cinética 2 ordem

Embed Size (px)

Citation preview

  • 8/16/2019 cinética 2 ordem

    1/5

    Solid–liquid extraction of phycocyanin from  Spirulina platensis: Kinetic

    modeling of influential factors

    Chia-Hung Su a,⇑, Chang-Sung Liu a, Pei-Cheng Yang a, Kun-Siang Syu a, Chuang-Chun Chiuh b

    a Graduate School of Biochemical Engineering, Ming-Chi University of Technology, Taipei 24301, Taiwanb Far East Bio-Tec. Co., Ltd., Taipei 11503, Taiwan

    a r t i c l e i n f o

     Article history:

    Received 3 July 2013

    Received in revised form 10 December 2013

    Accepted 21 December 2013

    Available online 3 January 2014

    Keywords:

    Phycocyanin

    Spirulina platensis

    Solid–liquid extraction

    Kinetics

    Modeling

    a b s t r a c t

    To effectively extract value-added phycocyanin from Spirulina platensis, the effects of processing param-

    eters (pH and temperature) on extraction performance and global kinetics were systematically studied.

    The extraction kinetics was investigated by varying pH levels (5–8) and temperatures (30–60 C). An

    empirical kinetic model incorporating the aforementioned factors was developed. A good agreement

    between the experimental and fitted data was obtained, which indicated that the extraction process fol-

    lowed second-order kinetics. Furthermore, the model parameters (equilibrium concentration, extraction

    rate constants, and initial rates of extraction) were calculated and formulated as a function of the oper-

    ating factors. The activation energy of the extraction was 67.1 kJ mol1, indicating that the process was

    endothermic. The predictions obtained from the developed model were compared with the experimental

    data under the same operating conditions. The predicted and experimental data were consistent, indicat-

    ing the reliability of the model.

     2014 Elsevier B.V. All rights reserved.

    1. Introduction

    Cultivation of S pirulina   microalga is an effective process for

    obtaining several valuable biochemicals, such as polysaccharides

    [1],c-linolenicacid [2], b-carotene [3], chlorophyll a [4], and phyco-biliproteins  [5]. Phycobiliproteins, which are brightly colored pig-

    ments, function as a receiver of light for driving photosynthesis in

    the S pirulina microalga [6]. Microalgal phycobiliproteins are classi-

    fied into three major groups: phycoerythrin, allophycocyanin, and

    phycocyanin [6]. The predominant pigment in the phycobiliprotein

    family is phycocyanin [7]. Phycocyanin is commonly used as a nat-

    ural colorant in food and cosmetic industries because it is inher-

    ently blue [6]. Moreover, it can be incorporated into health foods

    because of its physiological properties, such as antioxidant, anti-

    inflammatory, and hepatoprotective activities   [8,9]. Because of these benefits, numerous researchers have focused on developing

    efficient processes for mass production of phycocyanin-producing

    strains   [10,11]   and extraction of phycocyanin from microalgae

    [5,12].

    Isolating phycocyanin from microalgae typically begins with

    solid–liquid extraction using aqueous solvents   [5]. In general,

    solvent type, extraction temperature, and solid–liquid ratio are

    influential factors in the extraction process  [5,7]. The response

    surface methodology has beenused to optimize these operating fac-

    tors for phycocyanin extraction   [5]; however, this empiricalapproach does not account for the mechanism governing the

    process [13]. Developing a kinetic model couplingthe operating fac-

    torson phycocyaninextractionis a solutionthat is crucialfor design-

    ing an efficientphycocyaninextraction process. However, a relevant

    kinetic model of phycocyanin extraction has not been developed.

    In this study, Spirulina platensis  was used as a source for phyco-

    cyanin. The effects of the operating factors (solvent pH and extrac-

    tion temperature) on the aqueous solid–liquid extraction of 

    phycocyanin from   S. platensis   were examined. Because a second-

    order kinetic model effectively depicts solid–liquid extraction

    processes [13–16], the kinetic model was used to determine corre-

    sponding kinetic parameters and predict the extraction process.

    Finally, the predicted phycocyanin concentrations were verified

    using actual experiments under the same conditions. This study isrequired before developing and performing a systematic process

    for phycocyanin extraction from S. platensis.

    2. Materials and methods

     2.1. Extraction procedure

    The lyophilized S. platensis was provided by Far East Bio-Tec Co.,

    Ltd. (Taipei, Taiwan). The dried microalgae were ground to reduce

    the average particle size to less than 25 lm before examining theextraction process. The extraction was conducted by mixing 2.5 g

    of the ground biomass with 50 mL of sodium phosphate buffer

    1383-5866/$ - see front matter    2014 Elsevier B.V. All rights reserved.http://dx.doi.org/10.1016/j.seppur.2013.12.026

    ⇑ Corresponding author. Tel.: +886 2 29089899x4665; fax: +886 2 29083072.

    E-mail address: [email protected] (C.-H. Su).

