118

Chemical Processes and Use of CO2: 4th Status Conference

  • Upload
    lynhan

  • View
    243

  • Download
    12

Embed Size (px)

Citation preview

Page 1: Chemical Processes and Use of CO2: 4th Status Conference
Page 2: Chemical Processes and Use of CO2: 4th Status Conference

Published byFederal Ministry of Education and Research (BMBF) Resources and Sustainability Unit 53170 Bonn, Germany

OrdersIn writing to the publisher: Postfach 30 02 35 53182 Bonn, Germanyor by phone.: 01805 - 262 302fax: 01805 - 262 303 (0.14 euros / min. from German landline) [email protected] Internet: www.bmbf.de

EditingDLR Project Management Agency/ DECHEMA e.V., Frankfurt am Main

Design/LayoutPM-GrafikDesign, Peter Mück, Wächtersbach

Printed bySeltersdruck GmbH, Selters

RevisionMarch 2014

Image credits:© Front cover: Thinkstock; Page 3: Bundesregierung/Denzel

This publication is distributed free of charge by the German Federal Min-istry of Education and Research as part of its public relations work. It is not intended for commercial sale. Use by political parties, candidates or cam-paign workers for election campaign purposes is prohibited. This applies to German national, state and local parliamentary/council elections and European Parliament elections.

Misuse specifically includes distribution at election campaign events or political party information booths as well as the insertion, overprinting or affixing of information or advertising material which promotes political parties.

Distribution to third parties as election campaign publicity is also prohibited.

Irrespective of when, by what means and in what quantities it reaches the recipients and even if the timing bears no relationship to an upcoming election, this publication may not be used in a manner which could be construed as expressing support by the Federal Government for any political party.

Imprint

imprint

Page 3: Chemical Processes and Use of CO2: 4th Status Conference

BILDUNGFORSCHUNG

Technologies for Sustainability and Climate Protection - Chemical Processes and Use of CO24th Status Conference | www.chemieundco2.de

Page 4: Chemical Processes and Use of CO2: 4th Status Conference

2

Contents

contents

Preface 3Dr. Georg Schütte, State Secretary at the Ministry of Education and Research

CONFERENCE KEYNOTES

Chemical Processes and Use of CO2 4Lothar Mennicken Dr. sc., BMBF

Five Years down the Road – Expectations and Results from the Industry Perspective 6Prof. Michael Röper

Gas Innovation for the Future – Power to Gas 8Prof. Thomas Kolb, head of the DVGW Research Center at the University of Karlsruhe Engler Bunte Institute

Opportunities for Carbon Dioxide Utilization at Bayer 10Dr. Martina Peters, Bayer Technology Services GmbH

RESEARCH PROGRAM PROJECT EXTRACTS

Session A: Chemical Energy Storage 12

Session B: Energy-Efficient Processes 22

Session C: Use of CO2 51

EUROPEAN ACTIVITIES

SCOT – Smart Carbon Dioxide Transformation 69

National Contact Point (NCP): the Horizon 2020 European Research and Innovation Framework Program 71

M4CO2 – EU Project to Reduce the Cost of CO2 Capture to Below € 15/Tonne 73

CyclicCO2R: Production of Cyclic Carbonates from CO2 using Renewable Feedstocks 74

POSTERS 77

Page 5: Chemical Processes and Use of CO2: 4th Status Conference

3

Preface

preface

Energiewende, climate protection and resource efficiency – all together are major societal chal-lenges, we have to face. One key question in this regard is how chemical processes and tech-niques can be modified so thatcarbon dioxide emissions can be

reduced and the combustion “waste product” (CO2) can become a “feedstock” for the chemical industry.

Against this background, the Federal Ministry of Educa-tion and Research (BMBF) and Siemens organized a joint seminar on CO2 utilization potential at Petersberg/Bonn in 2009. International and national representatives from science and industry who attended the seminar discussed the potential for protecting the climate through CO2 mitigation and the use of CO2 as well as where that potential can be realized and what the as-sociated research needs are. Based on these results, that same year BMBF announced the call for “Technologies for Sustainability and Climate Protection – Chemical Processes and Use of CO2“ under the umbrella of the FONA (Research for Sustainable Development) pro-gram. Since then, BMBF has provided approximately 100 million euros in funding for technologies such as the use of carbon dioxide in basic chemicals, chemical storage of renewable energy and industrial energy effi-ciency in processes, which have high emissions reduc-tion potential. This makes Germany the world leader in this innovative future technology. Private industry is providing approximately 50 million euros in additional funding for these research projects.

Collaboration between industry, SMEs and research organizations on these projects promotes the develop-ment of young scientists and fully exploits the exper-tise of everyone involved.

At the 4th status conference of the “Technologies for Sustainability and Climate Protection – Chemical Pro-cesses and Use of CO2” funding program at Petersberg, the research results and questions relating to practical implementation of innovative research results will be presented and discussed. The first results show how R&D and innovation can contribute to strengthen Ger-many as a business location and to reduce successfully CO2 emissions from the chemical industry. By making intelligent use of CO2, we can also expand the resource base in the chemical industry and provide a long-term replacement for oil which is a limited resource.

Following the Energiewende and given the associated goals of saving energy along with the need to store renewable energy, for example through recycling of CO2 (Power-to-Gas, Power-to-Fuel), this BMBF research program also now has a high political priority.

CO2 is not just a “problem”. It could possibly help resolve the societal challenges associated with climate protection, the Energiewende and resource efficiency. It is our intention to continue providing funding for creative approaches to research and innovation which have a reasonable likelihood of success and make the expand-ing base of European and international expertise accessible.

Dr. Georg Schütte, State Secretary at the Ministry of Education and Research

Page 6: Chemical Processes and Use of CO2: 4th Status Conference

4

The 33 (consortium) projects with 157 research schemes included in the BMBF “Technologies for Sustainability and Climate Protection – Chemical Processes and Use of CO2“ program are broadly organized into three the-matic clusters:

1. Separation, activation and utilization of carbon dioxide (CO2) in basic organic chemicals and prod-ucts which have new properties

2. Development of chemical energy storage for renewable energy using CO2

3. Increased energy efficiency in the chemical in-dustry based on improved process, equipment and system technology in scenarios where significant potential exists to reduce CO2 emissions

Capture, activation and utilization of carbon dioxide put CO2 in a different perspective. Up until this point, CO2 has been viewed almost exclusively as a “harmful” greenhouse gas. Recent R&D results should help change that perception. Based on our current understanding, utilization or rather recycling of CO2 will only make a limited contribution to a reduction in anthropogenic CO2 emissions, but it has considerable potential for re-ducing resource consumption and providing a substi-tute for oil, particularly in the chemical industry. The goal of the ACER project, for example, is to develop a catalytic closed-loop process to produce sodium acrylate from CO2 and ethene. Sodium acrylate is a key feedstock used in industrial-scale production of super-absorbers (millions of tonnes a year). These products are used in items such as diapers.

Researchers working in the chemical energy stor-age cluster are looking at technologies for chemical storage of renewable energy. Two pathways, currently under investigation, are the production of hydrogen and methane (Power to Gas) as well as gasoline, diesel and kerosene (Power to Fuel, Power to Liquid). (Excess) electricity generated from renewable resources is used for water electrolysis to gain hydrogen. In a subsequent process, hydrogen is processed with CO2 to produce methane or liquid fuel.

In the “SEE – Storage of Electrical Energy from Renew-able Resources in the Natural Gas Grid” project for ex-ample, researchers are looking at all of the steps in the process sequence (electrolysis, methanation and con-ditioning to adjust the calorific value) used to produce methane (“synthetic natural gas”). The consortium, which is coordinated by the DVGW Research Center at the University of Karlsruhe, at the Engler Bunte In-stitute, consists of eight partners from science and in-dustry. EnBW Energie Baden-Württemberg, a potential applicant, is evaluating the economic viability and is looking at possible sites for demonstrators. An innova-tive technique for using highly efficient high-temper-ature steam electrolysis and renewable energy to con-vert CO2 and H2O into liquid fuel is being developed on the Sunfire project. Eight partners are involved in this project with sunfire GmbH acting as coordinator. The primary objective is to eventually ramp up production to pre-industrial scale. To promote development in this field of technology, BMBF is currently funding six consortium projects in this research program and two projects in other research programs (Entrepreneurial

Chemical Processes and C02 Utilization

conference keynotes

PD Dr. sc. Lothar Mennicken Bundesministerium für Bildung und Forschung (BMBF)724 Ressourcen und NachhaltigkeitHeinemannstraße 2 und 653170 BonnE-Mail: [email protected] www.bmbf.de

Page 7: Chemical Processes and Use of CO2: 4th Status Conference

5

Regions, Energy Storage). A flyer is available which con-tains further information.

A number of possible pathways exist for enhancing energy efficiency in industrial production. These enhancements have significant emissions mitigation potential and they are an important economic factor as well. Therefore, most of the projects in the program are in this cluster (14 consortium projects), spanning a broad range of research activities. The work is directed at mitigating CO2 emissions and reducing energy and resource consumption. Initial indications are that this cluster has the potential to make a very substantial contribution to goal achievement because chemical processes are often very energy intensive.

Solvents are used in many chemical processes and they are normally recovered using conventional energy-in-tensive thermal separation. Technology for producing membrane modules used in organophilic nanofiltra-tion was developed on the OPHINA (Organophilic Na-nofiltration for Energy-Efficient Processes) project. No heat is needed for the recovery process which is based on these membranes.

This BMBF research program makes a vital contribu-tion by helping find solutions for the global challenges of resource scarcity (oil), sustainable energy supply and climate change. Collaboration between the academic, research and industrial sectors is intended to accelerate the pace of technological innovation and promote the professional development of young scientists. Gradu-ates gain valuable initial experience working with in-dustry and companies have the opportunity to recruit university graduates.

These conference proceedings present all of the projects along with the latest results of the research program and outline the possible effects of real-world industrial application. The articles contain a wealth of very readable information on possible solutions to today’s pressing problems. No one knows what the fu-ture will bring. However, each one of us has an obliga-tion to work towards a more sustainable future, make more efficient use of our limited resources and avoid placing unnecessary stress on the environment. Thirty years from now, science historians or our grandchil-dren may look back and realize that what we are doing now set the stage for a change in direction.

conference keynotes

PD Dr. sc. Lothar Mennicken

Page 8: Chemical Processes and Use of CO2: 4th Status Conference

6

Five years have now passed since the announcement of the Sustainability and Climate Protection Technol-ogies - Chemical Processes and Use of CO2 funding program. This would appear to be an opportune time to look back at the genesis and implementation of the program, reflect on the successes and failures and think about where we go from here in light of current devel-opments.

Through its involvement in various DECHEMA and SusChemD committees, the chemical industry was involved in the development of the funding program and the content definition right from day one. The strategy papers “Energy Efficient Chemical Processes” and “CO2 Utilization” published in the autumn of 2007 along with the joint position paper “CO2 Utilization and Storage” published by VCI and DECHEMA in October 2008 should be mentioned in this context. The posi-tion paper “Evolution of the Resource Base”, which was jointly published by GDCh, DECHEMA, DGMK and VCI in January 2010, also identified CO2 utilization as a pos-sible option. The results of the CO2 Utilization Potential seminar, which was jointly organized in Bonn/Peters-berg by Siemens and BMBF in September 2009, played a role in a later phase of the funding program.

The original announcement was released two years after the collapse of Lehman Brothers at a time when energy and raw material prices were falling in the wake of the worldwide economic crisis. It was clear to every-one involved, however, that these events did not really call into question the need for sustainable technologies. Under the circumstances, the fact that the 3 deadlines for submission of project outlines were spread out over a 16 month period turned out to be highly beneficial. It encouraged the formation of large, cross-industry con-

sortiums, and it would appear to be a good approach to take on future funding programs, because significant potential for enhanced sustainability is lurking pre-cisely at the boundaries between resource and energy intensive branches of industry.

Most of the funding program projects have either now been completed or have reached an advanced stage, and the results were presented at this status confer-ence. Without jumping ahead, let it be said at this point that it is now much clearer which pathways to CO2 utilization are technically feasible. Whether develop-ment continues on to market introduction depends on whether the technology is economically viable compared to existing products. The hurdles tend to be lower for products which can be phased in step-by-step in existing applications such as foam without major investment.

The use of reduction agents such as hydrogen or methane for the conversion of CO2 to CO or syngas which in turn can then be converted to hydrocarbons, methanol or dimethyl ether looks very promising. It opens the door to high volume products which can be used as fuel or input materials for the chemical indus-try. This type of synthesis is also suitable for chemical energy storage. In order to be competitive in the global marketplace, the reduction agents used for all of the options would have to be available on a sustained basis at very low prices, which is unlikely to be the case in the foreseeable future.

The CRI methanol plant in Iceland, which has access to cheap electricity from a geothermal power station, does however demonstrate the basic feasibility. Neverthe-less, with a methanol output capacity of only around

Five Years down the Road – Expectations and Results from the Industry Perspective

conference keynotes

Prof. Dr. Michael Röper Pegauer Str. 10 67157 Wachenheim Tel.: 06322 8518 E-Mail: [email protected]

Page 9: Chemical Processes and Use of CO2: 4th Status Conference

7

2,000 t/a, the plant is far from world scale despite an expansion project which has been announced for the middle of 2014. CO2 utilization is a future option for the chemical industry, which will only really become feasible over the long term, but research is underway now to assess the potential. This includes unconven-tional high-risk projects which venture into unchart-ed territory. The first successful catalytic synthesis of acrylate from ethylene and CO2 is a welcome outcome of the BMBF funding program.

Improved resource efficiency in the chemical indus-try and the resulting avoidance of CO2 emissions were a major facet of the funding program. The choice of solution pathways was intentionally left open, enabling research teams to take a variety of different approaches. They looked at new types of equipment, methodologies and process steps which offer greater efficiency. Mem-brane separation, processes with a smaller CO2 foot-print, improved heat exchangers, new ways of using ionic fluids and unconventional reaction technology are some examples. Other projects were started to find ways of reducing the CO2 footprint in hydrogen pro-duction and develop computer-based optimization of chemical equipment and entire production sites. SME involvement was particularly high on these projects. DECHEMA provided valuable project support by ensur-ing the comparability of the CO2-savings potential. If the projects produce successful outcomes, the likeli-hood that the results will be used in real-world applica-tions is high in cases where little or no new investment is needed.

So from the industry perspective, the funding program has produced results which could be implemented in the medium term to improve resource efficiency in chemical production. Also there is now a better un-derstanding of how to assess the potential for CO2 utilization. In deciding where to go from here, careful consideration must be given to changes in the world energy market, in particular the increased availability

of natural gas. Expansion of CO2 utilization beyond the current state will only happen if the products have tangible additional benefits for the customer or offer a bigger economic incentive than existing resources. Opportunities are likely to exist in chemical energy storage and cross-industry utilization of material flows with resource-intensive branches of industry.

conference keynotes

Page 10: Chemical Processes and Use of CO2: 4th Status Conference

8

The goal of Germany’s “Energiewende” policy is to migrate most of the country’s energy supply to re-newables, conserve scarce fossil-based resources and limit anthropogenic climate change. Policy makers are taking action to reduce energy-related CO2 emissions. In line with the public consensus, the decision was also taken to phase out nuclear power.

The challenge is daunting. Taking 977 million t CO2 in 1990 as the baseline, the goal is a 55% reduction in energy-related emissions to 440 million t CO2 by 2030 and a 80-95% reduction to no more than 195 million t CO2 by 2050. The plan is to increase the proportion of renewables in the power generation energy mix to 80%.

Integration of an increasing proportion of fluctuating energy such as solar thermal, photovoltaic and wind power, which are not suitable for base load generation, into a stable electricity supply system presents a major challenge. Solutions are needed for feed-in, distribu-tion and network management. Better ways need to be found to balance energy supply and demand, and the efficient use of energy storage systems can make a major contribution.

Storage capacity, storage time, roundtrip efficiency, storage losses and the efficiency of storage-related energy conversion are the main assessment criteria for energy storage systems. The energy density of the stor-age medium is another key criterion.

Pumped water is currently the most widely used storage technology for electricity generation. Electrochemical storage systems provide power in emergency and mo-

bile consumer applications. Storage of heat in thermal storage systems is largely limited to domestic applica-tions. Chemical energy storage systems have by far the highest energy densities, and they form the backbone of our energy supply. The list includes coal stock piles at power stations, fuel in gasoline tanks and natural gas in pipelines.

In Power-to-Gas (PtG) technology, electrical energy is used for electrolysis of water to produce hydrogen as a chemical energy source. Oxygen is a valuable natural byproduct of this process. In a subsequent methana-tion stage, hydrogen together with carbon dioxide or carbon monoxide can be converted to synthetic natu-ral gas (SNG). The energy infrastructure consisting of transportation and distribution networks and under-ground storage facilities is capable of handling the SNG along with limited amounts of hydrogen, transport them over long distances and store them for extended periods (seasonal).

Beyond the transportation and storage functions, PtG products can be used in a wide variety of energy supply and industrial applications, and they could make an important contribution to the energy transition. Exam-ples include re-conversion to electricity in centralized or distributed CHP systems, condensing boilers in the heating market, the use of hydrogen and natural gas in the chemical industry and gas mobility.

At the present time, PtG is not cost competitive. Ef-ficiency enhancements in the various process steps (particularly electrolysis), optimization of the process dynamics and material and energy process integration

Gas Innovation for the Future – Power to Gas

conference keynotes

Prof. Dr.-Ing. Thomas KolbDVGW-Forschungsstelle am Engler-Bunte-Institut des Karlsruher Instituts für Technologie (KIT)Engler-Bunte-Ring 176131 KarlsruheTel.: +49 721 608 - 42561Fax: +49 721 9640227E-Mail: [email protected]

Page 11: Chemical Processes and Use of CO2: 4th Status Conference

9

are the main technical challenges. Integrative studies (electricity and gas) along with demonstration projects will be needed to assess the potential contribution which PtG could make to the transformation of the energy system. Monetary analysis of the transportation and storage function in the natural gas grid is another necessary step on the road to integration of PtG tech-nology.

conference keynotes

Page 12: Chemical Processes and Use of CO2: 4th Status Conference

10

It seems rather obvious. If we are producing too much carbon dioxide (CO2) and disturbing the balance of the natural carbon dioxide cycle, why don’t we try to use at least a small portion of this harmless gas for some useful purpose?

For a number of years, chemists have been looking for ways of using the carbon in CO2 to make high value-add products (the so-called dream reaction). A number of ideas have been put forward including sug-gestions for using CO2 to make urea and methanol. So, what about high value-add plastics? Is that possible? And does it even make sense from the ecological and economic perspective?

The funding program on CO2 use initiated by the Ministry for Education and Research is looking for answers to these questions. It forms the basis for Bay-er’s CO2 utilization projects. Catalysis has a key role to play because CO2 is relatively inert, and it is by neces-sity the starting point for all potential strategies. The Dream Reactions project initiated by Bayer is a joint effort involving a number of scientific partners. The researchers have succeeded in producing some initial ground-breaking lab-scale results. So what next?

The next step is the Dream Production research project. In partnership with RWE Power and RWTH Aachen University, Bayer´s researchers are looking at ways of using CO2 to produce polyurethane, a high-quality plastic found in many everyday items such as uphol-stered furniture, sporting goods and auto parts. The secret is a new catalytic process which makes it possible to insert CO2 into the molecular chains of polyure-thane precursors (polyols).

The new process is not limited to laboratory scale. A pilot plant has been operating at the Bayer site in Leverkusen since the beginning of 2011 as part of the Dream Production project. Extensive testing has been carried out on the material with so far very promising results. Industrial-scale production could get underway as early as 2016. The question is whether the products make sense from the ecological standpoint. Scientists at RWTH Aachen University have carried out a detailed lifecycle analysis on the process. They came to the conclusion that the new process for producing polyols which contain CO2 actually does reduce consumption of fossil resources and energy compared to the con-ventional production process. This results in an overall reduction in CO2 emissions, with the main factor being the use of CO2 in the new process as a substitute for epoxide, an energy and emissions intensive polyol syn-thesis feedstock.

Further reductions are conceivable if ways can be found to use CO2 as a substitute for other reaction partners. These ideas play a crucial role in the Dream Polymers project. Consumption of fossil-based feed-stock could be reduced even further by using chemical building blocks made from CO2. That is by no means all. There are a number of other ideas on how CO2 could be used as a chemical feedstock. Utilization of excess wind energy is one possibility. During power surges, the electricity which is not needed to satisfy de-mand could then be used together with CO2 to produce key chemical building blocks. Another cross-industry project is looking into this possibility. Bayer, Siemens and RWE Power along with a number of partners from academia have therefore joined forces in the CO2RRECT project consortium.

Opportunities for Carbon Dioxide Utilization at Bayer

conference keynotes

Dr. Martina PetersBayer Technology Services GmbHHead of Chemical CatalysisLeverkusenTel.: +49 214 30 20063Fax: +49 241 30 50261E-Mail: [email protected]

Page 13: Chemical Processes and Use of CO2: 4th Status Conference

11

So where are we? If ways are found to use carbon diox-ide as a feedstock in energy-efficient industrial applica-tions, new sustainable chemical production processes could be developed. This could reduce carbon resource consumption and make a limited but very welcome and economically attractive contribution to climate protection. Direct CO2 emissions into the atmosphere could be reduced and oil-based substances could be re-placed with carbon dioxide. Bayer has developed some initial examples of plastics production to the point where an environmental and economic assessment can be made, but a significant level of long-term research will be needed for other reactions. There is no lack of ideas.

conference keynotes

Page 14: Chemical Processes and Use of CO2: 4th Status Conference

12 CHEMICAL ENERGY STORAGE

BMBF is providing 6.3 million euros in funding for the iC4: Integrated Carbon Capture, Conversion and Cycling consortium project. The goal is to efficiently capture CO2 from a variety of sources including biogas plants, power stations and the iron & steel and cement industries (carbon capture) and synthesize the gas into methane or other chemical building blocks such as formic acid, methanol, higher oxygenates and hydrocarbons (conversion). The technologies devel-oped during the project could make a very substantial climate-neutral contribution to re-use of CO2 in the energy and material streams (cycling).

The current status of the four iC4 subprojects – COOMem, AdCOO (CO2 capture), COOMeth and PhotoCOO (CO2 utilization) - is summarized below.

coomemThe goal of the COOMem subproject is to develop in-novative composite carbon capture membranes. Mem-brane technologies are used in the iC4 cluster for gas separation, e.g. to capture CO2 emissions from power plants and CO2/CH4 gas mixtures from biogas plants. The project team is conducting in-depth research on the membrane materials, membrane production and simulated system integration, and they are also carry-ing out an economic and environmental assessment of the technology. The composite membranes consist of a selective layer on a support membrane. Silicon elasto-mers with intrinsically high gas permeability are used as the support material for the asymmetric hollow-fib-er membranes.

Polyelectrolytes with high CO2 selectivity were chosen as the base material for the selective separation layer. Based on the development work done by the project team, large scale production of asymmetrically mi-cro-porous hollow-fiber membranes is now feasible, and it is possible to make separation layers with CO2/N2 selectivity of approximately 60.

adcooThe research team on the COOMeth subproject is trying to derive economic value from CO2 by using renewable hydrogen for methanation. The technology is highly dependent on the availability of hydrogen and CO2 at an affordable cost.

Existing post-combustion capture techniques based on wet scrubbing with reactive amine reagents are very expensive and not particularly efficient. A technical/economic feasibility study is being carried out in the AdCOO subproject to determine whether solid sorb-ents in combination with suitable process technology can improve energy efficiency. Therefore, various solid sorbents have been produced and characterized. Some are made using different combinations of support ma-terials impregnated with suitable receptor molecules while others are non-impregnated sorbents which have a defined pore structure such as zeolites and meso-po-rous silicas.

The acquired analytical data is used by the technology partner Siemens Energy to assess the economic feasi-bility of alternative process technologies such as fixed bed and fluidized bed reactors. The project team is also looking at the suitability of various solid sorbent op-tions under pre-combustion conditions for next-gen-eration power station technologies.

As things stand now, the results indicate that under fixed-bed based post-combustion capture conditions, there are no substantial energy efficiency or econom-ic advantages compared to advanced wet scrubbing techniques. While solid sorbents do have the advantage of greatly reduced heat capacity, lower heat transfer means that compared to wet scrubbing, extraction of absorption heat for the subsequent desorption stage requires sophisticated and expensive heat exchanger technology.

iC4 – Intergrated Carbon Capture, Conversion and CyclingCO2 as a Building Block for Efficient, Sustainable Energy Storage Technology

Page 15: Chemical Processes and Use of CO2: 4th Status Conference

13CHEMICAL ENERGY STORAGE

As a result, the emphasis is on acquisition of data for assessing the economic feasibility of using solid sor-bents in a fluidized-bed process or with structured reactor geometry.

coomethWork on the COOMeth subproject is proceeding on schedule. During catalytic screening, nickel-based cat-alysts with various promoters have been produced at TUM using a variety of fabrication techniques. Nickel- iron catalysts look very promising and have been studied in detail. The multi-reactor system used for catalytic screening has been transferred to TUM where it is now operational. The researchers have conducted experiments to assess the reaction kinetics based on benchmark catalysts supplied by Clariant, and they have also evaluated kinetic models for describing the experiment results. Pilot-scale trials have shown that under optimized reaction conditions, in-spec product gas suitable for feed-in can be produced in a single pass operation. Modifications have been identified which improve hydrothermal catalyst stability.

Assuming that 10TWh of chemical energy storage will be needed by 2050, CO2 methanation could be expected to save a maximum 3,900 kto of CO2. The improvement in energy efficiency resulting from the envisioned CO2 methanation process improvements (reactor/catalyst optimization and heat coupling) is estimated to be 4.8 MWh/to SNG. In a regenerative scenario, CO2 capture (COOMem and AdCOO) in combination with CO2 methanation does not produce any additional CO2 mitigation, but ideally it does make CO2 capture economically feasible by reducing specific energy consumption.

photocooResearchers are investigating various aspects of photo-chemical CO2 reduction. Calculations based on quan-tum mechanics provide indications of possible reac-tion paths, activation energies and equilibrium states. Experiments can then be set up to test the theoretical models, initiating an iterative process. Initial results based on this approach look promising. The team has synthesized various rhenium and iridium complexes which can be used to investigate the kinetics of selec-tive CO2 reduction to CO. The researchers have gained an in-depth insight into the electron transfer mecha-nism and the deactivation steps. They have developed systems which are capable of making a large portion of the sunlight spectrum available for the reduction pro-cess. Photochemical water splitting is an additional as-pect which is being investigated using GaN/ZnO based heterogeneous catalysts. Through selection of particle composition and size along with suitable promoters (Pt, Pd and Ag), the team is attempting to determine the reaction kinetics and thermodynamics. Initial results indicate that this approach is very promising. An Xe/Hg lamp which simulates sunlight is being used to make a detailed study of oxygen and hydrogen evolution. There are strong indications that promoter cluster size is crucial. With the aid of a DEMS (differential electro-chemical mass spectrometer), the researchers are carry-ing out investigations on photoelectric CO2 reduction to make various products such as formic acid, formal-dehyde and methanol with the aid of decorated silicon surfaces. Initial results indicate that covalent bonding of organocatalysts on the silicon surface tends to in-crease the activity of CO2 reduction.

Project partners: Contact:

• Technische Universität München• MAN Diesel & Turbo SE• Wacker Chemie AG• Fraunhofer-Gesellschaft zur Förderung

der angewandten Forschung e.V.• Linde Aktiengesellschaft• Siemens Aktiengesellschaft• Clariant Produkte (Deutschland) GmbH• E.ON New Build & Technology GmbH

Prof. Bernhard RiegerTechnische Universität MünchenWacker Lehrstuhl für Makromolekulare ChemieLichtenbergstr. 485748 GarchingTel.: +49 (0)89 289-13570E-Mail: [email protected]

Page 16: Chemical Processes and Use of CO2: 4th Status Conference

14 CHEMICAL ENERGY STORAGE

SEE – Storage of Electrical Energy from Renewable Resources in the Natural Gas Grid– H2O Electrolysis and Gas Component Synthesis

Germany has an excellent natural gas storage and dis-tribution infrastructure. The country’s pore and cavern natural gas reservoirs have a working gas volume of approximately 23 Giga m³ which is equivalent to about 250 TWhchem (the figure for pumped storage pow-er stations is approx. 0.04 TWhel). Additional storage facilities with a volume of 7 Gm³ are currently under construction or at the planning stage. Leaving aside the natural gas grid, storage capacity of at least 326 TWhchem will then be available, which is roughly seven times the total amount of electricity generated from wind power in 2012.

In the planned process (Figure 1) a PEM pressure elec-trolyser with highly dynamic responding behaviour produces hydrogen, which is subsequently transformed into CH4 utilising CO2:

CO2 + 4 H2 à CH4 + 2 H2O (g) ΔRH0 = -165 kJ/mol

Three-phase (slurry) reactors have advantages com-pared to the two-phase methanation which has been the predominant pathway in the past. The reaction of gaseous educts takes place at a solid catalyst, suspended in a special heat transfer fluid (e.g. heat transfer oil or

ionic liquids (IL)) - see Figure 2. Because the fluid has high heat capacity, a three-phase system is well suit-ed for dynamic operation. As an alternative, the team is continuing to work on fixed-bed methanation in a staged reactor, looking particularly at the cost-effec-tiveness of small to medium size systems.

Adjustment of the caloric value is needed following SNG production. Liquid fossil gas has been used up to this point for that purpose. To eliminate the dependen-cy on fossil fuel in the process sequence, the intention is to produce C2 - C4 hydrocarbons from H2/CO2 feed-stock using Fischer-Tropsch synthesis.

Fig. 2: Bubble formation in a three-phase reactor with various fluids at 200°C and 1 bar (X-BF: silicon oil, DBT: dibenzyltoluene, [BMMIM][BTA]: ionic liquids (IL))

Electricity output from wind and solar generation fluc-tuates significantly over time but feed-in and demand in the electricity grid must always be in balance. As more and more electricity is generated from renewable sources, there is an increasing need for highly flexible electricity storage and retrieval systems. The available capacity provided by existing electricity storage sys-tems will not be sufficient to meet medium and long term needs.

The goal of this consortium project is to develop tech-nology to help manage the fluctuating supply of elec-tricity from wind and solar power by storing energy as SNG (Substitute Natural Gas). CO2 will act as the carbon source..

Fig. 1: Process flow for production of SNG from excess electricity and CO2

Page 17: Chemical Processes and Use of CO2: 4th Status Conference

15CHEMICAL ENERGY STORAGE

Based on this approach, a consortium made up of experts from various branches of the industrial and research community has taken on the challenge of designing a process which is technically and economi-cally viable.

h-tec GmbH has built a PEM electrolyzer. Fraunhofer ISE is carrying out dynamic operational control analysis in order to optimize the system. The DVGW Research Center at the Engler Bunte Institute which is part of Karlsruhe Institute of Technology (KIT) is carrying out investigations on methanation in a slurry reactor and is also in charge of the project. IOLITEC Ionic Liquids Technologies is responsible for IL development and syntheses. Outotec has responsibility for methanation in a staged reactor, and the Chemical Energy – Fuel Technology team at the KIT Engler Bunte Institute is in charge of syngas conditioning to adjust the calorific value. The three research institutes have joint respon-sibility for the dynamic performan ce of the overall sys-tem. EnBW Energie Baden-Württemberg, a potential user, is evaluating the economic viability and is looking at possible sites for demonstrators.

The experimental work is currently in the final stages. Assessment of the market and CO2 mitigation potential will be carried out based on the results. Support for three doctoral dissertations and 15 Bachelor’s / Master’s theses is being provided on the project.

Project partners: Contact:

Dipl.-Ing. Dominic BuchholzDVGW-Forschungsstelle am Engler-Bunte-Institut des Karlsruher Instituts für Technologie (KIT)Bereich GastechnologieEngler-Bunte-Ring 176131 KarlsruheTel.: +49 (0)721 608 426 93Fax: +49 (0)721 964 02 13E-Mail: [email protected]

Fig. 3: PEM pressure electrolyzer installed in the test environment used to investigate dynamic behavior and optimize operational performance in Power-to-Gas systems.

