25
CMOS Logic INEL 4207 - Digital Electronics - Spring 2011

CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

CMOS LogicINEL 4207 - Digital Electronics - Spring 2011

Page 2: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2011 by Oxford University Press, Inc.

Figure 14.17 The CMOS inverter.

Page 3: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2011 by Oxford University Press, Inc.

Figure 14.18

Page 4: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2011 by Oxford University Press, Inc.

Figure 14.19

Page 5: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2011 by Oxford University Press, Inc.

Figure 14.20 The voltage-transfer characteristic of the CMOS inverter when QN and QP are matched.

Page 6: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

Qn and Qp are matched: kn = kp

Use Vtn = −Vtp = Vt.

VIH

Qp is in saturation, Qn is in triode region.

iDp =kp

2(VDD − vi − Vt)

2

iDn =kn

22 (vi − Vt) vO − v2

O

(VDD − vi − Vt)2 = 2 (vi − Vt) vO − v2O

Page 7: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

−2(VDD − vi − Vt) = 2vO + 2 (vi − Vt)∂vO

∂vi− 2vO

∂vO

∂vi

vO = VIH −VDD

2

(VDD − VIH − Vt)2 = 2 (VIH − Vt)

VIH −VDD

2

VIH −

VDD

2

2

VIH =18

(5VDD − 2Vt)

Page 8: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

Use symmetry on VTC

VIH −VDD

2=

VDD

2− VIL

VIL =1

8(3VDD + 2Vt)

NMH =1

8(3VDD + 2Vt) = NML

Page 9: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

If Qn and Qp are not matched: r =

kn/kp

VM

kp

2(VDD − VM + Vtp)

2 =kn

2(VM − Vtn)

2

VDD − VM + Vtp = r (VM − Vtn)

VDD + Vtp + rVtn = VM (1 + r)

VM =VDD + rVtn − |Vtp|

1 + r

Page 10: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2011 by Oxford University Press, Inc.

Figure 14.21

Page 11: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp
Page 12: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2011 by Oxford University Press, Inc.

Figure 14.22 Dynamic operation of a capacitively loaded CMOS inverter: (a) circuit; (b) input and output waveforms; (c) equivalent circuit during the capacitor discharge; (d) trajectory of the operating point as the input goes high and C discharges through QN.

Page 13: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

Approach from Secs. 10.2.3/4.10 5th edition

Using piecewise integration

tPHL =1.6C

kn

W

L

nVDD

tPLH =1.6C

kp

W

L

pVDD

Page 14: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

Equivalent to eq. 10.18 on 5th ed.

but more general

2nd approach using ave. currentDischarge

tPHL = CVDD − (VDD/2)

iav

=CVDD

2iav

iav =12

(iDN (E) + iDN (M))

iDN (E) =12k

n

W

L

n

(VDD − Vtn)2

iDN (M) =12k

n

W

L

n

(VDD − Vtn)VDD −

VDD

2

2

tPHL =αnC

kn

W

L

n

VDD

αn =2

74 −

3VtnVDD

+

VtnVDD

2

Page 15: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

Charging

tPLH =αpC

kp

W

L

pVDD

αp =2

74 −

3|Vtp|VDD

+

Vtp

VDD

2

tp =tPHL + tPLH

2

Page 16: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2011 by Oxford University Press, Inc.

Figure 14.23 Equivalent circuits for determining the propagation delays (a) tPHL and (b) tPLH of the inverter.

Another Alternative Approach

Page 17: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

tPHL = 0.69RNC

tPLH = 0.69RPC

Empirical expressions

RN =12.5

(W/L)nkΩ

RP =30

(W/L)pkΩ

These apply for several CMOS processes

including 0.25µm, 0.18µm and 0.13µm.

3rd Alternative approach

Page 18: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2011 by Oxford University Press, Inc.

Figure 14.28 Examples of pull-down networks.

Sec. 10.3 in 5th editionLogic Gates

Page 19: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2011 by Oxford University Press, Inc.

Figure 14.24 Circuit for analyzing the propagation delay of the inverter formed by Q1 and Q2, which is driving a similar inverter formed by Q3 and Q4.

C = 2Cgd1 + 2Cgd2 + Cdb1 + Cdb2 + Cg3 + Cg4 + Cw

Cg3,g4 = (WL)3,4Cox + Cgsov3,gsov4 + Cgdov3,gdov4

f14.24

Sec. 10.2.3 in 5th ed.

Page 20: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2011 by Oxford University Press, Inc.

Figure 14.25 The Miller multiplication of the feedback capacitance Cgd1.

Cgd1,2, Cgsov3,4 and Cgdov3,4 are overlap capacitances

Page 21: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

Example: CMOS 0.25μm process with Cox = 6fF/μm2, μnCox = 115μA/V2, μpCox = 30μA/V2,

Vtn = - Vtp = 0.5V, and VDD = 2.5V. (W/L)n = 0.375μm/0.25μm, (W/L)p = 1.125μm/0.25μm

Cgd, Cgsov, Cgdov ⇒ 0.3fF/μm×W

Cdbn = Cdbp = 1fF , CW= 0.2fF

Find tp when the inverter is driving an identical inverter.

Page 22: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

C = Cint + Cext

Increasing W/L by a factor S increases Cint

C = SCint0 + Cext

and decreases Req = (RN + RP )/2 by S with respect tothe original Req0.

tp = 0.69

Req0

S

(SCint0 + Cext)

= 0.69

Req0Cint0 +

1

SReq0Cext

Inverter Sizing

Page 23: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

Example:

If the inverter in the previous example, find(a) Cint and Cext,(b) factor S to reduce extrinsic part of tp by 2,(c) resulting tp, and(d) factor by which the area is increased.

Page 24: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2011 by Oxford University Press, Inc.

Figure 14.26 The current in the CMOS inverter versus the input voltage.

Ipeak =µnCox

2(W/L)n

VDD

2− Vtn

2

f14.26

Page 25: CMOS Logic - Mayagüezmtoledo/4207/S2011/C3_4.pdf · 2011. 2. 17. · Example: CMOS 0.25μm process with C ox = 6fF/μm2, μ nC ox = 115μA/V2, μ pC ox = 30μA/V2, V tn = - V tp

Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2011 by Oxford University Press, Inc.

Figure 14.27 Representation of a three-input CMOS logic gate. The PUN comprises PMOS transistors, and the PDN comprises NMOS transistors.