    Separation and Purification Technology 123 (2014) 64–68

    Contents lists available at  ScienceDirect

    Separation and Purification Technology

    j o u r n a l h o m e p a g e :   w w w . e l s e v i e r . c o m / l o c a t e / s e p p u r

    http://dx.doi.org/10.1016/j.seppur.2013.12.026mailto:[email protected]://dx.doi.org/10.1016/j.seppur.2013.12.026http://www.sciencedirect.com/science/journal/13835866http://www.elsevier.com/locate/seppurhttp://www.elsevier.com/locate/seppurhttp://www.sciencedirect.com/science/journal/13835866http://dx.doi.org/10.1016/j.seppur.2013.12.026mailto:[email protected]://dx.doi.org/10.1016/j.seppur.2013.12.026http://crossmark.crossref.org/dialog/?doi=10.1016/j.seppur.2013.12.026&domain=pdf

  • 8/16/2019 cinética 2 ordem

    2/5

    solution (10 mM, pH 7.0) in a 125-mL stoppered conical flask

    equipped with a magnetic stirrer. The pH level of the buffer solu-

    tion was adjusted by mixing 10 mM KH2PO4   (pH 4.67) and

    10 mM K2HPO4   (pH 8.99) stock solutions. The various pH levels

    (5–8) and extraction temperatures (30–60 C) were examined in

    this experiment. The phycocyanin in the liquid extract was ana-

    lyzed using the method described in Section 2.3.

     2.2. Kinetic model

    The second-order rate law provides a satisfactory representa-

    tion of the solid–liquid extraction process [13–17]. Therefore, this

    mathematic model was used to depict the kinetics of phycocyanin

    extraction from S. platensis. The general second-order kinetic mod-

    el can be expressed as

    dC t dt   ¼ kðC e C t Þ

    2;   ð1Þ

    where   dC t dt 

      represents the extraction rate (g L 1 min1),   k   is the

    extraction rate constant (L g1 min1), C e  is the equilibrium concen-

    tration of phycocyanin (g L 1) in the extract, and C t  is the concentra-

    tion of phycocyanin (g L 1) in the suspension at a specific extraction

    time   t . The initial extraction rate defined as   h   when   t   and   C t approach 0 can be expressed as

    h ¼ kC 2e ;   ð2Þ

    To obtain the kinetic parameters (k  and C e), Eq. (1) was integrated

    under the initial and boundary conditions,   t  = 0 to   t   and  C t  = 0 to

    C t , as the following equation:

    C t  ¼  C 

    2ekt 

    1þ C ekt ;   ð3Þ

    The linear form derived from Eq. (3) is shown as Eq. (4).

    C t ¼  1

    kC 2

    e

    þ  t 

    C e;   ð4Þ

    Thus, k and C e  can be determined experimentally from the slope and

    intercept of a linear line by plotting t /C t  against t . After rearranging

    Eqs. (2) and (3),  C t  can be expressed as

    C t  ¼  t 

    ð1=hÞ þ ðt =C eÞ;   ð5Þ

    The Arrhenius equation was used to evaluate the effect of extraction

    temperature on the kinetic model, which is written as

    k ¼ k0eE aRT  ;   ð6Þ

    where k0  is the pre-exponential factor for extraction rate constant

    (L g1 min1),   E a   represents the activation energy of extraction

    (J mol1),   R   is the ideal gas constant (J mol1 K1), and   T   is the

    extraction temperature (K). The pre-exponential factor,  k0, and the

    activation energy, E a, can be determined using the natural logarithm

    of Eq. (6).

     2.3. Analysis

    The phycocyanin concentration during the extraction process

    was determined according to the procedure used by Chen et al.

    [4]. The sample withdrawn from the extraction broth was centri-

    fuged and the optical density of the supernatant was determined

    spectrophotometrically at 615 and 652 nm using an Ultrospec

    3100 pro spectrophotometer (GE Healthcare Bio-Sciences Corp.,

    USA). The phycocyanin concentration was estimated using Eq.  (7)

    [18].

    PC  ¼OD

    615 0:474 OD

    6525:34   ;   ð7Þ

    where PC   is the phycocyanin concentration (g L 1), and OD615  and

    OD652   are the optical density of the sample at 615 and 652 nm,

    respectively.

     2.4. Validity of model prediction

    The consistency between the predicted and experimental data

    was evaluated using the coefficient of determination (r 2), which

    is defined as

    r 2 ¼ 1

    Pni¼1ð yi ^ yiÞ

    2

    Pni¼1ð yi  yÞ

    2 ;   ð8Þ

    where n is the number of samples, yi is the actual experimental data

    of the ith sample, ^ yi  is the model-fitting data of the ith sample, and y

    is the mean value of all experimental data. The coefficient r 2 is nor-

    malized between 0 and 1, with a high  r 2 value indicating superior

    consistency between the experimental data and model fitting.