Page 18: Chemical Processes and Use of CO2: 4th Status Conference

16 CHEMICAL ENERGY STORAGE

HyCats: New Catalysts and Technologies for Solar Chemical Hydrogen ProductionThe goal of the HyCats project was to develop photo-catalytic water splitting technology to harness solar power for climate-neutral production of hydrogen. As photocatalysts, the team used semiconductors in sus-pension or in layered systems which produce hydrogen from water when they are exposed to sunlight in suita-ble solar reactors. Because existing photocatalytic sys-tems were not economically viable, the team set out to provide scalable technology as a basis for development of marketable solar chemical systems for the produc-tion of hydrogen. The project delivered a toolbox which supports rapid development of economically viable photo-electrochemical hydrogen production systems. The toolbox consists of the following.

• Quantum chemistry simulation tools for calculating band gaps, doping effects and surface reactions

• Spectroscopic techniques to achieve an

• understanding of the mechanisms involved

• High throughput synthesis and activity measure-ments using a rapid screening system integrated into a synthesis robot

• Production techniques for upscaling

• photocatalyst synthesis

• Photocatalyst activity tests for photocatalyst suspensions and electrodes in different types of reactors

• SoCRatus (Solar Concentrator with a rectangular Flat Focus) test bed

• Economic viability evaluation

The thermodynamic stability, electronic structure and effect of substituents on the light absorption shift into the visible spectrum were calculated for different photocatalysts using quantum chemistry modelling based on density functional theory (DFT). The team investigated doping effects and water adsorption on the surface of the solid-state bodies and developed a semi-empirical method for calculating optical excita-tion spectrums of solid-state bodies. In some cases, disassociation of the adsorbed water was observed, which is the first step in the water splitting reaction. The researchers applied spectroscopic techniques to

investigate the photocatalytic water splitting mech-anism in the presence of sacrificial agents. They were able to identify the best catalysis to promote the for-mation of molecular hydrogen and molecular oxygen. Time-resolved laser pulse photolysis studies enabled the team for the first time to identify intermediary oxygen radicals during water oxidation and study their subsequent reaction kinetics in detail. They developed a synthesis robot with integrated rapid screening sys-tem (photo reactor with a gas chromatograph attached) for high throughput production and rapid testing of photocatalysts. The team prepared and tested approx-imately 620 tantalate and niobate based samples using a variety of synthesis techniques. The most promising photocatalysis were optimised under for conditions analogous to those in a production environment. The researchers analyzed the influence which different scalable production methods and parameters have on the physical properties, and hence the hydrogen forma-tion rate, of the photocatalysts. A number of different co-catalysts were also tested. Successful test results for hydrogen production using particulate systems and electrodes were obtained with three different types of reactors. The solar efficiency and economic viability of various catalysts were evaluated. A solar concentrator test bed (SoCRatus=Solar Concentrator with a Rectan-gular Flat Focus) was set up and a suspension reactor with two separate reaction chambers along with the appropriate instrumentation was placed into opera-tion. For parallel testing, the suspension reactor was mounted next to a photoelectrochemical cell in the focal plane of the SoCRatus.

Hydrogen produced using renewable resources can make a major contribution to climate protection in a wide range of applications such as conversion of CO2 to hydrocarbons, fuel for domestic energy supply or vehicle fuel cells. Compared to other known renew-able-based techniques, solar chemical production of hydrogen has the advantage of much simpler process technology, because water is split in a single low-tem-perature reactor. This can be an advantage in distrib-uted applications. Hydrogen for domestic heating systems or fuel cells could be supplied under ideal conditions with simplified infrastructure. Hydrogen produced on a large scale at industrial solar parks could

Page 19: Chemical Processes and Use of CO2: 4th Status Conference

17CHEMICAL ENERGY STORAGE

be stored and distributed as an alternative to natural gas. Another objective of the HyCats project was to provide career development opportunities for young scientists. 3 Bachelor’s Theses, 2 Master’s Theses and 3 doctoral dissertations directly related to the project

work were completed, two other doctoral dissertations were started which are expected to be completed next year and work done on a Bachelor’s Thesis supported the commissioning of a reactor.

Project partners: Contact:

• H.C. Starck GmbH• Leibniz Universität Hannover

(Prof. Detlef Bahnemann)• Leibniz-Institut für Katalyse e.V.

(Dr. Uwe Rodemerck)• Deutsches Zentrum für Luft- und Raumfahrt e.V.

(Dr. Christian Jung)• Universität Bonn (Prof. Thomas Bredow)• ODB-Tec GmbH & Co. KG• Zinsser Analytic GmbH

Dr. Sven AlbrechtH.C. Starck GmbHIm Schleeke 78 - 9138642 GoslarTel.: +49 (0)5321 751 3735 Fax: +49 (0)5321 751 6872E-Mail: [email protected]

Fig. 1: Rapid screening system for parallel testing of photocatalysts

Fig. 2: Hydrogen bubbles rise during a photocatalyst lab test

Fig. 3: Solar reactor at DLR in Cologne

Page 20: Chemical Processes and Use of CO2: 4th Status Conference

18 CHEMICAL ENERGY STORAGE

CO2RRECT – Utilization of CO2 as a Carbon Building Block Mainly Using Renewable Energy

challenges and Goals

The goal of the CO2RRECT project is to use hydrogen produced with renewable energy together with CO2 to make high-grade chemical products. A research alliance including Bayer, RWE, Siemens and ten partners from academia is working on the concept.

Conventional power stations are demand-driven whereas generation from alternative resources fluctuates depending on weather conditions (e.g. wind and sunlight). Many EU countries want to greatly expand the use of renewable energy, thus, electricity storage systems can be used to balance supply and demand. Pumped storage power stations are currently the most widely used technology. Chemical energy storage is another option, for example production of hydrogen using water electrolysis. Hydrogen can be stored in large volumes.

scope and emphasis

Research on this project was organized into 5 work packages. Siemens designed a PEM electrolysis system for hydrogen production. Trials were run on a proto-type with a peak rating of 300 kW at the Niederaußem power station during the CO2RRECT demonstration phase. Bayer developed a reactor concept and catalysts for the reaction of hydrogen with CO2 captured from the power station emissions to produce carbon mon-oxide for use as a reactive intermediate. The source of the carbon dioxide is RWE‘s lignite power station at Niederaußem near Cologne, where the gas is extracted, purified, liquefied and filled. At the end of the project, Bayer and Invite will validate the reactor concept at a pilot-scale plant in Leverkusen, which is scheduled to begin operating in 2014.

Fig. 1: Using hydrogen produced from renewable resources, CO2 can be converted to useful products in the chemical industry (photo: Bayer)

Page 21: Chemical Processes and Use of CO2: 4th Status Conference

19CHEMICAL ENERGY STORAGE

A special catalyst is needed to activate the CO2. Other project partners are contributing their expertise in cat-alyst research, process technology, reactor optimization and holistic process analysis. The consortium includes universities in Aachen, Bochum, Dortmund, Dresden and Stuttgart along with the Max Planck Society, the Leibniz Institute for Catalysis at the University of Ros-tock (LIKAT), the Karlsruhe Institute of Technology and the INVITE research center.

In addition to the engineering and economic aspects, the researchers are also evaluating the potential for fur-ther reductions in greenhouse gas emissions compared to current process technology.

application, exploitation of the results, economic and environmental Benefits

All of the technical goals for the project were achieved. However, technical and economic analysis shows that a very large amount of low-cost renewable energy will have to be available for the technology to be econom-ically viable. Realization is not expected before 2020 at the earliest. The main advantages of the project are as follows: meaningful use can be made of excess elec-tricity from wind power, and CO2 which is otherwise treated as a waste product can be used as a new feed-stock and an alternative to feedstock produced by the petrochemical industry.

High-performance plastic polycarbonate can be made from the intermediate which is synthesized from CO2 for the production of items such as DVDs, LEDs, com-puter enclosures and eyeglasses. Isocyanate, a major constituent of polyurethane foam, can also be pro-duced. The foam is found in many everyday products such as furniture, shoes, cars and building insulation material.

Fig. 2: Prototype Siemens electrolyzer with a peak rating of 0.3 MW at the RWE Niederaußem power station site near Cologne(Photo: Siemens/RWE)

Contact:

Dr. Stefanie EidenBayer Technology Services GmbHBTS-TD-UP-CCLeverkusen, E 41Tel.: +49 (0)214 30 22761Fax: +49 (0)214 30 50262E-Mail: [email protected]

Page 22: Chemical Processes and Use of CO2: 4th Status Conference

20 CHEMICAL ENERGY STORAGE

The sunfire project got underway in May 2012 and has two main goals:

1. Design and implementation of pressurized high- temperature steam electrolysis with an electrical efficiency (LHVH2/kWel) significantly greater than 90%.

2. Design and construction of a test system to produce liquid hydrocarbons from CO2 and H2O with an efficiency > 65% (LHVH2/kWel).

The complete hydrocarbon production process consists of (1) steam electrolysis, (2) CO2 RWGS conversion1 and (3) Fischer-Tropsch synthesis. The researchers will optimize the three process steps before using them together in a continuous process on the test system.

Scaling up benchtop steam electrolysis to an initial, pre-industrial 10 kW prototype presents a major challenge. Substantial improvements were achieved through focused material development. The diagrams below show the voltage rise (a degradation symptom) at the beginning of the project and about a year later2:

sunfire – Production of Liquid Fuels from CO2 and H2O Using Renewable Energy

Fig. 1: Steam electrolysis degradation at the start of the project (left) and one year later (right)

The comparison shows that degradation is comparable to that of fuel cells and that the technology could be further developed for industrial use. Construction of the 10 kW prototype will get underway at the begin-ning of 2014.

Detailed lab investigation of the reverse water-gas shift reaction (RWGS) was conducted at the Univer-sity of Bayreuth including RWGS in combination with Fischer-Tropsch synthesis, and a new reactor

design was also developed. This reactor together with Fischer-Tropsch synthesis is being installed in a test system. Construction work began on July 22nd, 2013. The photo below shows how far construction had pro-gressed as of December 2013.

Commissioning is scheduled for the middle of 2014. The goal is to produce one barrel (159 liters) of raw Fischer-Tropsch product which will be validated by Lufthansa and HGM Energy (an oil dealer).

1 Reversewater-gasshiftreaction:endothermicreductionofCO2toCOandoxidationofH2zuH2O

2 Quelle:EIFER-Institut2012/13

Page 23: Chemical Processes and Use of CO2: 4th Status Conference

21CHEMICAL ENERGY STORAGE

In parallel, the University of Stuttgart will carry out a lifecycle analysis for the entire value-add chain. It has already assessed the test system in its current state. That information will be used to estimate the environ-mental impact of industrial-scale fuel production.

The project is the first step on the road to industrializa-tion of the Power-to-Liquids process for production of infrastructure-compatible liquid fuels (gasoline, diesel, kerosene) using highly efficient steam electrolysis. The process can save up to 3.14 t of CO2 per ton of fuel. It can also help stabilize the electricity grid and provide a basis for regional wealth creation combined with high security of supply.

5 companies and 5 scientific institutions are working hand-in-hand on the project, particularly on material development and process characterization. 7 degree theses and doctoral dissertations have been completed up to this point within the context of the project.

Fig. 2: Test facility

sunfire – Herstellung von Kraftstoffen aus Co2 und H2o

HGM

CH2

Benzin, diesel,Kerosin, Methangas

Co2 +H2oKohlenstoffdioxyd

Wasser

* Praxisevaluierung durch lufthansa

Contact:

Christian OlshausenSunfire GmbHGasanstaltstraße 201237 DresdenTel.: +49 (0)351 89 67 97 908E-Mail: [email protected] Further informationen under: www.sunfirefuel.com

SUNFIRE – PRODUCTION OF FUELFROM CO2 AND H2O

CH2

gasoline, diesel, kerosene, methane gas

CO2 +H2Ocarbon dioxide

water

Page 24: Chemical Processes and Use of CO2: 4th Status Conference

22 ENERGY-EFFICIENT PROCESSING

Avoidance of CO2 emissions is a key element in a broad-based strategy to reduce greenhouse gases. Finding substitutes for fossil fuel is one option. Reducing con-sumption of energy which is largely fossil-based can be another major factor in CO2 mitigation. Optimization of process energy efficiency can make an important contribution to CO2 avoidance.

Solvents are often used in the chemical industry. It can take a lot of energy to recover the solvents at the end of the process. Energy-efficient recovery can significantly reduce process CO2 emissions. Organophilic nanofil-tration is one such technology, because in contrast to thermal separation it works without heat. The goal of this project was to develop technology for producing OSN (organophilic solvent nanofiltration) membrane modules. Reproducibility and consistent high quality were two of the key deliverables for the new module production process. The solvent stability, permeate flux, rejection (selectivity) and long-term mechanical stability of the modules have to meet industrial-grade standards. To improve on commercially available mem-branes, the project team developed membranes which have a high-selectivity silicon-based filtration layer on a cross-linked polymer backing. The membranes were optimized to meet the requirements profile of industri-al users (Evonik Industries, Bayer Technology Services

and BASF Personal Care & Nutrition). The research-ers were also able to develop a range of membranes with different cut-off values. Two module generations were developed. Project partners carried out feasibility studies on flat sheets and additionally spiral-wound modules were also produced and made available to the partners.

The chemical resistance of the material composite in the spiral-wound modules was evaluated using pro-cess solvents. The results showed that the resistance of the membrane material guarantees good resistance of the module. The measurement results obtained by the project partners were forwarded to RWTH Aachen for modelling of mass transport through the membrane and in a spiral-wound module.

Following the module development phase, the prod-uct carbon footprint of the membrane module was calculated. This data can be very helpful to customers who use the modules in their production operations and want to carry out a complete lifecycle assessment for their products.

A number of different OSN applications were identi-fied during trials which were conducted by the project partners.

OPHINA – Organophilic Nanofiltration for Energy-Efficient Processes

Fig. 1: Photo of a spiral-wound module

Page 25: Chemical Processes and Use of CO2: 4th Status Conference

23ENERGY-EFFICIENT PROCESSING

The cost-effectiveness of the OSN applications was carefully scrutinized, because low membrane flux per-formance can result in high investment costs for large membrane surfaces. However, the use of OSN in the process can also have other advantages besides a re-

duction in recycling costs and CO2 emissions. Recovery with OSN membranes can enhance product purity and product quality and reduce thermal stress on the prod-ucts. The consortium project ended on April 30th, 2013.

Fig. 2: Contribution of a spiral-wound module to the product carbon footprint broken down by class.

Project partners: Contact:

• Evonik Industries AG• Bayer Technology Services GmbH• BASF Personal Care and Nutrition GmbH• RWTH Aachen

Dr. Daniela KruseCreavis Technologies & InnovationEvonik Industries AGPaul-Baumann-Straße 145772 Marl

Page 26: Chemical Processes and Use of CO2: 4th Status Conference

24 ENERGY-EFFICIENT PROCESSING

project goals and content

The goal of the InReff consortium project is to devel-op an IT-based modeling and analysis environment which can provide answers for a wide range of resource efficiency and climate protection issues in the chemical industry. Integrated analysis and optimization of com-plex production systems including raw material and energy consumption and informed management of the associated costs and environmental/climate impact are needed to reduce greenhouse gas emissions in the chemical industry.

Various tools and techniques including lifecycle analy-sis, thermodynamic simulation, heat integration stud-ies, costing models and optimization methodologies are used to quantify the climate impact and resource efficiency of production systems in the chemical indus-try (Fig 1).

This holistic approach necessitates but also facili-tates methodological and technological innovation in system modeling and analysis as well as in real-world production at project partner chemical sites.

The following are members of the consortium: soft-ware development - ifu Hamburg; scientific research - the Institute for Industrial Ecology (INEC, Pforzheim University) and the Chemical and Thermal Process En-gineering Institute (ICTV, TU Braunschweig); chemical industry - H.C. Starck GmbH and Sachtleben Che-mie. Wacker Chemie, BASF SE and Worlée-Chemie (a mid-tier company) are also involved in the project as associate members. Funding for the three-year project is being provided by the Federal Ministry of Education and Research (BMBF).

project status

Last year, the project team achieved some important conceptual and technical results. They developed a methodology model for integrated resource efficiency analysis which describes the interaction between the different analytical methods used in the application. While doing so, they defined the specific IT support requirements and developed the initial prototypes.

Material flow modeling plays a key role as the unifying overall model (Fig. 2). Complementary methodologies

InReff – Integrated Resource Efficiency Analysis to Reduce the Climate Impact of Chemical Plants

Fig. 1: Elements included in the integrated resource efficiency analysis

Page 27: Chemical Processes and Use of CO2: 4th Status Conference

25ENERGY-EFFICIENT PROCESSING

such as flow sheet simulation and heat integration analysis can be used to refine the model. It also pro-vides a basis for standardized visualization, evaluation and optimization of partial results using a variety of analytical tools.In that context, the team developed a prototype in-terface which creates a link between a material flow modeling tool and a sample flow sheet simulator. They also added simulation-based optimization algorithms

and looked at possible ways of creating linkages to heat integration calculation tools. Using this approach, the researchers were able to provide an initial demonstra-tion showing the feasibility of integrated analysis in a largely automated process. Further progress was also made on modeling of typical processes at industry partner sites, and detailed research work continued on the methodological and practical aspects of simula-tion-based resource efficiency optimization.

P3: emissions

P4: auxiliaries

P2: heating steam

P1: water return

T1: boiler

T4: heat recovery 3, water

8990754.911402 kJ

1527354.652344 kJ

1975309.339844 kJ

125700 kJ

710304.6523437 kJ

T5:pump

8709114 kJ

1767804.6875 kJ

8395136.71875 kJ

Material �ow network(Umberto)

Flow sheet (ChemCAD)

Interaction via

transition script

T1

T3: heat recovery 2, water

T2: heat recovery 1, steam

2289286.621094 kJ

Fig. 2: Sample integrated model of a steam generator

Interaction via transition script

Page 28: Chemical Processes and Use of CO2: 4th Status Conference

26 ENERGY-EFFICIENT PROCESSING

economic, environmental and societal leverage effects

Up until this point, a holistic approach to technical and economic analysis and optimization of production sys-tems has been lacking in the chemical industry. This is particularly the case in the SME sector. Based on a lim-ited information base, it seems reasonable to assume that opportunities for reducing the environmental impact are of a similar magnitude as opportunities to reduce cost. A holistic approach which includes quan-titative analysis of the economic and environmental optimization potential enhances the likelihood that companies will accept the need to take action to pro-tect the climate and increase resource efficiency and by doing so promote their own long-term business devel-opment. The InReff project is providing new insights and delivering practicable solutions.

Project partners: Contact:

• ifu Institut für Umweltinformatik Hamburg GmbH• Sachtleben Chemie GmbH• Technische Universität Braunschweig• Hochschule Pforzheim - Gestaltung, Technik,

Wirtschaft und Recht• H.C. Starck GmbH

Nicolas Denzifu Hamburg GmbHMax-Brauer-Allee 5022765 HamburgGermanyTel.: +49 (0)40 480009-0E-Mail: [email protected]

Page 29: Chemical Processes and Use of CO2: 4th Status Conference

27ENERGY-EFFICIENT PROCESSING

Project goals and content

The InnovA2 consortium project is looking at ways of increasing energy efficiency based on innovative equip-ment and system designs. The emphasis is on structured tubes, plate equipment, special thermo plate heat ex-changers and multi-flow plate heat exchangers in va-porization and condensation applications. This class of equipment has very high heat integration and energy efficiency potential. The universities which are mem-bers of the consortium run initial suitability testing on the new equipment designs to identify suitable appli-cations and carry out operational fluid dynamics and heat engineering assessments. Working from this basis, the next step is to run trials which support transfer of the lab / test center results to scalable pilot systems

at industrial sites operated by consortium members. Using the results including key performance charac-teristic relationships identified during the experiments in both test series, it is possible to derive engineering design methodologies which provide direction for the design of innovative equipment in a given process ap-plication. In parallel, the team is developing techniques for economic evaluation and general estimation of the existing potential. Design engineers and potential users can take that information and make their own judgments about the advantages of using these equip-ment technologies. Lifecycle analysis of the process alternatives which include or exclude the new equip-ment designs contributes to the development of highly eco-friendly process and equipment design.

Project status

All of the test systems are operational and are delivering a large volume of experimental results. The example in Fig. 1 shows a test system with thermo plate natural circulation evaporator at TU Braunschweig and in Fig.2 a setup for condensation of isopropyl alcohol at a finned carbon steel tube at the TU München is presented. The data is collected and analyzed using standardized methods. Agreement was reached on uniform methods for representing the complex geometry of the heat transfer surfaces being evaluated to ensure compa-rability of the results later on. Models taken from the literature are used to describe the experimental data, and enhancements are added where needed. All of the investigations have shown that the innovative designs are functionally superior to standard smooth tube designs. Evaluations continue to determine which solu-tions are economically and ecologically viable. Geomet-ric transfer experiments have been completed on pilot systems at Linde for finned tube equipment and at BTS for thermo plate equipment. Once again, the evidence shows that the innovative designs perform better than standard designs. A new modular modelling technique based on the three-level model is used for lifecycle assessment of the sample processes. This technique is particularly well suited for multi-product system modeling, the reason being that different production methods can be used in combination in modular sys-tems and subsystems. All of the consortium goals are

InnovA2 – Innovative Equipment and System Design for Increased Production Process Efficiency

Fig. 1: Test bed with thermo plate natural circulation evaporator (© ICTV, TU Braunschweig)

Page 30: Chemical Processes and Use of CO2: 4th Status Conference

28 ENERGY-EFFICIENT PROCESSING

expected to be achieved by the time the project comes to an end (September 30th, 2014).

Economic, environmental and societal leverage effect

The economic and environmental leverage effect of the InnovA2 consortium project will be evident in a number of different areas. Chemical plant operators will be the main beneficiaries. Innovative equipment technologies will create opportunities to increase ener-gy efficiency in production. The reduction in fossil fuel consumption could cut CO2 emissions by around 0.1 t CO2e/t product. The research results will also enable equipment manufacturers and engineering service providers to expand their product and service port-folios. The innovative designs point in new directions compared to existing state-of-the-art equipment, cre-ating an incentive to take a serious look at the potential advantages.

One very positive aspect of the InnovA2 consortium project is the opportunities it creates for young scien-tists to develop their professional skills and become actively involved. Nine doctoral candidates at the universities involved are working on the project as part of their degree programs. In addition, many young pro-

fessionals are working in R&D at consortium member companies. More than 30 student research papers (pro-ject papers and Bachelor‘s and Master’s Theses) have been written in the context of the project. Some of the graduates have been hired by consortium compa-nies. To support networking and information sharing among the doctoral candidates, one-day workshops are organized specifically for them immediately following the semi-annual consortium meetings.

A number of the companies involved in the project are mid-tier engineering service providers or equipment manufacturers. By generating performance data which has been verified in trials and making that data publicly available, the project gives these companies a fast-track route to market penetration and enhances their inno-vative strength and competitiveness. This in turn pro-vides job security for existing employees and creates an incentive to take on new staff.

So far, information about the results of the InnovA2 project has been shared on posters and in talks at national and international events including the 50th European Two-Phase Flow Group Meeting in 2012 in Udine/I, a discussion corner at ACHEMA 2012 in Frankfurt/Main and the Fluid Dynamics and Separa-tion Technology Association’s annual conference in 2013 in Würzburg. A number of articles are planned or

Fig. 2: Increment factors for condensation of iso-propanol, n-pentane and isooctane in a finned tube made of carbon steel and comparison to literature models (© LAPt, TU München)

Page 31: Chemical Processes and Use of CO2: 4th Status Conference

29ENERGY-EFFICIENT PROCESSING

have already been submitted to peer-reviewed pro-fessional journals for 2014. A special Chemie Ingenieur Technik magazine supplement entitled “Innovative Equipment and System Design” is planned for the autumn of 2014 for whith the InnovA2 project will contribute the bulk of the articles.

Project partners: Contact:

• Technische Universität Braunschweig• Universität Kassel• Helmut-Schmidt-Universität – Universität der

Bundeswehr Hamburg• Technische Universität München• Universität Paderborn• Wieland-Werke Aktiengesellschaft• Evonik Industries AG• LANXESS Deutschland GmbH• Linde Aktiengesellschaft• MERCK Kommanditgesellschaft auf Aktie• DEG Engineering GmbH• Bayer Technology Services GmbH

Prof. Dr.-Ing. Stephan SchollTechnische Universität BraunschweigInstitut für Chemische und Thermische Verfahrenstechnik ICTVLanger Kamp 738106 BraunschweigTel.: +49 (0)531 391 2780Fax: +49 (0)531 391 2792E-Mail: [email protected] www.ictv.tu-bs.de www.innova2.de

Page 32: Chemical Processes and Use of CO2: 4th Status Conference

30 ENERGY-EFFICIENT PROCESSING

The goal of the HY-SILP project is to develop new, resource-efficient hydroformylation technology using SILP catalysts. SILP catalyst technology (Fig. 1) is an in-novative approach to immobilization of homogeneous catalysts, combining the advantages of homogeneous and heterogeneous catalysis. A SILP process, for exam-ple, eliminates all of the steps which demand a sol-

vent for the catalyst system. Specific solubility in ionic liquids (ILs) creates pathways for selective processing of complex educt mixtures. This can significantly reduce the hydroformylation carbon footprint and process design modifications can reduce energy consumption compared to current technology.

Researchers at universities in Darmstadt and Erlangen- Nuremberg are working closely with Evonik on 10 work packages. The results of WP3 should give the researchers a better understanding of how the different components of a SILP catalyst influence the behavior of the catalyst in continuous gas-phase hydroformylation. The results so far clearly show that interaction between the pre-cursor, ligand and ionic liquid (IL) in the substrate’s pore network is highly complex. The complexation behavior of the precursor and ligand as well as the type of IL or substrate have a pivotal influence on the activity, stability and selectivity of the catalysts. When different ILs were used, a correlation was found to exist between catalyst activity and the solubility of

the substrate in the IL. The gas solubility of ultra-pure substances was measured using a magnetic suspension balance and COSMO-RS modelling. Various diphos-phite-based ligands provided by Evonik (WP 2) were used to produce SILP catalysts. The ligand benzopina-col proved to be the most stable in continuous oper-ation trials and showed outstanding stereoselectivity (> 99%) for linear aldehyde. Initial substrate screening trials have shown that the substrate is not an inert component in the SILP system. Substrate morphology and acidity influence the initial behavior, stability and product selectivity of the SILP catalyst.[1] A quad screening system was designed and built to enhance the efficiency of the project trials. Virtual IL screening [2] techniques

HY-SILP – Development of new Resource-Efficient Hydroformylation Technologies using Supported Ionic Liquid Phase (SILP) Catalysts

Abb. 1: SILP-catalyst concept.

1 Schönweizetal.Ligand-modifiedrhodiumcatalystsonporoussilicaincontinuousgasphasehydroformylationofshort-chainalkenes–catalyticreactioninliquidsupportedaldolproduct,ChemCatChem2013,5(10),2955–296.

2 Frankeetal.Accuratepre-calculationoflimitingactivitycoefficientsbyCOSMO-RSwithmolecular-classbasedparameterization,FluidPhaseEquilibria2013,340,11-14.

3 Y.Hou;R.E.Baltus,ExperimentalMeasurementoftheSolubilityandDiffusivityofCO2inRoom-TemperatureIonicLiquidsUsingaTransientThin-Liquid-FilmMethod.Industrial&EngineeringChemistryResearch2007,46,24,8166-8175.

Page 33: Chemical Processes and Use of CO2: 4th Status Conference

31ENERGY-EFFICIENT PROCESSING

and ligand systems (WP 1) are being developed to speed up the WP3 screening process. Several ligand systems which look very promising have been identified, and sufficient quantities have been made available to the consortium (WP2).

Based on the factors which limit the performance of SILP catalysts, investigations are underway in WP4-6 to define the best formulations for production of SILP catalysts. IL wetting and fluid distribution on and in the substrate is crucial for precise characterization of SILP catalysts (WP4). Using substrate/IL systems, the researchers investigated the effect which the IL has on texture. Systems with different mass fractions were produced and the BET surface area and pore size were measured using N2 sorption. The investigations con-firmed that linear correlation exists between the mass fraction and the surface area. The researchers carried out TEM, HREM and HREM-EDX measurements on the substrate and on unused and used SILP catalysts. HREM imaging provides qualitative information about the distribution and texture of the exterior surface. Comparison of unused and used SILP catalyst shows a distinct surface change.

A test bed with Berty reactor was built to carry out ki-netic investigations (WP5 and 6). The system was used to study the initial behavior of the catalysts. The results show that SILP catalyst activity continually increased during the first 72 hours. The rate of increase was lower for larger amounts of catalyst (up to 400 mg). Using a defined SILP catalyst with benzopinacol ligands, kinetic measurements were taken at varying partial pressure, absolute pressure, dwell time and temperature. Model-ling using a simple formal kinetics model (exponential) shows an acceptable level of agreement with the exper-imental results, producing reaction orders of 0.3 (H2),-0.1 (CO) and 0.8 (1-butene). The average activation energies for the formation of n-aldehyde and iso- aldehyde are 52 and 47 kJ/mol respectively.

Besides optimizing the variables which have a crucial effect on the reactions, researchers in WP6 are working

to gain a better understanding of the interplay between substance transport and the chemical reaction. Exper-iments are being carried out to determine the diffu-sion coefficients of the pure educts and the products in selected ILs. The team selected a suitable method (Transient Thin Liquid Film Method)[3] and they then installed and validated the necessary instrumentation. This method can also provide solubility data.Initial results for H2 and CO systems in [BMIM] [NTf2] are now available. In both systems, the speed of diffu-sion increases with increasing temperature (faster for H2 than CO). The diffusion coefficients are in the range 2·10-9 m2s-1 to 4·10-9 m2s-1 (H2) and 6·10-10 m2s-1 to 12·10-10 m2s-1 (CO).

The researchers in WP 7 investigated promising SILP catalysts using technically relevant feed mixtures. Rel-atively high activity (TOF > 130 h-1) was obtained even with highly diluted mixtures (> 90 % inerts). Traces of water or 1,3 butadiene caused deactivation of the SILP catalyst. Thermogravimetric analysis showed that the ligand is the most temperature-stabile component. The WP8 research team was able to reactivate a thermally deactivated SILP catalyst by adding fresh ligand.

The long-term stability of selected SILP systems devel-oped in WP3 was evaluated in WP9. Under technically relevant conditions using technical educts and ben-zopinacol ligands, a catalyst system was developed which has long-term stability > 1,000 hours and n/iso-selectivity as good as that of homogeneous catalyst systems. The researchers were able to demonstrate a dwell time > 2,000 hours with a new ligand class which was identified in WP1 and synthesized in WP2.

In parallel with the experimental work and based on the long-term stability results obtained in WP9, a potential emissions reduction of 0.108 t CO2e/t n-Pen-tanal (based on a total capacity of 1.6 Mio t) has been identified. Looking at the societal leverage effects of the HY-SILP project, up to this point work on four doctoral dissertations has started and four Bachelor’s and Mas-ter’s theses have been completed.

Project partners: Contact:

• Evonik Industries AG• Friedrich-Alexander-Universität Erlangen-Nürn-

berg• Technische Universität Darmstadt

PD Dr. Robert FrankeEvonik Industries AGPerformance IntermediatesTel.: +49 (0)2365 49 2899E-Mail: [email protected]

Page 34: Chemical Processes and Use of CO2: 4th Status Conference

32 ENERGY-EFFICIENT PROCESSING

A gas and/or liquid or solid phase is dispersed in a continuous phase fluid during the production and downstream processing of many chemicals and bio-chemicals. Designing multi-phase reactors is a highly complex undertaking due to the complex interplay between the hydrodynamics, kinetics, substance trans-fer and heat transfer. It has not been possible up to this point to provide a complete numerical description of an industrial-scale scenario. Besides the amount of computing power needed to handle the large mathe-matical models, another limiting factor is the availa-bility of validated models for simulating the different phenomena involved.

Most of the literature is limited to modeling of aqueous multi-phase systems with air as the dispersed phase. The derived model equations are not applicable to typical industrial substance systems in organic media at elevated temperature and pressure. To address this issue, three main goals were defined for the project.

• Develop models and methods for designing, or enhancing the design of, multi-phase equipment.

• Suitable measurement techniques are needed to provide the underlying experimental data. Devel-opment of these techniques is another aspect of the project.

• A pilot-scale test reactor at Evonik is used to evaluate the measurement techniques and obtain measurement data (Fig. 1).

