25
LINCE On Analog Power Consumption Christer Svensson Christer Svensson Linköping University Elliit 2010

Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

On Analog Power Consumption

Christer SvenssonChrister SvenssonLinköping University

SDR 2006Elliit 2010

Page 2: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

Outline

IntroductionBasics of analog power consumptionComparison to digitalFurther workFurther workApplication: ADCConclusions

SDR 20062

Elliit 2010

Page 3: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

Introduction

Analog power consumption is complex and badly understoodg p p p y

Text books and practice specialize on performance constraints rather than powerrather than power

This is an attempt to address analog design for low power and todefine lower bounds to analog power consumptiondefine lower bounds to analog power consumption

SDR 20063

Elliit 2010

Page 4: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

Basics of analog power consumption

Ideal samplerNoise voltage generated: nS

kTv 2

Isuppply Imax

Noise voltage generated:

Maximum sine voltage with supply voltage VFS:s

nS C

Cs

Gives dynamic range:

or capacitance needed:8

22 FSs

Vv kTCV

vvDR sFS

nS

s

8

2

2

2

8kTDRCor, capacitance needed: 2FS

S VC

To drive the capacitor we need a current of I=CsVFS2fs,

leading to a power consumption of DRkTfIVP sFSS 16

SDR 20064

Elliit 2010

Page 5: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

Basics of analog power consumption

DRkTfIVP sFSS 16Ideal sampler

This expression is valid for any switched capacitor circuit(Example a first order switched capacitor filter)(Example a first order switched capacitor filter) First described by Vittoz 1990.

N t th t thi i i i d d t f t h lNote that this expression is independent of technology

Note that this expression is independent of supply voltage(but assumed VFS=Vdd; Vdd is supply voltage)

SDR 20065

Elliit 2010

Page 6: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

Basics of analog power consumption

Ideal sampler - impact of technology

In the above derivation we used 2

8

FSS V

kTDRC

But Cs can not be made smaller than the smallest capacitance ofthe actual technology, Cmin.

FSV

So actually we should use C=max(Cs, Cmin) in power estimation.

In the following we use the input capacitance of a minimum inverter as Cmin. Cmin=4*Cgn. Cgn will scale with technology as the feature size(half feature size - half capacitance)

SDR 20066

Elliit 2010

( p )

Page 7: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

Basics of analog power consumption

Ideal sampler - impact of technology

Large DR - independent technology

pow

erSmaller DR - technology dependentSmaller feature size - less power

Log

p

Technology 1

T h l 2 ll f i

Note, scaled as (feature size)3

(PS~VFS2Cmin)

Log dynamic range, DR

Technology 2, smaller feature size( S FS min)

SDR 20067

Elliit 2010

Page 8: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

Basics of analog power consumption

The transistorBgkTi 42 Drain noise current: BgkTi mnD 4

Bg

kTvnG142 RL

Drain noise current:

Equivalent input noise:gm

BkTgVDR mFS

48

2

Dynamic range:gm

Required gm for dynamic range DR: DRV

BkTgFS

m 2

32

Required drain current:

Power consumption: (compare )

effmD VgI

DRV

BkTIVP eff32 DRkTfP 16

SDR 20068

Elliit 2010

Power consumption: (compare ) DRV

BkTIVPFS

ffFS 32 DRkTfP sS 16

Page 9: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

Basics of analog power consumption

The transistor – a note on Veff and

Veff definition: Veff=ID/gm defined from noise measurements

Bi l t i t V kT/ 1/2 ( h t i )Bipolar transistor: Veff=kT/q =1/2 (shot noise)

Long channel MOST: Veff=(VG-VT)/2 =2/3 (resistance noise)

Long channel MOST in subthreshold: Veff=mkT/q, m=1.2…1.5

Submicron MOST: Veff in transition region ~1.5-2

SDR 20069

Elliit 2010

Page 10: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

Basics of analog power consumption

The transistor – a note on Veff

Veff vs VG for a 90nm processa 350 nm processa 350 nm process

SDR 200610

Elliit 2010

Page 11: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

Basics of analog power consumption

The transistor – a note on Veff and speed.

Speed controlled by fT

fT=gm/2Cg No speed increase

SDR 200611

Elliit 2010

Page 12: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

Basics of analog power consumption

The transistor – a note on Veff and input swing

For a linear transistor behaviour we expect a limited drain currentvariation, say IDC ± Id = IDC ± IDC/2, with IDC=gmVeff.

We then have Vg=id/gm=Veff/2, or VFSin=2Vg=Veff

High linearity may require lower swing, VFSin < Veff

SDR 200612

Elliit 2010

Page 13: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

Basics of analog power consumption

The transistor – a note on Vdd

We assumed supply voltage = VFS

With higher supply V we define voltage efficiency =V /VWith higher supply, Vdd, we define voltage efficiency v=VFS/Vdd

Then power increases by 1/v

SDR 200613

Elliit 2010

Page 14: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

Basics of analog power consumption

The transistor – a note on differential circuits

RL RLRL

gmgm gm

vout

vnvn vnvinvin

vout

Same transistors, same bias, same signal per transistor

SE

n

indiff DR

vvDR 22

22

2

SEdiff PP 2 Same dynamic rangeSame power

SDR 200614

Elliit 2010

Page 15: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

Basics of analog power consumption

The transistor – a note on bias circuits

Rbias RLRL

Id Id

gm gm

voutin inIb

Current efficiency, I=2Id/(Ib+2Id). Note, Ib may need to be large for eg. low noise

SDR 200615

Elliit 2010

Note – bias circuit may be shared

Page 16: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

Basics of analog power consumption

The transistor – impact of technology

Regarding minimum gm.We can always reduce gm to adapt to DR by reducing VG. BUT this leads to small V which may limit speed or input swingBUT this leads to small Veff, which may limit speed or input swingMaybe we will have gmmin and IDCmin.