     2.5. Statistical analysis

    The data were analyzed by conducting a one-way analysis of 

    variance (ANOVA) or Fisher’s   F -test using Microcal Origin 6.0(Microcal Software, Inc., MA, USA) software. Statistical differences

    were established according to a probability threshold (P ) of 0.05.

    3. Results and discussion

     3.1. Effect of pH 

    The effect of pH on solid–liquid extraction is crucial because the

    solubility of bio-compounds and apparent kinetic constants are

    directly dependent on the pH variation   [13,19]. The extraction

    was performed with pH ranging from 5 to 8 at a temperature of 

    50 C. The pH range of 5–8 was selected because phycocyanin is

    unstable below pH 5 and above pH 8 [7]. The results (Fig. 1) show

    that a higher pH increased the extraction rate and equilibrium con-centration. However, a substantial decrease in the equilibrium con-

    centration occurred at pH 8. Protein denaturation may contribute

    to this result [7]. Because the maximal equilibrium concentration

    was obtained at pH 7, further experiments were performed at this

    level to examine other operating conditions.

     3.2. Effect of extraction temperature

    The extraction temperature varied from 30 to 60 C to evaluate

    its effect on the extraction efficiency of phycocyanin at a pH of 7.

    0 50 100 150 200 2500.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    2.4

       C   t

       (  g   L  -   1   )

    Time (min)

     pH 5

     pH 5.5

     pH 6

     pH 6.5

     pH 7

     pH 8

    Fig. 1.  Effect of solvent pH on phycocyanin extraction. The data points and solidlines represent the experimental results and model predictions, respectively.

    C.-H. Su et al. / Separation and Purification Technology 123 (2014) 64–68   65

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/16/2019 cinética 2 ordem

    3/5

    The evolution of the phycocyanin concentration for various tem-

    peratures is shown in Fig. 2. A faster rate was obtained with higher

    temperatures. This may be attributed to the increased diffusion

    coefficient of solutes at a higher temperature [17]. The figure also

    shows that the equilibrium concentration of phycocyanin de-

    creased slightly with increasing extraction temperature from 30

    to50 C. In general, charged proteins have aqueous solubilities that

    increase substantially with temperature   [20,21]. However, the

    slight decrease in the equilibrium concentration indicates that

    the phycocyanin was degraded by heat during the extraction pro-

    cess [22,23]. With further elevation of temperature to 60 C, the

    equilibrium concentration of phycocyanin reached only 0.4 g L 1

    in 4 h. This result is similar to those of previous studies on the

    thermal degradation kinetics of phycocyanin [22].

     3.3. Establishment of the kinetic model

    To establish the kinetic model, the model parameters (k, C e, and

    h) can be estimated using a linear equation, defined as Eq. (4). Fig. 3

    shows the correlation between  t /C t   and t   under all experimental

    conditions. A straight line is a clear indication that the proposed

    model is valid. Hence, the equilibrium concentration of phycocya-

    nin C e and the extraction rate constant k  can be calculated from the

    slope and intercept of each straight line, respectively.   Table 1

    shows the calculated model parameters for various extraction

    conditions.

    The relationship between the model parameters and pH varia-

    tion at 50 C is shown in Fig. 4. The ANOVA results indicated that

    the pH variation significantly (P  < 0.05) affected the model param-

    eters. The values of these parameters increased slightly with an in-

    crease in pH from 5 to 6. However, an obvious increase in those

    quantities was observed with further elevation of the pH to 7. This

    may be attributed to the fact that phycocyanin is negatively

    charged at a pH above its isoelectric point; consequently, the

    negatively charged protein is attracted by the aqueous solvent

    [7]. Because   k,   C e, and   h   were dependent on pH, the estimated

    values were used to fit the quadratic empirical equations (Eqs.(9)–(11)):

    kð pH Þ  ¼ 1:37 103 X 2 pH  1:32 10

    2 X  pH þ 4:51 102; r 2 ¼ 0:99;

    ð9Þ

    C eð pH Þ  ¼ 1:46 101 X 2 pH  1:49 X  pH þ 5:66; r 

    2 ¼ 0:99;   ð10Þ

    hð pH Þ  ¼ 1:98 102 X 2 pH  2:05 10

    1 X  pH þ 5:78 101; r 2 ¼ 0:99;

    ð11Þ

    where X  pH  represents the variation of the pH level. The goodness-of-

    fit of the equations was evaluated using the coefficient of determi-

    nation (r 2). The high values of  r 2 indicated that the correlations

    between the model parameters and pH variation are reliable.

    The evolution of concentration C t  as a function of pH can be ob-

    tained by substituting Eqs.  (10) and (11) into (5). The relationship

    is described as

    C t ð pH Þ¼  t 

    ð1=ð1:98102 X 2 pH 2:05101 X  pH þ5:7810

    1ÞÞþðt =ð1:46101 X 2 pH 1:49 X  pH þ5:66ÞÞ;

    ð12Þ

    The model can be used to predict the phycocyanin extraction under

    various pH levels at a specified time with an extraction temperature

    of 50 C.