The measurement techniques have now been devel-oped and thoroughly tested on the pilot reactor at Evonik Industries (Fig. 2). The researchers are using the results to identify, validate and enhance suitable calcu-lation models. The experimental data and calculation models are being archived in a web-accessible database. Other project work packages will be looking at the po-tential for CO2 mitigation in an industrial process. The

Multi-Phase – Increased Energy Efficiency and Reduced Greenhouse Gas Emissions Based on Multi-Scale Modelling of Multi-Phase Reactors

Fig. 1: Pressurized bubble column at the Evonik Industries Test Center.

Page 35: Chemical Processes and Use of CO2: 4th Status Conference

33ENERGY-EFFICIENT PROCESSING

improved techniques for multi-phase reactor design are being implemented in CFD code.

More efficient multi-phase reactor designs can reduce greenhouse gas emissions and conserve resources, and these two factors are key economic aspects of the project. In parallel, the acquisition of new expertise can give German companies a competitive advantage in the global marketplace and help ensure job security at

home. Networking between universities and industrial partners promotes intensive information sharing in both directions. The results are communicated at con-ferences and in trade journals on an ongoing basis. Stu-dent internships and the provision of a suitable context for Bachelor’s and Master’s theses and doctoral disser-tations promote the development of young profession-als, which is another positive aspect of the project.

Fig. 2: Testing a laser endoscope to measure bubble size

Project partners: Contact:

• Evonik Industries AG• BRUKER OPTIK GMBH• Eurotechnica GmbH• ILA Intelligent Laser Applications GmbH• PreSens Precision Sensing GmbH• Helmholtz-Zentrum Dresden-Rossendorf e.V.• Ruhr-Universität Bochum• TU Hamburg-Harburg

Dr. Marc BeckerEvonik Industries AGRellinghauser Str. 1-1145128 EssenTel.: +49 (0)2365 49-6737E-Mail: [email protected]

Page 36: Chemical Processes and Use of CO2: 4th Status Conference

34 ENERGY-EFFICIENT PROCESSING

project goals and content

The goal of the project is to develop a miniaturized oil-free CO2 compressor with built-in CO2-cooled electric motor drive for high-capacity CO2 heat pumps and chillers.

The project deliverable is a functional demonstration showing the feasibility of using CO2 in a turbo machine as the working medium in the compressor, the lubricant in the gas bearings and the coolant in an electric motor drive unit. The technology will be based on an inno-vative design, and the defined operating environment is a high-capacity heat pump with 4.0 COP. Various simulation-based methodologies are being developed in the Fluid Mechanics and Hydraulic Machinery Dept. at the University of Applied Sciences in Kaiserslautern to quantify the power losses caused by shear forces be-tween the rotor and the stator and determine the cor-rect dimensioning of the gas bearings. The models are verified on test beds installed at a subcontractor’s site (KSB) and in the Department of Thermo and Fluid Dy-namics at Mannheim University. The results are used during development of functional prototypes for the compressor stages, the rotor, the stator and the electric motor drive unit.

project status

The methods used to make the design calculations for the hydraulic stages have progressed to the point where an initial compressor stage consisting of an impeller and diffuser has been evaluated in the simulator. Ro-tordynamic analysis has been performed for the shaft, and the results obtained through iterative simulation have been verified during trials. At speeds up to around 180,000 RPM, vibration resulting from the rotor’s rigid and deformable body modes made it necessary to re-design the rotor and stator in the electric motor drive unit. A drive unit with oil-lubricated rolling bearings has run at speeds up to 170,000 RPM during trials. The speed was kept below 180,000 RPM due to the char-acteristics of the rolling bearings. The compressor will have gas bearings, so that aspect is of no practical consequence. The fluid mechanics characteristics of

the CO2-lubricated gas bearings are being modeled. The current models have not yet been verified in trials, primarily because it has not been possible to create a consistent model for the axial bearings and axial thrust compensation. It is also not yet clear what material should be used for the gas bearing shells. The research-ers have succeeded in developing a satisfactory model of the losses in the stator cavity caused by shear forces in the CO2 induced by the rotation of the rotor. The current models have not yet been consistently verified in trials due to the complex manner of dilution of the CO2 medium. It is important to know the magnitude of these losses in order to ensure that the high capacity heat pump delivers 4.0 COP.

economic, environmental and societal leverage effect

In the short term, the oil-free CO2 compressor will make it possible to design cost-effective high-capaci-ty heat pumps (50 – 1000 kW thermal capacity) which use CO2 as the working medium. Large manufacturers in the heating equipment industry have entered the market for high-capacity heat pumps. The high-capac-ity CO2 heat pump will make a significant contribution to energy-efficient space and water heating in existing residential and commercial buildings, because CO2 has very good specific heating characteristics along with low space requirements due to the high energy density of the medium. Compared to current working media, CO2 places fewer demands on system safety design. There is market demand for high-capacity heat pumps which deliver reliable cooling power (e.g. for food) with working media which are less dangerous than those which are currently used.

In the medium term, it may be possible to use the elec-tric motor drive in vehicles which have higher power density (e.g. e-boost for combustion engines in the automobile industry).

The long-term vision includes product features on drives with very high power density in transportation and CO2 utilization applications.

CO2 Compressor – Development of a Miniaturized Oil-Free CO2 Compressor with Built-In CO2-Cooled Electric Motor Drive for Large CO2 Heat Pumps

Page 37: Chemical Processes and Use of CO2: 4th Status Conference

35ENERGY-EFFICIENT PROCESSING

Development of the oil-free CO2 compressor is also significant from the environmental standpoint because the potential greenhouse effect of the halogenated working media currently in use is up to 6,000 times greater than CO2. The use of CO2 as the working me-dium in high-capacity heat pumps/chillers can play an important role in climate protection. In addition, high-capacity heat pumps/chillers are able to use or store electricity produced from renewable resources.

For society in general, development of a CO2 compres-sor which can help heat existing residential homes and buildings at a relatively affordable cost and provide se-curity of supply to meet the basic human need for heat is a very significant step forward. Involvement by the universities in Stuttgart, Kaiserslautern and Mannheim in the project provides opportunities for students to complete degree course requirements, which is another important social contribution made by the project.

Project partners: Contact:

• KSB Aktiengesellschaft• Universität Stuttgart• Hochschule Mannheim• Technische Universität Kaiserslautern

Herr Dr.-Ing. Gerd JansonKSB Aktiengesellschaft67227 Frankenthal Tel.: +49 (0)6233 86-1829E-Mail: [email protected] www.ksb.com

ig. 1: Test bed shear force losses University of Mannheim Fig. 2: Test bed single-stage CO2 compressor KSB/awtec

Page 38: Chemical Processes and Use of CO2: 4th Status Conference

36 ENERGY-EFFICIENT PROCESSING

The goal of the project is to develop an energy-efficient heat exchanger for the chemical industry, for example to condense organic solvents. The heat exchanger is intended as an alternative to current equipment made of glass or plastic, and it will be made entirely of plastic. The unit is basically a plate heat exchanger in which thin sheets of plastic film (75 – 150 µm) act as the heat

exchange surfaces. Fig. 1 shows a simplified diagram. The baseplates (yellow) have rectangular dimples on the condensation side to stabilize the highly flexible sheets of film (blue). The heat exchanger features a modular design, and more elements can be added as needed.

The heat exchanger must meet very demanding re-quirements (pressure up to 6 bar, temperatures up to 90°C, aggressive organic media such as toluene, hexane and tetrahydrofuran). Researchers have invested two years of intensive work studying the chemical, me-chanical and thermal resistance of polymer materials. Besides investigating the creep resistance of the film under the specified operating conditions, they also looked at how the foil behaves when exposed to vi-bration stress. Tests showed that film made of polytet-rafluoroethylene and polyimide meets the resistance requirements if it is properly supported. Heat transfer performance was determined by experiment and nu-merical analysis. A simple model heat exchanger was set up in the department to run experiments on differ-ent configurations (cross-flow, counter-flow, parallel flow). Data collected during the experiments was used to validate numerical models which were then used to define the final geometry.

Because the film is highly susceptible to pressure defor-mation, FSI (fluid solid interaction) was used for nu-merical simulation of heat transfer. With this approach, it is possible to model the geometric changes which take place during ongoing operation and understand the effect which these changes have on flow and heat transfer.

Nine student papers were completed during the project including 2 Bachelor’s theses and 2 Master’s theses. 3 other students are currently working on papers. A final dissertation is expected to be completed at the beginning of 2015. Information on the economic find-ings from the project in material science, heat transfer and fluid mechanics is being shared with the public at conferences and congresses.

There is constant demand in the chemical industry for small heat exchangers, many of which are used at test

EP-WÜT – Energieeffiziente Polymerwärmeübertrager

Fig. 1: Simplified diagram of a heat exchanger

Page 39: Chemical Processes and Use of CO2: 4th Status Conference

37ENERGY-EFFICIENT PROCESSING

centers. Polymer film heat exchangers have the ad-vantage of lower CO2 consumption during equipment manufacturing (up to 30 t CO2e/yr compared to glass heat exchangers). Other advantages include lighter weight and significantly lower material costs due to the low thickness of the heat transfer surfaces. The new technology can give manufacturers a competitive edge and contribute to job security. The lower costs can also help manufacturers reduce their equipment production costs.

Project partners: Contact:

• Technische Universität Kaiserslautern• MERCK KGaA• Calorplast Wärmetechnik GmbH

Dmitrij LaaberTU KaiserslauternGottlieb-Daimler Straße67663 KaiserslauternTel.: +49 (0)631 205-2124E-Mail: dmitrij.laaber[at]mv.uni-kl.de

Page 40: Chemical Processes and Use of CO2: 4th Status Conference

38 ENERGY-EFFICIENT PROCESSING

project goals and content

Progressive climate change creates the need for greater resource and energy efficiency. Optimization of indus-trial production can make an important contribution. Gas separation is used in many industrial applications. Conventional techniques are complex and very ener-gy-intensive. Gas permeation membrane technology is an energy-efficient alternative. To make the technology economically competitive with conventional tech-niques, the membrane material must have sufficiently large cross-membrane flow and selectivity.

There is growing demand for separation of long chain hydrocarbons, e.g. in natural gas upgrading. The goal of the project is to develop high-performance membrane material for separation of long-chain hydrocarbons from continuous gas flows. The new material should scale down the size of gas purification membrane sys-tems, reducing energy consumption and CO2 emissions. The project is based on the development of mixed matrix membranes made of a polymer matrix with embedded activated carbon particles which have high-er hydrocarbon selectivity compared to polymer-only membranes. When production advances to pilot scale, it will be possible to validate the results in a bypass at an industrial plant. A material transport model based on the experimental data is being developed to support process simulation later on in the project. The objective is to demonstrate the economic viability of the process which uses the new membranes and to provide a basis for lifecycle analysis.

project status

The polymer matrix is made of rubbery, silicon-based polymers which facilitate the transport of long-chain hydrocarbons. In order to support solubility controlled transport in the polymer matrix, modified hydrocar-bon-selective activated charcoal is being developed on the project as an active filler.

A number of factors influence the separation perfor-mance of the hybrid material. The materials must have good compatibility to avoid non-selective defects at the interfacial surface. The particles should also be well distributed in the polymer matrix to derive maximum benefit from the filler’s properties. Determining the

right combination of filler content and particle size presents a major challenge. Besides the morphologi-cal parameters, operating conditions such as pressure, temperature and composition have a crucial influence on the separation performance of the membrane.

During material development, the researchers investi-gated the influence which various factors have on the separation performance of mixed matrix membranes. They discovered a material combination which de-livers better selectivity for long-chain hydrocarbons compared to polymer-only membranes. Extended trials lasting about 5 weeks provided evidence that the improved separation performance remains stable as shown in Fig. 1.

Production is now possible on an industrial scale. More than 100 m² of mixed matrix membrane is already available for pilot testing (see Fig. 2). Plans are being drawn up for a pilot test in a bypass at an industrial plant. The system is currently under construction and is expected to be available in the spring of this year.

A rigorous mechanistic transport model has been de-veloped for the mixed matrix membrane. It describes the solubility of the permeating components in the polymer material, the diffusion process in the polymer, transition between the polymer and activated carbon phase and transport in the activated carbon’s pore sys-

Mixed-Matrix-Membranen für die Gasseparation

Fig. 1: Mixed matrix membrane stability over a 5 week period in an n-Pentan/oxygen system (1.5 vol%/88.5 vol% on the high pressure side) at 20°C, 30 bar feed pressure and 1.1 bar permeate pressure.

Page 41: Chemical Processes and Use of CO2: 4th Status Conference

39ENERGY-EFFICIENT PROCESSING

tem. The latter is further broken down into transport processes during the gas phase and the adsorbed phase. The model provides a very good description of the per-meation process for the individual components and it is currently being enhanced for multi-material systems.

economic, environmental and societal leverage effect

The assumption is that the membrane technology will become even more competitive and that new market opportunities can be exploited. A rough estimate of the market potential shows that demand for the new mixed matrix technology could be as high as 1,000 sys-tems between now and 2030. Based on current results, energy consumption would be 16.8% lower compared to systems with conventional membranes. That equates to a reduction of 16 ktCO2/yr.

That figure could increase, but the differential would be difficult to quantify. If events were to unfold as just described, the result would be greater job security in membrane production and system manufacturing, and it would further stimulate innovation in Germany. To our knowledge, mixed matrix membranes have never been used up to this point for gas permeation in indus-trial applications.

Three doctoral candidates on the project are working toward completion of their degree courses. Six Bache-lor’s theses and two other theses have also been com-pleted.

Fig. 2: Industrial-scale mixed matrix production

Project partners: Contact:

• Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH

• Technische Universität Berlin• Sterling Industry Consult GmbH

Dipl.-Ing. Torsten Brinkmann Ph. D.Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbHInstitut für PolymerforschungMax-Planck-Straße 121502 GeesthachtTel.: +49 (0)4152 87 2400E-Mail: [email protected]

Page 42: Chemical Processes and Use of CO2: 4th Status Conference

40 ENERGY-EFFICIENT PROCESSING

The ability to improve energy efficiency has long been a major competitive factor in the chemical industry. In addition, a reduction in greenhouse gas emissions is becoming an increasingly important aspect of sustain-able climate protection policy. Besides finding ways of improving energy efficiency, one of today’s major challenges is to minimize energy consumption and greenhouse gas emissions as soon as possible using technologies which are sustainable over the long term. Power generation and distribution obviously need to be optimized. Beyond that, often the most effective strategy is to maximize energy efficiency in production. Possible pathways for achieving that include operating parameter enhancements, equipment optimization, interconnection of heat flows and process engineering improvements.

More and more companies are using energy manage-ment systems to track and control energy consump-tion, set energy goals and identify opportunities to save energy. The diversity of process technologies and en-ergy sources, the lack of benchmarks and quite simply the definition and measurability of energy efficiency often create unsurmountable obstacles which reduce the utility of these systems.

The STRUCTese® energy management system de-veloped by Bayer to facilitate continuous, sustained maximization of energy efficiency forms the basis of the project. In contrast to conventional energy man-agement systems, STRUCTese® not only reports and tracks (specific) energy consumption over time, it also compares specific primary energy consumption to var-ious theoretical optima. The losses (actual vs. optimum) caused by suboptimal equipment, partial load, the product mix, external factors and suboptimal opera-tion are presented in a clear and transparent manner. Using this approach, energy efficiency becomes meas-urable. STRUCTese® provides an optimization pathway and removes the obstacles mentioned above.

Advanced development work is being done on the project to transform the method into a standardized energy efficiency management and benchmarking tool which many companies can use for different process scenarios. The method was implemented in a number of real-world processes and enhanced so that it can model a very broad spectrum of process scenarios, e.g. parallel production lines, production of multiple prod-ucts and batch-continuous transitions. The researchers worked closely with universities to define the theo-retical optima. They did this to ensure that the bench-

EE Management – Energy Efficiency Management and Benchmarking for the Process Industry

Fig. 1: Energy loss cascade

Page 43: Chemical Processes and Use of CO2: 4th Status Conference

41ENERGY-EFFICIENT PROCESSING

marks have been objectively defined and that they are based on the most advanced techniques from the world of science and technology. The project demonstrated that the method can be applied across an entire site. Case studies have shown that an intelligent manage-ment system can reduce energy consumption by more than 20%. The system has already helped Bayer save more than 1 million MWh of primary energy and re-duce CO2 emissions by a good 300,000t /yr.

Project partners: Contact:

• Bayer Technology Services GmbH• Bayer MaterialScience AG• BASF Personal Care and Nutrition GmbH• Inosim Consulting GmbH• instrAction GmbH• bitop Aktiengesellschaft (bitop AG)• RWTH Aachen• Technische Universität Dortmund• Clariant Produkte (Deutschland) GmbH

Dr. Christian DrummBayer Technology Services GmbHTel.: +49 (0)214 30 41978E-Mail: [email protected]

Page 44: Chemical Processes and Use of CO2: 4th Status Conference

42 ENERGY-EFFICIENT PROCESSING

Worldwide anthropogenic CO2 emissions resulting from the use of fossil resources were estimated at 34 Gt in 2011 (German Ministry of Economics and Tech-nology, 2013). Fossil fuel will continue to be our major source of energy in the future (BP, 2013). In order to reduce CO2 emissions despite rising energy demand, technologies are needed for efficient CO2 capture from industrial and other waste gas streams. CO2 capture from flue gas can make an important contribution. However, efficiency losses during CO2 capture from power station flue gas can currently be as high as 12%. The goal of the consortium project was to conduct research on new and improved absorbents for carbon

capture to reduce energy and resource consumption. The project deliverables also included a demonstration of the efficiency gains through simulation of the entire power station and CO2 capture process and lifecycle assessments to evaluate the sustainability of the new processes. All substance classes in the Evonik product portfolio were included during development of chemi-cally stable absorbents which require less energy for re-generation. The researchers used synthesis techniques to modify the absorbents at the molecular level. They then conducted lab studies to analyze the CO2 ab-sorption behavior and thermodynamics. A test system connected to the flue gas stream at the coal-fired CHP

EffiCO2 – New Absorbents for More Efficient CO2 Separation

Fig. 1: Test system following detailed engineering Fig. 2: Test system in the chimney base at the power plantin Herne

Page 45: Chemical Processes and Use of CO2: 4th Status Conference

43ENERGY-EFFICIENT PROCESSING

plant in Herne gave the researchers the opportunity to study the absorbents under real-world conditions. Only the most promising absorbents were included in the test system trials. The team collected thermodynamic and process engineering data and analyzed and evalu-ated the ability of the absorbents to withstand second-ary constituents in the flue gas.

Based on the results of lab and test system trials, a simulation was run to see how the absorbents would perform in a large-scale power station process and to assess the economic viability. The simulation showed that energy consumption could be reduced by around 40% compared to existing CO2 absorption using mo-noethanolamine. This equates to a reduction in CO2 emissions of approximately 120 kg CO2/t CO2. At the reference power plant, the emissions reduction poten-tial exceeds 240,000 t CO2e/a.

The technology is not limited to flue gas applications. It could also be used, for example, in natural gas upgrading, chemical production, cement and lime manufacturing and the iron and steel industry. Besides efficient CO2 capture, it also provides access to high-purity CO2 which can be used for high value-add products. The consortium project ended on September 30th, 2013.

Project partners: Contact:

• Evonik Industries AG• Universität Erlangen-Nürnberg• Universität Duisburg-Essen

Dr. Jens BussePaul-Baumann-Straße 145764 MarlTel.: +49 (0)2365 49-86509E-Mail: [email protected]

Page 46: Chemical Processes and Use of CO2: 4th Status Conference

44 ENERGY-EFFICIENT PROCESSING

project goal

As the rated capacity of wind turbines continues to increase, the designs place greater specific stress on all of the subsystems. The rolling bearings are particularly susceptible to failure which is often caused by inad-equate lubrication. The primary failure mechanism damages the microstructure, resulting in early failure. This significantly reduces the availability of the wind turbines. The economic and environmental benefits decrease, and there is a negative impact on the overall CO2 cycle.

The goal of the IL Wind project is to develop high-ef-ficiency IL-based lubricants which are capable of neutralizing the damage mechanism. Higher system availability decreases the cost and increases the envi-ronmental benefits of wind power generation, particu-larly on multi-megawatt turbines.

The consortium partners took responsibility for dif-ferent aspects of the overall development effort. The University of Erlangen-Nürnberg provided basic scien-

tific support. Responsibility for engineering feasibility was placed in the hands of industry partners Merck and Schaeffler Technologies, with consultancy provided by the end user Senvion SE (formerly REpower Systems).

project status

The research team on the IL WIND project developed halogen-free ionic liquids (ILs) with a target solubility of 5 wt% in petroleum-based oil and evaluated their thermal properties. COSMO-RS was used to help iden-tify the required structural elements of the ILs. The tribologic properties (friction and wear surfaces) of the ILs in contact with 100Cr6 steel in air, argon and CO2 atmospheres were assessed and compared with stand-ard oils. The corrosion behavior of the ILs was also evaluated using six different metals and alloys.

The researchers conducted screening trials to demon-strate the tribologic suitability of the structures for sub-sequent rolling bearing trials. A basic test bed was set up which uses IR spectroscopy for in situ investigation of the damage mechanism.

IL WIND – Development of IL-Based Lubricants for Wind Turbines

Fig. 1: Rolling bearing (© Schaeffler Technologies GmbH & Co. KG) Fig. 2: Wind turbine (© Senvion SE)

Page 47: Chemical Processes and Use of CO2: 4th Status Conference

45ENERGY-EFFICIENT PROCESSING

The IL additive was shown to be effective in preventing damage during rolling bearing trials at Schaeffler. Add-ing just 1% of the IL substance to a reference oil result-ed in a four-fold increase in runtime to failure. Lubri-cation trials were run to further demonstrate the basic tribologic properties of the new lubrication formula-tion prior to release for scale-up of the formulation to 1,000 liters by Merck. This quantity was sufficient to run extended testing with large bearings, which was completed after 3,000 hours without damage. The trials demonstrated the basic suitability and damage preven-tion potential of the bearing lubricant.

economic, environmental and societal leverage effect

Early bearing failure on wind turbines reduces the sup-ply of CO2-free power and the expected environmental and economic benefits. The excellent tribologic proper-ties and intrinsic conductivity of the lubricant with IL additive which was developed on the IL WIND project inhibits the bearing failure mechanism and prevents turbine downtime.

Less conventional fossil-based fuel is needed to com-pensate for the loss of generation capacity.

The intention is to run field verification trials and con-tinue development of the lubricant right up through market introduction

The project outcome would of course not have been possible without productive collaboration between industry and the university. 10 Bachelor’s theses, 4 Master’s theses and four doctoral dissertations were completed during the project.

Project partners: Contact:

• Merck KGaA• Schaeffler Technologies GmbH & Co. KG• Friedrich-Alexander-Universität Erlangen-

Nürnberg

Assoziierter Partner:• Senvion SE

Prof. Dr. P. WasserscheidFriedrich-Alexander-Universität Erlangen-NürnbergLehrstuhl für Chemische ReaktionstechnikEgerlandstr. 391058 ErlangenTel.: +49 (0)9131 85-27420Fax: +49 (0)9131 85-27421E-Mail: [email protected]

Page 48: Chemical Processes and Use of CO2: 4th Status Conference

46 ENERGY-EFFICIENT PROCESSING

A new energy and resource efficient technique for extracting lignin, cellulose and hemicellulose from softwood and hardwood is currently under develop-ment. Pure ionic fluids (alkoxymethyleniminium salts) which are able to solubilize lignin and hemicellulose with relatively good selectively at 80°C were used in-itially. Difficulties which occurred when filtering out the cellulose were resolved by adding co-solvents to the solvent solution, but that had a negative impact on selectivity and yield.

Researchers have now found out how and to what ex-tent the constitution of the ionic liquids influences sol-ubilization efficiency. Other organic solvents were also identified which can be combined with the ionic liq-uids during solubilization. By varying the reaction con-ditions, the researchers demonstrated that qualitatively and quantitatively the solubilization result is heavily dependent on the process temperature. The sum of these findings enabled the researchers to create solvent solutions which only contain relatively small amounts of ionic liquids. At temperatures between 80°C and 160°C and reaction times between 2 and 8 hours, the solute – solvent ratio was in the range 1:2 - 1:5.

Under these conditions, fibrous low-lignin cellulose, syrupy hemicellulose and low molecular weight lignin which dissolves in organic solvents can be extracted nearly quantitatively from 1 kg of spruce wood chip-pings. As things stand now, approx. 200-250 g of lignin, approx. 500-600 g of cellulose, approx. 200-250 g of hemicellulose and 30-50 g of resin can be extracted from 1 kg of chippings using this process. The industry partners on the project (J. Rettenmaier & Söhne and Bayer Technology Services) are currently evaluating the usability of the lignins and cellulose which can be extracted. Should the investigations produce a favora-ble outcome, industrials-scale trials will be run and the plan is then to build a pilot system.

2 Bachelor’s theses and a Master’s thesis were complet-ed during the project. Work on a doctoral dissertation began when the project started and it is expected to be completed by the end of 2014.

LICIL – A New Process for Extracting Lignin, Cellulose and Hemicellulose from Biogenic Materials with the Aid of New Ionic Liquids

Project partners: Contact:

• Hochschule Aalen• Universität Hamburg• J. Rettenmaier & Söhne GmbH + Co KG• Bayer Technology Services GmbH

Prof. Dr. Willi KantlehnerHochschule AalenBeethovenstr. 173430 AalenTel.: +49 (0)7361 576-2152 oder (0)7366-6766Fax: +49 (0)7361 576-2250E-Mail: [email protected]

Page 49: Chemical Processes and Use of CO2: 4th Status Conference

47ENERGY-EFFICIENT PROCESSING

Large low-temperature waste heat flows between 80°C and 120°C are generated in many industries (e.g. chemicals, food and metallurgy). In the past, the heat has simply been released into the surroundings, but it actually has significant potential to reduce primary energy consumption.

The goal of the project funded by the German Ministry of Education and Research (BMBF) is to develop absorp-tion loops with a power rating > 10 MW for proportion-ate transformation of the heat to a higher and useable temperature or for chilling. The use of alternate mate-rial pairings incorporating ionic fluids creates oppor-tunities to increase operating reliability and efficiency. The researchers took on the task of identifying suitable material pairings, collecting material data and conduct-ing lab trials. The material data can be used to simulate the heat loop and study the operating parameters.

Higher solvent viscosity is one issue which needs to be addressed. Also, the researchers want to increase system power capacity. As a result, they are working on the development of new material exchange subsystems to increase efficiency without the need to add wetting enhancers.

Over the course of nearly three years, the consortium members have identified a Dream Polymers which look very promising. Thermo-physical data and sim-ulation tools are used to design absorption loops and compare different material pairings. By looking at the internal heat and material transitions, the research team is able to simulate what happens when external loops are connected.

A fully operational pilot-scale (4 kW useful heat output) absorption heat transformer was built at the Karlsruhe

Utilization of Low-Temperature Heat with Absorption Loops for Generation of Cooling Power and Heat Transformation – New Material Pairings

Fig. 1: Diagram of an absorption heat transformer

Page 50: Chemical Processes and Use of CO2: 4th Status Conference

48 ENERGY-EFFICIENT PROCESSING

Institute for Technical Thermodynamics and Refrig-eration (KIT) - see Fig. 1. A water – ionic liquid materi-al pairing is currently being evaluated on the system under various operating conditions. The experimental results are used to evaluate predictions generated by a simulation program and interpret the differences. New equipment design features with highly promising operating characteristics have been built into the lab system. A patent application is being prepared in part-nership with API Schmidt-Bretten for the fluid distri-bution system of the new absorber.

In parallel, the suitability of a different absorber design is under evaluation at BASF SE, and the suitability of the new material pairing is also being assessed under various operating conditions. The researchers have identified additional heat sources and the company is considering using the process at its integrated site in Ludwigshafen as well as at other sites.

The results achieved at KIT so far indicate that mega- watt range absorption heat transformers using the material pairings which are currently under investiga-tion could be economically viable. Measurements and initial estimates by BASF SE suggest that the economic advantages are more likely to be significant if operating conditions are favorable. As energy costs continue to rise and CO2 emissions regulations become more stringent, absorption loops and heat flow integration could become more attractive. Initial estimates indicate that annual savings by 2030 could be in the region of 500,000 t CO2e.

The ionic fluids can be regenerated and reused. Re-cycling would further reduce costs and enhance the sustainability of the sorption system lifecycle. Man-ufacturers of sorption systems would not be the only ones to benefit from the use of sorption technology to recover waste heat. The technology could also create new market opportunities for the recycling industry. Given the magnitude of the potential opportunities, demand for the materials would probably be measured in tonnes.

Four Bachelor’s theses, two Master’s theses and three degree dissertations were completed during the course of the project, and the research has generated greater interest in this approach to energy recovery. A doctoral dissertation on absorption heat transformation using the water - ionic fluid material pairing is being written this year. Information on the research results was shared with the scientific community on posters and during talks at various conferences.

Project partners: Contact:

• Karlsruher Institut für Technologie (KIT)• API Schmidt-Bretten GmbH & Co. KG• IoLiTec Ionic Liquids Technologies GmbH• BASF SE

Nina MerkelKarlsruher Institut für Technologie (KIT)Institut für Technische Thermodynamik und Kältetechnik (ITTK)Engler-Bunte-Ring 2176131 KarlsruheTel.: +49 (0)721 608 42733E-Mail: [email protected]

Page 51: Chemical Processes and Use of CO2: 4th Status Conference

49ENERGY-EFFICIENT PROCESSING

project goals and content

Large volumes of heat are constantly being released by German industry into the surroundings without being used, either because the heat temperature is too low or there is no need for the heat at the time when it is available. In recent years particularly in the chemical industry, the deployment of heat integration technol-ogy at integrated sites has increased production energy efficiency to the point where further improvement will not be possible without the introduction of innovative technology.

Additional heat flows can only be utilized by bringing them up to a useable temperature with the aid of a heat pump. High-density chemical heat storage can be used to store the higher-temperature heat and make it available on demand in the form of thermal energy, significantly reducing primary energy consumption and greenhouse gas emissions.

New working fluid pairs based on ionic liquids are be-ing developed for absorption heat pumps. By tailoring suitable ternary working fluid pairings, it is possible to enhance overall performance and create advantages compared to conventional working fluid pairings.Process engineering assessment and validation are car-ried out using pilot-scale heat pumps as well as com-mercially available heat pumps.

In order to develop a thermo-chemical heat storage system with high energy storage density, the research-ers are working to identify and evaluate suitable reac-

tion systems. A reactor design is being developed which is optimized for these materials and is suitable for this heat pump – heat storage combination. Development of a pilot-scale heat storage system will provide the basis for commercial upscaling at a later date.

project status

The project came to an end on October 31st, 2013. Two different working fluid pairings were identified for use in absorption heat pump systems. These pairings are suitable for different temperature ranges. The systems have been used successfully on a demonstration-scale and in commercially available absorption heat pump systems. Lifecycle analysis was carried out for pro-duction of an ionic liquid based working fluid pairing which reduces resource and energy consumption com-pared to conventional working fluid pairings. Possible storage materials were evaluated for use in chemical heat storage systems, and lab-scale testing was carried

out on a material which the researchers identified. They also identified and tested various reactor designs for a chemical heat storage system. Important knowledge was gained during the project, which provides a foundation for further devel-opment of full-scale chemical heat storage systems. A carbon footprint estimate derived from

the research results provides a basis for gauging the possible reduction in CO2 emissions and resource consumption.

economic, environmental and societal leverage effect

As of 2007, 406 TWh of waste heat potential was avail-able each year at industrial sites in Germany alone. If this potential were exploited, it would be possible to reduce primary energy consumption and greenhouse gas emissions and also save money. That would give Germany a competitive advantage as a business location

SIT – Utilization of Low-Calorific Industrial Heat by Means of Sorption Heat Pump Systems using Ionic Liquids and Thermochemical Accumulators (SIT)

Fig. 1: Scenario for utilizing low-calorie industrial waste heat.

Page 52: Chemical Processes and Use of CO2: 4th Status Conference

50 ENERGY-EFFICIENT PROCESSING

and generate long-term growth in the country. Devel-opment of thermochemical heat storage systems is still at an early stage and it is not yet possible to operate an absorption heat pump and heat storage system in combination at full scale. The work done during the project did however demonstrate that this technology could create opportunities to reduce CO2 emissions.

Close collaboration between university research organ-izations and industrial partners created opportunities to align innovative research with application-related needs. Young scientists involved in the project complet-ed 4 doctoral dissertations and a number of Bachelor’s and Master’s theses.

