Chernov ISSCG 14

Embed Size (px)

Citation preview

  • 8/13/2019 Chernov ISSCG 14

    1/42

    [email protected]

    Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551

    Thiswork

    performed

    under

    the

    auspices

    of

    the

    U.S.

    Department

    of

    Energy

    by

    LawrenceLivermoreNationalLaboratoryunderContractDEAC5207NA27344

    Crystal Growth andCrystal Growing

    Santander Spain, July 20-24, 2009

    Lawrence Livermore National Laboratory

    SurfacePhenomena

    and

    Parameters

    ofCrystalGrowth:SimpleBasics

    ISSCG14, DailanChina,August172010

    LLNL-PRES-445231

  • 8/13/2019 Chernov ISSCG 14

    2/42

    Outline Interface:SmoothversusRoughState

    Nucleation

    GrowthKinetics:

    SmoothInterface

    RoughInterface

    Growthmodes

    and

    as

    grown

    defects

  • 8/13/2019 Chernov ISSCG 14

    3/42

    Bibliography

    Monographs A.A.Chernov. CrystallizationProcesses. ModernCrystallographyIII.

    SpringerSer.SolidState,vol36,1984(basicmolecularandmacroscopicphenomena)

    F.Rozenberger.FundamentalsofCrystalGrowth. Springer,1976(phase

    diagrams,transport,

    convection)

    A.Pimpinelli,J.Villain. PhysicsofCrystalGrowth.CambridgeUnivPress,1998(generalphysicalapproach)

    K.A.Jackson.KineticProcesses.CrystalGrowth,Diffusion,andPhaseTransitioninMaterials. WileyVCH,Weinheim,2004

    J.W.Mullin.Crystallization.

    Butterworths,

    2001

    (4

    dedition)

    (growth

    from

    solution,industrialcrystallization)

    D.Kashciev. Nucleation.BasicTheoryWithApplications.Butterworth/Heinemann,2000

    I.Gutzov,J.Schmelzer.TheVitreousState. Thermodynamics,Structure,Rheology,

    and

    Crystallization.

    Springer,

    1995

    I.Markov. CrystalGrowthforBeginners.WorldScientific,1996

    J.A.Venables.SurfaceandThinFilmProcesses.CambridgeUnivPress,2000

  • 8/13/2019 Chernov ISSCG 14

    4/42

    J.N.Israelachvili.Intermolecularandsurfaceforces.Academicpress,1992

    A.Zangwill.PhysicsatSurfaces. CambridgeUnivPress.1988

    MonograpicReviewes

    CurrentTopicsidMaterialsScience. Ed.E.Kaldis.NorthHolland,Vols110,1976

    1982.

    Crystals.Growth.Properties.Applications.Ed.H.C.Freihardt.Springer,Vols113,19781991.

    HandbookofCrystalGrowth.EdD.T.J.Hurle,vols1A,B,2A,B,3A,B.NorthHolland,199394

    SolidsFar

    From

    Equilibrium.

    Ed

    C.Godreche.

    Cambridge

    Univ

    press,

    1992

    BulkCrystalGrowthofElectronic,OpticalandOptoelectronicMaterials.Ed.P.Capper.J.Wiley&Sons,2005

  • 8/13/2019 Chernov ISSCG 14

    5/42

    InternationalSummerSchoolsonCrystalGrowth

    Crystal Growth AnIntroduction. EdP.Hartman.NorthHolland

    1973

    CrystalgrowthandCharacterization. Ed.R.Ueda,J.B.Mullin.North

    Holland.1974

    CrystalgrowthofElectronicMaterials.Ed. E.Kaldis.NorthHolland,

    1985

    ScienceandTechnologyofCrystalGrowth. Ed.J.P.vanderEerden,

    O.S.L.Bruinsma.

    Kluwer

    1995TheoreticalandTechnologicalAspectsofCrystalGrowth. Ed.

    R.Fornari,C.Paorichi. TransTechPublications1998

    AdvancesinCrystalGrowthResearch. Ed.K.Sato,Y.Furukawa,

    K.Nakajima. Elsevier,2001

    CrystalGrowth

    From

    Fundamentals

    to

    Technology.

    Ed.