    The effect of temperature on the model parameters at a pH of 7

    is shown in   Fig. 5. The ANOVA results indicated that the model

    parameters were significantly (P  < 0.05) affected by varying the

    temperatures from 30 C to 50 C. The temperature had an acceler-

    ative influence on the extraction rate constant k  and initial extrac-

    tion rate   h. However, a reverse trend was observed when the

    equilibrium concentration  C e  decreased with increasing tempera-

    ture. The following empirical equations (Eqs.  (13) and (14)) were

    developed to correlate temperature with the equilibrium concen-

    tration of phycocyanin and the initial extraction rate. The reliabil-

    ity of these equations has been proved using r 2.

    C eðT Þ  ¼ 2:6 103T 2 0:25T þ 8:29; r 2 ¼ 0:98;   ð13Þ

    hðT Þ  ¼ 1:14 104T 2 5:55 103T þ 1:03 101; r 2 ¼ 0:99;

    ð14Þ

    0 50 100 150 200 2500.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    2.4

       C   t

       (  g   L  -   1   )

    Time (min)

     30 °C

     35 °C

     40 °C

     45 °C

     50 °C

     60 °C

    Fig. 2.   Effect of temperature on phycocyanin extraction. The data points and solidlines represent the experimental results and model predictions, respectively.

    0 50 100 150 200 2500

    20

    40

    60

    80

    100

    120

    140

    160

     pH 5

     pH 5.5

     pH 6

     pH 6.5

     pH 7

       t   /   C   t

       (  m   i  n   L  g

      -   1   )

    Time (min)

    0 50 100 150 200 250

    Time (min)

    (A)

    0

    20

    40

    60

    80

    100

    120

     30oC

     35oC

     40oC

     45oC

     50oC

       t   /   C   t

       (  m   i  n   L

      g  -   1   )

    (B)

    Fig. 3.   Kinetic model to estimate the extraction rate constant and equilibrium

    concentration for various (A) pH levels, and (B) extraction temperatures. In these

    figures, the values of the abscissa and ordinate were obtained from the relation-

    ships t  and  t /C t .

    66   C.-H. Su et al. / Separation and Purification Technology 123 (2014) 64–68

  • 8/16/2019 cinética 2 ordem

    4/5

    The dependence of the rate constant  k  on the extraction tempera-

    ture can be described using the Arrhenius equation (Eq.  (6)). An

    Arrhenius-Van’t Hoff plot was used to determine the pre-exponen-

    tial factor and the activation energy of extraction. As shown in

    Fig. 6, the higher linear correlation coefficient (r 2 = 0.98) indicated

    that the Arrhenius model parameters,  k0 and E a, can be determined

    from the slope and intercept of the straight line, respectively. There-

    fore, the relationship of  k  and T  is written as

    kðT Þ  ¼ 1:47 109 exp

      67100

    8:314ðT þ 273:15Þ

    ; r 2 ¼ 0:98;   ð15Þ

    For the phycocyanin extraction process, the activation energy was

    67.1 kJ mol1

    , indicating that the extraction is an endothermicprocess [15].

    Using a similar derivation as that in Eq.   (12), substituting Eqs.(13) and (14) into (5) yields an equation describing the evolution

    of  C t  versus time and temperature:

    C t ðT Þ¼  t 

    ð1=ð1:14104T 25:55103T þ1:03101ÞÞþðt =2:6103T 20:25T þ8:29Þ

    ð16Þ

    This model can be used to predict the phycocyanin extraction under

    various temperatures at a specified time with a pH level of 7.

     3.4. Validity of the developed model

    Because all kinetic parameters were determined, the developed

    models (Eqs. (12) and (16)) were used for predicting phycocyanin

    extraction from   S. platensis   under diverse operating conditions,including various pH levels (5–7) and temperatures (30–50 C).

     Table 1

    Model parameters (k  and  C e) obtained for all tested conditions.

    Model parameters Solvent pH Temperature (C)

    5 5.5 6 6.5 7 30 35 40 45 50

    ka 1.33102 1.41102 1.49102 1.74102 1.98102 3.82103 6.2103 1.06102 1.41102 1.98 102

    C eb 1.84 1.89 1.93 2.14 2.36 3.14 2.81 2.44 2.39 2.36

    r 2 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99

    a Unit of extraction rate constant is L g1 min1.b Unit of saturation extraction capacity is g L 1.

    5.0 5.5 6.0 6.5 7.01.3

    1.4

    1.5

    1.6

    1.7

    1.8

    1.9

    2.0

       h  x   1   0   2

        (  g   L  -   1   m

       i  n  -   1   )

       C  e   (  g   L  -   1   )

       k  x   1   0   2

        (   L  g

      -   1   m

       i  n  -   1   )

    pH

    1.6

    1.8

    2.0

    2.2

    2.4

    0

    2

    4

    6

    8

    10

    12

    h

    Ce

    Fig. 4.  The effect of solvent pH on the extraction rate constant   k, equilibrium

    concentration  C e, and initial extraction rate  h   at 50 C. The solid lines represent

    prediction results of the empirical equations (Eqs. (9)–(11)).