Fig. 2: Chemical heat storage test system (Source: DLR e.V.)

Project partners: Contact:

• Evonik Industries AG• Friedrich-Alexander-Universität Erlangen-

Nürnberg• Deutsches Zentrum für Luft- und Raumfahrt e.V.

(DLR)• GasKlima GmbH

Dr. Jens BusseSenior Project Manager – Sustainable Businesses - Up-stream SolutionsCREAVIS – Science to BusinessTel.: +49 2365 49-86509Fax: +49 2365 49-8086509E-Mail: [email protected]

Page 53: Chemical Processes and Use of CO2: 4th Status Conference

51CO2 UTILIZATION

the goal of the Dream polymers project is to make maximum use of carbon dioxide and renewables as feedstock for polyol. polyol is an important plastics precursor. Bayer is playing the lead role in the consor-tium which brings together partners from industry and academia. The idea is to take carbon dioxide from a power plant and use it directly and indirectly to make polycarbonate polyols. The gas is reacted with a substance which in turn is made from CO2. This can be done either through direct chemical conversion of CO2 or by using renewable feedstock.

Polyurethane, a highly versatile plastic, can be made from the new polyols. PU is used as foam in many everyday products such as cars, furniture, shoes and building insulation material. The polycarbonate polyols can also be used to make thermoplastics which po-tentially have new and highly attractive properties for electrical/electronic applications, production of ma-chinery parts, etc.

To a certain extent, the project is an extension of the publicly funded Dream Production project which ran

from 2010 – 2013. Thanks to Dream Polymers, it looks like it will be possible to use another polymer precursor, which is also made from CO2, in Dream Production. This would reduce the carbon footprint of the input mate-rials compared to conventional polyols made from fos-sil-based resources. The properties of these polymers are currently being evaluated.

The RWTH Aachen University CAT Catalytic Center (ITMC) and the Leibniz Institute for Catalysis at the University of Rostock (Likat) are working closely with the industry partners Bayer MaterialScience and Bayer Technology Services. The project covers the entire spectrum from basic research right through to larger- scale production. RWE Power is another industrial partner which is associated with the project.

The environmental impact of the processes developed by the project partners and the expected reduction in CO2 emissions are being evaluated by the Technical Thermodynamics Department at RWTH Aachen University.

Dream Polymers – From Dream Production to Dream Polymers – Sustainable Pathways to New Polymers

Project partners: Contact:

• Bayer Technology Services GmbH• RWTH-Aachen – Fachgruppe Chemie – Institut für

Technische und Makromolekulare Chemie (ITMC)• Leibniz-Institut für Katalyse e.V. an der Universität

Rostock• Fraunhofer-Institut für Chemische Technologie

(ICT)• Bayer MaterialScience AG

Assoziierter Partner: • RWE Power AG

Dr. Martina PetersBayer Technology Services GmbHTel.: +49 (0)214 30 20063E-Mail: [email protected]

Dr. Christoph GürtlerBayer Material Science AGTel.: +49 (0)214 30 21771E-Mail: [email protected]

Page 54: Chemical Processes and Use of CO2: 4th Status Conference

52 CO2 UTILIZATION

ACER – Sodium Acrylate from CO2 and Ethene (Acrylates ex Renewables)challenges and Goals

The goal of the project is to utilize CO2 as a feedstock through catalytic synthesis of sodium acrylate from CO2, ethylene and a base. Sodium acrylate is an impor-tant basic material for high-performance polymers. Superabsorbers used in diapers are the most obvious example. Millions of tonnes of superabsorber polymers are produced annually worldwide.

Acrylic acid is currently made in a two-stage reaction from propylene which is produced from straight run gasoline (Fig. 1). The technology, which is fossil-based (oil), has been refined over a period of many years, and it is the benchmark against which the material and energy aspects of a potential new process will be measured.

project status

Since January 2011, researchers at the Catalysis Re-search Laboratory (CaRLa) which is supported by BASF, hte AG (part of BASF), TUM in Munich and the Uni-versity of Stuttgart have been working together on the ACER project (Acrylates ex Renewables) to find ways of using CO2 on an industrial scale for the production of sodium acrylate. The process must be viable from both

the economic and environmental standpoint. Creating this “dream reaction” is no easy undertaking. From the engineering perspective, it is a “hard nut to crack”. 30 years of intensive academic and industrial research has failed to provide an answer.

In the first year of the project, the team which included catalyst researchers, theoretical chemists and chemi-cal engineers identified a nickel-based catalyst which

Fig. 1: Current state-of-the-art sodium acrylate synthesis process and the production process under investigation in the ACER project

Fig. 2: Catalyst screening system

Page 55: Chemical Processes and Use of CO2: 4th Status Conference

53CO2 UTILIZATION

makes it possible for the first time to combine CO2 and ethylene feedstock under industrially relevant conditions. Various homogeneous and heterogeneous candidate catalysts and process conditions were evalu-ated and optimized during high-throughput screening. Different analytical techniques were employed to gain a deeper understanding of the critical reaction steps. Continuous improvements are being made to catalyst performance and life. Initial superabsorber samples were produced using representative reaction products, and their properties were evaluated.

application, exploitation of the results, economic and environmental Benefits

The German Ministry of Education and Research (BMBF) is providing 2.2 million euros in funding for the project. BASF and hte are contributing an additional 1.7 million euros over a period of three years.

If the results of the ACER project can be transferred to industrial scale production and assuming a market volume of around 4 million tonnes, roughly 2.4 million tonnes of CO2 could be utilized as feedstock. Because

an established process for making ethylene from re-newable bioethanol already exists, complete changeo-ver of acrylate synthesis to a renewable feedstock base would be feasible. The bioethanol feedstock can con-tain two CO2 equivalents, so a maximum 7.3 million tonnes of CO2 could be utilized along this value-add pathway if total global demand for acrylic acid were satisfied using this technology. In addition, migrating synthesis from propylene to ethylene could substan-tially reduce material, energy and fossil-based feed-stock consumption and drive down investment costs.

An expedient patent portfolio for the entire acrylate value-add chain, from the catalytic process to polymer-ization, is being put together to protect the knowledge gained during the project. The doctoral and post-doc-toral candidates involved in the project regularly present their scientific results at national and interna-tional conferences. Significant findings are published in leading scientific journals.

Information on the project is regularly shared with in-ternational opinion-making bodies from government and industry.

Project partners: Contact:

• BASF SE• Universität Stuttgart• Technische Universität München• hte GmbH the high throughput experimentation

company

Dr. Michael LimbachBASF SE67056 LudwigshafenE-Mail: [email protected]

Page 56: Chemical Processes and Use of CO2: 4th Status Conference

54 CO2 UTILIZATION

Utilization of CO2 in the production of high value-add products cycles the greenhouse gas back into the val-ue-add chain and creates access to an alternative non fossil fuel based C1 carbon source. Carbon dioxide is an attractive building block for chemical syntheses. It is available at low cost and supplies are virtually unlim-ited.

However, CO2 is relatively inert, and conversion to high value-add products presents a big challenge. There are, however, some examples which demonstrate the feasi-bility of utilizing CO2 on an industrial scale.

The vision of the Valery project is to develop new feed-stock sources for the chemical industry. The research-ers are looking in particular at CO2 and alkanes as alternative carbon sources for industrial-scale produc-tion of high value-add products. The specific objective is to find an alternative process to replace conversion of olefins and carbon monoxide (CO) into aldehydes by hydroformylation. Carbon dioxide (CO2) will be substi-tuted for toxic carbon monoxide, and energy-efficient dehydrogenation of alkanes will provide the source of olefins. The researchers have chosen synthesis of valer-aldehyde from n-butane as an example.

Valery – Energy-Efficient Synthesis of Aliphatic Aldehydes from Alkanes and Carbon Dioxide: Valeraldehyde from Butane and CO2

Fig. 2: CO2 footprint of the new process compared to established technology.

H2+ OCO2/H2

Fig. 1: Energy-efficient syntheses of valeraldehyede from butane and CO2.

During the course of the project, the researchers have been able to reproduce results described in the litera-ture, and they have also been able to improve on those results through specific optimization. In the case of hydroformylation using CO2, introduction of a

new ligand class has increased throughput and im-proved selectivity. In the case of energy-efficient dehy-drogenation, selectivity performance was greatly im-proved. In addition, a suitable combination of two ionic fluids and a substrate material was used to stabilize the

Page 57: Chemical Processes and Use of CO2: 4th Status Conference

55CO2 UTILIZATION

hydroformylation catalyst system. Besides carrying out a detailed investigation of both reactions, the research-ers were able to run energy-efficient dehydrogenation in a semi-continuous reactor setup. In the case of hydroformylation using CO2, the reaction could be run continuously with the immobilized catalyst system.

In parallel with the chemical investigations, an eco-nomic and environmental evaluation was carried out on energy-efficient synthesis of valeraldehyde from butane and CO2. Economic analysis shows that the use of CO2 and butane as alternative feedstock for aldehyde production can reduce feedstock cost by up to 47%. Utilization of CO2 and butane increases feedstock flex-ibility and provides a secure source of aldehydes which are a key intermediate in plasticizer synthesis. Looking at the environmental impact, the CO2 footprint was es-timated and compared with the established technology. Cradle-to-grave analysis of CO2 emissions shows that energy-efficient synthesis of olefins and subsequent hydroformylation using CO2 can reduce the carbon footprint of valeraldehyde by up to 61% compared to established technology.

Project partners: Contact:

• Evonik Industries AG• Universität Bayreuth• Leibniz-Institut für Katalyse e.V. an der Universität

Rostock

Dr. Daniela KruseEvonik Degussa GmbHCreavis Technologies & InnovationTel.: +49 (0)2365 49-9077E-Mail: [email protected]

Page 58: Chemical Processes and Use of CO2: 4th Status Conference

56 CO2 UTILIZATION

The goal of the research project is to find ways of reducing atmospheric CO2 by using sunlight in a photocatalytic reaction to recycle CO2, producing C1 building block products for the chemical industry, in particular methanol and methane. The researchers are working on development of catalyst systems which are based on semiconducting oxide composites and have high photon yields. The catalysts need to be durable, readily available and suitable for industrial-scale applications. The preferred starting materials are TiO2 and ZnO which are tested in catalyst systems that have varying structures and compositions.

During the initial phase of the project, the team inves-tigated in detail the physical and chemical properties of the known photocatalyst system consisting of isolated titanium species on SiO2 (TiOx/SiO2). Also, the system was modified using gold as the co-catalyst. In photo-

catalytic test reactions, the importance of the Ti-O-Si linkages for photocatalytic activity was very apparent. Deposition of isolated zinc oxide species improved the potentially inadequate adsorption of CO2 on the titani-um species. Using literature data as the basis, the team also developed and built a gas phase photo reactor with an improved design at the Chemical Engineering Department (Fig. 1). With this reactor, they were able to carry out investigations under ultra-pure conditions and collect reliable product formation data. Using gas chromatography, it is possible to quantify hydrocarbon concentrations down to a few ppm. Initial measure-ments on the known TiOx/SiO2 photocatalyst made it very obvious that meticulous photocatalytic cleaning of the samples is essential to prevent formation of con-taminant products. Overall, the quality of the photo-catalytic measurements performed in Bochum have seldom been equaled anywhere in the world.

The results of activity measurements on photocatalytic reduction of CO2 demonstrate that TiO2 and titanium dioxide based systems generally produce higher hydro-carbon yields than ZnO and the zinc oxide based systems which have been tested so far. As a result, the scientists concentrated their efforts on trying to improve the activity of titanium oxide based systems. With a maximum yield of around 100 ppm after 7 hours reaction time, methane was invariably the main product.

The yields are comparable with those reported in the literature by other working groups. Methane formation was normally accompanied by the formation of small amounts of other hydrocarbons. Methanol or other oxygenates were not found. In a second CO2 reduction experiment without intermediate purification, hydro-carbon yields appeared to be higher (Fig.2a). The expla-nation for this appears to be that stable surface inter-mediates form on the TiOx/SiO2 during the first pass.

PhotoKat – Entwicklung aktiver und selektiver heterogener Photokatalysatoren für die Reduktion von CO2 zu C1-Basischemikalien

Fig. 1: Left: schematic diagram of the complete metal-sealed gas phase photo reactor with CF flanges (1), quartz window (2), VCR connections (3), cooling jacket (4), sample compartment (5) and cooling circuit connections (6); right: photo of the actual reactor with valves and 200 W HgXe lamp.

Page 59: Chemical Processes and Use of CO2: 4th Status Conference

57CO2 UTILIZATION

Formaldehyde was identified as one of the intermedi-ates. Formation of CO could not be demonstrated using the existing gas analysis technique. A methanizer is be-ing added to the GC application. Deposition of gold on

the TiOx/SiO2 system doubled the activity. Twice the amount of methane was formed in the same reaction time. More long-chain hydrocarbons (ethane, propane, butane) were also detected.

Modifying the titanium system with zinc oxide also has an influence on activity, but an increase in activity is only observed if the ZnO is present in large aggregates and is not isolated. This would seem to indicate that the exact combination of zinc oxide and titanium species has a crucial effect on activity. Investigation is currently underway to clarify this aspect, and the researchers are also looking at modification of the TiOx/SiO2 system using gold and ZnO. With regard to reaction design, the team was able to demonstrate that for all TiOx/SiO2 systems a significant excess of CO2 has a positive effect on the hydrocarbon yield.

Because the yields shown by commercial titanium dioxide are similar in magnitude to TiOx/SiO2, the researchers are looking at surface doping to improve charge carrier life and increase activity. Another objec-tive is to stimulate activity in visible light. They were able to demonstrate that surface doping with Sn2

+ pro-

duces hole capture clusters on the surface which have a positive effect on pigment decomposition and facilitate absorption of visible light. TiO2 with Sn4

+ and photo-deposited Rh on the surface is a highly active catalyst which promotes the production of hydrogen from an aqueous methanol solution. Researchers are currently investigating the activity of these photo catalysts in the reduction of CO2.

The results were presented in one completed doctoral dissertation and in two others which are currently be-ing written. They were also published in international scientific journals and discussed at conferences. There is currently a need for basic research on photocatalytic CO2 reduction. Because the reaction could help reduce CO2 emissions, it is the subject of intensive internation-al investigation, but the yields so far are not sufficient for industrial-scale applications.

Fig. 2: a) Time sequence for methane formation on TiOx/SBA-15 and Au/TiOx/SBA-15 in two successive CO2 reduction experiments, each with 7 hours exposure time, uncorrected values. The samples were not purified between successive experiments. No GC product gas analysis after 7 hours was performed for Au/TiOx/SBA-15 in the first experiment. b) Hydrocarbon concentrations in the product gas after 5 hr exposure time in two successive CO2 reduction experiments. The hydrocarbon yields were corrected to make provision for possible contaminants which could remain in the catalyst even after purification.

Contact:

Dr. Jennifer StrunkLehrstuhl für Technische ChemieRuhr-Universität Bochum44801 Bochum

Tel.: +49 (0)234 32-23566E-Mail: [email protected] www.techem.rub.de

Page 60: Chemical Processes and Use of CO2: 4th Status Conference

58 CO2 UTILIZATION

project goal

The goal is to develop a fermentation process for bi-otechnology production of acetone using acetogenic microorganisms along with carbon dioxide (CO2) as the sole carbon building block. To the extent possible, the CO2 should be supplied from industrial waste gas streams and used to produce acetone which is an im-portant base product in the chemical industry. Indus-trial waste gas streams which contain carbon monoxide (CO) and hydrogen (H2) as well as CO2 are particularly well suited for cost-effective, sustainable production of acetone in a fermentation process. Microbiological pro-duction of acetone from CO2-laden waste gas streams could be an economically viable and environmentally friendly alternative to the petrochemical production pathway.

Project status

The first step in the project was to select suitable strains of bacteria. The strains had to tolerate the gas mix-tures including the toxic constituents and convert as much of the CO2 in the gas as possible into natural metabolites (e.g. acetic acid). The researchers tested 39 strains and identified suitable candidates in a two-stage process. The graph in Fig. 1 shows the results of bio-mass-specific and volumetric acetate productivity of autotropic cultivation for a) H2/CO2 and b) an industrial waste gas stream. The results were used among other things for strain selection.

The next step was to insert the genes needed for ace-tone production into the selected strains, creating new recombinant strains capable of producing acetone from CO2. C13-marked CO2 was used to ensure that the acetone is actually produced from CO2 rather than from other media constituents.

The next step in development of a production strain was strain optimization to enhance acetone produc-tivity. This work is currently still in progress and will continue right through to the end of the project.

Work proceeded in parallel on development and opti-mization of the fermentation process. The researchers

succeeded in transferring the fermentation process from shake flasks to lab reactor scale and they also in-creased the amount of acetone produced by an order of magnitude (see Fig. 2).

Cost-effective downstream processing which produces optimized yields is a critical factor in a biotechnology-process, so work on this particular aspect began at an early stage of the project. A methodology was developed for recovery of the acetone from the fermentation broth, and an initial process simulation was carried out. Modifications to the downstream process over the course of the project improved yields to the point where industrial feasibility could be envisioned.

COOBAF – CO2-Based Acetone Fermentation

Fig. 1: Strain screening of acetogenic bacteria strains

Page 61: Chemical Processes and Use of CO2: 4th Status Conference

59CO2 UTILIZATION

The economic viability of acetone production using CO2 as the sole carbon building block and H2 as an en-ergy source will depend heavily on the productivity of the overall process. The researchers have continuously improved acetone productivity during the project, but before the process can be used in industry, a further substantial productivity increase will be needed. The acetone productivity and selectivity of the CO2 based acetone production process will have to be further op-timized to make industrial scale-up feasible. That will have to take place systematically on a pathway leading from lab bench and test systems to pilot and industrial production. Besides process enhancement, more work will be needed to improve the genetically modified strain.

economic, environmental and societal leverage effect

Leaving aside yields, substitution of thermal energy and the cost of biotechnology production, the process has the potential to eliminate 1.7 kg CO2/kg acetone. If only 10% of current annual acetone production (6 million tonnes) were migrated to the CO2 process,

CO2 emissions could be reduced by more than 1000 kt. An initial lifecycle analysis (LCA) of the biotechnology process taking the factors mentioned above into ac-count indicates an overall reduction of CO2 emissions. Compared to the existing petrochemical process, emis-sions would be cut by at least 0.3 kg CO2/kg acetone even in a conservative scenario. Once again, the size of the emissions reduction is directly related to acetone productivity.

8 Bachelor’s theses and 3 doctoral dissertations are expected to be completed during the course of the project.

Fig. 2: Comparison between cultivation of a recombinant acetogenic strain (with CO2 as the only carbon source) in a shake flask and a lab fermenter

Project partners: Contact:

• Evonik Industries AG• Universität Rostock • Universität Ulm

Dr. Jörg-Joachim Nitz Paul-Baumann-Str. 1 D-45764 Marl Tel.: +49 (0)2365 49 4882 E-Mail: [email protected]

Page 62: Chemical Processes and Use of CO2: 4th Status Conference

60 CO2 UTILIZATION

The objective of the OrgKoKat project is to find ways of using carbon dioxide as an alternative, sustainable C1 source for high value-add industrial products. The main emphasis is on development of highly active and selective catalyst systems for chemical fixation of CO2.

The researchers carried out intensive investigations on different catalysts in four sub-projects: cyclic carbonic acid esters (SP1), polycarbonates (SP2), b-Keto and b-hydroxy carboxylic acid derivatives (SP3) and a-unsaturated carboxylic acids (SP4) - see Fig. 1.

The results so far from sub-project 1 look very promis-ing. The catalyst used for synthesis of cyclic carbonates has two different functionalities in the molecule. The bi-functional organocatalysts are particularly active and in contrast to their mono-functional equivalents they are able to promote synthesis of cyclic carbonate under very mild reaction conditions. Two classes of bi-functional organocatalysts have been identified. Lifecycle analysis using the most active catalyst was carried out to assess the possible environmental impact of glycerol carbonate methacrylate (GCMA) synthesis. This product is of interest to industry because it is an excellent polymer building block.[1]

Lifecycle analysis is focused particularly on the Global Warming Potential (GWP) of the greenhouse gas emis-sions expressed in kg CO2e per kg of product. Stoichio-metric analysis shows fixation of 148 g CO2 per kg GCMA in the target compound. Looking at the carbon footprint, utilization of CO2 equates to between 3% - 6% of total emissions depending on the epoxide source.

Besides a number of different terminal epoxides, the researchers also investigated the formation of cyclic carbonates from internal epoxides and CO2. Fatty acid carbonates are ideally suited as plasticizers in plastics as well as for biomedical applications and they are also regarded as potential fuel additives[2].

OrgKoKAT – New Organocatalysts for Utilization of CO2 as a Building Block for Chemical Synthesis

Fig. 1. Utilization of CO2 through direct chemical fixation. See posters TP1: Hydroxy-Phosphoniumsalze – Aktive Organokatalysatoren zur Synthese zyklischer Carbonate, H. Büttner, T. Werner*, 08 April 2014, Königswinter; TP2: Entwicklung neuer Katalysatorsysteme zur Synthese von Polycarbonaten, A. Pommeres, W. Desens, T. Werner*, 08 April 2014, Königswinter; TP3: Carboxylierung CH- acider Verbindungen mit-tels zwitterionischen Imidazoliumcarboxylaten, W. Desens, T. Werner*, 08 April 2014, Königswinter.

CO2

O O

O

RO

OO

R

R

O

Rn m

R

CO2H

RR

OO

CO2H

RO

oder

R

O

R R

R

R

TP2TP4

TP1

TP3

[1] a)D.-W.Park,J.-Y.Moon,H.-J.Jang,K.-H.Kim,React.Kinet.Catal.Lett.2001,72,83–92;b)N.Kihara,T.Endo,Makromol.Chem.1992,193,1481–1492.

[2] a)K.M.Doll,S.Z.Erhan,J.Agri.FoodChem.2005,53,9608–9614;b)G.Rokicki,Prog.Polym.Sci.2000,25,259–342;c)J.Langanke,L.Greiner,W.Leitner,GreenChem.2013,15,1173–1182;d)B.Schäffner(EvonikIndustriesAG)Presentationat2ndInternationalScientificForumonCO2ChemistryandBioche-mistry,Lyon,September27–28,2012.

Page 63: Chemical Processes and Use of CO2: 4th Status Conference

61CO2 UTILIZATION

The researchers also developed a cooperative catalyst system which delivers high throughput and high se-lectivity for the desired target compounds. The system is relatively simple and commercially available. The researchers are currently investigating the immobiliza-tion of catalysts for insertion of CO2 into epoxides. It is easier to recycle the catalysts if they are deposited on suitable carriers, and catalytic activity remained

nearly the same in ten successive reactions. The hetero-geneous catalysts are particularly well suited for trans-fer from batch reactors to a micro reactor.

During the course of the project, 2 degree theses and 1 Bachelor’s Thesis have been completed and work on 3 doctoral dissertations is in progress. There were also three postdoctoral internships.

Project partners: Contact:

• Leibniz-Institut für Katalyse e. V. an der Universität Rostock

• Bayer Technology Services GmbH• Creavis Technologies & Innovation

Dr. Thomas WernerLeibniz-Institut für Katalyse e. V. an der Universität RostockAlbert-Einstein-Str. 29a18059 Rostock, E-Mail: [email protected]

Page 64: Chemical Processes and Use of CO2: 4th Status Conference

62 CO2 UTILIZATION

ECCO2 – Electrochemical CO2 Reduction Project – High-Throughput Search for new Electrocatalysts

The team of scientists on the ECCO2 Project is explor-ing electrochemical pathways for conversion of CO2 into high-grade chemical products for energy storage and synthesis of building block chemicals. The project is funded by the German Ministry of Education and Re-search. Practical demonstrations have shown that pro-duction of methane and methanol using this technique is feasible in principle, but how reaction conditions and the materials used affect fundamental reaction mecha-nisms is not sufficiently understood. The research team is attempting to significantly improve catalyst perfor-mance beyond the current state of the art by using spe-cial high-throughput electrochemical screening which enables them to run a large number of experiments in a short space of time. This is essential due to the very large range of operating parameters, which is typical of electrochemistry in general and CO2 reduction in par-ticular. Beyond enhancing the speed and reliability of

the investigations, the team is using additional comple-mentary techniques, for example combining electro-chemistry with online element analysis, to generate more detailed data. Based on this new approach, the researchers are trying to gain an in-depth understand-ing of electrochemical CO2 reduction and also oxygen evolution which is the other half-reaction. They intend to use the results to develop new active, stable, selective catalysts.

project status

During the first two years of the project, the team developed a new high-throughput catalyst screening and online analysis setup (Fig. 1). The core element is an electrochemical cell (Scanning Flow Cell) with flow system and fully automatic positioning. The SFC can be used to scan the surface of a sample and carry out local

2mm

online-Elementanalytik(Katalysatorstabilität)

online Produktanalytik(Selektivität der Reaktion)

elektrochemische Untersuchung(Katalysatoraktivität)

Mittwoch, 5. März 2014Fig. 1: Schematic representation of the new experimental setup using an electrochemical flow cell (top right) for high-throughput screening (bottom right) coupled with online electrolyte analysis (left).

Page 65: Chemical Processes and Use of CO2: 4th Status Conference

63CO2 UTILIZATION

electrochemical investigations. This makes it possible to quickly evaluate different operating conditions with minimum effort using a homogeneous sample and ensure that the starting conditions are the same by repositioning the cell. This is important if, for example, corrosion or poisoning alters the surface of the catalyst during the course of the reaction. With the cell, it is also possible to carry out combinatorial investigations on material libraries under comparable operating con-ditions, for example to quickly identify ideal catalyst compositions. The ability to evaluate the activity of cat-alyst materials along with their stability in electrolytes

and their selectivity for the desired reaction products is a particularly attractive feature of this technology. This is accomplished by directly linking the SFC to instru-mentation which analyzes the product stream. Element analysis using inductively coupled plasma (ICP-MS) is a unique development.

Fig. 2 shows a small excerpt from the very extensive set of results delivered by this approach. The effect of the applied voltage on reduction of CO2 to methane and methanol on a copper catalyst and the stability of cop-per in dilute acidic electrolytes can be seen in these ex-

Fig. 2: Top: Product analysis of hydrogen, methane, ethylene and methanol evolution during cyclic voltammograms at a copper electrode. Bottom: Example of element analysis showing the dissolution behavior of a copper electrode

Page 66: Chemical Processes and Use of CO2: 4th Status Conference

64 CO2 UTILIZATION

amples. The SFC is currently being used to test different material libraries under varying conditions to gain an understanding of the complex interrelationships. Based on the results, the researchers will evaluate the best catalysts which they have found by running individual tests in actual reactors.

future potential

Given the initial starting point, this project is by neces-sity focused on basic research. As a result, it is not yet possible to estimate the potential economic, environ-mental and societal effects of CO2 utilization based on this technology. The technical developments and results to date show the enormous benefits of this

approach for achieving a deeper understanding of important electrochemical processes. It also highlights the benefits which further investigation could have for important related areas of technology such as energy conversion (e.g. water electrolysis and fuel cells) and corrosion in general. A number of high-profile articles have been published in leading international journals such as Angewandte Chemie and Science. The project has given a number of young scientists the opportunity to work on their Master’s theses and doctoral disserta-tions. They will be able to pass on the knowledge they have gained to industry. In addition, by bringing new knowledge to the attention of the general public, the project promotes the development of various sustainable technologies.

Contact:

Dr. Karl J.J. MayrhoferAbteilung für Grenzflächenchemie und Oberflächentechnik,Max-Planck-Institut für Eisenforschung GmbHMax-Planck-Straße 140237 Düsseldorf

Tel.: +49 (0)211 6792-160Fax: +49 (0)211 6792-218E-Mail: [email protected]

Page 67: Chemical Processes and Use of CO2: 4th Status Conference

65CO2 UTILIZATION

The goal of the project is to develop a conceptual de-sign for a pilot system which uses a new technique to produce liquid and solid products from gas (GTL and GTS). The technique involves pyrolytic breakdown of natural gas into hydrogen and carbon, catalytic con-version of the hydrogen together with CO2 to produce syngas (CO2 activation) and formulation of the carbon. In the chemical industry and in fuel production, the hydrogen can be used either directly or as syngas fol-

lowing CO2 activation. The carbon is potentially a high value-add input material for a variety of coke and steel production applications.

Utilization of the carbon reduces coal consumption in the coking and blast furnace process, mitigating the total carbon footprint and substantially enhancing the competitiveness of the new technique.

Fig. 1 shows a block flow diagram of the new technique. The process stages are methane pyrolysis, carbon formulation and catalytic CO2 activation using the Reverse Water-Gas Shift Reaction (RWGS).

Cross-industry collaboration ensures that a carbon product which meets the requirements of the coke and steel industry will be a suitable replacement for coal. If energy integration can be optimized to minimize CO2 emissions resulting from the supply of energy for the endothermic pyrolysis process, the CO2 mitigation fac-tor will be in the region of 50% for hydrogen produc-tion. CO2 utilization in CO2 activation for the produc-tion of syngas has even greater mitigation potential.

The research objective is to provide a source of hydrogen and syngas with a small CO2 footprint. The products are intended for the chemical industry and future mobility applications. The carbon produced will also be utilized. Coke is currently the most widely used form of carbon. Worldwide demand for coke is currently estimated at around 1 billion t/a. Global demand for hydrogen and syngas is 50 million t/a and 220 million t/a respectively. Methane pyrolysis produces carbon

and hydrogen in a mass ratio of 3:1. The quantity of carbon produced is sufficient for industrial utilization, for example as a blending agent for coke assuming it meets the quality requirements.

The technology protects and enhances the competi-tiveness of participating companies in the hydrogen and syngas market. Plant construction, catalyst pro-duction and sales, engineering and scientific service activities provide job security. The technique creates the need for new types of systems and instrumentation. The list includes reactors, temperature measurement, infeed and discharge systems and carbon formulation equipment, much of which will be developed by mid-tier companies. Marketing on a broad scale can be expected to create new market opportunities. From the scientific perspective, utilization involves coke, iron and steel, chemical engineering and process engineer-ing and enhances interaction between these disciplines.

The three-year project got underway in July 2013 and is currently proceeding on schedule. The initial analysis and specification phase for the GTL/GTS process has been completed and forms the basis for subsequent

FfPaG – Gas to Liquids and Solids

Fig. 1: Block diagram of the GTL/GTS process

Page 68: Chemical Processes and Use of CO2: 4th Status Conference

66 CO2 UTILIZATION

project work. In parallel, preliminary trials on high- temperature pyrolysis and heating systems are being conducted to gain experience and provide a reliable set of data for the pilot systems which are currently at the planning stage or under construction. Initial pyrolysis trials to produce samples in significant quantities are planned for 2014. Development trials for CO2 activa-tion catalysts are proceeding according to plan.

Project partners: Contact:

• BASF SE, Ludwigshafen• hte AG, Heidelberg• Linde AG, Pullach• ThyssenKrupp Steel Europe AG, Duisburg• ThyssenKrupp Uhde GmbH, Dortmund• Technische Universität Dortmund, Lehrstuhl für

Chemische Verfahrenstechnik, Dortmund• VDEh-Betriebsforschungsinstitut, Düsseldorf

Dr.-Ing. Andreas BodeBASF New Business GmbH4. Gartenweg – Z02567063 Ludwigshafen

Page 69: Chemical Processes and Use of CO2: 4th Status Conference

67CO2 UTILIZATION

project goal

The goal of the project is to develop a single-stage, het-erogeneous catalyzed process for synthesis of dimethyl ether (DME) from carbon monoxide rich syngas which may contain CO2. The process design will include sub-stance and energy integration into the upstream syngas

stage. “Dry” (CO2) reforming of methane is one of the assumptions made in the process simulation for this stage. The large amount of hydrogen needed to activate the CO2 is already present in the process in the meth-ane feed component and does not have to be supplied from an external source. The diagram below shows the process concept in highly simplified form:

Due to reduced energy demand resulting from the process thermodynamics, the new technology has a CO2 mitigation potential of around 30% (125 kg CO2 per tonne of DME) compared to the current state-of-the-art process with an intermediate methanol stage. Taking into consideration the specific process energy and heat consumption and elimination of the need for an energy-intensive supply of pure oxygen, dry reform-ing and utilization of the CO2 increase the CO2 mitiga-tion potential by an additional 125 kg CO2 per tonne of DME. The process can be expected to reduce total specific CO2 emissions by around 60% compared to the current state of the art.

project status

Two catalyst formulations were identified during high-throughput screening, and catalyst molds have been fabricated. Since Q4/2013, the researchers have been running long-term tests on a new tube reactor test bed. Several hundred hours of testing have con-firmed the screening results. In parallel with catalyst screening, complete material and heat integrated process simulations were run for the new process and for current 2-stage state-of-the-art DME synthesis. The catalyst design reflects the simulation results, particu-larly as they relate to the optimal temperature operating window.

