, mA

    0 100 200 300 400

    lpm

    gpm

    psi

    400

    350

    300

    250

    200

    150

    100

    50

    0

    Figure 40a

  • 4=

    Special Features

    53;

    53;

    CMX100 Single Acting Meter-in ElementPressure CompensationModel H006 Meter-in Element

    CMX160 Single Acting Meter-in ElementPressure CompensationModel H006 Meter-in Element

    100

    80

    60

    40

    20

    0

    gpm

    lpm

    0 50 100 150 200 250 300 350

    0 1000 2000 3000 4000 5000

    16 bar (232 psi)14 bar (203 psi)12 bar (174 psi)10 bar (145 psi)

    8 bar (116 psi)

    Command Pressure

    Pressure Drop (P-LS), bar

    0 50 100 150 200 250 300 350Pressure Drop (P-LS), bar

    0 1000 2000 3000 4000 5000

    400

    300

    200

    100

    0

    lpm

    100

    80

    60

    40

    20

    0

    gpm

    Command Pressure22 bar (319 psi)20 bar (290 psi)18 bar (261 psi)16 bar (232 psi)14 bar (203 psi)12 bar (174 psi)10 bar (145 psi)

    8 bar (116 psi)

    psi

    psi

    400

    300

    200

    100

    0

  • 4?

    Special Features

    Swing drive with pressurecontrolled brakingThis feature provides meter-in pressurecontrol, proportional pressure controlledbraking through the command pressuresystem, and blocked actuator ports inneutral. To achieve proportional braking,the meter-out element is operated onlyby a special relief valve pilot circuit(Figure 41). (High gain meter out is

    recommended because of relief valveoverride characteristics.)The relief valve setting is controlled bythe command pressure, which isaccomplished by a piston that is actedupon by command pressure to opposethe spring load on the relief valve pilotpoppet. As the command pressureincreases, the actuator port pressurerequired to open the relief valve poppetdecreases, effectively decreasing the

    relief valve setting. Thus when driving aload, the relief valve setting is at aminimum, typically about 8 bar (116 psi).To brake the load, the pilot pressure isdecreased, which increases the reliefvalve setting. The pilot pressure isdecreased until the desired brakingpressure is achieved.

    Note: The adjustable relief valve option is not available with swing drivevalve sections.

    53:

    .

    ,

    $ $

    01

    #

    "

    8

    +

    ,

    #+

  • 47

    Special Features

    Performance characteristics of themeterout pressure control valve can beplotted using Q-P diagrams. Figure 42ais the QP diagram for the CMX100S406 meterin spool. Figure 42b is theQ-P (relief valve override) diagram ofthe P03 relief valve for variouscommand pressures and a relief valvesetting of 208 bar. Combining thesediagrams yields Figure 42c (See Figure42e for CMX160 version). Note that theback pressure from the oppositeactuator port relief valve has beensubtracted from theconstant-pilot-pressure lines, so thepressure scale is the pressure dropacross the valves actuator ports. Now,for a given flow and command pressure,the pressure available to drive or brakethe load can be extracted. If anassumed steady state load curve isadded (Figure 42d), the chart can beused to determine the required

    command pressure to drive the load at agiven speed; or, the equivalent brakingpressure (braking pressure plus the loadcurve) can be obtained.To illustrate the operation of the valve,assume the load is at rest and the valveis in neutral. Figure 42d shows a brakingpressure of 185 bar at point A, which isthe relief valve setting, and the pressurethat must be imposed by an externalload to move the load. As pilot pressureis applied, pressure begins to be appliedto the actuator at point B. When theload pressure is overcome at point C,the load begins to move. If the pilotpressure is increased to 20 bar, the loadwill accelerate along the 20 bar pilotpressure line until the output pressureequals the steady-state load pressure atpoint E. Note that the pressureavailable to accelerate the load is theoutput pressure at any given flow and

    pilot pressure minus the steady stateload pressure.

    To slow or stop the load, the commandpressure is reduced. If the commandpressure is reduced to 16 bar (point F),the load will continue to be driven but ata pressure below the steady-state loadcurve. The load will slow along the 16bar line until the steady state load curveis intersected at G point. If thecommand pressure is further reduced to8 bar, the load will brake until the loadstops. Here, the effective decelerationpressure at any given speed is thebraking pressure plus the steady-stateload pressure.