    30 35 40 45 50

    0.4

    0.8

    1.2

    1.6

    2.0

       k  x   1   0   2

        (   L  g  -   1  

      m   i  n  -   1   )

    Temperature (°C)

    2.0

    2.2

    2.4

    2.6

    2.8

    3.0

    3.2

    3.4

       h  x   1   0   2

        (  g   L  -   1   m

       i  n  -   1   )

    0

    2

    4

    6

    8

    10

    12

    h

    Ce

       C  e   (  g   L  -   1   )

    Fig. 5.   The effect of extraction temperature on the extraction rate constant   k,

    equilibrium concentration  C e, and initial extraction rate  h  at a pH of 7. The solid

    lines represent prediction results of the empirical equations (Eqs.  (13)–(15)).

    3.10 3.15 3.20 3.25 3.30-6.0

    -5.5

    -5.0

    -4.5

    -4.0

    -3.5

       l  n   k

    Temperature reciprocal x103 (K-1)

    Fig. 6.  Arrhenius-Van’t Hoff plot for phycocyanin extraction in the temperature

    within a range of 30–50 C.

    0.0 0.5 1.0 1.5 2.0 2.50.0

    0.5

    1.0

    1.5

    2.0

    2.5

     The predictions from Eq.12, r 2= 0.99

    The predictions from Eq.16, r 2= 0.98

       A  c   t  u  a   l  c  o  n  c  e  n   t  r  a   t   i  o  n

       (  g   L  -   1   )

    Predicted concentration (g L-1

    )

    Fig. 7.  Correlation between the actual and predicted concentration of phycocyanin.

    C.-H. Su et al. / Separation and Purification Technology 123 (2014) 64–68   67

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/16/2019 cinética 2 ordem

    5/5

    The phycocyanin concentration obtained using Eqs.  (12) and (16)

    was compared with the experimental results under the same oper-

    ating conditions. As shown in Fig. 7, the predicted and experimen-

    tal data were consistent with coefficients of determination (r 2) of 

    0.98 and 0.99 for the extraction under diverse pH levels and tem-

    peratures, respectively. The results showed that the developed

    models are valid for the extraction system. Thus, the kinetic

    models can provide useful information on operation strategies

    and economic descriptions of the extraction process.

    4. Conclusions

    This study examined the effects of solvent pH and extraction

    temperature on the aqueous extraction of phycocyanin from

    S. platensis. The results showed that a higher pH increased the

    extraction rate and equilibrium concentration because the nega-

    tively charged phycocyanin is attracted by the aqueous solvent.

    For the temperature tests, the extraction rate increased with

    increased temperature, whereas the equilibrium concentration of 

    phycocyanin decreased with increased temperature. This indicated

    that phycocyanin was degraded by heat during the extraction pro-

    cess. A second-order kinetic model for depicting the extraction

    processes under diverse conditions was successfully developed.

    The activation energy of phycocyanin extraction was 67.1 kJ mol1,

    indicating that the extraction was an endothermic process. Finally,

    the developed models (Eqs.  (12) and (16)) were used for the pre-

    diction of phycocyanin concentration under various extraction

    conditions. The predicted values were consistent with the actual

    results, indicating their reliability.

    References

    [1]   G.G. Choi, M.S. Bae, C.Y. Ahn, H.M. Oh, Induction of axenic culture of 

    Arthrospira (Spirulina) platensis based on antibiotic sensitivity of 

    contaminating bacteria, Biotechnol. Lett. 30 (2008) 87–92.

    [2]   M.G. Sajilata, R.S. Singhal, M.Y. Kamat, Fractionation of lipids and purification

    of gamma-linolenic acid (GLA) from Spirulina platensis, Food Chem. 109

    (2008) 580–586.[3]  T. Gireesh, A. Jayadeep, K.N. Rajasekharan, V.P. Menon, M. Vairamany, G. Tang,

    P.P. Nair, P.R. Sudhakaran, Production of deuterated beta-carotene by

    metabolic labelling of Spirulina platensis, Biotechnol. Lett. 23 (2001) 447–449.

    [4]  H.B. Chen, J.Y. Wu, C.F. Wang, C.C. Fu, C.J. Shieh, C.I. Chen, C.Y. Wang, Y.C. Liu,

    Modeling on chlorophyll a and phycocyanin production by Spirulina platensis

    under various light-emitting diodes, Biochem. Eng. J. 53 (2010) 52–56.

    [5]  S.T. Silveira, J.F.M. Burkert, J.A.V. Costa, C.A.V. Burkert, S.J. Kalil, Optimization of 

    phycocyanin extraction from Spirulina platensis using factorial design,

    Bioresour. Technol. 98 (2007) 1629–1634.

    [6]   M.C. Santiago-Santos, T. Ponce-Noyola, R. Olvera-Ramirez, J. Ortega-Lopez, R.O.