Single-stage synthesis of DME from syngas is a mark-edly exothermic reaction. The research team is looking at running the reaction in a slurry bubble column re-actor which creates the option of isothermal operation. A pilot system to explore that possibility as well was started up in Q4/2013. Initial results indicate that this process variant is feasible, but a final evaluation has not yet been completed.

Basic mechanistic research is underway to determine the best way of fabricating the multi-function catalyst system. The options include a physical mixture of mul-tiple catalysts and catalysts in which the various func-tions are atomically dispersed right next to each other.

economic, environmental and societal leverage effect

The only way to significantly reduce anthropogenic CO2 emissions is to change our consumption of fossil fuels which contain carbon. Due to its physical proper-ties profile, dimethyl ether appears to be a good candi-date. It is already widely used in Asia as an LPG substi-tute. Due to its combustion characteristics, DME is a very good alternative to diesel and it has much lower soot particle emissions (www.aboutdme.org). Com-pared to the 2-stage process using the methanol path-way, CO2 emissions from a DME plant with a capacity

DMEEXCO2 – Integrated Dimethyl Ether Synthesis from Methane and CO2

Page 70: Chemical Processes and Use of CO2: 4th Status Conference

68 CO2 UTILIZATION

of 1 million tonnes which uses the single-stage process could be reduced by up to 0.25 milliontonnes.

The CO2 footprint of the process could be further re-duced by obtaining the energy needed for the process from renewable sources. The process can be coupled to biomass-based syngas production. Production of a CO/H2 mixture through gasification is conceivable as well as direct upgrading of biogas (CO2/CH4) in place of biomass gasification, utilizing both C sources. Utilization

of CO2 in the dry reforming material stream would eliminate the need for costly separation of the CO2 from the biogas.

The project has provided a framework for three doc-toral dissertations on process simulation, kinetics and catalyst development at partner academic institutions. One Master’s Thesis has already been completed. A number of students have supported or added to the project with their scientific contributions.

Contact:

Dr. Ekkehard SchwabChemicals Research and EngineeringBASF SED-67056 Ludwigshafen/RheinE-Mail: [email protected]

TechnischeUniversitätMünchen

Page 71: Chemical Processes and Use of CO2: 4th Status Conference

69CO2 UTILIZATION

Since March 1st, 2014 DECHEMA has been one of the contributors on the EU FP7 funded SCOT (Smart Car-bon Dioxide Transformation) project. The coordina-tion and networking action is the first European CO2 utilization initiative. Partners from Belgium, France, Holland, Germany and the UK are working together to increase the emphasis on CO2 utilization in European research funding programs, and one of the things they are doing to achieve that is to put together a European research agenda. For implementation of the research activities, one of the priorities is to single out regions where real potential exists to make meaningful pro-gress.

Through its involvement in the CO2Net project which provides scientific support for the “Technologies for

Sustainability and Climate Protection – Chemical Pro-cesses and Use of CO2“ program, DECHEMA has played a key role at the interface between government, science and industry and in communicating with the outside world.

Since 2010, DECHEMA has been the program’s public voice. It has tracked and supported the projects to identify possible synergies. It has also kept an eye on national and international developments which are relevant to the various aspects of the research program. The development of recommendations on the future roadmap is another important contribution made by the support project.

SCOT – Smart Carbon Dioxide Transformation

Fig. 1: Funding program status conference

Page 72: Chemical Processes and Use of CO2: 4th Status Conference

70

DECHEMA also organizes status seminars and cross- functional workshops.

This includes a series of workshops dedicated to devel-opment of a common methodology for assessing the carbon footprint of CO2 utilization and the associated products. With DECHEMA acting as moderator, scien-tists and the business community reached agreement on a common approach. The results of the meeting will soon be made available to all of the program projects.

CO2NET already provides a good networking environ-ment, creating linkages between most of the national entities which are involved in CO2 utilization, and the network is continually expanding. Involvement in the SCOT Initiative expands the networking horizon at the European level. A number of other European regions are involved in the Initiative, creating a triple helix which brings together the scientific, business and gov-ernment communities and acts as a catalyst to promote the development and intensification of the SCOT agenda in Europe. The exchange of expertise at all levels creates opportunities for faster implementation of CO2 management technologies which appear to have high potential.

BMBF expressly supports knowledge transfer and DECHEMA’s membership in the SCOT consortium as well as European expansion of the CO2NET network.

The SCOT consortium action plan:

• Define a strategic European research roadmap

• Attract additional clusters, regions and investors to take part in multi-disciplinary research programs and joint projects

• Produce recommendations on a European funding policy for SCOT research. The overall objective is to bring about a paradigm change in mindsets and highlight the role of CO2 as a raw material.

Networking within the professional community in Germany is already very well established. A further extension to link into international networks will benefit everyone involved. DECHEMA is ideally placed to foster networking within the research community in Europe or even worldwide.

scot – smart carBon DioxiDe transformation

Contact:

Dr. Alexis BazzanellaDECHEMA e.V.Theodor-Heuss-Allee 2560486 Frankfurt am MainTel.: +49 (0)69 7564-343E-Mail: [email protected]

Dennis Krämer DECHEMA e.V.Tel.: +49 (0)69 7564-618E-Mail: [email protected]

Page 73: Chemical Processes and Use of CO2: 4th Status Conference

71scot – smart carBon DioxiDe transformation

Raw materials are an important aspect of the European Horizon 2020 Research and Innovation Framework Program. The focus area “Waste A Resource to Recycle, Reuse and Recover Raw Materials“ is dedicated to this specific issue. In providing the funding, the EU Com-mission is pursuing a number of goals. Besides reducing or avoiding waste, the Commission wants to support the search for innovative ways of using waste as raw material for new products. Raw material recycling is another key aspect. Moreover, alternatives are needed for critical raw materials (for which Europe has no secure source of supply).

SC5 (Societal Challenge 5) sub call Growing a Low Carbon, Resource Efficient Economy with a Sustainable Supply of Raw Materials also addresses the raw materials issue. The Calls for Proposal are closely related to the Euro-pean EIP Raw Materials research agenda. The intention is to promote the competitiveness of European compa-nies and provide motivation for faster implementation of the results from research on innovation in the field of raw materials.

The issue of CO2 utilization also appears in a number of other societal challenge calls (SC2 Bioeconomy, SC3 Energy, SC4 Transport). Relevant calls for 2014 (with deadlines later than April 2014) and 2015 are as follows:

Call: Sustainable and competitive bio-based industries

ISIB-06-2015 Converting CO2 into chemicals (Research and Innovation Action; Deadline 24.02.2015)

Call: Enabling the decarbonisation of the use of fossil fuels during the transition to a low-carbon economy

LCE-15-2015 Enabling decarbonisation of the fossil fuel-based power sector and energy intensive industry through CCS (Research and Innovation Action; Deadline 03.09.2014)

The deadline for most of the 2014/2015 Work Program submissions was April 8th, 2014 so they are not includ-ed in the following list. The following items related to CO2capture, utilization or emissions avoidance are not yet included in the current Work Program or are still open (as of March 3rd, 2014):

Call: Waste – A Resource to Recycle, Reuse and Recover Raw Materials

WASTE-4d-2015 Raw materials partnerships (CSA; Deadline 10.03.2015)WASTE-6a-2015 Eco-innovative solutions (Innovation Action; Deadline 16.10.2014)WASTE-6b-2015 Eco-innovative strategies (Research and Innovation Action; Deadline 16.10.2014)

The European Horizon 2020 Research and Innovation Framework ProgramClimate Protection, Environment, Resource Efficiency and Raw Materials – a Societal Challenge

Page 74: Chemical Processes and Use of CO2: 4th Status Conference

72

WASTE-7-2015 Ensuring sustainable use of agricultural waste, co-products and by-products (Research and Innovation Action; Deadline 16.10.2014)

Call: Growing a Low Carbon, Resource Efficient Economy with a Sustainable Supply of Raw Materials

SC5-04-2015 Improving the air quality and reducing the carbon footprint of European cities (Research and Innovation Action; Deadline 16.10.2014)SC5-05b-2015 Coordinating and supporting research and innovation for climate action (CSA; Deadline 10.03.2015)SC5-11 -2015 New solutions for sustainable production of raw materials (Research and Innovation Action; Deadline 10.03.2015)SC5-11c-2015 Deep mining on continent and in sea-bedSC5-11d-2015 New sustainable exploration technolo-gies and geomodelsSC5-11e-2015 New metallurgical systemsSC5-12b-2015 Innovative and sustainable solutions leading to substitution of raw Materials: Materials under extreme conditions (Research and Innovation Action; Deadline 10.03.2015)SC5-13 -2015 Coordinating and supporting raw materials research and innovation: (CSA; Deadline 10.03.2015)SC5-13c-2015 Innovation friendly minerals policy frameworkSC5-13d-2015 Raw materials research and innovation coordinationSC5-13e-2015 Raw materials intelligence capacitySC5-13f-2015 Strategic international dialogues and cooperation with raw materials producing countries and industrySC5-20-2014/2015 Boosting the potential of small businesses for eco-innovation and a sustainable supply of raw materials (SME-instrument (70%); cut-off-dates)

Further information on the calls can be accessed at (http://ec.europa.eu/ research/participants/portal/desktop/en/home.html). You will find all of the associ-ated documentation there. This is also the portal to use for online submissions.

Advice on SC5 topics including environmental research, raw materials and waste is available from the National Contact Office for the Environment. An individual advisory service providing assistance from the initial outline right through to the completed application is also available free of charge. This is a good place to ob-tain suggestions for improvement prior to submission. Other services including the newsletter and partner search are available at www.nks-umwelt.de.

nationaL contact office nco

Place to contact: Persons to contact:

Nationale Kontaktstelle UmweltProjektträger Jülich, Forschungszentrum Jülich GmbH

Standorte:Bonn: Godesberger Allee 105-107, 53175 BonnTel.: 0228 60884 214

Berlin: Zimmerstr. 26-27, 10969 BerlinTel.: 030 20199 3215 (Erstberatung)

Dr. Andreas VolzTel.: 0228 60884-214E-Mail: [email protected]

www.nks-umwelt.de

Page 75: Chemical Processes and Use of CO2: 4th Status Conference

73nationaL contact office nco

The EU is providing €10 million in funding to a con-sortium of 16 partners who have taken on the task of developing energy-efficient technology to capture CO2 from power plant and industrial emissions. Delft Uni-versity of Technology (TU Delft) is acting as coordina-tor on the M4CO2 (Energy efficient MOF-based Mixed Matrix Membranes for CO2 Capture) project. DECHE-MA is providing management support. The M4CO2 research consortium is working on the development of continuous CO2 capture systems based on metal or-ganic frameworks and high-performance membranes. Capture can be pre- or post-combustion. The four-year project got underway in January 2014, and the source of the funding is the European Union Seventh Frame-work Programme.

Current forecasts indicate that global energy consump-tion will increase by 53% between 2008 and 2035. An-nual carbon dioxide emissions from power generation are expected to increase from 30.2 billion tonnes to 43.2 billion tonnes during the same period. Strong econom-ic growth and intensive use of fossil-based resources are the factors which are driving this trend. Mitigation of anthropogenic greenhouse gas emissions including carbon dioxide presents a major challenge in the battle against climate change. The use of CO2 capture tech-nology to reduce carbon emissions from point sources such as power plants and other energy-intensive facil-

ities could make a significant contribution to climate protection. The goal of the consortium, which brings together some of the world’s leading companies and research organizations, is to use innovative membrane technology for continuous capture of CO2. Absence of the gas-liquid phase avoids energy losses and reduces the CO2 footprint, bringing unprecedented levels of en-ergy-efficiency within reach. Gas separation membrane units are safer and have a lower environmental impact than other technologies such as amine stripping.

Using the highly selective membranes, CO2 capture is feasible at costs below € 15/tonne CO2 (approx. €10-15 /MWh), which is significantly below the targets defined in the European SET (Strategic Energy Technologies) plan, which demands to separate 90% of the CO2 at a price below 25 €/MWh.

The M4CO2 consortium promotes scientific exchange beyond the borders of Europe. Close linkages with Australian initiatives are planned.

Companies and research organizations which are leaders in membrane, polymer and reaction technology are members of the consortium. Total (France), Johnson Matthey (UK), Polymem (France), Technalia (Spain) and HyGear (Holland) are the major industry partners.

M4CO2 – Energy efficient MOF-based Mixed Matrix Membranes for CO2 capture to Below € 15/Tonne

Contact:

Freek KapteijnUniversity of Technology Delft

Catalysis EngineeringDeutschland

Tel.: +31 15 278 6725E-Mail: [email protected]

Page 76: Chemical Processes and Use of CO2: 4th Status Conference

74

The aim of the CyclicCO2R consortium project (NMP.2012.2.1-2: Fine chemicals from CO2) is to find ways of utilizing CO2 in sustainable production of chemicals, particularly fine chemicals. The researchers are concentrating their efforts on syntheses of cyclic carbonates. Due to the broad application spectrum including Li-ion battery electrolytes, coatings, green solvents, additives in the cosmetics industry and in-termediates in chemical synthesis, these products are attracting an increasing level of attention.

The CyclicCO2R project is working on development of a continuous process for production of industrially relevant cyclic carbonates such as glycerol carbonate, with CO2 and glycerol as the main feedstocks. Large amounts of glycerol are currently available from bio-diesel production. The economic and environmental performance of the new process should be comparable to an established industrial process.

To achieve the projects goals, three routes are being investigated in parallel1. Synthesis of glycerol carbonate directly from CO2

and glycerol

2. Synthesis of glycerol carbonate indirectly by addi-tion of CO2 to an epoxide (glycidol)

3. Synthesis of glycerol carbonate and other interme-diates directly from CO2 and water using CO2-neutral energy sources (e.g. photochemical and electro-chemical)

In order to achieve the project goals, there are two essential milestones which have to be reached: 1.) synthesis and optimization of a reusable high-perfor-mance catalyst which delivers the necessary separa-tion performance and 2.) development of an efficient process which provides a net reduction in CO2 emis-

CyclicCO2R: Production of Cyclic Carbonates from CO2 using Renewable Feedstocks

eUropean proJects

Consortium partners and contacts:

E. Kimball, C. Schuurbiers, J. Zevenbergen, TNO, NetherlandsS.F. Håkonsen, R. Heyn, SINTEF, NorwayW. Offermans, W. Leitner, M. Picard, T.E. Müller, RWTH Aachen University, Institute for Technical and Macromolecular Chemistry and CAT Catalytic Center, GermanyG. Mul, University of Twente – MESA+ Institute for Nanotechnology, NetherlandsM. North, Newcastle University, United KingdomA. Metlen, A-F. Ngomsik, FeyeCon Carbon Dioxide Technology, NetherlandsE. Sarron, Ó. Sigurbjörnsson, Carbon Recycling International, IcelandB. Schäffner, CREAVIS – Science to Business, Evonik Industries AG, Germany

Page 77: Chemical Processes and Use of CO2: 4th Status Conference

75eUropean proJects

sions compared to the established benchmark. Catalyst development is a multi-stage process which leverages the diversity of expertise which the project partners are able to contribute (high-throughput screening, catalyst design & modelling). Intensive information sharing between the catalyst and process development teams promotes development of the new process. The initial process development task is to model and discuss various reactor types before building a suitable reactor. Following a test phase, development work will contin-ue on a small-scale reactor. The design will accommo-

date improved catalysts and other process steps. Over the life of the project, the researchers will explore other routes for utilization of CO2 and water and review current literature on all aspects of the project. They will also define and continually assess the general economic and environmental framework.

3 universities, 3 companies and two of Europe’s largest research organizations are taking part in the CyclicCO2R project.

Partner:

Projektkoordinator:

Page 78: Chemical Processes and Use of CO2: 4th Status Conference

76

Page 79: Chemical Processes and Use of CO2: 4th Status Conference

ZSW

Jun

e 14

Verbundprojekt „Alkalische P2G-Elektrolyse“ - Ziele, Status der Arbeiten, erste Ergebnisse -

Andreas Brinner, Verena Kindl, Ulli Lenz, Stefan Steiert, Michael Specht Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW)

Industriestraße 6, 70565 StuttgartTelefon: ++49 (0)711-7870-338, Fax: -200, E-Mail: [email protected]

Ausblick

• Investigate the systematically lower VOC of the ZnS/(Zn,Mg)O cells

• Study the carrier collection properties, space charge width and charge density of the ZnS and CdS devices

• ZnS, CdS buffers (CBD) and sputtered (Zn,Mg)O, i-ZnO, and ZnO:Al layers

• I-V analysis under AM 1.5G and EQE without background illumination

• Electron beam induced current measurements in junction configuration (J-EBIC)

• Capacitance analysis (Cf and CV) at room temperature after 30 minutes of light soaking

Solar Cell Parameters • The gain in jSC (350 - 550 nm) is accom-panied by a reduced VOC for our ZnS cells.

DANKSAGUNG: Dieses Projekt wird finanziert mit Mitteln des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB) unter dem Förderkennzeichen 0325524A.

J-EBIC Geometry

Conclusion

Projektstruktur & ZieleArbeitsfelder des Elektrolyse-Projektes§Druckelektrolyseblock & Elektrodenpackage

§Bau & Betrieb 300 kWel Systemdemonstrator

§Gleichrichter, Hilfs-/ Sicherheitssysteme

§Steuerungssystem & Automatisierung§System-Modularisierung & Simulation

§Thermische Optimierung

§Kostenanalyse zur industriellen Umsetzung

• Investigate the systematically lower VOC of the ZnS/(Zn,Mg)O cells

• Study the carrier collection properties, space charge width and charge density of the ZnS and CdS devices

• ZnS, CdS buffers (CBD) and sputtered (Zn,Mg)O, i-ZnO, and ZnO:Al layers

• I-V analysis under AM 1.5G and EQE without background illumination

• Electron beam induced current measurements in junction configuration (J-EBIC)

• Capacitance analysis (Cf and CV) at room temperature after 30 minutes of light soaking

Solar Cell Parameters • The gain in jSC (350 - 550 nm) is accom-panied by a reduced VOC for our ZnS cells.

J-EBIC Geometry

Conclusion

Systemsimulation & Komponentenauslegung

§ Verwendung Simulationstool IPSEpro zur Lösung von Massen- und Energiebilanzen

• Erweiterung der Modellbibliothek (z.B. alkalische Druckelektrolyse, Gasseparator)

• Entwicklung eines Modells zur Beschreibung des Naturumlaufs

§ Unterstützung Blockkonstruktion und Komponentenauslegung mit Simulationsdaten

§ Validierung entwickelter Einzelmodelle mit Versuchsdaten

• Investigate the systematically lower VOC of the ZnS/(Zn,Mg)O cells

• Study the carrier collection properties, space charge width and charge density of the ZnS and CdS devices

• ZnS, CdS buffers (CBD) and sputtered (Zn,Mg)O, i-ZnO, and ZnO:Al layers

• I-V analysis under AM 1.5G and EQE without background illumination

• Electron beam induced current measurements in junction configuration (J-EBIC)

• Capacitance analysis (Cf and CV) at room temperature after 30 minutes of light soaking

Solar Cell Parameters • The gain in jSC (350 - 550 nm) is accom-panied by a reduced VOC for our ZnS cells.

J-EBIC Geometry

Conclusion

Prüfstand für Kurzblöcke& Systemkomponenten

§ Leistungsdaten des Prüfstandes• Druck-Bereich: 6 – 25 bara

• DC-Versorgung: 0 – 50 VDC / 0 – 5000 ADC

• Betriebstemperatur: 25 – 100 °C• Elektrolyt: Naturumlauf / gepumpter Umlauf, 30 Gew.-% KOH• Online-Messdatenerfassung der Stack-Performance & Gasqualitäten

§ Lastabhängige Detailuntersuchungen von AEL-Kurzblöcken (1 - 20 Zellen, 0,05 – 0,6 m² Elektrodenfläche) und Systemkomponenten möglich

• Investigate the systematically lower VOC of the ZnS/(Zn,Mg)O cells

• Study the carrier collection properties, space charge width and charge density of the ZnS and CdS devices

• ZnS, CdS buffers (CBD) and sputtered (Zn,Mg)O, i-ZnO, and ZnO:Al layers

• I-V analysis under AM 1.5G and EQE without background illumination

• Electron beam induced current measurements in junction configuration (J-EBIC)

• Capacitance analysis (Cf and CV) at room temperature after 30 minutes of light soaking

Solar Cell Parameters • The gain in jSC (350 - 550 nm) is accom-panied by a reduced VOC for our ZnS cells.

J-EBIC Geometry

Conclusion

§ Installation und Inbetriebnahme AEL-Elektrolyse-Prüfstand bis 05 / 2014

§ Fertigstellung 300 kWel AEL-Druckelektrolyse-Kurzblock bis 02 / 2015

§ Start-Up 300 kWel AEL-Elektrolyse-Demonstrator bis 04 / 2015

Elektrolyseblock-Konzept & Kurzblock-Realisierung

Abbildung 3: Strömungsführung Stack (negativ)

Industriepartner des Projekts

ETG GmbH, Stuttgart

Abbildung 2: Aufbau Modell

Abbildung 1: Auslegung Systemumgebung mit IPSEpro

Abbildung 4: AEL-Prüfsttand

AEL: Alkalische Elektrolyse

§ Zellrahmenkonzept aus Zweistoffverbund

§ Keine zusätzlichen Einlegeteile (integrierte Dichtungen, Membran und Elektrodenpackages)

§ Entwicklung innovativer Elektrodenpackages

§ Aufbau und Qualifizierung des AEL-Druckelektrolyse-Kurzblocks mit 300 kWel in Systemumgebung

poster 77poster

Page 80: Chemical Processes and Use of CO2: 4th Status Conference

Renewable Energy Storage

“Power-to-Gas“ - P2G®

Zentrum für Sonnenenergie- undWasserstoff-Forschung (ZSW)

Baden-WürttembergIndustriestr. 6, 70565 Stuttgart

www.zsw-bw.de

Contact ETOGAS: DI Gregor WaldsteinE-Mail: [email protected]

Contact IWES: M.Sc. Mareike JentschE-Mail: [email protected]

Contact ZSW: Dr. Ulrich ZuberbühlerE-Mail: [email protected]

Together with the Fraunhofer Institute for Wind Energy and Energy SystemTechnology (IWES) and the company ETOGAS, the Centre for Solar Energyand Hydrogen Research (ZSW) has developed a new method for electricitystorage and to guarantee grid stability in electricity grids with a highpercentage of renewable power generation.

In this concept, excess renewable electricity from fluctuation sources (e.g.from wind turbines) is used for hydrogen generation via water electrolysis. Ina downstream process, hydrogen and CO2 (e.g. from biogas) are convertedto methane which is fed into the gas grid as SNG. The renewable energycarrier methane can be efficiently stored in the natural gasinfrastructure and distributed according to customers' needs. The mutualconvertibility of electricity/gas enables a smoothing of the electrical supplyby offering negative control power by feed-in SNG in the case of surplusenergy and positive control power by electricity generation from SNG.Besides stationary power generation, SNG can be used as a renewablelow-emission fuel in road transport.

Renewable Energy Storage Systems

Energy Flow of a “Power-to-Gas“ Plant

A New Route for the Production of Substitute Natural Gas (SNG) from Renewables

“Power-to-Gas” Conceptfor Bidirectional Coupling of Electricity and Gas Grid and

Interconnection to Consumer Sector Mobility

Commercialisation Plan

Feed gas stoichiometry adapted for optimized methanation operation conditions

Addition of steam to avoid carbon depositions / catalyst deactivation Methanation heat utilization at T > 200 °C possible

Schematic Diagram of a “Power-to-Gas“ Plant

CAES Compressed air energy storagePHS Pumped hydro storage SNG Substitute natural gas

Required storage capacity for electricity grid in Germany: 20 – 40 TWh

CCPP / B-CHP

Electricitygrid

Gas distributionsystem

Electrolysis /H2 buffer

Methanation

H2

CO2

CH4

POWER GENERATION

ELECTRICITY STORAGE

CO2

Gasunderground

storage

H2

Electricity H2 SNGMobility

Plug-In HEV Plug-In HEV

Solar

Wind

CO2 bufferBiogas plant

with SNG production

Heat

BEV FCEV CNG-V

Biomass

CCPP / B-CHP

Electricitygrid

Gas distributionsystem

Electrolysis /H2 buffer

Methanation

H2

CO2

CH4

POWER GENERATION

ELECTRICITY STORAGE

CO2

Gasunderground

storage

H2

Electricity H2 SNGMobility

Plug-In HEV Plug-In HEV

Solar

Wind

CO2 bufferBiogas plant

with SNG production

Heat

BEV FCEV CNG-V

Biomass

CCPP: CombinedCycle Power Plant; B-CHP: Block-type Combined Heat and Power Station; BEV: Battery Electric Vehicle; FCEV: Fuel Cell Electric Vehicle; CNG-V: Compressed Natural Gas Vehicle;Plug-In HEV: Plug-In Hybrid Electric Vehicle

Nov. 2009

“Alpha“ Plant 25 kWel

2012

“Alpha-Plus“Plant

250 kWel

2013

“Beta“ Plant 6 MWel

2015

“Gamma“ Plant

PILOT PLANT DEMONSTRATION PLANT COMMERCIAL PRODUCT

Energy consumption and storage capacity in Germany (2012)

Power Naturalgas

Liquidfuels

Consumption [TWh/a] 595 909 711

Average Power [GW] 70 1002) 80

Storage capacity [TWh] 0,043) 2174) 2505)

Operating range of storage [h] 0,6 2000 3000

78 poster

Page 81: Chemical Processes and Use of CO2: 4th Status Conference

Kooperation BASF - Linde - RWE Power

Chemie Engineering

Kraftwerk

Ziel: 90% CO2-Abscheidung mit hocheffizienter PCC-Technik, PCC-Design für ein 1.100 MW-Kraftwerk

Optimierungsaufgaben >BASF

Abtrenntechnologie OASE blue®, Waschmittelperformance (Wirkungsgrad, Waschmittelstabilität, Kosten)

>Linde Engineering Abtrennungsanlage, Komponenten (Wirkungsgrad, Scale-Up, Kosten)

>RWE Power Integration Abtrennungsanlage (Wirkungsgrad, Betrieb, Kosten)

Ergebnisse des Untersuchungsprogramms an der CO2-Wäsche-Pilotanlage in Niederaußem

Peter Moser1, Sandra Schmidt1, Torsten Stoffregen2, Frank Rösler2, Gerald Vorberg3, Gustavo Lozano3,

1RWE Power AG, 2Linde Engineering Dresden GmbH, 3BASF SE

Das Entwicklungsprogramm Prozess der CO2-Wäsche-Pilotanlage

Feinwäsche

Rauchgas

Additiv

Wasser

Wasser

Absorber

CO2-armes Rauchgas

Rauchgas

Wasser-Wäsche

Zusatz- wäsche

Desorber

CO2

Kondensat

Waschmittel

Wasser

Kondensat NaOHaq Kondensat

Kondensator

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Amin

konz

entra

tion

Zeit [Tage]

Absorber

Rauchgas

lange Kolonne kurze Kolonne & „Trockenes Bett"

Absorber

Rauchgas

trockenes Bett

Make-up Wasser

Optionen zur Variation der Prozesskonfiguration des Emissionsminderungssystems Wasserwäsche Saure Wäsche

Absorber

Rauchgas

Wasser, Säure

Absorber

Rauchgas

Wasser

Maßnahme vor Absorber

Absorber

Rauchgas

Wasser

Trockenes Bett

Absorber

Rauchgas

Variation der Prozesskonfigurationen: > REAplus/REA-Feinwäsche (mit NaOH-Zugabe) > Anzahl der Wasserwäschen (1 oder 2) > Wasserwäsche mit doppelter Höhe > Kombination Wasserwäsche und Trockenes Bett > Kombination Zusatzwäsche (saure Wäsche) und

Trockenes Bett

Parametervariationen: > Waschwassertemperatur (40°, 60°C) > Zwischenkühlertemperatur > pH-Wert Saure Wäsche

Förderkennzeichen: 0327793A-I

2400

2600

2800

3000

3200

3400

3600

3800

4000

Circulation rate

Rege

nera

tion

Ener

gy [M

J/t C

O2]

MEA

GUSTAV200

Optimum MEA

Optimum GUSTAV200

Waschmittel-Umlaufrate

Spez

ifisc

her E

nerg

iebe

darf

[MJ/

t CO

2]

OASE blue ® Optimum OASE blue ®

Nutzung des CO2 aus Niederaußem in CCU-Projekten

CO2-Wäsche CO2-Verflüssigungs-, Aufbereitungs- und Abfüllstation

Rauchgas CO2 CO2

Rauchgasteilstrom: 1.550 Nm3/h Anlagenverfügbarkeit > 97 %

CO2-Produkt: 7,2 tCO2/Tag; Abtrennrate 90% Erste Anlage in Deutschland, IBN 2009

Absorberhöhe entspricht Full-Scale-Anlage Budget RWE Power Phasen I/II: 15 Mio. €

Instrumentierung: 275 Messstellen 40% Förderung durch das BMWi

Direktanwendung Verflüssigung/Kompression

Chemie Projekt Dream Production

chem. Energiespeicher Projekt CO2RRECT

CO2

CO2

CO2

Waschmittelversuche Versuchsphase MEA & Prozess Versuchsphase GUSTAV200 Versuchsphase LUDWIG540 Auswahl des besten Waschmittels

Langzeitversuche, Optimierung Umbau von Anlagenkomponenten Zwischenversuche Langzeitversuch (REA) Langzeitversuch (REAplus)

Phase I Phase II

Optimierung, Langzeittest Gesamtoptimum Emissionsminderung Zwischenversuch (+ O2) Variation OASE® blue Optimum OASE ® blue Langzeitversuch (REA/REAplus)

Phase III 2014 2015 2016 2013 2012 2011 2010 2009

Ergebnisse

> Waschmittel OASE blue® über einen Zeitraum von mehr als

26.000 Betriebsstunden getestet

> 20% niedrigere spezifische Energiebedarf

> geringer Waschmittelverbrauch

> hohe zyklische Beladung und reduzierter Waschmittelumlauf

> Druckverlust und Durchmesser Absorber verringert

Ausblick Phase III > Optimierung des Emissionsminderungssystems, insbesondere

durch Beeinflussung der Rohgasqualität

> Simulation eines Gasturbinen-Rohgases für den CO2-Wäscheprozess

> Test und Bewertung von zwei neuen OASE blue®-Varianten zur nochmaligen Verbesserung der Prozessperformance

79poster

Page 82: Chemical Processes and Use of CO2: 4th Status Conference

Mitg

lied

der H

elm

holtz

-Gem

eins

chaf

t

PartnerKontakt Finanzierung

Algen

Synergien mit AUFWIND, Algenproduzenten und Forschung – Entwicklung der optimalen Algen für

unterschiedliche Anwendungsbereiche

Nährstoffe, CO2

Sonnenlicht

Algen-Suspension tropft durch Netze in einer CO2-

angereicherten Atmosphäre

Algen-Suspension in Schläuchen

im Gewächshaus

Algen-Suspension in freihängenden

Schläuchen

Projekt: OptimALl

Neue und innovative Produkte aus Algen

Optimierte Algen für nachhaltige Luftfahrt

CO2 im AUFWIND stoffliche und energetische Wertschöpfung durch AlgenD. Behrendt, A. Müller, C. M. Schreiber, L. Nedbal, U. Schurr

Algen bilden eine noch weitgehend ungenutzte Quelle für Treib- und Baustoffe oder Plattformchemikalien – meist werden sie fürNahrungszusätze, Pharmazie und Kosmetik eingesetzt. Sie haben weit höheres Potential zur Biomasseproduktion alsLandpflanzen, können auch hohe CO2-Konzentrationen sehr gut nutzen – und ihr Anbau ist nicht auf Agrarflächen beschränkt.