    By modulating the command signal, theoperator has complete proportionalcontrol of swing driving and brakingpressures. This control providessmooth, precise control of high inertiaswing drives.

    53

    350

    300

    250

    200

    150

    100

    50

    00 50 100 150

    0 10 20 30 405

    4

    3

    2

    1

    0

    8 bar(116 psi)

    12 bar(174 psi)

    16 bar(232 psi)

    20 bar(290 psi)

    34 bar(MAX)32 bar(464 psi)

    28 bar(406 psi)

    24 bar(348 psi)

    kpsi

    bar

    gpm

    5$

    CMX100 Meter-in Pressure Control SpoolPressure vs. FlowModel S406 Meter-in Element

    Command Pressure

  • 49

    Special Features

    53

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    240

    0

    1

    2

    3

    0 50 100 150

    0 10 20 30 40

    Negative pressure indicatesbraking pressure

    MIN.

    16 bar (232 psi)

    Command Pressure

    12 bar (174 psi)

    8 bar (116 psi)

    4 bar (58 psi)

    0 bar (0 psi)

    kpsi

    bar

    gpm

    5$

    CMX100 Meter-out Pressure Control Relief Valve OverrideModel P03 Meter-out Element

  • =;

    Special Features

    53

    CMX100 Pressure Control ValvePressure vs. FlowModel S406-P03

    250

    200

    150

    100

    50

    0

    50

    100

    150

    200

    250

    0

    3

    2

    1

    0

    1

    2

    3

    10 20 30 40

    0 50 100 150

    CommandPressure

    28 bar(406 psi)

    24 bar(348 psi)

    20 bar(290 psi)

    16 bar(232 psi)

    12 bar(174 psi)

    8 bar(116 psi)

    4 bar(58 psi)

    0 bar(0 psi)

    kpsi

    bar

    Flow, lpm

    gpm

  • =:

    Special Features

    53

    CMX100 Pressure Control ValvePressure vs. FlowModel S406-P03

    250

    200

    150

    100

    50

    0

    50

    100

    150

    200

    250

    3

    2

    1

    0

    1

    2

    3

    0 50 100 150

    0 10 20 30 40

    CommandPressure

    28 bar(406 psi)

    24 bar(348 psi)

    20 bar(290 psi)

    16 bar(232 psi)

    12 bar(174 psi)

    8 bar(116 psi)

    4 bar(58 psi)

    0 bar(0 psi)

    Load Pressure

    A

    B

    C

    D

    E

    F

    G

    H

    Flow, lpm

    bar

    kpsi

    gpm

  • =

    Special Features

    53

    CMX160 Pressure Control ValvePressure vs. FlowModel S506-P04

    3

    2

    1

    0

    1

    2

    3

    kpsi

    260

    240

    220

    200

    180

    160

    140

    120

    100

    80

    60

    40

    20

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    240

    2600 50 100 150 200 250

    0 10 20 30 40 50 60

    bar

    Flow, lpm

    gpm

    Command Pressure

    28 bar (406 psi)

    4 bar (58 psi)

    0 bar (0 psi)

    12 bar (174 psi)

    8 bar (116 psi)

    20 bar (290 psi)

    16 bar (232 psi)

    24 bar (348 psi)

  • =2

    Special Features

    Free coast (type Fmeter-out)This option provides a free coast or floatoperation in neutral. This isaccomplished by a passage betweenthe meter-out spring chamber and thecorresponding meter-in chamber (Figure

    43). In neutral, pressure in the meter-inchamber is low; thus, the meter-outspring chamber pressure is low, and themeter-out poppet will open when therelatively light spring force of themeter-out servo stem is overcome.During commanded operation, a checkvalve prevents flow from the meter-in

    chamber to the meter-out springchamber. Single F meter-out modelshold the load in one direction but not theother. The A*****F and B*****F modelshold the load in one direction but not the other. Dual F meter-out modelsgive a free coast or float feature in both directions.

    532

    .

    ,

    $ $

    10

  • =3

    Special Features

    533

    534+E5BF.#

    #C

    .