    Canizares-Villanueva, Extraction and purification of phycocyanin from

    Calothrix sp, Process Biochem. 39 (2004) 2047–2052.

    [7]  G. Patil, K. Raghavarao, Aqueous two phase extraction for purification of C-

    phycocyanin, Biochem. Eng. J. 34 (2007) 156–164.

    [8]  V.B. Bhat, K.M. Madyastha, C-Phycocyanin: a potent peroxyl radical scavenger

    in vivo and in vitro, Biochem. Biophys. Res. Commun. 275 (2000) 20–25.

    [9]  M.C. Reddy, J. Subliashini, S.V.K. Mahipal, V.B. Bhat, P.S. Reddy, G. Kiranmai,K.M. Madyastha, P. Reddanna, C-Phycocyanin, a selective cyclooxygenase-2

    inhibitor, induces apoptosis in lipopolysaccharide-stimulated RAW 264.7

    macrophages, Biochem. Biophys. Res. Commun. 304 (2003) 385–392.

    [10]  M.G. de Morais, J.A.V. Costa, Carbon dioxide fixation by Chlorella kessleri, C-

    vulgaris, Scenedesmus obliquus and Spirulina sp cultivated in flasks and

    vertical tubular photobioreactors, Biotechnol. Lett. 29 (2007) 1349–1352.

    [11]   C.Y. Wang, C.C. Fu, Y.C. Liu, Effects of using light-emitting diodes on the

    cultivation of Spirulina platensis, Biochem. Eng. J. 37 (2007) 21–25.

    [12]  S.G. Yan, L.P. Zhu, H.N. Su, X.Y. Zhang, X.L. Chen, B.C. Zhou, Y.Z. Zhang, Single-

    step chromatography for simultaneous purification of C-phycocyanin and

    allophycocyanin with high purity and recovery from Spirulina (Arthrospira)

    platensis, J. Appl. Phycol. 23 (2011) 1–6.

    [13]   L. Rakotondramasy-Rabesiaka, J.L. Havet, C. Porte, H. Fauduet, Solid–liquid

    extraction of protopine from Fumaria officinalis L.-Kinetic modelling of 

    influential parameters, Ind. Crop. Prod. 29 (2009) 516–523.

    [14]   M.G. Bogdanov, I. Svinyarov, Ionic liquid-supported solid–liquid extraction of 

    bioactive alkaloids. II. Kinetics, modeling and mechanism of glaucine

    extraction from Glaucium flavum Cr. (Papaveraceae), Sep. Purif. Technol. 103

    (2013) 279–288.

    [15]   Y.S. Ho, H.A. Harouna-Oumarou, H. Fauduet, C. Porte, Kinetics and model

    building of leaching of water-soluble compounds of Tilia sapwood, Sep. Purif.

    Technol. 45 (2005) 169–173.

    [16]   L. Rakotondramasy-Rabesiaka, J.L. Havet, C. Porte, H. Fauduet, Solid–liquid

    extraction of protopine from Fumaria officinalis L. – analysis determination,

    kinetic reaction and model building, Sep. Purif. Technol. 54 (2007) 253–261.

    [17]  W.J. Qu, Z.L. Pan, H.L. Ma, Extraction modeling and activities of antioxidants

    from pomegranate marc, J. Food Eng. 99 (2010) 16–23.

    [18]  A. Bennett, L. Bogorad, Complementary chromatic adaptation in a filamentous

    blue-green alga, J. Cell Biol. 58 (1973) 419–435.

    [19]  L.F.M. Franco, P.D. Pessoa, On the solubility of proteins as a function of pH:

    Mathematical development and application, Fluid Phase Equilib. 306 (2011)

    242–250.

    [20]   D.H.G. Pelegrine, C.A. Gasparetto, Whey proteins solubility as function of 

    temperature and pH, Lwt-Food Sci. Technol. 38 (2005) 77–80.

    [21]  Y. Suzuki, E. Konda, H. Hondoh, K. Tamura, Effects of temperature, pressure,

    and pH on the solubility of triclinic lysozyme crystals, J. Cryst. Growth 318

    (2011) 1085–1088.[22]   F.S. Antelo, J.A.V. Costa, S.J. Kalil, Thermal degradation kinetics of the

    phycocyanin from Spirulina platensis, Biochem. Eng. J. 41 (2008) 43–47.

    [23]  R. Chaiklahan, N. Chirasuwan, B. Bunnag, Stability of phycocyanin extracted

    from Spirulina sp.: Influence of temperature, pH and preservatives, Process

    Biochem. 47 (2012) 659–664.