Algae Science Center: Algenproduktionsanlage am Forschungszentrum Jülich

AUFWIND: Analysiert werden Algenproduktion, Downstream-Processing, die Kraftstoffproduktion und Konversion sowie weitereverwertbare Nebenprodukte (Kohlenhydrate, Proteine). Fokus liegt aufder ökonomische und ökologische Effizienz und ein Upscaling zumwirtschaftlichen Großanlagenkonzept. Die Forschungsergebnissewerden in eine LCA eingebettet.

Algae Science Center

OptimAL: Erhöhung der Lipidproduktion von einzelligen Grünalgen.Methodischer Schwerpunkt ist die Stammentwicklung als Grundlagefür neue Anwendungen, so werden Algen auf möglicheEinsatzgebiete gezüchtet, zum Beispiel bezüglich IhresEnergiegehaltes, der Lichtausnutzung, der CO2-Fixierung oderTemperaturtoleranz.

Dr. Dominik Behrendt

IBG-2: PflanzenwissenschaftenInstitut für Bio- und GeowissenschaftenForschungszentrum Jülich GmbH52425 Jülich

Projekt: AUFWIND

Hintergrund: Suche von nachhaltigenTreibstoff zur Verbesserung der CO2 Bilanzin der Luftfahrtindustrie

12 Partner aus Industrie und Forschung

Vergleich und Upscaling von 3 PBR-

Systemen

Betrachtung der gesamten Wertschöpfungskette

Algenproduktion und Umwandlung in Flugzeugtreibstoffe:Wirtschaftlichkeit, Nachhaltigkeit und Demonstration

Grundlagenforschung für innovative Produkte

Modifikation des Photosystems Adaption an hohe CO2-

Konzentrationen Gerichtete Evolution Selektion

80 poster

Page 83: Chemical Processes and Use of CO2: 4th Status Conference

Analysis and Design of Bacterial Enzyme Cascades for Utilization of CO2

Melanie Straub1, Christiane Rudolf2, Oliver Hädicke2, Steffen Klamt2, Hartmut Grammel1

1 Biberach University of Applied Sciences, Biberach, Germany 2 Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany

Background

A key enzyme enzyme of the pathway is pyruvate-ferredoxin oxidoreductase (PFOR) (EC 1.2.7.1) (E1 in Fig. 5) which catalyzes the reductive carboxylation of acetyl-CoA according to the following reaction:

acetyl-CoA + CO2 + Fdred pyruvate +Fdox

Estimated ΔrG'° 10.0 kJ / mol (K'eq = 0.018),… DE0 -520 mV

CO2 Fixation by the Reductive TCA Cycle CO2 fixation by plants reaches > 100 bill. tons/year global net primary production via enzyme 1 (ribulose-bisphosphate carboxylase) in Fig. 2. Yet, the catalytic efficiency of the enzyme is low. The reductive tricarboxylic acid (rTCA) cycle has been discovered in green sulfur bacteria in the 1960s as the first alternative pathway to the Calvin-cycle for autotrophic growth (3). One turn of the cycle converts 4 CO2 into organic intermediates (Fig. 5). With the increasing number of available microbial genomes, many anaerobic bacteria have now been recognized to carry all required genes/enzymes. We study enzymes of the rTCA cycle from different bacterial species for their capacity to convert CO2 into organic compounds in technical applications.

Figure 3. CO2 requirement for growth of R. rubrum with acetate (a) and fructose (b) as carbon sources (2).

Figure 4: Crystal structure of pyruvate-ferredoxin oxidoreductase from Desulfovibrio africanus (Protein databank entry 1B0P) showing ligands and pocket.

Figure 5: CO2 fixation by the reductive TCA cycle. E1: PFOR; E2: pyruvate formate-lyase; E3: a-ketoglutarate synthase; E4: isocitrate dehydrogenase; E5: pyruvate carboxylase

Figure 1. Biotechnological potential of R. rubrum for high-level expression of photosynthetic products independent of light.

Current Status and Outlook

PFOR genes of R. rubrum, Chlorobaculum tepidum, Desulfovibrio africanus , Acetobacterium woodi have been cloned for expression in E. coli in vitro activity of crude extracts determined (Tab. 1) Purification of PFOR and ferredoxin of R. rubrum and C. tepidum HPLC/MS platform established for determination of metabolic fluxes of the 13CO2-fixing metabolic network (Fig. 2) Next steps: Coupling of purified enzymes to electrodes for electrochemical regeneration of cofactors (Fd) Ultimately, bacterial enzymes should be useful for conversion of CO2 and regenerative energy into storable and transportable chemical

compounds and fuels

References: 1) Hädicke, O., H. Grammel, and S. Klamt. 2011. Metabolic network modeling of redox balancing and biohydrogen production in purple nonsulfur bacteria. BMC Syst. Biol. 5:150. 2) Rudolf, C., and H. Grammel. 2012. Fructose metabolism of the purple non-sulfur bacterium Rhodospirillum rubrum: Effect of carbon dioxide on growth, and production of bacteriochlorophyll and organic acids. Enzyme Microb. Technol. 50:238-246. 3) Evans, M.C.W., Buchanan, B.B. and D. I. Arnon. 1966. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc. Natl. Acad. Sci. USA 55, 928-934.

B i o t e c h n o l o g i e 2 0 2 0 p l u s – B a s i s t e c h n o l o g i e n f ü r e i n e n ä c h s t e G e n e r a t i o n b i o t e c h n o l o g i s c h e r Ve r f a h r e n

The project is an interdisciplinary approach of wet lab experiments and computational modeling. The goal is to evaluate the capacity of bacterial enzymes for utilizing CO2 as a feedstock for organic chemicals or fuels. Work packages of the participating partners include:

Biberach University of Applied Science • 13C metabolomics for identifying CO2-fixing pathways • Isolation and kinetic characterization of CO2-fixing enzymes • in vitro (electrochemical) operation of enzyme cascades

Max Planck Institut for Dynamics of Complex Technical Systems, Magdeburg • Metabolic network analysis • Dynamical modeling • Simulation studies

focus.de

0 % CO2

1 % CO2

2 % CO2

10 % CO2

b

1, 2, 5 % CO2

0 % CO2

The starting point: Systems Biology development of the purple bacterium Rhodospirillum rubrum for biotechnological applications

Tab 1. Specific enzyme activity of pyruvate:ferredoxin-oxidoreductase of anaerobically grown C. tepidum and R. rubrum

Figure 2. Metabolic network of central carbon metabolism in purple non-sulfur bacteria, implemented in CellNetAnalyzer (1) .

Fructose Succinate Fructose/SuccinateFructose Succinate Fructose/Succinate…independent of light; at high cell densities ?

Porphyrins

Biopolymers

Biohydrogen Energy carrier

Photodynamic Tumor Therapy

Production of:

Poly-b-hydroxyalkanoates

Carotenoids

Food industry Vitamins, Coenzymes B12, Q10

Membrane proteins Vaccines…

Food supplement

Strain U/mg

C. tepidum 0.101 0.015

C. tepidum + 50 mM acetate 0.039 0.007

R. rubrum 0.0014 0.00033

81poster

Page 84: Chemical Processes and Use of CO2: 4th Status Conference

KIT – University of the State of Baden-Wuerttemberg andNational Research Center of the Helmholtz Association

M. Fuchs, M. Adolph, T. Zevaco, C. Altesleben, O. Walter, E. Dinjus, S. Pitter, J. SauerKarlsruher Institut für Technologie (KIT), Institut für Katalyseforschung und Technologie (IKFT) Postfach 3640, 76021 Karlsruhe, Germany [email protected], [email protected]

Institute of Catalysis Research and TechnologyThe coupling of epoxides and CO2 to carbonates:

On the search for new N2O2 and N4-ligand systems.

Acknowledgement: This work was supported by the BMBF-Project “Dream Reactions” (Förderkennzeichen 01RC0901A) and the Helmholtz Research School „Energy-Related Catalysis“.

More details in Dalton Transactions , 2013, 42(15) 5322-5329

Results / Topic 1 : N2O2 ligands based on 2-cyano-3-ethoxyacrylate and their iron (II) / Iion(III) complexes in the formation of cyclic carbonates.

Carbon dioxide can be seen as an “ideal” C1-building blockbecause of its low toxicity and sheer endless availability, if oneneglects its thermodynamic stability. For a long time the focuson the CO2-chemistry was limited to few reactions with rapidimplementation in industrial processes like, e.g. the productionof precipitated calcium carbonate for the paper industry, thesyntheses of salicylic acid, urea, or indirectly that of methanol.However since the nineties a new trend rises continuouslydealing with the production of organic carbonates: principallymonomeric cyclic carbonates (CC) and aliphaticpolycarbonates (aPC) obtained from the related reactiveepoxides.

Cyclic Carbonate

CO2+R1

O

R2

CH CH O C O

O

CH CH O

R1 R1R2 R2n m

R1

O OCO

R2

(pure polycarbonate: m = 0)

Copolymerisation

P,T

aliphatic poly(ether-carbonate)

Cyclisation

[ Catalyst ]

(1,3-dioxolan-2-one)

An ever increasing interest…

CCs find an industrial application as non-toxic, polar, high boiling-point solvents, as electrolytes in lithium ion batteries or as reactive intermediates.

aPCs are a useful complement to thearomatic bisphenol-A-based poly-carbonates owing a.o. to a higher intrinsicbiodegradability (e.g. polypropylenecarbonate) and find an increasingutilisation in many technical applications asevaporative pattern castings or mid-segments in new polyurethanes.

M. North, R. Pasquale, C. Young, Green Chem., 2010, 12, 1514

good overview: P.P. Pescarmona, M. Taherimehr, Catal. Sci. Technol., 2012, 2, 2169

M.R. Kember, A. Buchard, C.K. Williams, Chem. Commun., 2011, 47, 141

O

O

O

R1

2 äquvalente Acrylsäurederivat

NH2

NH2

NH

NH

R1O

O

R1

O

O

NH

NH2

R1O

O NH

NH

R1O

O

R2

O

O

NH2

NH2

O

O

O

R2

R1 und R2 = CN oder COOEt

A wide range of diamine linkers investigated:

NH2

NH2

NH2

NH2 NH2

NH2

NH2(H2C)2

NH2

NH2(H2C)4

NH2

NH2(H2C)6

NH2

NH2

NH2

NH2

NH2

NH2

NH2N

NH2

NH2H2N NH2

NH2

NH2

NH

NH O

O

O

O

N

N

N

N O

O

O

O

N

N

FeFe(OAc)2DMFPyridin

NN

N O

O

O

O

N

N

FeN N

I

66% 95%

PyridinI2

The o-phenylene diamine-substituted ligand reacted easily with Fe(OAc)2 and a nitrogen base (pyridin or 1-methyl-imidazole).

X ray structure of the related (1-Me-Imidazole)-Iron derivative:[(Lnitrile(H)2N2O2)Fe(II)(1-Me-Im)2].DMF

The ligands are formed by condensation of a diamine and ethyl 2-cyano-3-ethoxy-acrylate or diethyl-ethoxymethylenemalonate in yields of up to 99%.

Synthesis adapted from E.G. Jäger et al., Z. anorg. Allg.Chem. 1985, 525, 67.

More details in European Journal of Inorganic Chemistry 2013, 26, 4541–4545

Results / Topic 2 : N2O2 ligands based on diethyl ethoxymethylenemalonateand their aluminium complexes in the formation of aliphatic polycarbonates.

Catalyst (a) co-Cat. Cat. / mol% p/bar T/°C Yield

(b)

- 1.0 50 80 -

nBu4NBr 0.2 35 80 37%

TBAB 1.0 50 80 91%

- 0.2 50 80 99%

- 0.1 35 80 69%

- 0.2 2 80 36%

- 0.2 50 80 -

TBAB 0.2 50 80 75%

TBAB 1.0 50 80 94%

N

N O

O

O

O

N

N

FeN N

I

N

N O

O

O

O

N

N

Fe N

N

N O

O

O

O

N

N

Fe NN

NN

Fe(II)

Fe(II)

Fe(III)

a) Reaction conditions: cat. loading 0.2 mol%, reaction time 20 h,b) Conversion by 1H-NMR with internal standard.

More details in Dalton Transactions, 2014, 43(6), 2344–2347 andCatalysis Science & Technology, 2014, accepted DOI: 10.1039/C4CY00125G

Results / Topic 3 : N2O2 ligands based on cyano-acrylate and methylene-malonateand their zinc complexes in the formation of cyclic carbonates.

+ M(OAc)2

N

O

OH

NH2

NH2

2

Triphenyl-phosphite

PyridineN

NH NHOO

N

1 Y1, Y2 = H , 50%2 Y1, Y2 = Cl , 62%3 Y1 = H, Y2 = NO2 , 36%4 Y1, Y2 = Me , 78%

N

N NOO

N

Co

OAc

OAc

N

1.44 eq

[NEt4](OAc).4H2O,

O2

N

N NOO

N

9 M = Co, Y1, Y2 = H , 86%10 M = Co, Y1, Y2 = Cl , 66%11 M = Co, Y1 = H, Y2 = NO2 , 91%12 M = Co, Y1, Y2 = Me , 88%13 M = Fe, Y1, Y2 = H , 83%14 M = Fe, Y1, Y2 = Cl , 84%15 M = Fe, Y1 = H, Y2 = NO2 , 80%16 M = Fe, Y1, Y2 = Me , 68%17 M = Cr, Y1, Y2 = H , 88%18 M = Cr, Y1, Y2 = Cl , 71%19 M = Cr, Y1, Y2 = Me , 87%

M

Cl

Cl

N

2.21 eq [NEt4]Cl H2O,2 eq TEA, O2

+ MCl2-3

DMF

DMF

Y1

Y2

Y1 Y2

Y1Y2

5 Y1, Y2 = H , 78%6 Y1, Y2 = Cl , 78%7 Y1 = H, Y2 = NO2 , 63%8 Y1, Y2 = Me , 51%

+

Y1Y2

N

N NOO

N

20 Y1, Y2 = H , 56%21 Y1, Y2 = Cl , 65%22 Y1 = H, Y2 = NO2 , 62%23 Y1, Y2 = Me , 74%

Co

Br

Br

N

Y1Y22.21 eq [NEt4]Br H2O,

2 eq TEA, O2

DMF

+ CoBr2

Easy synthesis of the substituted N,N-Bis(2-pyridine-carboxamide)-1,2-benzene ligands and their cobalt, iron and chromium complexes. Yields ranging from 50 to 90%.

Synthesis adapted from R. N. Mukherjee, M. Ray, Polyhedron, 1992, 11, 2929.

X ray structure determination of thecobalt complex 22:[[L(NO2)N4]Co(III)Br2][Et4N]

X ray structure determination of 6[[L(Cl)2N4]Co(III)(OAc)2][Et4N]

Results / Topic 4 : N4-ligands with 2-pyridinecarboxamide/phenylene diamine moieties and their metal complexes in the formation of organic carbonates (CC & aPC).

Epoxide a Product P(bar)

Conversionb

OO

CO

O

n

50 76

O O

O

O 35 78

O O

O

O 50 60

OO

O

O 50 60

O

Cl

O

O

O

Cl50 96

O

O O

OOO

50 93

OO O

O

O

O50 99

O O

O

O 50 0

a) Reaction conditions: cat. loading 0.2 mol%, reaction time 20 h, temperature 80°C. b) Conversion by 1H-NMR with internal standard.

N

N N OO

NCo

Cl

Cl

N

Cl Cl

Broader catalytic screening: The highest yields of cyclic carbonates were attained with terminal epoxides displaying an electron-withdrawing group.

More details in Polyhedron, 2012, 48(1), 92-98 and Dalton Transactions, 2014, 43(8), 3285–3296

+ CO2O O C O

O

n

nCat.

O

ROO

R

O+ CO2

Cat.

+ CO2O O C O

O

n

nCat.

Entrya) epoxide product P/bar

Yield b)

1 50 96

2 50 100

3 35 98

4 50 99

5 35 95

6 50 100

7 50 -

8 50 -

9 50 -

10 50 -OO

O

O

PhO

O

O

Ph

OPh

OO

Ph

O

OO

Ph

OO

OPh

O

O

O

OO

O

O

OCl O

OCl

O

O

BuO

O

Bu

O

O

t-BuO

O

O

t-Bu

O

OO

O

O

OO

O

O

a) Reaction conditions: cat. loading 0.2 mol%, reaction time 20 h, reaction temperature 80°C. b) Conversion by 1H-NMR with internal standard.

X ray structure:(Lester(Cl)2N2O2)Zn(DMSO)

Catalyst

High Selectivity and catalytic activity of theCobalt-N4-acetate system (“Cat/Co-Cat in one”concept): pure alternating (atactic) PCHC wereisolated in high yields with CHO whereas cycliccarbonates were obtained with common terminalepoxides.

X ray structure:[(Lnitrile(Me)2N2O2)Zn(DMSO]∞

10 2 + DMAP 0.2 80 50 20 100% 77% 384 11 100 1.53 103.911 2 + TBAB 0.2 100 50 20 99% 76% 379 7 000 1.65 93.012 2 + TBAB 0.1 80 50 20 100% 66% 660 15 000 1.28 106.313 2 + TBAB 0.2 80 50 10 100% 46% 230 7 600 1.233 101.114 2 + TBABf 0.2 80 50 20 100% 32% 158 4 200 1.49 93.015 2 + TBAB 1.0 80 2 48 99% 29% 29 3 100 1.37 93.8

Entry Catalysta c(cat.)(mol%)

T(°C)

p(bar)

t(h)

CarbonateLinkageb

Yieldc TON Mnd

(g mol-1)PDId Tg

e

(°C)

a catalyst:cocatalyst=1:1; TBAB=Tetra-butylammonium bromide, DMAP=4-Dimethyl-aminopyridine; b Determined by 1H-NMR spectroscopy: 100*([email protected] / ([email protected] + [email protected] ppm)); c Determined on precipitated polymer: 100 % yield being equivalent to 14.05 g copolymer (/a complete conversion of 0.099 mol of CHO (10 ml) into pure alternating PCHC); d Determined by Gel Permeation Chromatography (GPC) calibrated with polystyrene standard in THF at 40 °C; e Measured with Differential Scanning Calorimetry (DSC); f Screening was done with dichloromethane as co-solvent (CHO:DCM=1:1).

a Standard reaction conditions: 10 ml of Epoxide, 20 h, 0.5 Mol% catalyst, 80 °C, 50 bar for CHO and 35 bar of CO2 for PO; (~ 7 g CO2) b yields = n(Monomer units in isolated product)/n(epoxide)*100 c Evaluated via 1H NMR d Evaluated via gel permeation chromatography e Determined by DSC

coordination polymer : linkage via one of the nitrile groups

monomeric unit

♦ Easy synthesis via reaction of ZnEt2 withthe ester- and nitrile- substituted N2O2ligands.♦ Interesting structural characteristics withneutral ligands e.g. dimethyl sulfoxide.♦ Very high activity and selectivity in theformation of Cyclic Carbonates (e.g. PC)

High activity in the formation of Cyclic Carbonates via the “Cat/Co-Cat in one” concept.

♦ Easy synthesis via reaction of AlEt3and AlEt2Cl with the ester-substitutedN2O2 ligands.♦ Very high activity and selectivity ofthe Al-chloro derivatives in theformation of Poly-CycloHexene-Carbonate. Promising PDI and Tg butunsatisfactory stereoselectivity (atacticpolycarbonates).

OOO

O+ CO2

Cat.

Catalyst p (bar) T (°C) Yield Co/L(H)/OAc 35 80 62Co/L(Cl)/OAc 35 84 50

Co/L(NO2)/OAc 35 80 32

Co/L(Me)/OAc 35 80 70

Catalyst a p(bar)

T(°C)

Yieldb

CO3 -% c

Mn (g/mol)d Mw/Mnd

Tg (°C)e

Co/L(H)/OAc 50 80 64 100- 9600 1.15 104Co/L(Cl)/OAc 50 80 70 100- 7600 1.28 104Co/L(NO2)/OAc 50 80 35 100 10100 1.27 106Co/L(Me)/OAc 50 80 83 100 8600 1.27 105

PCHC

PCHC

PC

OOO

O+ CO2

Cat.

OOO

O+ CO2

Cat.

82 poster

Page 85: Chemical Processes and Use of CO2: 4th Status Conference

83poster

Page 86: Chemical Processes and Use of CO2: 4th Status Conference

iC4 - PhotoCOOPhotokatalytische Nutzung von CO2

Prof. Dr. Bernhard Rieger (TUM)

AK Rieger AG Krischer

AG Rösch AG Reuter

AG Lercher AG HeizCO2-Reduktion gekoppelt mitWasserspaltung

Projektziel: Design eines künstlichen Photosynthesesystems- Nanostrukturierte Halbleitermaterialien zur photokatalytischen Wasserstoffdarstellung aus

Wasser und gekoppelter CO2-Reduktion mit Sonnenlicht

Charakterisierung

ZnO Ga2O3

(Ga(1-x) Znx)(N(1-x)Ox)

Co-KatalysatorModifikation

CH4/COBiomasseH2O H2 + O2/CO2

Wasserstoff-darstellung

GaN:ZnO

H2O O2

CO2 TreibstoffeChemikalien

Katalyse

CO2-Reduktionzu Treibstoffen

Synthese

Optische und strukturelleEigenschaften

PhotokatalytischeProduktbildungsraten

Struktur-Aktivitäts-Beziehungen

CO2

Funktionalisierte Si-Oberflächen für die photoelektrochemische CO2-Reduktion

Kontrollierte Si-Funktionalisierung: Erhöhung der elektrochemischen Reaktivität

On-line Produktanalyse: Optimierte DEMS-Zelle (Differentielle

elektrochemische Massensprektrometrie) Bessere Verzahnung von Produktanalyse

und (photo-)elektrochemischem Experiment

DEMS

Bel

euch

tung

Elektrolyt-Fluss

Probe

HPLC und Referenz-elektrode

Poröse, gasdurchlässige PTFE-Membran

Die vierte, weiter in die Zukunft blickende Säule des iC4-Projektclusters - PhotoCOO - untersucht die direkte,photochemische Umsetzung von Kohlendioxid und Wasser zu Wertprodukten analog zur natürlichen Photosynthese.Unter besten ökologischen und auch vorteilhaften ökonomischen Bedingungen würde vorab emittiertes CO2 - viaAdsorption oder membrangestützter Trennverfahren (siehe die komplementären iC4-Teilprojekte AdCOO undCOOMem zum Stand der Optimierung der CO2-Abtrennung) - wieder dem Stoffkreislauf zugeführt werden. Dies schütztdie Umwelt und dient zudem zwei Wirtschaftssektoren – Energie und Chemie - in perfekter Symbiose.

0

400

800

1200

1600

2000

450 470 490 510 530 550

ε*M

*cm

λ/nm

— Zweikerniger Katalysator

--- EinkernigerKatalysator

Photokatalytische Reduktion von CO2 mit gekoppelten Ligandsystemen

PhotophysikalischeEigenschaften

0

5

10

15

20

25

30

35

40

45

50

450 500 550 600 650 700 750 800

rela

tive

irrad

ianc

e/%

λ/nm

y = 524,25x - 0,0825

02468

101214161820

0 0,01 0,02 0,03 0,04

F0/F

1 -1

c(TEOA)*l/mol

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0-0.8

-0.6

-0.4

-0.2

0.0

0.2 A1A2

C3

C2Cur

rent

[ m

A/cm

² ]

iR-corrected Potential [ V vs. Fc+/0 ]

C1

-2.0 -1.5 -1.0 -0.5-0.6

-0.4

-0.2

0.0

0.2

0.4

A2

C2

A1

C1

i [m

A/cm

²]

EiR [V vs. Fc+/0]

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

C1

A1

C3

Cur

rent

[ m

A/cm

² ]

iR-corrected Potential [ V vs. Fc+/0 ]

C2

-2.0 -1.5 -1.0 -0.5-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

C2C1

A1

A2

i [m

A/cm

²]

EiR [V vs. Fc+/0]

Triplett-MLCT- Absorption : λ(3MLCT) = 474 nm + 506 nm, 

dπ(Ir)-π*(tpy)

Emission: λem = 562 nm

Stern Volmer Plot

Elektrochemische Eigenschaften

Heterogeneous conversion of CO2 on Ru(0001) into HCOO* or *COOH species

→ What is the effect of co-adsorbed H2O?

7

0 2

14

21

912

-9

28

0

-9

Potential hydrogenation pathways from various CO2/H configurations

η2–HCOO species most stable isomer

The effect of H2O in the CO2 insertion reaction at Ru(bpy)2(CO)H complexHomogeneous conversion of CO2 to HCOO–

Electronic barriers of ~ 14–20 kcal·mol-1

Transition state structure of CO2 insertion with 2 H2O

Decrease of enthalpic barrierfrom 9 to 25 kcal·mol-1with the aid of water

0 kcal·mol-1 :sum of reduced (neutral) reactants

HCOO–

formation

0 H2O

2 H2O

1 H2O

Ab initio Methodik fürladungsgetriebene Redoxreaktionen

Entwicklung eines effizienteneingebetteten Clusteransatzes (QM/MM):- Speed-up im Vergleich zu regulären

Superzellansätzen >100fach- Ermöglicht:

• detaillierte kinetische Rechnungenauf DFT Hybridniveau

• explizite Berechnungen ladungsgetriebener Prozesse

Proof-of-concept:Wasserspaltungan TiO2(110)

PhotoCOO

84 poster

Page 87: Chemical Processes and Use of CO2: 4th Status Conference

CO2 @ CN3H5: -0.28 eV

~2.3Å

Die Bedeutung von AdCOO im iC4 Verbund: Die Verfügbarkeit einer effizienten Abtrenntechnologie stellt die notwendige Voraussetzung dar, umCO2 in ausreichender Reinheit der stofflichen Nutzung zuzuführen. Ziel ist sowohl die Entwicklung von neuartigen flüssigen, sowie modifiziertenfesten Sorbentien, welche im Vergleich zum Stand der Technik eine energieeffizientere Abtrennung von CO2 ermöglichen sollen. Auf Basis derbisherigen Ergebnislage und grundlegender thermodynamischer Betrachtungen erscheint eine Reduzierung des Energieaufwandes für denRegenerationsschritt auf 2 GJ/t CO2 bei Verwendung fester Sorbentien erreichbar, allerdings steigen auch die Ansprüche an die Prozesstechnik.In der Projektlaufzeit sollen die wesentlichen Grundlagen zur Auslegung eines Prozesskonzeptes für eine anschließende Pilotierungsphaseerarbeitet werden.Langzeitziel: Die Minimierung des Wirkungsgradverlustes für Kraftwerksprozesse mit CO2 Abscheidung bei gleichzeitiger Kostenreduktion.

iC4 - AdCOOEnergieeffiziente Abtrennung von CO2

Dr. Andreas Geisbauer (Clariant)

iC4

AP3: Coating von Trägerpartikeln mit  Fängermolekülen zur Herstellung funktionalisierter, fester CO2 Sorbentien

AP2: Herstellung geeigneter Trägerpartikel durch unterschiedliche Methoden der Formgebung  aus kostengünstigen Rohstoffen

AP1: Charakterisierung geeigenter CO2 FängermoleküleErmittlung thermodynamischer und kinetischer Daten Basis für rationale Entwicklung optimierter CO2 Fänger

AdCOO

Entwicklung fester Sorbentien Analytik

AK Rieger AK Reuter

AK LercherHochdruck CO2 Adsorptionsanlage zur Simulation vonstatischen Adsorptionsvorgängen bis 40 bar und max350° C.Clariant Standorte Heufeld, Moosburg:

Entwicklung und Untersuchung geeigneter Ver-fahren zur Formgebung wie z.B. Sprühtrocknung,Aufbaugranulation aus kostengünstigen Roh-stoffen mit hoher Verfügbarkeit.

Gezielte Abtrennung von CO2über N2 mittels sphäroidalerPartikel (Cage Concept)

Computational Screening:Voraussage und Design ener-getisch optimierter Fänger-moleküle über Kraftfeld / DFT –RechnungenBeispiel: Guanidin

Prozesskonzept

Neuartige flüssige Sorbentien

Post combustion:C + O2 / N2 CO2 / N2 , Partialdruck CO2 ~ 100 – 150mbarPre combustion:C + O2 / H2O   Synthesegas CO / H2 CO2 / H2 , Druck ~ 20 – 40bar

AP4: Computational Screening zur Identifikation geeigneter Fängermoleküle, systematisches Screening auf Basis von Kraftfeld‐ und Dichtefunktionaltheorie

Zielsetzung: Verständnis der grundlegendenMechanismen und energetischen Beiträge beider Reaktion von CO2 und Fängermolekülen.Berechnung von Reaktionskinetiken z.B. fürdie Bildung der Carbamat- / Hydrogen-carbonat Spezies. Beispiel: Monoethanolamin

Carbamat

Bicarbonat

AP5: Analytik: Charakterisierung der relevanten thermodynamischen und kinetischen Materialparameter, Performance über Vielfachzyklen

Computational Screening

TUM AK Lercher:Gezielte Synthese hierarchisch geordneter,sphäroidaler Partikel zum Erreichen hoherAufnahmekapazität sowie hoher Ad- und De-sorptionskinetik.

Coating: Modifikation geeigneter Trägerpartikel mit CO2 Fängermolekülen,Qualifikation von Fängermolekülen mit niedrigen Dampfdrücken. Vermeidung von Emissionen

WG‐Shift

Direktes Einbringen von Zr in dieSiO2 Struktur erhöht die CO2Aufnahmekapazität durch Bildung

von monodentatem Carbonat (CO32-) und mono-

dentatem Bicarbonat (HCO3-).

Erhöhte Zr Gehalte in den sphäroidalen Partikelnverbessern die Abriebsfestigkeit der Adsorbentien.

Die Abtrennung von CO2 mit aliphatischen Aminen wird als Benchmarkherangezogen, um in Kooperation mit Computational Screening geeigneteFängermoleküle zu bestimmen. In einem Reaktor können Ab- und De-sorption flüssiger Systeme untersucht, sowie deren pH - Änderung verfolgtwerden. Zusätzlich werden Polymersysteme entwickelt, die Nachteile deraliphatischen Amine lösen sollen.

Eine zentrale Fragestellung des Projektes mit Auswirkungen auf die Entwicklung geeigneterAdsorbentien bezieht sich auf die Suche nach einem entsprechenden Prozesskonzept, mit dem CO2 aus den Rauchgasen vonKraftwerken effizient und nachhaltig abgetrennt werden kann. Aufbauend auf den Erfahrungen von Siemens bei der Entwicklung eines entsprechendenAbtrennverfahrens auf Basis Flüssig-Absorption (PostCap™-Verfahren) konnten vielversprechende Konzepte identifiziert werden. Mit einem Apparate- undProzessdesign für mögliche Full-Scale-Anlagen und basierend auf ersten Messdaten ausgewählter Adsorbentien wurden Wirtschaftlichkeitsbetrachtungen fürFestbett- sowie gestufte Wirbelschichtverfahren als beste Konzepte durchgeführt. Es zeigt sich, dass die Verfahren deutlich verringerte Betriebskosten gegenüberden etablierten Aminwäschen erreichen können – insbesondere jedoch hinsichtlich der Kapitalkosten noch verbessert werden müssen. Die im Kraftwerk zurealisierende Größenordnung der CO2-Abtrennung stellt eine besondere Herausforderung dar. Als besonders relevant für die Wirtschaftlichkeit – und somit bei derzukünftigen Entwicklung fester Sorbentien besonders zu beachten – erweist sich die Abfuhr großer Mengen an Adsorptionswärme oder der Preis des Adsorbens.

85poster

Page 88: Chemical Processes and Use of CO2: 4th Status Conference

iC4 - COOMemCO2-Abtrennung mittels Membranen

Dr. Christian Anger (Wacker Chemie AG)

COOMemTPSE100 in iPrOH/NMPMw = 120000 g/mol

Darstellung von Siliconelastomeren mittels Polyaddition

Die Gaspermeabilität im Vergleichzu Siliconvollfilmen steigt beiasymmetrischen TPSE Membranenum den Faktor 2,5,

Trennschicht(TUM)

Membranherstellung &Beschichtung (FhG IGB)

Grenzfläche(WACKER & TUM)

Trägermembran(WACKER)

Modulbau (FhG IGB)

Bewertung & Pilotanlage (Linde)Das Ziel des Verbundprojekts ist es, neuartige

Kompositmembranen zur CO2-Abtrennung zuentwickeln. Kompositmembranen bestehen aus einerTrägermembran mit aufgebrachter Trennschicht undsollten in ihren Eigenschaften bevorzugt durch dieTrennschicht dominiert werden. Für dieses inter-disziplinäre Vorhaben werden die Kompetenzen derProjektpartner auf ihren jeweiligen Feldernzusammengeführt.