    ,

    $ $

    CMX100 Free Coast PerformanceF03 Meter-out PoppetFlow vs. Pressure Differential

    25

    20

    15

    10

    5

    0

    400

    300

    200

    100

    00 50 100 150 200 250

    0 10 20 30 5040 60

    Flow A T

    Flow A T B(T Blocked)

    psi

    bar

    gpm

    lpm

  • =4

    Inlet Bodies

    Standard end inlet bodyThe standard inlet body (Figure 46)provides connections for pump, tankand load sense. On electrohydraulicvalve banks, a connection is alsoprovided for pilot supply, which may be

    internal or external. For internal pilotsupply, an internal passage connectsthe pilot supply to the pressure port. Forexternal pilot supply, this connectingpassage is blocked by a 1/4-28 UNF setscrew (.125 in. hex key) accessible

    through the pump port, and the XPexternal connection is made through a#6 SAE O-ring boss port (.5625-18UNF-2B thread).

    Click here to see other port sizes.

    Figure 46

    2BC

    .

    CMX100 CMX160

    .

    2

    .

    2

    Schematic of standard end inlet

    -

    $ $

  • ==

    Inlet Bodies

    End inlet body with loadsensing relief valve(CMX100 only)This inlet body (Figure 47) is designedfor use with fixed displacement pumpsto provide a combined function similar toa variable displacement load sensingpump, but at a lower system cost. Inaddition to the system connections forpressure, tank, optional load sense andoptional external electrohydraulic pilotsupply, the inlet section incorporates aload sensing relief valve that maintainsinlet pressure at a fixed level above loadsense pressure and limits maximuminlet pressure to a preset value.

    The load sensing relief valve uses abalanced spool concept to control inletpressure. Load sense pressure fromthe valve bank is admitted to the springchamber via a 1.27 mm (.050) orifice.

    Load sense pressure plus the springload is balanced against the inletpressure on the opposite end of thespool. When the load sense pressureplus spring force is overcome by theinlet pressure, the spool opens allowinginlet flow to tank, thus controlling inletpressure. When the pre-set maximumpressure is reached in the springchamber, the pilot poppet opens, limitingthe spring chamber pressure (and thenthe inlet pressure) since the LS flow intothe spring chamber is controlled by the.050 orifice. Note that the pre-setmaximum pressure must be matched tothe spring(s) used, so the spools are not interchangeable.

    Two springs are available, which may beused separately or as a nested pair togive three inlet-to-load sense pressuredifferential settings: 10 bar (145 psi), 16bar (232 psi) and 26 bar (377 psi). Theload sensing relief valve

    is rated at 250 bar pressure (3625 psi).An optional solenoid operated unloadingvalve is also available which provides adirect path to tank when pump standbypressure is not desired. The unloadingvalve provides a 4.7 bar (68 psi)pressure differential at 100 lpm (26USgpm) and is open P to T when thesolenoid is de-energized. Theunloading valve is pressure rated at 205bar (3000 psi).An optional external load senseconnection is available for specialapplications. Load sense connectionsfrom other valve banks should be madeat the end cover when a load sensedecompression orifice is used todecompress the load sense passage.The load sense decompression orificeshould be located as far as possiblefrom the load sensing relief valve.

    Click here to see orifice locationdiagram.

    Figure 47

    P

    T

    LSP

    C2C1

    Inlet

    Pilot poppet

    Spool

    Springchamber

    Orifice

    Load senseTank

    Optionalunloadingvalve

    T

    CMX

    sect

    ions

  • =?

    Inlet Bodies

    CMX160/100 mid-inletThe mid-inlet (Figures 48 and 49)facilitates the use of CMX160 andCMX100 valve sections in the samevalve bank. The CMX160 sections aremounted on one side of the mid-inlet,and the CMX100 sections are mountedon the opposite side. System pressureand tank connections are made in themiddle of the valve bank, rather than onthe end.

    Standard mid-inlet

    The standard mid-inlet (Figure 48)provides connections for pump, tankand external pilot supply (forelectrohydraulic valves). Internal pilotsupply is available by omitting a setscrew plug in a connecting passagebetween the pump port and pilot supplypassage, and plugging the external port.Load sense and external drainconnections for mid-inlet valve banksare made at the end covers.

