33
CMB Non-Gaussianity as a probe of the physics of the primordial Universe Antonino Troja Universit` a degli Studi di Milano Facolt` a di Scienze e Tecnologie November 17, 2014 Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 1 / 23

CMB Non-Gaussianity as a probe of the physics of …phd.fisica.unimi.it/assets/Seminario-Troja.pdfCMB Non-Gaussianity as a probe of the physics of the primordial Universe Antonino

Embed Size (px)

Citation preview

CMB Non-Gaussianity as a probe of the physics of theprimordial Universe

Antonino Troja

Universita degli Studi di MilanoFacolta di Scienze e Tecnologie

November 17, 2014

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 1 / 23

CMB: Cosmic Microwave Background

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 2 / 23

CMB: Temperature Anisotropies

PLANCK Collaboration (2013)

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 3 / 23

Anisotropies and Inflation

Inflation −→ CMB Anisotropies

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 4 / 23

Inflation Scalar Field

INFLATON φ(x, t) = φ0(t) + δφ(x, t)

Spatial average of the field

Vacuum Fluctuations

VacuumFluctuations

PrimordialGravitationalFluctuations

MatterFluctuations

CMBAnisotropy

Inflation After Inflation

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 5 / 23

Inflation Scalar Field

INFLATON φ(x, t) = φ0(t) + δφ(x, t)

Spatial average of the field

Vacuum Fluctuations

VacuumFluctuations

PrimordialGravitationalFluctuations

MatterFluctuations

CMBAnisotropy

Inflation After Inflation

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 5 / 23

Inflation Scalar Field

INFLATON φ(x, t) = φ0(t) + δφ(x, t)

Spatial average of the field

Vacuum Fluctuations

VacuumFluctuations

PrimordialGravitationalFluctuations

MatterFluctuations

CMBAnisotropy

Inflation After Inflation

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 5 / 23

Inflation Scalar Field

INFLATON φ(x, t) = φ0(t) + δφ(x, t)

Spatial average of the field

Vacuum Fluctuations

VacuumFluctuations

PrimordialGravitationalFluctuations

MatterFluctuations

CMBAnisotropy

Inflation After Inflation

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 5 / 23

Inflationary Models

There is NOT only one Inflation model.

Single-Field

Standard Scenario

k-inflation

DBI inflation

...

Multi-Fields

Curvaton Scenario

Ghost inflation

D-cceleration scenario

...

Which is the correct one?

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 6 / 23

Inflationary Models

There is NOT only one Inflation model.

Single-Field

Standard Scenario

k-inflation

DBI inflation

...

Multi-Fields

Curvaton Scenario

Ghost inflation

D-cceleration scenario

...

Which is the correct one?

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 6 / 23

Inflationary Foresight: Non-Gaussianity

Primordial Non-Gaussianity is one of the foresight of the Inflationarymodels.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5 6

Maxwell-Boltzmann

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 7 / 23

Inflationary Foresight: Non-Gaussianity

Primordial Non-Gaussianity is one of the foresight of the Inflationarymodels.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5 6

Maxwell-Boltzmann

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 7 / 23

Inflationary Foresight: Non-Gaussianity

Primordial Non-Gaussianity is one of the foresight of the Inflationarymodels.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5 6

Maxwell-BoltzmannGaussian

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 8 / 23

Foresight of the models

Single-Field Models

The primordial fluctuation distribution is GAUSSIAN.

Multi-Fields Models

The primordial fluctuation distribution is NON-GAUSSIAN.

The amounts of non-Gaussianity depends on the model.

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 9 / 23

Primordial non-Gaussianity

Primordial Non-Gaussianity in the gravitational field Φ(x) is parametrizedby the so-called Bardeen potential:

Φ(x) = ΦL(x) + fNL(ΦL(x)2 − 〈ΦL(x)2〉) + gNL[ΦL(x)3]

Gaussian component

non-Gaussian component

AnisotropiesNG

PrimordialNG

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 10 / 23

Primordial non-Gaussianity

Primordial Non-Gaussianity in the gravitational field Φ(x) is parametrizedby the so-called Bardeen potential:

Φ(x) = ΦL(x) + fNL(ΦL(x)2 − 〈ΦL(x)2〉) + gNL[ΦL(x)3]

Gaussian component

non-Gaussian component

AnisotropiesNG

PrimordialNG

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 11 / 23

Primordial non-Gaussianity

Primordial Non-Gaussianity in the gravitational field Φ(x) is parametrizedby the so-called Bardeen potential:

Φ(x) = ΦL(x) + fNL(ΦL(x)2 − 〈ΦL(x)2〉) + gNL[ΦL(x)3]

Gaussian component

non-Gaussian component

AnisotropiesNG

PrimordialNG

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 11 / 23

Non-Gaussianity: Geometrical Interpretation

fNL3rd-order:Skewness

gNL4th-order:Kurtosis

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 12 / 23

fNL: Skewness

Skewness: asymmetry of the distribution.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Right side of MB

Left side of MB

fNL < 0

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 13 / 23

gNL: Kurtosis

Kurtosis: height of the tails of the distribution.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Left side of MB, gNL > 0

Right side of MB, gNL < 0

Gaussian distribution

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 14 / 23

Gaussian Distribution

The Gaussian distribution is fully described by the lowest moments: mean(µ) and variance (σ):

G (x) = 1√2πσ

e−(x−µ)2

2σ2

Skewness = Kurtosis = 0 −→ fNL = gNL = 0

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 15 / 23

Gaussian Distribution

The Gaussian distribution is fully described by the lowest moments: mean(µ) and variance (σ):

G (x) = 1√2πσ

e−(x−µ)2

2σ2

Skewness = Kurtosis = 0 −→ fNL = gNL = 0

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 15 / 23

Evaluation of fNL and gNL

In order to evaluate fNL and gNL we use the high-order correlationfunctions. In particular their harmonic counterpart.

3-point correlation function (Fourier space):

〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3δ(3)(k1 + k2 + k3)BΦ(k1, k2, k3),

BispectrumBΦ(k1, k2, k3) = fNLF (k1, k2, k3)

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 16 / 23

Evaluation of fNL and gNL

In order to evaluate fNL and gNL we use the high-order correlationfunctions. In particular their harmonic counterpart.

3-point correlation function (Fourier space):

〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3δ(3)(k1 + k2 + k3)BΦ(k1, k2, k3),

BispectrumBΦ(k1, k2, k3) = fNLF (k1, k2, k3)

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 16 / 23

Evaluation of fNL and gNL

4-point correlation function (Fourier space):

〈Φ(k1)Φ(k2)Φ(k3)Φ(k4)〉 =

= (2π)4δ(4)(k1 + k2 + k3 + k4)TΦ(k1, k2, k3, k4),

Trispectrum

TΦ(k1, k2, k3, k4) = gNL[PΦ(k1)PΦ(k2)PΦ(k3) + (3perm.)]

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 17 / 23

State of the Art

Optimal Estimator : Unbiased estimator with the lowest variance amongthe other ones.

Planck Collaboration (2013):

fNL = 2.7 ± 5.8 (1σ)

Single-field models are preferred.

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 18 / 23

State of the Art

Sekiguchi and Sugiyama, WMAP 9yrs (2013)

gNL = (−3.3 ± 2.2) × 105 (1σ)

gNL doesn’t have any statistical significance!

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 19 / 23

State of the Art

Sekiguchi and Sugiyama, WMAP 9yrs (2013)

gNL = (−3.3 ± 2.2) × 105 (1σ)

gNL doesn’t have any statistical significance!

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 19 / 23

Spherical Needlet System

I propose an optimal estimator using the Spherical Needlets system:

ψjk(x) :=√λjk∑l

b

(l

B j

) l∑m=−l

Ylm(ξjk)Y lm(x)

It is possible to write the Trispectrum Estimator using the Needletcoefficients.

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 20 / 23

Needlet Coefficients

Reconstruction Formula:

T (x) =∑j ,k

βjkψjk(x)

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 21 / 23

Needlet Coefficients

Reconstruction Formula:

T (x) =∑j ,k

βjkψjk(x)

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 21 / 23

State of the art and Future perspective

Spherical Needlet Estimator:

J j1j2j3j4=

√4π

Nj4

∑k4

βj1k4βj2k4βj3k4βj4k4

σj1σj2σj3σj4+ C (βj1k4 , βj2k4 , βj3k4 , βj4k4)

Application on CMB temperature data;

Application on CMB polarization data;

Application to other dataset, like LSS data;

The main goal is to evaluate gNL with a precision never achieved before.

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 22 / 23

Thanks for your attention.

Antonino Troja (UniMi) CMB non-Gaussianity November 17, 2014 23 / 23