Der Fokus des iC4-Projekts COOMem liegt auf:• neuen Materialansätzen zur Gastrennung• Verbesserung bestehender Verfahren• Verbesserung von Effizienz und Kosten bei der CO2-

AbtrennungDurch Materialentwicklung soll eine• Verbesserung der Selektivität• Erhöhung der Permeabilitäterreicht werden.

SiliconelastomereAufbau asymmetrisch poröser Trägermembranen

Es wurden hochdurchlässige asymmetrisch poröse Trägermembranen aufSiliconbasis entwickelt. Der Vorteil gegenüber konventionellen Membranenist die intrinsisch hohe Durchlässigkeit von Siliconen. Nur mitthermoplastischen Siliconelastomeren können im Phaseninversions-prozess asymmetrisch poröse Strukturen hergestellt werden.

REM - Aufnahme einer beschichteten HF-Membran

Herstellung von porösen Hohlfaser-Trägermembranen mittels kontinuierlichem Naßspinnen

Membranmodul mit porösen HF-Membranen

Dip-Coating Anlage zur kontinuierlichen Beschichtung von HF-Membranen und Modulbau

REM-Aufnahmen einer TPSE-Hohlfasermembran

Permeabilität [Barrer] CO2 N2

Silikonvollfilm 2900 260

PVOH Membranasymmetrisch(best value)

2800 2700

TPSE 100 Membranasymmetrisch 7100 700

Eigenschaften TPSE 100 NEU : SHPNMDegradation 180 200

Schmelzpunkt 133 Schmilzt nicht !

Polymerisation Reaktivextrusion Polymerisation in Lösung

Asymmetrische TPSE Membran

Polyelektrolyt (TUM) beschichteter Silikonvollfilm

L.M. Robeson, J. Membr. Sci. 320 (2008) 390–400

SHPNM zeigt im Vergleich zu TPSE 100 besseremechanische Eigenschaften und eine verbesserteTemperaturstabilität. Es konnte gezeigt werden, dassmit diesem Material ebenfalls asymmetrischmicroporöse Hohlfasern dargestellt werden. Um diechemische Beständigkeit zu verbessern wurde eineVernetzung mittels Aldehyden etabliert.

Membranperformance

COOMem

ProzessbedingungenFeed/Permeat Druck [bara] 1.3 - 7

Temperatur [°C] 25Feedmenge [Nm3/h] 1-4 Feedgas N2

• Exp• Fit

Darstellung CO2-selektiver Trennschichten

Ausgehend von schwach Brønsted-sauren Polymeren und verschiedenen Tetraalkylphosphonium-Hydroxiden wurden Anion-funktionalisierte Polymere synthetisiert und hinsichtlich ihrer Filmbildungseigenschaften sowie ihrer CO2-Aufnahmekapazität untersucht.

Material Gasflussdichte [Ld-1 m2 bar-1] Selektivität αCO2/N2

15 °C 25 °C 15 °C 25 °C

CO2 N2 CO2 N2

[P66614][5a] 742 35.0 770 57.0 21.20 13.51

[P66614][5b] 430 28.5 463 35.0 15.09 13.23

[P66614][5c] 385 17.3 487 25.7 22.23 18.95

[P66614][6a] 282 6.50 303 12.2 43.38 24.85

[P66614][6b] 207 4.80 160 5.34 43.13 29.96

[P66614][6c] 199 2.94 347 11.3 67.69 30.71

Aktuell wird weiter an der mechanischen und chemischen Stabilität der Materialien gearbeitet. Am Fraunhofer IGB wird das Material zur Entwicklung von Komposit-Hohlfasermembranen verwendet.

Im Fall der Poly(vinylphenol)-basierten Substanzen konnte mittels 13C-Festkörper-Kernspinresonanzspektroskopie und Infrarotspektroskopie die Bildung eines Carbonat-komplexes als wesentlicher CO2-Absorptions-mechanismus identifiziert werden.

Komposit-Flachmembrane aus Polysiloxan-Vollfilmen und 4-8 µm starken Polyelektrolytbeschichtungen zeigen hohe ideale Permeabilitäts-Selektivitäten für CO2.

Substanz ZH x y n S / S’

1 1 0 0

-2 9 1 2

3 2.2 2 2

4 38.7 1 9

5a

1 0 0

H / H

5b OCH3 / H

5c OCH3 / OCH3

6a

1 1 2

H / H

6b OCH3 / H

6c OCH3 / OCH3

Aktuell wird weiter an der mechanischen und chemischen Stabilität der Materialien gearbeitet. Am Fraunhofer IGB wird das Material zur Entwicklung von Komposit-Hohlfasermembranen verwendet.

Abb.1 Membranteststand mit Druckgehäuse für die Aufnahme von Membranmodulen im Pilotmaßstab

Abb.3 Schematische Darstellung des Teststandes

Erprobung von Membranmodulen im Pilotmaßstab

Abb.2 Druckgehäuse mit Membranmodul aus TPSE-Trägermaterial

Charakterisierung des TPSE-Moduls

Ausblick Vermessung von Membranmodulen mit CO2 -selektiver Trennschicht

Bestimmung von Mischgaspermeanzen unter prozessrelevanten Bedingungen

Erste Untersuchung zur Langzeitstabilität der Membran

Abb.4 Herleitung von DruckverlustbeziehungenAbb.5 Bestimmung des mittleren Porendurchmessers des TPSE-Trägers

iC4

86 poster

Page 89: Chemical Processes and Use of CO2: 4th Status Conference

Muster des von der TUM neu entwickelten Katalysators werden von Clariant und WACKER LINDE LE zurVerfügung gestellt. In einer designierten Testanlage werden diese auf ihr Verhalten gegenüberKatalysatorgiften untersucht.In Zusammenarbeit mit MAN Turbo und E.on erstellt LINDE LE ein Verfahrenskonzept, Energie undMassenbilanzen. Anhand der von der TUM erstellten Kinetik erfolgt die Dimensionierung der Reaktorenund anschließend die Kostenabschätzung des gesamten Methanisierungsprozesses.

Verfahren für die Parallelsynthese einer großen Zahl von Katalysatoren für das High-Throughput-Screening (HTS) wurden entwickelt. In enger Kooperation mit WACKER wird aktuell die von WACKER entwickelte und zur Verfügung gestellte HTS-Testanlage

optimiert und für Paralleltests eingesetzt. Mit Methoden der Statistischen Versuchsplanung (SVP, DoE) werden signifikante Präparationsparameter erkannt und evaluiert. Die Erkenntnisse bilden das Fundament für eine zielstrebige Optimierung und die Präparation der Katalysatoren. Aktuell konzentrieren sich die Messungen auf Nickel-Träger-Katalysatoren (auf Trägern der Industriepartner).

Pilotversuche Verfahrenskonzept

iC4 - COOMethCO2-Methanisierung: Neue Katalysatoren zur Hydrierung von

CO2 zu Methan zur EnergiespeicherungDr. Alexander Zipp (Wacker Chemie AG), Dr. Andreas Geisbauer (Clariant)

Abstract:Teilprojekt mit dem Ziel der Entwicklung von Katalysatoren zur effizienten und unstetigen Methanisierung von Kohlendioxid zur Speicherungelektrischer Überschussenergie. Auf Materialbasis der Clariant und Wacker Chemie AG wurden durch die TU München erste Katalysatorenpräpariert, untersucht und mit Nickel-basierten Benchmarks verglichen. Auf Basis von Literaturkinetiken wurden von der TUM bereits kinetischeModelle implementiert, die eine Simulation der Reaktionsführung ermöglichen. Bei MAN erfolgten erste Pilotversuche zur Bestimmung derAktivität der Benchmarks. Von Linde und E.ON wurden die Rahmenbedingungen beleuchtet und verfahrenstechnische Simulationen zumVerfahrenskonzept durchgeführt.

iC4

COOMeth

Katalysatorentwicklung zur Methanisierung von Kohlendioxid mit dem Ziel zur Speicherung elektrischer Überschussenergie mit bestehender Infrastruktur:

Sabatier-ReaktionCO2 + 4 H2 CH4 + 2 H2O RH0 = -253,15 kJ mol-1

hohe Exothermie der Methanisierungaus Wärmetönung der Umsetzung resultierende Beanspruchung sowie Gleichgewichtslimitierung gekühlte Rohrbündelreaktoren

unsteter Anfall von Überschussenergieerfordern kurzfristige Anpassung der Beladung an Verfügbarkeit der Energie lastwechselstabile Katalysatoren gekühlte Rohrbündelreaktoren

Verwertung realer KraftwerksabgaseVerunreinigungen in realen Verbrennungsabgasen vergiftungsresistente Katalysatoren

Darstellung einspeisefertiger Gasqualitäten ohne Abtrennung von Edukten, Nachverdichtung, … Umsetzung stöchiometrischer Mischungen

Katalysatorentwicklung Kinetikmessung und Modellierung

Anforderungsprofil für die Entwicklung:

Entwicklung und Bereitstellung angepasster Träger-materialien für Katalysatoren ausgehend von hochreiner pyrogener Kieselsäure (WACKER HDK®).

Optimierung der Trägermaterialien hinsichtlichhydrothermaler Stabilität aufgrund des bei notwendigen Umsätzen hohen Wasserpartialdrucks (s. rechts).

Verfahrenssimulation:• Gesamtkonzept• Energie- und Massenbilanz• Kostenabschätzung und

Dimensionierung

Clariant stellt für die Methanisierung von Synthesegas etablierte, Ni-basierte Katalysatoren als industriellen Benchmark zur Verfügung. Die Katalysatorpräparation an der TUM wird durchgeeignete Trägermaterialien und Beratung unterstützt. Daraus resultierende, erfolgversprechende neue Systeme werden von Clariant aufskaliert zur weiteren Testung im Pilotreaktor von MAN.

E.ON identifiziert Randparameter zur Auslegung der Methanisierung wie: • Die erforderlichen Gasbeschaffenheiten und -reinheiten zur Produkteeinspeisung ins Erdgasnetz.• Identifikation, Bewertung und Spezifikation von CO2-Quellen: Sowohl CO2-Mengen als auch deren

Reinheiten werden in erheblichem Umfang die Auslegung und damit die Kosten der CO2-Methanisierung beeinflussen, berücksichtigt werden soll CO2 aus Kraftwerksabgasen und aus Biogasanlagen.

Des Weiteren wird E.ON eine techno-ökonomische Bewertung der Gesamtkettendurchführen. Je nach Konzept wird die Methanisierung und Nutzung des Methans zuunterschiedlichen Kosten und Erlösen führen. Im Rahmen des Projektes sollen daher entsprechende Anwendungsfälle identifiziert und bewertet werden.

MAN Diesel & Turbo betreibt amStandort Deggendorf eine Pilot-Anlage zur Methanisierung vonKohlendioxid und Wasserstoff .

Das System zeichnet sich durch gute Beherrschung der Hotspot Entwicklung aus. Entsprechend derZielanwendung, der Speicherung von intermittierend verfügbarer Überschußelektrizität, wurde die GHSVzur Simulation von Lastwechseln auf unterschiedlichen Zeitskalen variiiert sowie mehrere Start / StopZyklen mit unterschiedlichen Stillstandszeiten durchgeführt. Die unter diesen Bedingungen erhalteneProduktgaszusammensetzung entspricht den Einspeisebedingungen der DVGW für L- Gas-Netze.Das Diagramm zeigt die Ergebnisse unter Verwendung eines Benchmark-Katalysators von Clariant.

Variation der GHSV

Langzeittest 1500 hrs + mehrere Start / Stops

Blau: Methangehalt > 92%

• Erfolgreiche mikrokinetische Vermessung des Benchmark-Katalysatorsystems

• Modellierungsansatz mittels LHHW Kinetik wurde erfolgreich angewendet.

• Leistungsprofil des Benchmark Katalysators konnte erfolgreich reproduzierbar modelliert werden.

Kommende Arbeiten• Vermessung weiterer, im Projektrahmen hergestellter Katalysatoren mit

anschließender mikrokinetischer Modellierung.• Detaillierte Charakterisierung der Katalysatorsysteme im Hinblick auf

Struktur-Eigenschaftsbeziehungen

Abgeschlossene Arbeiten0%

20%

40%

60%

80%

100%

vorher nach 7 d vorher nach 7 d vorher nach 7 d

unmodifiziert unmodifiziert modifiziert

Clariant WackerWACKER HDK® (SiO2)kommerz. Al2O3

prozentuale Abnahme der spezifischen Oberfläche (BET)nach 7 Tagen bei 100% Wasserdampf, 200 °C (autobar)

87poster

Page 90: Chemical Processes and Use of CO2: 4th Status Conference

Temperatureffekt

Kennlinien für 25 bar bei Tsoll = 60 °C

Stack current in A

Sta

ck

vo

lta

ge

in

V

AP1 ElektrolyseEntwicklung eines PEM-Druckelektrolyseurs

System- und Betriebs-optimierung für eine dynamische Betriebsweise

Teststand Fluktuation Windkraft

Fluktuation Photovoltaik

Langzeitstabilität des Stacks

Speicherung elektrischer Energie aus regenerativen Quellen im Erdgasnetz- H2O-Elektrolyse und Synthese von Gaskomponenten -

DVGW-ForschungsstelleEngler-Bunte-Institut (KIT)Engler-Bunte-Ring 176131 Karlsruhe

http://www.dvgw-ebi.de/

H2O H2 + ½ O2

4 H2 + CO2 CH4 + 2 H2Og RH0 = -165 kJ/mol

7 H2 + 2 CO2 C2H6 + 4 H2Og RH0 = -265 kJ/mol

Konzept

el. Energie(fluktuierend)

Elektrolyse

dynamisch

Synthese: CH4 + KW

ChemischeEnergieträgerH2

H2O

O2

CO2 (CO)

Erneuerbare Energien

H2-Speicher Erdgasnetz• In Deutschland sehr gut

ausgebaut

• Große Speicherfähigkeit

in Poren- und Kavernen-

speichern

Nutzung O2

Vergasung

Entschwefelung Biogas

Arbeitspakete AP2 2-Phasen-Methanisierung Erarbeitung eines Konzeptes zur

Methanisierung in der Gasphase (Hordenreaktor)

CO2-Umsatz bis 70 % in einer Stufe möglich

mehrstufige Power-to-Gas Anlage ausgelegt

Speicherbedarf / WirkungsgradPrognostizierter Speicherbedarf

schwankt von 0,1 bis 15 TWh für 20201)

In Poren- und Kavernenspeichern

können ca. 230 TWh gespeichert

werden (vgl. Pumpspeicherkraftwerke:

0,04 TWh)2)

Wirkungsgrad der Prozesskette Strom

Methan derzeit 55 - 65 %3)

Durch Kopplung mit anderen

Prozessen und Abwärmenutzung

können Wirkungsgrade erhöht werden

1) Fraunhofer IWES, Windgas Gutachten für Greenpeace Energy, 2011

2) Sauer, Buck, 2009

3) DVGW-Forschungsvorhaben „Energiespeicherkonzepte“, 2011

CO/CO2-QuellenQuellen: www.bbfm.de,

http://www.repotec.at,

Badische Zeitung

Klein: Biogasanlage,

BHKW

Mittel: Vergasung,

BHKW, Heizwerke

Groß: Industrie,

Kraftwerke

3-Phasen-MethanisierungMethanisierung im 3-Phasen-System

Gute Temperaturkontrolle, optimale Wärmeabfuhr,

vereinfachter Aufbau

Bereits bei kleiner Katalysatormassenbeladung cS

sind hohe Umsätze von CO2 möglich

R1 = Reaktor 1

R2 = Reaktor 2

S2 = Molekularsieb

S1 = Wasserabscheider 1

S3 = Wasserabscheider 2

Frischgas:a. 10 000 m³/h (NTP) CO2

b. 40 000 m³/h (NTP) H2

Prozessparameter:a. P = 20 bar

b. Tein (R1, R2) = 220 °C

c. Taus (R1) = 550 °C

d. Taus (R2) = 240 °CProduktspezifikation:

a. CH4 98 %

b. CO2 < 2 %c. H2 < 1 %

d. H2O < 100 ppm

Betrieb der Anlage: autark

Kühlwasser: 7,5 MW (T < 80 °C)Nutzwärme:

a. 12 MW (T > 220 °C)

b. 9,2 MW (80 °bis 180 °C)

AP3 Ionische Fluide (IL)Kein/kaum messbarer Dampfdruck

Fluorierte Anionen, wie z. B. BTA,

ermöglichen die Synthese von relativ

temperaturstabilen ILs

85,711,1CH4

11,5Misch-

Erdgas H

-28,1C3H8

9,319,5C2H6

53,5H2

Beispiel-

Mischung (%)

HS

(kWh/m³)

AP4 BrennwertanpassungErzeugung von C2-C4 aus regenerativen Quellen

RandbedingungenFestbettreaktor

T= 250-330Cp= 1 -2 MPa

H2/CO2, ein= 3-8mod= 100-6000 kg s/m3

A 2023

›Onshore 45,7 GW

›Offshore 10,3 GW

›PV 55,3 GW

B 2023

›Onshore 49,3 GW

›Offshore 14,1 GW

›PV 61,3 GW

B 2033

›Onshore 66,3 GW

›Offshore 25,3 GW

›PV 65,3 GW

C 2023

›Onshore 86,0 GW

›Offshore 17,8 GW

›PV 55,6 GW

AP6 WirtschaftlichkeitAbschätzung des Einflusses fluktuierender Energiebereitstellung

auf das „Energiesystem Strom“

Ermittlung der Residuallast auf Basis der Erneuerbaren-

Ausbauszenarien des Netzentwicklungsplans

2013 mit Hilfe historischer

Stromnachfrage- und Wetterdaten

Negative Residuallast als Obergrenze für Betriebsdauer

marktgeführt, zentral erzeugergeführt, dezentral

AP5 SystemanalyseSimulation einer „Power to Gas“-Anlage im

markt- und erzeugergeführten Betrieb

Randbedingungen

800 m³ H2-Speicher als Puffer

Elektrolyseur (10 MW) folgt eingespeistem Strom 1:1

Methanisierung (6 MW) folgt langsamer:

10 % Lastwechsel pro 10 min

40..100 % Last

Leistungsgeführt: 5 - 100 %

3)

Re

sid

ua

lla

st

in G

W

88 poster

Page 91: Chemical Processes and Use of CO2: 4th Status Conference

Neue Katalysatoren und Technologienfür die solarchemische Wasserstofferzeugung

- HyCats -

[email protected]

4. BMBF-Statuskonferenz 08.04.2014

Thomas Bredow Sven AlbrechtDetlef BahnemannIrina Ivanova

Uwe RodemerckMartin Fait

Werner Zinsser Christian JungMichael Wullenkord

Dieter Ostermann

Projektziele:

Entwicklung von Photokatalysatoren und Reaktortechnologien für die solare Wasserspaltung

Entwicklung einer Toolbox bestehend aus Katalysatoren, Entwicklungswerkzeugen und

Reaktoren

Benchmark: Effizienzsteigerung um den Faktor 2 gegenüber dem Stand der TechnikToolbox:Quantenchemische Simulationsmethoden zur Berechnung von Bandlücken, Dotiereffekten,

Oberflächenenergien, PhasenstabilitätenMechanismusauflärung mittels spektroskopischer Methoden, Untersuchungen mit deuteriertem

Wasser, Laser-Blitz-Photolyse Hochdurchsatzsynthesen und -aktivitätsmessungen mit einem in einen Syntheseroboter

integrierten SchnellscreeningsystemTest von Verfahren zur Produktion von Photokatalysatoren Aktivitätstests von

Photokatalysatoren in unterschiedlichen Reaktortypen an Photokatalysator-Suspensionen und –Elektroden

solarer Konzentratorteststand SoCRatus (Solar Concentrator with a Rectangular Flat Focus)

Durchgeführte Arbeiten:

Entwicklung von Verfahren zur Berechnung von Photokatalysator-Eigenschaften: Phasenstabilitäten, Oberflächenenergien, Bandlücken, Bandlagen, Einfluss von Dotierelementen auf Photokatalysatoren

IR-Spektroskopie, Messung von Bandlücken und Flachbandpotentialen, direkte/indirekte Übergänge, Mechanismusuntersuchungen mit deuterierten Reagenzien, Messung der Lebensdauer angeregter Zustände mit Laser-Blitz-Photolyse

Entwicklung und Durchführung von robotergestützten, systematischen Photokatalysatorsynthesen, Hochdurchsatzmessungen zur H2-Entwicklung;

Synthese von insgesamt 930 Proben, Durchführung von ca. 1300 photokatalytischenMessungen

Entwicklung und Test von Verfahren zur Photokatalysator-Produktion Optimierung von Photokatalysatoren durch Variation der Syntheserouten und

Cokatalysatoren Verfahren zur Herstellung von Photokatalysator-Elektroden, Effizienzbestimmungen,

Systemanalysen Aufbau des Konzentratorteststands „SoCRatus“, solare Versuche an Suspensionen und

Elektroden, Berechnung von EinsparungspotentialenTEM an NaTaO3

Experimental shape analysis for pure NaTaO3nanoparticles: a) TEM bright-field micrograph, b) electron diffraction pattern of circa 100 nm circular area in a indexed according to [010] zone axis, c) STEM annular dark-field micrograph with normal distances of polyhedron facets to center of crystal, d) reconstructed polyhedron shape, e) relative abundance of crystal facets (same color index applies for as in c). e) Secondary electron close-up

Zusammenfassung: Toolbox wurde entwickelt und wird für weitere Entwicklung genutzt werden Quanteneffizienzen verbessert, aber Ziel nicht erreicht; Stand der Wissenschaft aus der Literatur z.T. noch nicht nachvollziehbar Solarer Konzentratorteststand am DLR liefert Wasserstoff, weitere Tests in Zusammenarbeit mit ODB und H.C. Starck werden

derzeit durchgeführt

DOS-Berechnungen

Bare 0,57 % La 0,83 % La 1,11 % La

5

10

15

20

25

30

t 1/2

(µs)

30

40

50

60

70

80

90

100

110

H2

(µm

ol/h

)

Korrelation zwischen Relaxationszeiten aus Laser-Blitz-Photolyse und photokatalytischer H2-Aktivität

Aufsteigende Wasserstoffbläschen aus NaTaO3-Suspension

89poster

Page 92: Chemical Processes and Use of CO2: 4th Status Conference

CO2RRECT – Verwertung von CO2 unter Verwendung überwiegend regenerativer Energie

Ziele von CO2RRECT

Motivation Entwicklung neuer, nachhaltiger Prozesse durch die Vernetzung von chemischer Produktion mit Energiemanagement und Energiespeicherung Evaluierung von Synergien zwischen der Energieerzeugung und chemischen Industrie Reduzierung des CO2-footprint Sicherung der CO Versorgung

CO2 als chemischer

Rohstoff

Entwicklung flexibler Prozesskonzepte

• RWGS• CO2-Reforming• Ameisensäure-

synthese

Reaktorentwicklung

Katalysatorentwicklung

Nutzung regenerativer

Energien

Dynamische H2O-Elektrolyse für

• H2 als chem. Energie-speicher

• Lastregulierung

Nutzung von Stromspitzen für

chemische Prozesse

Szenarien zur Verfügbarkeit von

regenerativen Energien

Produktions-konzepte der

Zukunft

Bewertung des Gesamtprozesses

(ökonomisch, ökologisch)

H2-Speicherkonzepte

Integration in bestehende

Wertschöpfungskette

Vom Heizkonzept bis zum Demonstrator unter Nutzung von Überschussstrom für hohe Temperaturen über 800°C ICVT und Uni Stuttgart: Funktionsprinzip des Reaktors dargestellt am Einzelrohr.

Notwendige Wärme durch diskrete O2-Einspeisung gewährleistet. Erwärmung direkt im Reaktionsraum und nicht über Wand.

KIT: Entwicklung einer Mikrowellenbeheizung, die eine direkte Beheizung des Katalysators ermöglicht.

BTS: Elektrische direkte Beheizung des Reaktionsraums über Heizwendeln. INVITE: Auslegung und Betrieb einer Demonstrationsanlage zum Nachweis der

Machbarkeit der direkten elektrischen Beheizung gemäss des Bayer-Konzepts.Inbetriebnahme im Juni 2014: Betrieb von RWGS- und CO2-Reforming-Kampagnen

Die Proton Exchange Membrane (PEM)-Elektrolyse von Siemens ist in der Lage, auchstarke Lastschwankungen zu folgen, was imLabormaßstab bereits in mehreren TausendBetriebsstunden gezeigt wurde. Am RWE-Standort Niederaußem bei Köln wurde einElektrolysecontainer mit 100kW (300kW peak)installiert und im März 2013 in Betriebgenommen. Dauer- und Überlastbetrieb,Dynamik des Lastwechsels und derWirkungsgrad der Anlage wurden untersuchtund bewertet. Mehr als 4 t H2 wurden erzeugt.

Für die Umsetzung von CO2 in der Trockenreformierung und der RWGS bei Temperaturen über 800 °C wurden unterschiedliche Wege der Katalysatoroptimierung verfolgt An der TU Dresden wurde das Problem der lokalen Unterkühlung, dem

Auftreten sogenannter Coldspots, durch Entwicklung eines Siliziumcarbid-basierten Nickel-Katalysators begegnet.

Das Fritz-Haber-Institut Berlin hat zusammen mit dem Lehrstuhl für Technische Chemie an der Ruhr-Universität Bochum bzgl. Temperaturstabilität auf Magnesium-Aluminium-Mischoxide gesetzt. Auch hier wurde Nickel als aktive Katalysatorkomponente eingesetzt.

BMS und BTS hat einen Katalysator auf Perowskit-Basis entwickelt sowie eine Katalysatorbeschichtungstechnologie für die Heizwendeln.

In situ XRD-Untersuchungen zur Stabilität erfolgten am LIKAT Rostock

0 20 40 60 80 1000

10

20

30

40

50

200

400

600

800

CO2 CH4 CO H2

Aust

rete

nder

Mol

enbr

uch

/ %Zeit / h

TOfen

Tem

pera

tur /

°C

50 mol% Ni 5 mol% Ni

Stabiler Ni/MgAlOx-Katalysator

Katalysatorentwicklung

POX beheizter keramischer Gegen-stromreaktor

Mikrowellen-beheizung

Elektrisch beheizter

Monolithreaktor

Heizwendel

Monolith

6 Heating Elements

Ceramic Insulation

Electrical Connections

Gas Sampling

Nutzung regenerativer Energie

Die Umsetzung der berücksichtigten Konzepte ist sehr kapitalintensiv. Eine Amortisierung kann nur mittel-bis langfristig unter bestimmten

Voraussetzungen erreicht werden Wichtiger Beitrag zur wirtschaftlichen Nachhaltigkeit der Konzepte CO2RRECT

sind CCU muss in den Emissionshandel berücksichtigt werden. Die Verwendung von Überschussenergie muss von

Regulierungskosten entlastet werden Kleine Anwendungen sind bereits mittelfristig an Standorten mit H2 Überangebot

interessant . Die betrachteten Konzepte sind sehr flexibel, so dass eine maßgeschneiderte

HyCO Versorgung möglich ist.

Produktionskonzepte der Zukunft

Reaktorentwicklung

90 poster

Page 93: Chemical Processes and Use of CO2: 4th Status Conference

Environmental assessment of energy storage systems

1 MWh

Surpluselectricity

Electrolysis4

Methane production5

Syngas production7

Pumped hydro storage1 (PHS)

Heat pump & Hot water storage3

Compressed air energy storage1 (CAES)

Vanadium redox flow battery1 (VRB)

Methanol production6

Power

Power

Methanol

Power

Mobility

PowerSyngas

Heat

Hydrogen

Direct storage product Products from conversion of fuels

H2

H2

H2

H2

Storage systems

Methane

Battery electric vehicle2 (BEV) Mobility

Chemical

CO2 supply8

Chemical

Chemical Power

Power Mobility

Heat supply8 Grid power supply8 Combustion of fuel

Conventional process

Gas turbine (η = 35%)

Steam-Methane-Reforming

Fossil natural gas

Gasoline and diesel engines

Natural gas boiler (η = 100%)

Steam-Methane-Reforming

Natural gas based production

Environmental impactof product from

conventional process8

Environmental impactof product fromstorage system

Gas turbine (η = 35%)

Gas turbine (η = 35%)

Environmental impact reduction

for storage systems

Conclusions

Comparative assessment of storage systems based on life cycle assessment (LCA)

Further InformationAndré Sternberg

RWTH Aachen UniversityInstitute of Technical ThermodynamicsSchinkelstr. 8, 52062 Aachen, Germany

E-Mail: [email protected]: + 49 241 80 95 391

AcknowledgementsThis work has been carried out within the project

“CO2RRECT”. The project (ref. no. 33RC1006B)is funded by the German Federal Ministry ofEducation and Research (BMBF) within thefunding priority “Technologies for Sustainabilityand Climate Protection – Chemicals Processesand CO2 Utilization”.

References1 P. Denholm and G. L. Kulcinski, Energy Conversion and Management, 2004, 45, 2153 – 2172.2 M. Metz and C. Doetsch, Energy, 2012, 48, 369 – 374.3 FIZ Karlsruhe GmBH, Electrical driven heat pumps, Technical report, 2013.4 F. Schüth, Chemie Ingenieur Technik, 2011, 83, 1984–1993.5 B. Müller, K. Müller, D. Teichmann and W. Arlt, Chemie Ingenieur Technik, 2011, 83, 2002–2013.6 L. K. Rihko-Struckmann et. al., Industrial & Engineering Chemistry Research, 2010, 49, 11073–11078.7 Project report “CO2RRECT” (ref. no. 33RC1006B)8 PE INTERNATIONAL AG, GaBi 6, Software-System and Database for Life Cycle Engineering., 2013.

Motivation

André Sternberg, André BardowChair of Technical Thermodynamics, RWTH Aachen University, JARA|ENERGY

Fossil depletion impact reduction

How to compare storage systems with non-equal products?

Environmental assessment:

• allows sound and consistent comparisonof storage systems

• accounts for the actual use of the product

• indicates most promising storage system:Power-to-Heat

vCard

Global warming impact reduction

Among Power-to-Fuel:

• Highest environmental impact reductions for direct utilization of hydrogen

For CO2-using storage systems:

• Highest environmental impact reductions for utilization of product as chemical feedstock

Order of environmental impact reductions:

1. Power-to-Heat

2. Power-to-Mobility

3. Power-to-Power

4. Power-to-Fuel

By environmental impact reductions

91poster

Page 94: Chemical Processes and Use of CO2: 4th Status Conference

F R A U N H O F E R - I N S T I T U T F ü R C H E m I S C H E T E C H N O l O g I E I C T

Versuchsaufbau und experimentelle Vorgehensweise Versuchsbedingungen 100 % H2O-Dampf und reiner O2, p = 30 bar, T = 850 °C

Untersuchte Proben RC – µLSM: Roll Coating – La065Sr0,3MnO3

RC – MCF: Roll Coating – MnCo1,9Fe0,1O4

oxidation Von interkonnektor-beschichtungen in reinem sauerstoff und in wasserdampf bei 30 bar

einleitung und motiVationDas BMBF-geförderte Projekt »Sunfire« befasst sich mit Forschung zur Entwicklung einer

Technologie, um Kohlendioxid (CO2) und Wasser (H2O) mittels erneuerbarer Energie zu

flüssigen Kraftstoffen umzuwandeln. Um eine hohe Effizienz bei der Umwandlung zu

gewährleisten, wird zur Aufspaltung des Wasserdampfs in H2 und O2 die Hochtemperatur-

Dampfelektrolyse (SOEC) bei Drücken bis zu 30 bar eingesetzt. Dabei werden die

Materialien mit Betriebsparametern von 850°C und max. 30 bar extremen Bedingungen

ausgesetzt, im äußersten Fall Atmosphären aus reinem Sauerstoff (O2) oder aus reinem

Wasserdampf (H2O).

Zusammenfassung Die RC-MCF Schicht ist in reinem Sauerstoff in ihrer Zusammensetzung beständig.

Chrom ist in gleichmäßig verteilter Konzentration in der Schicht zu finden.

In Wasserdampf tritt eine Reduktion der Schicht zu metallischem Kobalt auf und

das Gefüge wird grobkörnig. Dagegen ist in Wasserdampf kein Chrom in der

Schicht zu sehen.