    Figure 48

    CMX 100sCMX 160s

    Mid-inlet body

    P XP T

    LS

    Internal pilot supply (Plugged for external pilot supply)

    :

    =;

    +>

    -'

    +

    :

    ;;

    +>

    -'

    +

    2134'1445

  • =7

    Inlet Bodies

    Mid-inlet and CMX100-PC** endinlet with reducing valve andanticavitation make-up flowThis mid-inlet (Figure 49) incorporatestwo reducing/relieving cartridges toprovide pilot supply pressure and tankport make-up flow. The reduced pilotsupply pressure can be suppliedinternally to electrohydraulic sections6*8

    #

    Make-up flow is an anti-cavitationfeature. It is required in circuits wherean overrunning load is causing anactuator to move and draw more fluidfrom the tank port than is being returnedby the opposite actuator port, and acheck valve in the tank line preventsfluid from being drawn from tank. (Aswing function powered by a hydraulic

    motor is a typical circuit that requiresmake-up flow.) The reducing valveshould be set 0.69 bar (10 psi) belowthe back pressure check valve setting.

    :;;#,DD

    #

    :=;/

    #

    #

    Figure 49

    PRV2-10 cartridge (pilot flow)

    PRV2-10 cartridge(make-upflow)

    Drain

    Aux. drain port

    Inlet pressure

    Internal pilot supply (electro-hydraulic valve)

    Pilot supplyport (HRC)

    DrainTank port

    P1

    PS

    P2

    CMX 100s

    CMX 160s

    DR

    T

    LS

    2134'1445

  • =9

    End Cover

    An end cover (Figure 50) is required toterminate each valve bank. The endcover provides a passage that connects

    the control cap drain galleries fromeither side of the valve body.

    Additionally, several optional featuresare located in the end cover:

    Internal/external drain Provides choice of internal or external drain. Click here and see Actuation pages.

    Auxiliary load sense Provides load sense series connection for multiple valve banks. Click here to seeLoad Sensing Check Valves.

    Load sense decompression orifice Provides load sense decompression to drain via a 0.50 mm (.020) screened orifice.Auxiliary P Port Augments P port in inlet body for special applications. Click here to see size chart.

    Auxiliary T Port Augments T port in inlet body for special applications. Click here to see size chart.

    PLST

    BA

    PSDR PS DR

    54;

    DR LS

    End cover (shown with load sense decompression orifice and external drain)

    Drain

    Load sense in

    Load sensedecompressionorifice

    Auxiliary T port

    CMX100 CMX160

    Drain plug(Removed for internal drain)

    Endcover

    Auxiliary pressure port

  • ?;

    Model Codes

    Operating Section

    Port Designation B

    Repeat positions 6-13 forpositions 15-22Equivalent positions (6 & 15) and (7 & 16) must be identical designators. Also, positions 10 & 19 must be identical when a meter-out spool is required.

    ActuationE ElectrohydraulicH Hydraulic (must have external drain

    in end cover)Solenoid Voltage(Electrohydraulic actuation only leave blank for hydraulic actuation.)

    G 12 V DCH 24 V DC

    Electrical Connectors(Leave blank for hydraulic actuation.)

    FL Flying leadsU0 DIN 43650 Spade plug onlyU1 DIN 43650 CompleteMP Metri-pack

    Design Number

    10

    Meter-in Cracking Pressure06 6.3 bar (90 psi)12 11.6 bar (168 psi)

    Meter-out FunctionS StandardP Pressure control (must have

    external drain). When P isdesignated in position 10 & position19, positions 11 & 20 must be 03for a CMX100 and 04 for aCMX160.

    F Free coastM Meter-out spool - fully open to tank

    in neutral (CMX100 only)N Meter-out spool - restricted opening

    to tank in neutral (CMX100 only)V Standard with externally vented

    port relief

    Meter-out Element(P @ rated flow)

    00 Meter-out spool, CMX100 only03 3 bar (44 psi), CMX100 only04 4 bar (58 psi), CMX160 only07 7 bar (102 psi), CMX160 only14 14 bar (203 psi) 56 56 bar (812 psi), CMX160 only90 90 bar (1305 psi), CMX100 only

    Meter-out Special Features(Leave blank when module is not required.)