    G.Muller,

    J.J.Metois,P.Rudolf. Elsevier2004

  • 8/13/2019 Chernov ISSCG 14

    6/42

    Smooth and Rough Interface

    cubicle approximation

    H.J.Leamy,G.Gilmer, K.A.Jackson. In: Surfaces of Materials vol 1 p.121 (1975)

    /2kT

  • 8/13/2019 Chernov ISSCG 14

    7/42

    Non-Kossel crystalwi

    i = 3

    31

    2

    w

    w+

    b

    c

    w-

    Kossel CrystalKink

    positions of

    a molecule

    InterfaceGeometry. KinkPosition.

    Smooth interface

  • 8/13/2019 Chernov ISSCG 14

    8/42

  • 8/13/2019 Chernov ISSCG 14

    9/42

    S.Toshev,inCrystalgrowthAnIntoduction,EdP.Hartman,NH,1973p.1

    m=NA2/3 molar

    surface

    free

    energy

    cal/gatom

    Enthalpyofmelting,H, cal/gatom

    Slope=0.30.5

    Fromhomogeneousnucleationinmelts(D.Turnbull):

    Interfaceenergy: SL /22/3 h/62/30.17h/2/3

    LVLSLVSLSV 3/23/2 )/(13.1)/(13.1

    Empirical rule for the crystal melt surface energy

  • 8/13/2019 Chernov ISSCG 14

    10/42

    SurfaceReconstruction,

    Si

    (001)

    Surface energy, Si, crystal vacuum: /22/3 2,600 erg/cm2, saturation oftwo bonds releases 1,000 erg/cm2 (40%) , thus 1,600 erg/cm2.

    Experiment, computations: 1,490 1,623 erg/cm2.

    M.Lagally et alTypically, no reconstruction in condensed surrounding or in adsorbing gases.

  • 8/13/2019 Chernov ISSCG 14

    11/42

    Chemically Complex Solutions: both h < 0 and h > 0.

    Melting and evaporation always require heat supply.

    Dissolution:Na2SO4 in water generatesh = 0.28kcal/mol (= 1.9.10

    -14erg per molecule)

    Na2SO4.10H2O requires h = 18.7kcal/mol.

    Mn(NO3)2 generatesh = 12.7kcal/mol,

    Mn(NO3)2.7H2O requires h = 6.1kcal/mol.

    MgI2, K2CO3, CaBr2 generates 50.2, 6.9, 26.3kcal/mol

    The reason hydration (solvation) of ions.

    Hydration enthalpy, (ion-dipole electrostatic attraction) x (N of H2O molecules)

    Experiment: Na+ 101 kcal/mol, Ca2+ 386 kcal/mol,

    SO42- 265 kcal/mol, NO3 74 kcal/mol

    Nafor1155.9.225.).(

    2 mol

    kcal

    mol

    kcal

    r

    elZe

  • 8/13/2019 Chernov ISSCG 14

    12/42

    TTm

    uL

    uS

    sLsS

    Melt

    Solid

    T

    uL

    uS

    Liquid,C2>C1

    C1 C2

    T2T1

    Liquid,C2>C1

    C1C2

    uL1

    uL2

    uS

    TT1T2

    Solutions retrograde solubility

    Regular melting

    Regular solubility Retrograde solubility

  • 8/13/2019 Chernov ISSCG 14

    13/42

    /2kT -0.272 lnCe (mol/m3) + 2.82.

  • 8/13/2019 Chernov ISSCG 14

    14/42

    Step meandering fluctuations by attachments -detachments

    2

  • 8/13/2019 Chernov ISSCG 14

    15/42

    ( )

    Roughening transition: Gstep = UstepTSstep = 0

    kTw

    e

  • 8/13/2019 Chernov ISSCG 14

    16/42

    Roughening transition viewed by Monte Carlo simulation

    meandering rises as /2kT decreases

    H.J.Leamy,G.Gilmer, K.A.Jackson in Surfaces of Materials vol 1 p.121 (1975)

    /2kT =

  • 8/13/2019 Chernov ISSCG 14

    17/42

  • 8/13/2019 Chernov ISSCG 14

    18/42

    4He Crystal in its melt

    1.4K

    1K

    0.4K

    0.1K

    S.Balibar, H.Alles, A.Ya. Parshin.