    68   C.-H. Su et al. / Separation and Purification Technology 123 (2014) 64–68

    http://refhub.elsevier.com/S1383-5866(13)00726-0/h0005http://refhub.elsevier.com/S1383-5866(13)00726-0/h0005http://refhub.elsevier.com/S1383-5866(13)00726-0/h0005http://refhub.elsevier.com/S1383-5866(13)00726-0/h0010http://refhub.elsevier.com/S1383-5866(13)00726-0/h0010http://refhub.elsevier.com/S1383-5866(13)00726-0/h0010http://refhub.elsevier.com/S1383-5866(13)00726-0/h0015http://refhub.elsevier.com/S1383-5866(13)00726-0/h0015http://refhub.elsevier.com/S1383-5866(13)00726-0/h0015http://refhub.elsevier.com/S1383-5866(13)00726-0/h0015http://refhub.elsevier.com/S1383-5866(13)00726-0/h0020http://refhub.elsevier.com/S1383-5866(13)00726-0/h0020http://refhub.elsevier.com/S1383-5866(13)00726-0/h0020http://refhub.elsevier.com/S1383-5866(13)00726-0/h0025http://refhub.elsevier.com/S1383-5866(13)00726-0/h0025http://refhub.elsevier.com/S1383-5866(13)00726-0/h0025http://refhub.elsevier.com/S1383-5866(13)00726-0/h0030http://refhub.elsevier.com/S1383-5866(13)00726-0/h0030http://refhub.elsevier.com/S1383-5866(13)00726-0/h0030http://refhub.elsevier.com/S1383-5866(13)00726-0/h0035http://refhub.elsevier.com/S1383-5866(13)00726-0/h0035http://refhub.elsevier.com/S1383-5866(13)00726-0/h0040http://refhub.elsevier.com/S1383-5866(13)00726-0/h0040http://refhub.elsevier.com/S1383-5866(13)00726-0/h0045http://refhub.elsevier.com/S1383-5866(13)00726-0/h0045http://refhub.elsevier.com/S1383-5866(13)00726-0/h0045http://refhub.elsevier.com/S1383-5866(13)00726-0/h0045http://refhub.elsevier.com/S1383-5866(13)00726-0/h0050http://refhub.elsevier.com/S1383-5866(13)00726-0/h0050http://refhub.elsevier.com/S1383-5866(13)00726-0/h0050http://refhub.elsevier.com/S1383-5866(13)00726-0/h0055http://refhub.elsevier.com/S1383-5866(13)00726-0/h0055http://refhub.elsevier.com/S1383-5866(13)00726-0/h0060http://refhub.elsevier.com/S1383-5866(13)00726-0/h0060http://refhub.elsevier.com/S1383-5866(13)00726-0/h0060http://refhub.elsevier.com/S1383-5866(13)00726-0/h0060http://refhub.elsevier.com/S1383-5866(13)00726-0/h0065http://refhub.elsevier.com/S1383-5866(13)00726-0/h0065http://refhub.elsevier.com/S1383-5866(13)00726-0/h0065http://refhub.elsevier.com/S1383-5866(13)00726-0/h0065http://refhub.elsevier.com/S1383-5866(13)00726-0/h0070http://refhub.elsevier.com/S1383-5866(13)00726-0/h0070http://refhub.elsevier.com/S1383-5866(13)00726-0/h0070http://refhub.elsevier.com/S1383-5866(13)00726-0/h0070http://refhub.elsevier.com/S1383-5866(13)00726-0/h0070http://refhub.elsevier.com/S1383-5866(13)00726-0/h0075http://refhub.elsevier.com/S1383-5866(13)00726-0/h0075http://refhub.elsevier.com/S1383-5866(13)00726-0/h0075http://refhub.elsevier.com/S1383-5866(13)00726-0/h0080http://refhub.elsevier.com/S1383-5866(13)00726-0/h0080http://refhub.elsevier.com/S1383-5866(13)00726-0/h0080http://refhub.elsevier.com/S1383-5866(13)00726-0/h0085http://refhub.elsevier.com/S1383-5866(13)00726-0/h0085http://refhub.elsevier.com/S1383-5866(13)00726-0/h0085http://refhub.elsevier.com/S1383-5866(13)00726-0/h0090http://refhub.elsevier.com/S1383-5866(13)00726-0/h0090http://refhub.elsevier.com/S1383-5866(13)00726-0/h0095http://refhub.elsevier.com/S1383-5866(13)00726-0/h0095http://refhub.elsevier.com/S1383-5866(13)00726-0/h0095http://refhub.elsevier.com/S1383-5866(13)00726-0/h0100http://refhub.elsevier.com/S1383-5866(13)00726-0/h0100http://refhub.elsevier.com/S1383-5866(13)00726-0/h0100http://refhub.elsevier.com/S1383-5866(13)00726-0/h0105http://refhub.elsevier.com/S1383-5866(13)00726-0/h0105http://refhub.elsevier.com/S1383-5866(13)00726-0/h0105http://refhub.elsevier.com/S1383-5866(13)00726-0/h0110http://refhub.elsevier.com/S1383-5866