    A Anti-cavitation valve T to AB Anti-cavitation valve T to BC Anti-cavitation valve T to ABH High flow module (requires high

    flow meter-in function)Meter-out Port Relief(Relief setting)

    00 Without pilot relief10-38 Consecutive numbers

    representing 100 bar (1450 psi)to 380 bar (5512 psi) inincrements of 10 bar (150 psi)e.g. 14 is 140 bar.

    99 Externally adjustable relief**(factory set to 207 bar (3000 psi).

    Valve SeriesLoad sensingPressure compensated

    Valve Series100 100 l/min (26 USgpm) rated flow160 160 l/min (42 USgpm) rated flow

    Port ConfigurationS Threaded port SAE O-ring

    connectionW Wide body threaded port SAE

    O-ring connection F Flanged port Code 62 SAE 4-bolt

    high pressureG Flanged port Code 61 SAE 4-bolt

    standard pressure

    Construction2 Sectional3 Sectional with module (requires F

    or G ports). See code position 12 for module designator.

    Port Designation A

    Meter-in FunctionS StandardP Standard with pressure limitation, CMX100 onlyL Low flow, 0-40 l/min (0-11 USgpm),

    CMX100 onlyH Single acting high flow

    (up to twice rated flow)Meter-in Designators

    N No vents in meter-in spoolD Vented meter-in spool (standard)

    Pressure Feedback Piston Dia.*0 No piston (flow control spool)2 1.6 mm (pressure control spool)4 3.6 mm (pressure control spool)

    CMX100 only5 4.5 mm (pressure control spool)

    CMX160 only

    3 4 5 876 9 101 2 11 12 13 14 15 16 17 18 19 20

    1

    2

    3

    4

    5

    6

    7

    9

    15 - 22

    14

    23

    24

    21 22 23 24 25 26

    8

    11

    12

    13

    25

    26

    * When a pressure feedback piston is indicated in positions 8 & 17 together with a P in positions 10 & 19, relief settings below 140 bar (2030 psi) will result inexcessive leakage.** Not available with pressure controlmeter-out; i.e. P03*99 and P04*99 are not possible.

  • ?:

    PC** Inlet body with pressure reducing valve and anticavitationmake-up flow CMX100 only SAE straight thread

    10 Pressure reducing valve only. Standard setting is 28 bar (400 psi).

    2* Make-up flow valve only. Indicate desired pressure setting; e.g., 2B. A 3,5 bar (50 psi) B 7 bar (100 psi) C 10,5 bar (150 psi)

    3* Both pressure reducing valve 28 bar (400 psi) and make-up flow valve. Indicate desired pressure setting with appropriate letter as shown above; e.g., 3A.

    Examples: CMX100-PC10

    CMX100-PC2B CMX100-PC3C

    Pilot SupplyH HydraulicN Internal pilot supply

    electrohydraulicE External pilot supply

    electrohydraulic

    Operating SectionOne required for each section, up toeight sections. Letter indicates sectionport configuration; i.e., S, W, F or G.

    End CoverC Without LS (load sense) port, LS

    decompression orifice or external relief vent port

    F With LS port and 0,5 mm (0.020 in.)LS decompression orifice

    L With LS port onlyVV With LS port and external relief

    vent port. Only used with V meter-out function.

    Auxiliary Ports in End Cover (Click here for port sizes.)

    P Aux. P portT Aux. T port or gage portS Aux. P & T ports

    Drain (end cover)

    X External drain port openN Internally drained

    Mounting HolesU Inch threadsM Metric threads

    Click here for thread sizes.

    Design Number

    Assembly NumberAssigned by Vickers

    3 4 5 876 9 101 2

    Valve Banks with End Inlet

    1

    2

    Valve Series

    Inlet (Click here for port sizes.)