    Rev Mod. Phys. 77(2005)317-370

  • 8/13/2019 Chernov ISSCG 14

    19/42

    KH2PO4, KDP CaCO3, Calcite Lysozyme

    Step fluctuation viewed by AFM: meanderingincreases together with solubility and decreasing step energy

    J.J.DeYoreo, L.N.Rashkovich, R Friddle

  • 8/13/2019 Chernov ISSCG 14

    20/42

    Nucleation:

    3Dimensional,

    2Dimensional

  • 8/13/2019 Chernov ISSCG 14

    21/42

    Critical

    radius:

    G

    /r

    =

    0:

    rc=

    2/Gc=(16/3)

    23/2 3Dimensions,sphere

    Nucleationis

    solids

    elastic

    stress:

    G=(4r3/3)[9(1)(P)2/16E]+4r2Ifelasticstressissignificanttheequilibriumshapeisaflatdisc

    orablade

    Nucleation rate: J (1/cm3s) = Bexp(- Gc/kT)Nucleation work is minimal for equilibrium shape. Sphere:

    G = - (4r3/3) + 4r2

    r

    srf

    3D Homogeneous Nucleation

    M -S = kTlnC/Ce - solution = ST = H(T/T) - melt

    G

    rc=2/

    Gc

    Classical

    Quantum

  • 8/13/2019 Chernov ISSCG 14

    22/42

    Pre-exponent, B

    Homogeneous nucleation:B = 4rc2an2exp(E/kT)Z= 4rc2n2Z,

    Zeldovich factor: = - (1/nc)(2G(n)/n2)nc,

    Z = (/2kT)1/2 = (1/nc)(Gc/3kT)1/2~ 10-2

    Heterogeneous nucleation .

    Equilibrium shape on a substrate is a part of the free equilibrium shapebecause of the Gibbs-Thomson law:

    Estimated B:

    vapor B ~ 10281/cm3s; melt B ~1035 1038 1/cm3s, solution B ~ 1027 1/cm3s

    Ghet = Gc/

    h

    L

    h/L = /2

    hc = 2/

    + s -is

    i

  • 8/13/2019 Chernov ISSCG 14

    23/42

    Non steady state nucleation - time lag

    G = - n + bn2/3

    nc = (32/3)23/()3

    n

    Gc

    Number of nuclei

    time

    0

    n

    0 1 2 3 .

    N = (Nucleation rate J).Volume.t

    Diffusion along the n-axis:

    D* = +

    + -

    Time to reach maximum of the

    nucleation barrier:

    ~ nc2/D*

    (Nucleation Rate J).Volume

  • 8/13/2019 Chernov ISSCG 14

    24/42

    G

    rc= /

    r

    Gc

    2D Nucleation

    G = - (r2h/) + 2rh

    rc= /

    Gc = h2

    /

    New atomic layer, one atomic size or lattice

    spacing high, h:

    Homogeneous 2D nucleation rate:

    J(1/cm2s) = 2rcanexp(-E/kT)nZexp(-Gc/kT) = 2rcn2exp(-Gc/kT)

    Heterogeneous 2D nucleation rate: n2 nn*, Gc Gc*

    rc+a

    rc

  • 8/13/2019 Chernov ISSCG 14

    25/42

    Growth Kinetics

    Smooth Interface Layer-byLayer GrowthGeneration of steps:

    3D nucleationScrew dislocation

  • 8/13/2019 Chernov ISSCG 14

    26/42

    Nucleation rate, J (nuclei/cm2s = 1/cm2s)

    Step expansion rate, v cm/s

    Low nucleation rate, small face of the area S: R = JSh

    High nucleation rate, large area S: R = h(v2J/3)1/3

    h

    R rate of the face propagation

    SActivenucleation site

    v

    2 Dimensional nucleation

  • 8/13/2019 Chernov ISSCG 14

    27/42

    M = 14,000 Da, effective

    molecular diameter ~ 2.5nm

    2D nucleation on lysozyme

  • 8/13/2019 Chernov ISSCG 14

    28/42

    Step Sources: Screw Dislocations

    D

    R = pv=hv/

    h/=p

    Face growth rate R:

  • 8/13/2019 Chernov ISSCG 14

    29/42

    (0001) SiC

    St P ti Ferritin M = 450 000 Da spheres 13nm

  • 8/13/2019 Chernov ISSCG 14

    30/42

    P.G.Vekilov et al

    Step Propagation High Kink Density.