(13)00726-0/h0110http://refhub.elsevier.com/S1383-5866(13)00726-0/h0115http://refhub.elsevier.com/S1383-5866(13)00726-0/h0115http://refhub.elsevier.com/S1383-5866(13)00726-0/h0115http://refhub.elsevier.com/S1383-5866(13)00726-0/h0115http://refhub.elsevier.com/S1383-5866(13)00726-0/h0115http://refhub.elsevier.com/S1383-5866(13)00726-0/h0115http://refhub.elsevier.com/S1383-5866(13)00726-0/h0110http://refhub.elsevier.com/S1383-5866(13)00726-0/h0110http://refhub.elsevier.com/S1383-5866(13)00726-0/h0105http://refhub.elsevier.com/S1383-5866(13)00726-0/h0105http://refhub.elsevier.com/S1383-5866(13)00726-0/h0105http://refhub.elsevier.com/S1383-5866(13)00726-0/h0100http://refhub.elsevier.com/S1383-5866(13)00726-0/h0100http://refhub.elsevier.com/S1383-5866(13)00726-0/h0095http://refhub.elsevier.com/S1383-5866(13)00726-0/h0095http://refhub.elsevier.com/S1383-5866(13)00726-0/h0095http://refhub.elsevier.com/S1383-5866(13)00726-0/h0090http://refhub.elsevier.com/S1383-5866(13)00726-0/h0090http://refhub.elsevier.com/S1383-5866(13)00726-0/h0085http://refhub.elsevier.com/S1383-5866(13)00726-0/h0085http://refhub.elsevier.com/S1383-5866(13)00726-0/h0080http://refhub.elsevier.com/S1383-5866(13)00726-0/h0080http://refhub.elsevier.com/S1383-5866(13)00726-0/h0080http://refhub.elsevier.com/S1383-5866(13)00726-0/h0075http://refhub.elsevier.com/S1383-5866(13)00726-0/h0075http://refhub.elsevier.com/S1383-5866(13)00726-0/h0075http://refhub.elsevier.com/S1383-5866(13)00726-0/h0070http://refhub.elsevier.com/S1383-5866(13)00726-0/h0070http://refhub.elsevier.com/S1383-5866(13)00726-0/h0070http://refhub.elsevier.com/S1383-5866(13)00726-0/h0070http://refhub.elsevier.com/S1383-5866(13)00726-0/h0065http://refhub.elsevier.com/S1383-5866(13)00726-0/h0065http://refhub.elsevier.com/S1383-5866(13)00726-0/h0065http://refhub.elsevier.com/S1383-5866(13)00726-0/h0060http://refhub.elsevier.com/S1383-5866(13)00726-0/h0060http://refhub.elsevier.com/S1383-5866(13)00726-0/h0060http://refhub.elsevier.com/S1383-5866(13)00726-0/h0060http://refhub.elsevier.com/S1383-5866(13)00726-0/h0055http://refhub.elsevier.com/S1383-5866(13)00726-0/h0055http://refhub.elsevier.com/S1383-5866(13)00726-0/h0050http://refhub.elsevier.com/S1383-5866(13)00726-0/h0050http://refhub.elsevier.com/S1383-5866(13)00726-0/h0050http://refhub.elsevier.com/S1383-5866(13)00726-0/h0045http://refhub.elsevier.com/S1383-5866(13)00726-0/h0045http://refhub.elsevier.com/S1383-5866(13)00726-0/h0045http://refhub.elsevier.com/S1383-5866(13)00726-0/h0045http://refhub.elsevier.com/S1383-5866(13)00726-0/h0040http://refhub.elsevier.com/S1383-5866(13)00726-0/h0040http://refhub.elsevier.com/S1383-5866(13)00726-0/h0035http://refhub.elsevier.com/S1383-5866(13)00726-0/h0035http://refhub.elsevier.com/S1383-5866(13)00726-0/h0030http://refhub.elsevier.com/S1383-5866(13)00726-0/h0030http://refhub.elsevier.com/S1383-5866(13)00726-0/h0030http://refhub.elsevier.com/S1383-5866(13)00726-0/h0025http://refhub.elsevier.com/S1383-5866(13)00726-0/h0025http://refhub.elsevier.com/S1383-5866(13)00726-0/h0025http://refhub.elsevier.com/S1383-5866(13)00726-0/h0020http://refhub.elsevier.com/S1383-5866(13)00726-0/h0020http://refhub.elsevier.com/S1383-5866(13)00726-0/h0020http://refhub.elsevier.com/S1383-5866(13)00726-0/h0015http://refhub.elsevier.com/S1383-5866(13)00726-0/h0015http://refhub.elsevier.com/S1383-5866(13)00726-0/h0015http://refhub.elsevier.com/S1383-5866(13)00726-0/h0010http://refhub.elsevier.com/S1383-5866(13)00726-0/h0010http://refhub.elsevier.com/S1383-5866(13)00726-0/h0010http://refhub.elsevier.com/S1383-5866(13)00726-0/h0005http://refhub.elsevier.com/S1383-5866(13)00726-0/h0005http://refhub.elsevier.com/S1383-5866(13)00726-0/h0005