    S SAE straight thread CMX100 onlyF SAE 4-bolt flange, Code 62,

    CMX160 onlyG SAE 4-bolt flange, Code 61,

    CMX160 onlyL Load sense inlet CMX100 only

    SAE straight thread

    ** Load sensing pressure differential in bar

    10 10 bar (145 psi)16 16 bar (232 psi)26 26 bar (377 psi)

    * Unloading solenoid valve,flying leads only

    N NoneG 12 VDCH 24 VDC

    ** Unloading relief valve setting:With solenoid valve;

    Range 10210 bar (1453000 psi)Range codes 0121 10 = pressure setting in bar.

    Example: L16G18Without solenoid valve;

    Range 10250 bar (1453625 psi)Range codes 0125 10 = pressure setting in bar.

    Example: L16N24

    3

    4

    6

    7

    9

    10

    8

    5

  • ?

    Model Codes

    Mid-inlet*MS SAE straight thread ports with

    provision for cartridge valvesMG SAE 4-bolt flange ports

    (code 61) with no provision for cartridge valves

    Mid-inlet Cartridge Valve(s)00 No cartridge valves10 Pilot supply valve.

    Standard setting is 28 bar (400 psi).2* Make-up flow valve pressure

    setting. Indicate desired setting, e.g., 2B.

    A - 3,5 bar (50 psi)B - 7 bar (100 psi)C - 10,5 bar (150 psi)

    3* Pilot supply valve 28 bar (400 psi) and make-up flow valve(Indicate desired pressure settingwith appropriate letter as shownabove; e.g., 3A).

    Pilot Supply for Hydraulic Remote Controllers

    E External pilot port openH External pilot port plugged

    Drain (mid-inlet)

    X External drain port open (MS mid-inlet only)

    B Blocked drain (both internal &external drains plugged)

    CMX100 Valve Series

    Valve Operating Section(CMX100)

    One letter required per section, up to 8sections. Letter indicates valve sectionport configuration; i.e., S, W, F or G.

    3 4 5 876 9 101 2 11 12 13 14 15 16 17

    Valve Banks with Mid-inlet

    1

    2

    CMX160 Valve Series

    End Cover (CMX160)C Without LS (load sense) port, LS

    decompression orifice or external relief vent port

    F With LS port and 0,5 mm (0.020 in.)LS decompression orifice

    L With LS port onlyV With LS port and external relief

    vent port. Only used with V meter-out function.

    Auxiliary Ports in End CoverP Auxiliary P portT Auxiliary T port or gage portS Auxiliary P & T ports

    Drain (CMX160 end cover)

    X External drain port openB Blocked drain (both internal &

    external drains pluggedN Internally drained

    Valve Operating Section (CMX160)One letter required per section, up to 8sections. Letter indicates valve sectionport configurations; i.e., S, W, F or G.

    3

    4

    5

    6

    7

    8

    9

    10

    12

    13

    End Cover (CMX100)C Without LS (load sense) port, LS

    decompression orifice or external relief vent port

    F With LS port and 0,5 mm (0.020 in.)LS decompression orifice

    L With LS port onlyV With LS port and external relief

    vent port. Only used with V meter-out function.

    Auxiliary Ports in End CoverP Auxiliary P portT Auxiliary T port or gage portS Auxiliary P & T ports

    Drain (CMX100 end cover)

    X External drain port openB Blocked drain (both internal &

    external drains pluggedN Internally drained

    Mounting HolesU Inch thread size. End covers, 1

    hole each. Mid-inlet, 2 holes.M Metric thread size. End covers, 1

    hole each. Mid-inlet, 2 holes.

    Design Number

    Assembly NumberAssigned by Vickers

    11

    14

    15

    16

    17

    D@#+#

  • ?2

    Port and Mounting Hole Sizes

    Dimensions in mm (inch) valve banks with end inlet and end cover

    ,

    (*

    "(*

    -.--6

    7

    (8*

    ,6+9:

    ,6+9:

    ;

    :;;#5:$?B4;C

    B:;=4#:CDD B:2:4#:CDD B4=4#:7CDD:;1,5-6H20,0 deep

    32?4#:3F'#"?4

    B4=4#:7CDD B4=4#:7CDD

    :;;#@ :$?B4;C B:;=4#:CDD B:2:4#:CDD B4=4#:7CDD:;1,5-6H20,0 deep

    32?4#:3F'#"?4

    B4=4#:7CDD B4=4#:7CDD

    :;;#+6A B:;=4#:CDD B:;=4#:CDD B:2:4#:CDD B4=4#:7CDD:;1,5-6H20,0 deep

    32?4#:3F'#"?4

    B4=4#:7CDD B4=4#:7CDD

    :=;#5 :9B?4C :9B?4C2:$7B:4C

    B4=4#:7CDD:1,75-6H18,0 deep

    4;;;#:2F'#"?:

    :9B?4C

    B4=4#:7CDD

    :=;#@ :9B?4C 4B:;;C2:$7B:4C

    B4=4#:7CDD:1,75-6H18,0 deep

    4;;;#:2F'#"?:

    4B:;;C

    B4=4#:7CDD

    :=;#+6A B:2:4#:CDD 4B:;;C2:$7B:4C

    B4=4#:7CDD:1,75-6H18,0 deep

    4;;;#:2F'#"?:

    4B:;;C

    B4=4#:7CDD

    ** SAE straight-thread O-ring connection. SAE 4-bolt flange, standard pressure series (code 61). SAE 4-bolt flange, high pressure series (code 62).

    Valve banks with end inlet have three mounting holes: two Valve banks with mid-inlet have four mounting holes: two :=;#.#$:=;#.

    :;;#.

  • CMX100 bank

    CMX100 sectionsCMX160 sections

    Mid-inlet body

    CMX160 bankEnd inlet body

    End cover

    End cover End inlet body

    Typical End-inlet Valve Banks

    Typical Mid-inlet Valve Bank

    B

    A

    CMX100-S2CMX100-F2/G2/W2 CMX160-S2 CMX160-F2/G2/W2

    201 (7.9) 201 (7.9)243 (9.6)243 (9.6)

    47 (1.85) 59 (2.32)51 (2.01)75 (2.95)

    366 (14.4)366 (14.4))386 (15.2)386 (15.2)

    Hydraulic Actuation

    Electrohydraulic ActuationModel Series

    C (length, not shown)

    A (width)

    NOTE: Valve sections with different types of actuation, and/or different pressure ratings and port connections, can be used in the same valve bank. Click here for additional information on section sizes and pressure ratings. See preceding page for port and mounting hole sizes.

    149 (5.87)144 (5.67)172 (6.77)165 (6.50)

    B (height)

    Dimensions, Millimeter (Inch) Operating Sections

    End cover

    End cover

    39 (1.54)35 (1.38)50 (1.97) 27 (1.06)

    86 (3.39)27 (1.06)

    35 (1.38)

    A

    A A

    B

    B

    B

    ?3

    Valve Bank Dimensions

    CoverIntroductionTable of ContentsGeneral DescriptionOperating Valve SectionFigure 4Fig 5

    Sizes and RatingsMeter-in ElementFig 6Fig 7Fig 8a & 8bFig 8cFig 9a. & 9b

    Pressure Control Meter-in Element S****Fig 11a & 11bFig 12a & 12bFig 12cFig14b & 14cFig 18

    S**** Spool Pressure CompensationFlow Limitation OrificeLoad Sensing Check Valves - Standard DesignLoad Drop Check Valves -StandardMeter-out ElementsFig 20aFig 20b & 20cFig 21a & 21bFig 21c & 21dFig 22bFig 24Fig 27a & 27bFig 29a & 29bFig 29cFig 30a & 30bFig 30c & 30dHydraulic Actuation

    Anticavitation Check Valves - StandardAnticavitation ModuleFloat FunctionMeter-out SpoolActuator Relief ValveElectrohydraulic ActuationFig 32Internal / External Pilot SupplyFig 34aFig 34bFig 34c

    Special FeaturesFig 38Fig 39Fig 40aFig 40b & 40c

    Meter-out poppet VersionMeter-out Spool VersionSwing Drive W/ Pressure Controlled BrakingFig 42b

    Free Coast (Type"F" Meter-out)Fig 45

    Standard end Inlet BodyEnd inlet body W/ Load Sensing Relief ValveCMX160/100 Mid-InletMid-inlet and CMX100-PC end inletEnd CoverModel CodeValve Banks W/End InletValve Banks W/Mid-Inlet

    Port and Mounting Hole SizesValve Bank Dimensions