    Ferritin, M = 450,000 Da, spheres 13nm,

    FCC lattice.

    Supply of species to steps and incorporation

    into kinks.

    1. Surface/at-surface diffusion: vapor, MBE,CVD, etc

    2. Bulk diffusion: solution

    steps

    kinks

    (111)

  • 8/13/2019 Chernov ISSCG 14

    31/42

    Incorporation into a kink

    ,iu

    kTi

    p Ae

    1, sum over medium or solid, except top of the barrier,iu

    kTi

    i

    Ae u E

    ,ln)(lnlnlnT

    uAk

    kT

    uAAekppkpks ikT

    u

    iii

    i

    .,ln kT

    Tsu

    eAuAkTTs

    kT

    E

    kT

    u

    ikT

    uTsu

    i eepepii

    pressure,constantator,,

    :

    Activated complex includes:

    The still hydrated molecule/ion to be incorporated, the hydrated kink and their

    surrounding,

    or

    The molecule/atom/ion to be incorporated still bound within the species that havecarried it to the kink and the kink occupied by other species, if any.

    Probability of having the activated complex at the energy level ui :

  • 8/13/2019 Chernov ISSCG 14

    32/42

    Kinetic coefficient

    kT

    Eu

    k

    ekkTkT

    E

    kT

    E

    kT

    E

    M

    SMSSM

    ea

    CCeeaeeawwa

    ),()1()()(vk

    MeS uCkT ln

    aCw

    C

    CCe

    w

    wek

    e

    ekT /fluxexchangetheand

    Attachment and detachment frequencies of species to a kink:

    kT

    E

    kT

    E SM

    ewew

    ,

    kT

    uE

    kstestst

    M

    eaCC

    2 )/(),(v

    Kink velocity:

    Step velocity:

    Face velocity: )(vst est CCppR

  • 8/13/2019 Chernov ISSCG 14

    33/42

  • 8/13/2019 Chernov ISSCG 14

    34/42

    J.Q.Broughton,A.Bonisent,F.F.Abraham.J.ChemPhys74(1981)4029

    Delocalizedinterface

  • 8/13/2019 Chernov ISSCG 14

    35/42

    J.Q.Broughton,A.Bonisnt,F.F.Abraham.J.ChemPhys74(1981)4029

  • 8/13/2019 Chernov ISSCG 14

    36/42

    Meltnearsoidwall densitywaves

    Several atomic planes are

  • 8/13/2019 Chernov ISSCG 14

    37/42

    Severalatomicplanesare

    beingpacked

    simultaneouslyMikheev,Chernov,JCG112(1991)591

    Normalgrowthrate:

    V=bT

    =A(kT/m)

    1/2

    (T/T),

    A1; b=A(k/mT)1/2

    Lead:

    m=207.1.67.1024g,

    T=600K,

    (kT/m)1/2 =155m/s

    b=26

    cm/Sk

    Experiment:

    b=288cm/sK

    Rodway,Hunt

    JCG

    112(1991)554

  • 8/13/2019 Chernov ISSCG 14

    38/42

    Growth modes andas grown defects

  • 8/13/2019 Chernov ISSCG 14

    39/42

    See K.F.Hulme, J.B.Mullin. Phil Mag 22(1959)1286

    K = 0.5

    K = 4

  • 8/13/2019 Chernov ISSCG 14

    40/42

    Sectoriality and Striation

    Vicinal Sectoriality

  • 8/13/2019 Chernov ISSCG 14

    41/42

    Vicinal Sectoriality

  • 8/13/2019 Chernov ISSCG 14

    42/42

    Bottom Lines

    Crystal interface may be either smooth or rough

    at high or low energy, respectively.

    Surface energy may be estimated from phase transformation

    enthalpy for vapor and melt and from solubility for solution.

    Growth of a smooth interface is impossible without kinks atsteps and is thus slower than growth of the rough interface full

    of kinks or is fully disordered

    Growth rate of a smooth interface is controlled by stepgeneration by 2D nucleation or by screw dislocations and by

    incorporation of growth units at kinks.

    Growth mode controls crystal perfection