P ti l t V /VPower proportional to Veff/VFS

Classical CMOS, this relation was kept constantVFS (Vdd), VG and VT scaled with process scalingVFS (Vdd), VG and VT scaled with process scalingSubmicron CMOS, Veff is reduced very slowly.So power may increase with reduced supply voltage! (Annema et. al.)

SDR 200616

Elliit 2010

Page 17: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

Basics of analog power consumption

The transistor – a conclusion

A transistor amplifier (single ended or differential) uses power:

DRV

BkTIVP eff32

This is constrained by:

DRV

BkTIVPFS

effFS 32

Increased by1/v for VFS<VddIncreased by 1/i for extra currents (eg. bias)V must be large enough for transistor speed (f =g /2C large enough)Veff must be large enough for transistor speed (fT gm/2Cg large enough)Veff must exceed input swing, VFSin, related to linearity requirementsTechnology dependence at low DR - complex

SDR 200617

Elliit 2010

Page 18: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

Comparison to digital

Comparison to analog

Consider a single pole filter / 1-tap FIR filter

effV 2Analog, use transistor formula:(with DR=3●22n/2; B=fs/2)

ns

FS

effa f

VV

kTP 2224

Digital. Need 1 m-coefficient, n-bit multiplier plus 1 n-bit adderMultiplier uses m adders; 1 adder use n FAs (full adders); each FAuses equivalent 9 inverters ie C=9C i Totally 9(m+1)nC iuses equivalent 9 inverters, ie. C 9Cmin. Totally 9(m+1)nCmin,With m=6 we have 63nCmin. 2

min6321

ddcd VnCfP

SDR 200618

Elliit 2010

Page 19: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

Comparison to digital

Comparison to analog

fs=20MHz=1.5V 0 1V

digital 350nmVeff=0.1VFS

90nm: Vdd=1V ower

, W digital 90nm

Cmin=1fF=0.1

P analog

350nm Vdd=3VCmin=3fF=0.1 n, bits

SDR 200619

Elliit 2010

0.1 n, bits

Page 20: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

Comparison to digital

Comparison to analog

Analog preferred for low DR

Digital preferred for large DRdigital 350nm

Digital preferred for large DR

Digital improved by scalingow

er, W digital 90nm

P analog

n, bits

SDR 200620

Elliit 2010

n, bits

Page 21: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

Further work

Matching may require large C - increased power

Linearity may require smaller VFS – increased powerLinearity may require smaller VFS increased power

RF circuits can utilize passive matching – may decrease power

Power amplifiers need other goals – high efficiency

SDR 200621

Elliit 2010

Page 22: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

Applications: ADC

Plot of minimum ADCf tpower for two processes

“(27)” this theory pipelined ADC“(29)” theory flash ADC(29) , theory flash ADC

Two processes, 90nm and 350nm(V =1V V =100mV C =1fF(Vdd=1V, Veff=100mV, Cmin=1fF,Vdd=3V, Veff=300mV, Cmin=3fF)

Triangles, experimental pipelinedCircles, experimental flash

SDR 200622

Elliit 2010

Page 23: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

Applications: ADC

Note1:

High resolution, noise limitedLow resolution, process limited

Note2:

High resolution, experimental approaches theory (10x difference)

Low resolution, larger discrepance(larger development potential)

SDR 200623

Elliit 2010

Page 24: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

ConclusionsConclusions

P ti i l t b dd dPower consumption in analog parts can be addressed

Smart choices of architecture, circuit topology, and parameterscan save power

For large dynamic range, digital often use less powerg y g g pMore so in scaled technologiesMove functions to digitalPerform digital correction of analog parts to save analog powerPerform digital correction of analog parts to save analog power

SDR 200624

SDR 2008Elliit 2010

Page 25: Christer SvenssonChrister Svensson Linköping University analog power conumption.pdf · Nyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518,

LINCE

ReferencesReferencesE.A. Vittoz, “Future of Analog in the VLSI Environment”, Proc. ISCAS´90, p. 1372-1375, 1990.

E. A. Vittoz, “Low Power Design: Ways to Approach the Limits”, ISSCC 1994, Digest of technical papers, p. 14-18, 1994.

C. C. Enz and E. A. Vittoz, “CMOS Low-Power Analog Circuit Design”, in Designing Low Power Digital Systems, Emerging Technologies, p 79-133, Atlanta 1996.

A.-J. Annema, B. Nauta, R. van Langevelde and H. Tuinhout, “Analog Circuits in Ultra-Deep-Submicron CMOS”, JSSC, vol. 40, p. 132-143, January 2005.

T S d t ö B M d C S “P Di i ti B d f Hi h S dT. Sundström, B. Murmann and C. Svensson, “Power Dissipation Bounds for High-SpeedNyquist Analog-to-Digital Converters”, IEEE Trans. Circuits ad Systems, vol. 56, pp. 509-518, March 2009.

C S d J Wik “P ti f l i it t t i l” A l I t t d Ci itC. Svensson and J. Wikner, “Power consumption of analog circuits: a tutorial”, Analog Integrated Circuits and Signal processing, vol. 65, issue 2, pp. 171-184, October 2010.

SDR 200625

SDR 2008Elliit 2010