In beiden Fällen wächst auf dem Interkonnektor-Material unterhalb der

Beschichtung eine Cr2O3-Schicht auf, in Sauerstoff unterwachsen von MnCr2O4.

RC-µLSM: in Sauerstoff bildet sich auf der Oberfläche eine nicht

zusammenhängende Anhäufung von SrCrO4. Das bedeutet, RC-µLSM kann die

Abdampfung von Cr in Sauerstoff weniger unterbinden als RC-MCF.

In Wasserdampf ist Cr in der gesamten Schicht zu finden. La konzentriert sich

an der Oberfläche und direkt über der Chromoxidschicht und bildet dort eine

zusammenhängende Schicht. An Stellen mit hoher Mn-Konzentration ist kein

La zu erkennen.

In beiden Fällen wächst auf dem Interkonnektor-Material unterhalb der

Beschichtung eine Cr2O3-Schicht, auf Crofer 22 APU überwachsen mit

MnCr2O4 in beiden Atmosphären.

ZielsetZung Untersuchung des Korrosionsverhaltens ausgewählter Interkonnektor-

Beschichtungen in O2 und in H2O bei 850 °C und 30 bar

Beitrag zum Verständnis der Degradationsmechanismen und des Einflusses von Druck

Beurteilung der Korrosionsbeständigkeit bei den gegebenen systemspezifischen

Betriebsbedingungen

ergebnisse – Querschliffe der schichten nach auslagerung in reinem o 2 und reinem h 2o bei 850 °c und 30 bar

elementanalyse – mapping

m. Juez lorenzo, V. Kolarik, V. KuchenreutherFraunhofer-Institut für Chemische Technologie ICT,E-Mail: [email protected]

C. geipel, D. Schimankesunfire GmbH, Gasanstaltstr. 2, 01237 Dresden

RC-mCF + Crofer 22 APUO2 – 1000 h

RC-mCF + Crofer 22 APUH2O – 1000 h

RC-mCF + Crofer 22 APU in Sauerstoff 1000 h RC-mCF + Crofer 22 APU in Wasserdampf 300 h

RC-µlSm + Crofer 22 APU in Sauerstoff 1000 h RC-µlSm + Crofer 22 APU in Wasserdampf 1000 h

x2000

x1000

AtmosphäreWasserdampf

Sauerstoff

MaterialCrofer 22 APUITM

GrundmaterialITM

Crofer 22 APU

ITM

Crofer 22 APU

FeBal.Bal.

Cr22,026,0

Mn0,42–

Ti0,08–

Al0,12<0,03

Si0,11<0,03

AndereLa (0,08)(Mo)x, (Ti)y, (Y)xy

BeschichtungRC – µLSMRC – MCFRC – µLSMRC – MCFRC – µLSMRC – MCFRC – µLSMRC – MCF

300 hxxxx

1.000 hx

x

xxxx

Untersuchte Proben und durchgeführte Versuche.

Zusammensetzung der Interkonnektor-materialien.Versuchsaufbau: Testautoklav im geschlossenen Ofen mit Druck- und Temperaturüberwachung und Wasser-Nachdosierung

Miniatur-Testautoklaven aus Nicrofer 6025 HT

zugeschweißt

Schweißnaht

Proben

x2000

Oberfläche Oberfläche

RC-µlSm + Crofer 22 APUO2 – 1000 h

RC-µlSm + Crofer 22 APUH2O – 300 h

RC-µlSm + Crofer 22 APUH2O – 1000 h

RC-mCF + ITmO2 – 1000 h

RC-mCF + ITmH2O – 1000 h

RC-µlSm + ITmO2 – 1000 h

RC-µlSm + ITmH2O – 300 h

RC-µlSm + ITmH2O – 1000 h

cr

mn

o

fe

o cr

mn co fe

o cr

mn la sr

o cr

mn la sr

Atmosphäre

Sauerstoff 1000 h

Wasserdampf 300 h

Schicht

RC-MCF

RC-µLSM

RC-MCF

RC-µLSM

Formel

CoCr2O4/CoO∙Cr2O3

SrCrO4, La0,65Sr0,35MnO3

Co, (FeO)0,099(MnO)0,901

Sr0,1MnLa0,9O3

Phasenidentifizierung mittels Röntgenbeugung an der Oberfläche der Schicht.

92 poster

Page 95: Chemical Processes and Use of CO2: 4th Status Conference

Material flow network(Umberto)

Flow sheet(CHEMCAD)

Interaction viatransition script

T1

93poster

Page 96: Chemical Processes and Use of CO2: 4th Status Conference

Innovative Apparate- und Anlagenkonzepte zur Steigerung der Effizienz von Produktionsprozessen – InnovA2Stephan SchollTechnische Universität Braunschweig | Institut für Chemische und Thermische Verfahrenstechnikwww.innova2.de | [email protected] | Langer Kamp 7, D-38106 Braunschweig | Telefon +49 (0) 531 391 - 2780

Motivation Innovative Apparate- und Anlagenkonzepte ermöglichen die

Erschließung von Energieeffizienzpotenzialen Fehlende Referenzen als Innovationshemmnis:

„Ohne Referenz keine Anwendung, ohne Anwendung keine Referenz.“

Ökologische Bewertung von Maßnahmen zur Steigerung der Energieeffizienz

⇒ Innovationspipeline für neue Wärmeübertragerbauformen

Laboranlagen an Universitäten

A1 Verdampfung an mikro-strukturierten Rohren

A2 Thermoblech-Natur-umlaufverdampferAusgewählte Ergebnisse A4 Thermoblech-

Kondensatoren

Stofflicher Transfer Reale Stoffsysteme

Geometrischer Transfer Technikumsapparate

Laboranlagen Laborapparate Modellsysteme

Großanlagen Großapparate Reale Stoffsysteme

447

536

626

715

0,05

0,06

0,07

0,08

ein

[-]

Eint

ritts

gesc

hwin

digk

eit[

m/s

]

∆T = 7 K∆T = 8 K∆T = 10 K∆T = 12.5 K

Wasser-Glycerin Gemisch xH2O = 0,71 molH2O/molgespBA = 200 mbar

Projektpartner

an Universitäten

HSU Hamburg

Uni Paderborn

TU München

A5 Multistream-Kondensatoren

Versuchsdurch-führung und Auswertung

Datenverdichtung Charakteristische

geometrische Parameter: dhydr, Aeff

Stoffsysteme- Reinstoffe- Gemische

Verbindende Elemente

Stand heute

Potentialabschätzung

Identifizierung und Quantifizierung von Verbesserungs-potentialen

Berücksichtigung vonökonom. und ökolog. Aspekten

Laboranlagen weiterhin produktiv Technikumsversuche erfolgreich abgeschlossen Ansätze zur Potentialabschätzung etabliert Einbindung der Ergebnisse in Engineering

Workflow geklärt Kostenneutrale Verlängerung um 6 bzw. 9 Mon.

[wieland.de][deg-engineering.de]

Ergebnisse Technikumsversuche,

Linde AG

auf Beschluss des Deutschen Bundestages

Stofflicher und geometrischer Transfer

Technikumsanlagen bei Industrie-Partnern

Linde AG

BTS GmbH

Wärmestromdichte q in W/m2

16000 18000 20000 22000 24000 26000

Stei

geru

ngsf

akto

r εNu

ßelt

1

2

3

4

5

iso-PropanolWerkstoff: VA-Stahlp = 1,013 bar

Reihe 1Reihe 2Reihe 3

0

2841

5682

8523

11364

14205

0

0,05

0,1

0,15

0,2

0,25

0 5 10 15 20 25

ReEi

n[-

]

Plat

tene

intr

ittsg

esch

win

digk

eit [

m/s

]

Treibende Temperaturdifferenz [K]

hs* = 117 % hs* = 100 %hs* = 77 % hs* = 50 %hs* = 33 %

ChlorbenzolH/dH = 85,7AWÜ/ASt = 343

Strö

mun

gsric

htun

g

TU Braunschweig

Uni Kassel

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Reibu

ngsd

ruck

verlu

st ∆p

R,Ko

r

Reibungsdruckverlust∆pR,exp [kPa]

Kombination hom. Modell und het. Wang & Sunden Het. Modell nach Tribbe & Müller-Steinhagen Het. Modell nach Wang & Sunden Homogenes Modell

0

89

179

268

358

447

0

0,01

0,02

0,03

0,04

0,05

20 40 60 80 100 120 140

Re e

in

Eint

ritts

gesc

hwin

digk

eit

Scheinbarer Flüssigkeitsstand [%]

∆T = 12.5 K∆T = 15 K∆T = 17.5 K∆T = 20 K

A3 Kondensation an mikro-strukturierten Rohren

94 poster

Page 97: Chemical Processes and Use of CO2: 4th Status Conference

Development of a novel, economical and considerate technology for HYdroformylationwith Supported Ionic Liquid Phase (SILP) catalystProf. Dr. P. Claus (TU Darmstadt), Dr. K. Dyballa (Evonik Industries AG), Prof. Dr. R. Franke (Evonik Industries AG), M. Friedrich (TU Darmstadt), Dr. H. Hahn (Evonik Industries AG), Dr. M.Haumann (FAU Erlangen), S. Kokolakis (TU Darmstadt), M. Lucas (TU Darmstadt), A. Schönweiz (FAU Erlangen) , S. Walter (FAU Erlangen), Prof. Dr. P. Wasserscheid (FAU Erlangen)

Concept SupportedIonic Liquid Phase(SILP) catalyst

Results II• High boiling side product fills pores of

the support material• Model for pore filling[5,6] in accordance

with start-up behavior of conversion tests

Ligands• Design of new ligands for SILP technology• Support by computational chemistry (e.g.

COSMO-RS)[1]

• Long term stability ligands supported on Silica in hydroformylation of technical C4 feed

Ionic liquids• Solvent for immobilisation of homo-

genous ligands on a heterogeneous support

• Special solvation characteristics of ionic liquids shall result in a more selective conversion of complex feeds

[1] Franke et al., Fluid Phase Equilibria 2013, 340, 11-14.[2] CRT Erlangen[3] Winterton et al., Cryst. Eng. Comm. 2006, 8, 742-745.[4] Recent review: R. Franke, D. Selent, A. Börner, Chem. Rev. 2012, 121, 5675-5732[5] DE 102013207104 [6] A. Schönweiz et al., ChemCatChem 2013, 5, 2955-2963.

Results I• Longterm stability of SILP catalyst

system w/o ionic liquid[5,6]

• Slightly lower n/iso-selectivity compared to liquid phase

HY-SILP:• Development of a novel, economical and con-siderate technology for hydroformylation

• Prevent formation of high boilers due to the specific solubility of the reactants / products in ionic liquid

• Energy and CO2 saving compared with state of the art technology

Graphic is adopted by [3]

Hydroformylation• Most important homogenous catalyzed

reaction apart from oxidations• Consumption of 10 mio. tons oxo

products in 2008 worldwide[4]

• SILP – building a bridge between hetero-geneous & homogenous catalysis

• Defined catalyst structures• High activities and selectivities• Modification by ligand design• Easy catalyst retentionGraphic is adopted by [2]

SILP catalyst powder

Porestructure

SILP particle

IL filmHomogenous solved

catalyst complex

Technical equipment• Test equipment for long term stability

tests with online analytics• Equipment for catalyst screening of 8

catalysts in the same run• Numbering up of preparation equipment

for oxidation sensitive SILP catalystsConversion over time in ethylene hydroformylationusing Rh-SX and Rh-BzPcomplexes on macroporousSiO2 support; parameter: mcat=2.3g, mRh=0.2wt-%, L/Rh=5, T=80°C, p=20bar, pethylene=1.0bar, pH2=pCO=9.5bar, residence time=30s.

Conversion (related to all butenes) over time in continuous gas phase hydroformylation ofindustrial C4 feedstock using Rh-BzP/SiO2 catalyst material. Parameter: mcat=12.0g, mRh=0.2wt-%, L/Rh=10, T=100-120°C, p=10bar, pbutenes=1.6bar (1.3bar), pbutanes=0.6bar (0.5bar),pH2=pCO=3.9bar (4.1bar) before (and after) variation of syngas/butene ratio from 6 to 8 after 170 h on stream, residence time=48s (43s).

95poster

Page 98: Chemical Processes and Use of CO2: 4th Status Conference

2. Versuchsanlagen

Erhöhung der Energieeffizienz und Reduzierung von Treibhausgas-Emissionen durch Multiskalenmodellierung von MehrphasenreaktorenDr. M. Becker, P. Rollbusch, M. Ludwig, Dr. G. Skillas, Prof. Dr. R. Franke (Evonik Industries AG), Prof. Dr. D. Bothe, Dr. H. Marschall, D. Deising (CSI Darmstadt), Dr. M. Dues, F. Michaux (ILA GmbH), Prof. Dr. U. Hampel, Dr. A. Bieberle, Dr. M. Schubert (HZDR), Prof. Dr. M. Grünewald, N. Abel, L. Schlusemann (Ruhr-Universität Bochum), Dr. P. Jäger, M. Finck (EuroTechnica GmbH), Dr. G. Liebsch (PreSens GmbH), Dr. S. Lüttjohann (Bruker Optik GmbH), Prof. Dr. A. Liese, Dr. D. Selin (ITB, TU Hamburg-Harburg), Prof. Dr. M. Schlüter, M. Bothe, Dr. M. Hoffmann (IMS, TU Hamburg-Harburg), Prof. Dr. M. Wörner, S. Erogan (KIT)

„Multi-Phase“Arbeitspakete1. Entwicklung geeigneter Messtechnik für den Einsatz unter

industriellen Bedingungen2. Aufbau von Versuchsanlagen zur Bestimmung kritischer

Messdaten3. Validierung und Ableitung von Modellen zur Auslegung anhand

der Messdaten

3. Modellbildung 1. Entwicklung Messtechnik

Vom HZDR entwickelter Gittersensor

Schema des vom HZDR entwickelten Gamma-CT

EPIV Messgerät zur Erfassung der

Blasengrößenverteilung installiert am DN330

Pilotreaktor im Technikum der Evonik

Industries AG

Blasensäule aus Plexiglas®,3,5m hoch, H/D=12.5

VE-Wassser/N2

Begaser: Lochplatte

Vom HZDR entwickelter Gittersensorzur Messung radialer Gasgehaltsprofile

Ausblick

• Auswertung der Messdaten der verschiedenen Versuchsreaktoren

• Ableitung von verbesserten Modellgleichungen für die Nutzung in 1D/2D- sowie CFD-Modellen

• Übertragung auf technischen Prozess und Ableitung von Optimierungs-potenzialen

• LCA und Bewertung des CO2-Einsparpotenzials

DN160 Blasensäule im Technikumder Evonik Industires AG

DN300 Blasensäule im Technikumder Evonik Industires AG

Messungen zum Gasgehalt mit Gittersensor an Literaturdaten validiert

Blasengrößenverteilungen mit Laserendoskop in Wasser und Cumol vermessen

g-Tomograph erfolgreich an Druckreaktor zur Messung von Gasgehalten eingesetzt

Verteilung des Gasgehalts über Querschnitt und Höhe zeigt Einfluss der Begasung

Blasensäulen auf unterschiedlichen Skalen; Druck beeinflusst Gasgehalt maßgeblich

radial distance

radial distance

mea

n ax

ial l

iqui

d ve

loci

rty

Simulation von Einzelblasen und Blasenschwärmen mit Hilfe von Direkter Numerischer Simulation (DNS)

Euler-Euler-Simulation einer Technikumsblasensäule DN160,

Geschwindigkeitsprofil der Flüssigphase

DNS & CFD-Simulationen

Einfluss von Gasgehalt auf Umsatz und Selektivität (Cumol-Oxidation)

Kompartment-Modellierung

Montag, 30. Juni

96 poster

Page 99: Chemical Processes and Use of CO2: 4th Status Conference

Entwicklung eines miniaturisierten, ölfreien CO2-Kompressors mit integriertem, CO2-gekühltem Elektromotorantrieb für CO2-Großwärmepumpen

Funktionsprinzip einer Wärmepumpe

Projektinformationen

Budget: ca. 4,8 Mio. €

BMBF Förderung: ca. 2,8 Mio. €

Projektdauer: 3,5 Jahre

Projektstart: 01. Mai 2011

Funktionsweise Wärmepumpe

Eine Wärmepumpe ist eine Maschine, die unter Aufwendung

von technischer Arbeit (Wzu) thermische Energie von einer Quel-

le aufnimmt (Qzu) und diese auf einem höheren Temperaturni-

veau einem Verbraucher zur Verfügung stellt (Qab).

Projektplan

Herausforderungen

Die miniaturisierte Bauweise der Maschine bringt neue aero-

dynamische, fertigungstechnische und konzeptionelle

Schwierigkeiten mit sich.

Hohe Drehzahl-Drehmoment-Niveaus verlangen die

Auslegung eines neuartigen Elektroantriebs.

Bedingt durch die ölfreie Funktionsweise müssen bestehende

Lagerkonzepte weiterentwickelt werden.

Das hohe Druckniveau (> 90 bar) und die Miniaturisierung

vergrößern den Einfluss von Leckageströmen.

Kleine Volumenströme, große Druckverhältnisse und die

Verwendung von CO2 als Betriebsmedium in einem

transkritischen Prozess erschweren die aerodynamische

Konzipierung.

Projektpartner

Forschung: Startup-Projekte

Traugott Ulrich

Gerd Janson

Institut für angewandte Thermo-

und Fluiddynamik

Werner Grundmann

Gerd Thiel

ITSM Institut für Thermische

Strömungsmaschinen und

Maschinenlaboratorium

Jürgen F. Mayer

Fabian Dietmann

SAM Lehrstuhl für Strömungsmechanik

und Strömungsmaschinen

Martin Böhle

Sebastian Schulz

Zur Entwicklung einer effizienten Wärmepumpe wird dabei ein

wirkungsgradoptimierter Verdichter benötigt.

Drossel Verdichter

Wärmetauscher_1

Wärmetauscher_2

1

23

4

Wzu

Qzu

Qab

SAM

Logo des Förderschwerpunkts

Projektlogo

BMBF geförderte Projekte

Bei ausschließlicher Förderung durch das BMBF ist auf allen visuellen Formen von Publizitäts- und Informationsmaßnahmen das untenstehende BMBF-Logo zu verwenden. Zusätzlich sollte das Logo des Projektträgers und Förderschwerpunkts mit angegeben sein. Wo vorhanden, kann außerdem das eigene Projektlogo verwendet werden:

Miniaturisiertes Laufradkonzept im Größenvergleich

Unsere Technik. Ihr Erfolg.Pumpen n Armaturen n Service

97poster

Page 100: Chemical Processes and Use of CO2: 4th Status Conference

AusblickZusammenfassung

0

50

100

150

Emergieverbrau

ch[kW]

0

50

100

150

200

250

0 10 20 30 40

Selektivitä

tn‐C 5H 1

2/N2[‐]

Zeit [d]

MMMPOMS

pF = 30 bar  = 20 °CyF,n‐C5H12 = 0,015pP = 1 bar 

Trennschicht als Polymermatrix mit integrierten anorganischen Partikeln

Gefördert durch:

• Entwicklung eines neuartigen Membranmaterials zur effizienteren Abtrennung höherer Kohlenwasserstoffe aus Permanentgasen

• Einsparung von Energie & Kosten durch Einsatz selektiverer Mixed-Matrix-Membranen (MMM)

• Mögliche Anwendungsbereiche: - Erdgaskonditionierung- Lösungsmittelrückgewinnung- Prozessgasaufbereitung (z.B. Fischer-Tropsch-Synthese)

• Betrachtetes Beispielsystem: Trennung von n-Butan und Methan

Chemische Prozesse und stoffliche Nutzung von CO2

Mixed-Matrix-Membranen für die Gasseparation

Automatisiertes Filmziehgerät

Filmapplikator

Polymer/Aktivkohlesuspension

Stützschicht

Beschichtungsrichtung

GEFÖRDERT VOM:

Aufbau zur Herstellung der Membranen im Labormaßstab an der TU Berlin:

Produktion von Mixed-Matrix-Komposit-membranen am HZG:

• Größte bisher dokumentierte Fläche einer MMM (120 m²)

Idealisierte MMM Struktur (links), REM Aufnahme einer MMM (rechts)

Mechanistische Modellierung Einsparpotential

Herstellung im Labor- & Pilotmaßstab Experimentelle Ergebnisse

Motivation Mixed-Matrix-Membranen (MMM)

GEFÖRDERT VOM:PROJEKTKOORDINATION: Torsten Brinkmann • E-Mail: [email protected] Geesthacht • Max-Planck-Straße 1 • 21502 GeesthachtPhone +49 (0)4152 87- 2400 • Fax +49 (0)4152 87-4-2400 • www.hzg.de

• Poly(octylmethylsiloxan) • Poly(dimethylsiloxan) Limitierte Selektivität Gute Verarbeitbarkeit

• Aktivkohle (Blücher GmbH) Sehr hohe Selektivität Schlechte Verarbeitbarkeit

• Selektivität der MMM besser für Polymermatrix aus POMS statt mit PDMS

• Entwicklung einer Mixed-Matrix-Membran mit höherer Selektivität und ähnlicher Permeanz für n-C4H10

• Nachweis der Langzeitstabilität im Gemisch n-C5H12/N2

• Prozesssimulation mit AspenCustom Modeler ® für PDMS, POMS und POMS / 20 wt% AK

• Einsatz einer Mixed-Matrix-Membran reduziert die benötigte Energie um 37% bezogen auf PDMS

• Pilotierung und Tests im industriellen Bypass• Optimierung des Stofftransportmodells und

Einbindung in Modulsimulationstools am HZG• Prozessdesign und Wirtschaftlichkeitsprüfung

• Erfolgreiche Herstellung von Mixed-Matrix-Membranen im Labor- & Pilotmaßstab

• Identifikation von Einflussfaktoren auf das Trennverhalten• Reduzierung der benötigten Energie um 37% durch höhere

Selektivität im Vergleich zu reinen Polymermembranen• Herstellung eines Membranmoduls

PDMS

POMS MMMPOMS / AK

Kondensat

RetentatyF,n-C4H10 = 0,01

FeedVF = 1000 Nm³/hpF = 30 barF = 20 °CyF,n-C4H10 = 0,05

.

AM

P.

Q.

• Gute Übereinstimmung zwischen Modell und Experiment

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0.0 0.1 0.2 0.3 0.4

Perm

eanz

n‐C 4H 1

0[Nm³/(m² h

 bar)]

mittlere Fugazität n‐C4H10 [bar]

MMMEinzelgasn-C4H10

MMMGasgemischn-C4H10/CH4

POMSGasgemischn-C4H10/CH4

Mittl. rel. Abweichung 1% 6,4 % 3,7%

Permeation Einzelgas Permeation Gasgemisch

10

15

20

25

30

35

0 20 40 60

Selektivitä

tn‐C

4H10/CH 4

 [‐]

Feeddruck [bar]

Beschichtungs-anlage

Polymer / AK-Suspension

Fertige MMM nach Vernetzung

MMM mit POMS MMM mit PDMS

Langzeitstabilität

15

17

19

21

23

25

0.20 0.25 0.30 0.35 0.40

Selektivitä

tn‐C

4H10/CH 4

[‐]

mittlere Fugazität n‐C4H10 [bar]

PDMSPDMS/AKPDMS/Zeolith15

20

25

30

35

0.20 0.40 0.60 0.80 1.00

Selektivitä

t n‐C

4H10/CH 4

[‐]

mittlere Fugazität n‐C4H10 [bar]

POMSMilestone MMMMMM Batch 1MMM Batch 2

pF = 10‐40 bar  = 20 °CyF,n‐C4H10 = 0,03‐0,05pP = 1 bar 

pF = 10‐30 bar  = 20 °CyF,n‐C4H10 = 0,02‐0,04pP = 1 bar 

= 20 °CyF,n‐C4H10 = 0,03‐0,05pP = 1 bar  = 20 °C

MMM Experiment

MMM Modell

POMS Experiment

POMS Modell

POMS Free Volume Modell

98 poster

Page 101: Chemical Processes and Use of CO2: 4th Status Conference

Mit voller Transparenz ans LimitEnergieeffizienz-Management und -Benchmarking

für die Prozessindustrie

Der momentane Energieverbrauch wird mehrerentheoretischen Energieoptima der untersuchten Anlagegegenübergestellt. Die Abweichung zum Optimum wirdmit Hilfe von statistischer Datenanalyse realerVerbrauchsdaten in Verlustkategorien aufgeschlüsselt.

Die Methode ermöglicht die transparente Darstellung und Verfolgung derEnergieeffizienz über Betriebe, Standorte und ganze Unternehmen. Der kontinuierlicheFokus auf Energieeffizienz macht Energieeinsparungen von über 20% möglich.

Ziele

Dr. Christian DrummBayer Technology Services GmbH, BTS-TD-PDO-PA, [email protected]

STRUCTese fördert neue Technologien wie die Sauerstoffverzehrkathode in der Chloralkali-Elektrolyse

STRUCTese unterstützt nachhaltig bei der Steigerung der Energieeffizienz und bei der Reduktion von CO2

Emissionen

Die Methode eignet sich hervorragend für große kontinuierliche Prozesse

Die Steigerung der Energieeffizienz ist ein wichtigerWettbewerbsfaktor in der chemischen Industrie. Zeitgleich steht dieSenkung von Treibhausgasemissionen zunehmend im Fokusnachhaltiger Klimaschutzpolitik. Neben der Identifikation vonMaßnahmen zur Effizienzsteigerung ist heute eine derentscheidenden Herausforderungen, den Energieverbrauch sowiedie Treibhausgasemissionen in möglichst kurzer Zeit und nachhaltigzu minimieren.

Das Energiemanagement-System STRUCTese®, das bei Bayer zur kontinuierlichen undnachhaltigen Maximierung von Energieeffizienz in der chemischen Großindustrie entwickelt wurde,bildet die Grundlage im Projekt. STRUCTese® stellt Methoden und Werkzeuge zur Verfügung, dieMaßnahmen zur Steigerung der Energieeffizienz identifizieren, steuern und nachverfolgen sowiedie kontinuierliche Senkung des Energieverbrauchs ermöglichen. Die Methode ist nach DIN ISO50001 zertifiziert und geht weit über die Anforderungen hinaus, die an einEnergiemanagementsystem gestellt werden.

Methode

Dem Betriebspersonal werden moderne Monitoring Werkzeuge zur Visualisierung der Energieeffizienz zur

Verfügung gestellt

ProjektIm Rahmen des Projektes wird die Methode zu einem standardisierten, unternehmens- undprozessübergreifenden Management- und Benchmarking-System für Energieeffizienzweiterentwickelt, das die effizientesten Technologien berücksichtigt, die Wissenschaft und Industrieheute kennen. Dabei wird die Methode an Prozessen der industriellen Partnern aus derchemischen Industrie und den Life Sciences validiert.

Im Projekt wird die Methode für Life Science und Batch Prozesse weiterentwickelt

Spez

. Ene

rgie

verb

rauc

h kW

h PE/

t Pr

oduk

t

1. Jahr

2. Jahr

3. Jahr

Ergebnisse

2.8 bar5.1 bar

BenzeneToluene

1 bar

Acetone

FeedChloroform

730 kWcomp. time ~40s

1.8 bar

10 bar

Benzene

Toluene

Chloroform1 bar

AcetoneFeed

475 kWcomp. time ~40s

020406080

100120140160180200

Equi

pmen

t /U

nit

Ope

ratio

nO

per.

Impr

ovem

. /Au

tom

atio

n

Hea

tin

tegr

atio

n

Insu

latio

n /

Illum

inat

ion

Util

itySy

stem

s

Num

ber o

f Mea

sure

s*

Partner

99poster

Page 102: Chemical Processes and Use of CO2: 4th Status Conference

Projektpartner:

FK: 01RC1009B IL-WINDwww.crt.cbi.uni-erlangen.de

Life Cycle AssessmentReferenz: Lagerwechsel (Schäden) an den Referenzanlagen 40 % alle 2 Jahre Durchgeführt von Frau Dr. Kralisch (Friedrich-Schiller-Universität Jena)

1. Fall: Wartungszyklus von 3 d/4a → 32% 2. Fall: Wartungsfrei → 90 %

Ergebnisse

Entwicklung IL-basierter Schmierstoffe für Windkraftanlagen

Mög

liche

Anio

nen

und

Katio

nen

Phosphonium Imidazolium

R = Rest

Phosphonat Sulfonat

Sulfat Phosphat

Ammonium

IL IL

IL

ILIL

ILIL

IL ILIL

ILIL

IL

IL

IL

IL

IL

IL

IL

IL

IL

IL

IL

IL

IL

IL

ILIL

IL

IL

IL

IL

IL

IL

IL

IL

IL

IL

IL

IL

IL

IL

IL

IL

IL

IL

ILIL

ILIL

ILIL

ILIL

ILILIL

Phosphinat

Entwicklungsziel

Herstellung eines Schmiermittels basierend auf einer Ionischen Flüssigkeit (IL), welche folgende Eigenschaften aufweist:

• Hoher Viskositätsindex (VI) Geringe Temperaturabhängigkeit der Viskosität durch CO2-Zugabe

• Gute Schmierleistung Reduktion von Reibung und Verschleiß durch Schutzschichtbildung

• Nicht brennbar oder flüchtig Niedriger Dampfdruck und hohe thermische Stabilität

• Mischbarkeit mit bestehenden Standardölen Löslich in Basisöl (PAO, PAG,…)

• Nicht korrosiv und umweltfreundlich Halogenidfreie Struktur und Synthese

• Hohe chemische Stabilität Kompatibel mit Standardadditiven (ZnDTP)

Projektleitung: Prof. Dr. P. Wasserscheid Projektkoordinatorin: A. Westerholt, M.Sc.

ν [m

m2 /s

]

T [°C]

VI <100

VI → ∞

CO2

CO2-Reduktion

VI < 100

VI >> 100

Erhöhung der Lebenszeit der Lager durchllllllllll ll ll ll ll ll ll ll l ll ll ll ll ll ll ll ll ll ll ll l ll ll ll ll ll ll ll ll ll ll ll ll l ll ll ll ll ll ll ll ll ll ll ll l ll ll ll ll ll ll ll ll ll ll ll ll l ll ll ll ll ll ll ll ll ll ll ll l ll ll ll ll ll ll ll ll ll ll ll ll l ll ll ll ll ll ll ll ll ll ll ll l ll ll ll ll ll ll ll ll ll ll ll ll l ll ll ll ll ll ll ll ll ll ll ll l ll ll ll ll ll ll ll ll ll ll ll ll l ll ll ll ll ll ll ll ll ll ll ll l ll ll ll ll ll ll ll ll ll ll ll ll l ll ll ll ll ll ll ll ll ll ll ll l ll ll ll ll ll ll ll ll ll ll ll ll l ll ll ll ll ll ll ll ll ll ll ll l ll ll ll ll ll ll ll ll ll ll ll ll l ll ll ll ll ll ll ll ll ll ll ll l ll ll ll ll ll ll ll ll ll ll ll ll l ll ll ll ll ll ll ll ll ll ll ll l ll ll ll ll ll ll ll ll ll ll ll ll l ll ll ll ll ll ll ll ll ll ll ll l ll ll ll ll ll ll ll ll ll ll ll ll l ll l

Reduktion eines typischen Lagerschadens.

→ Kein vorzeitiger AnlagenausfallM. H. Evans, Materials Science and

Technology 2012, 28, 22-23.

• PAO-basierter IL-Wind Schmierstoff

Gute Schmierleistung

Vermeidet verfrühten Lagerausfall

Produktion im Großmaßstab möglich

Halogenfrei

• CO2-Steuerung der Temperaturabhängigkeit der Viskosität ist

schon bei moderaten CO2-Drücken anwendbar

Verwendung von CO2 zur Steuerung der

Temperaturabhängigkeit der Viskosität.

→ Weniger Verschleiß durch konst. Schmierfilmdicke

100 poster

Page 103: Chemical Processes and Use of CO2: 4th Status Conference

FazitEinleitungEin neues energie‐ und rohstoffeffizientes Aufschlussverfahrenist in der Entwicklung, welches es ermöglicht Faserstoffe (FS),Lignin und Hemicellulosen zu gewinnen. Die Aufschlusslösungbesteht aus einer ionischen Flüssigkeit (IL; Alkoxymethylen‐Iminiumsalz) und einem organischen Lösungsmittel.Für den Labormaßstab liegt nach eingehendenUntersuchungen ein erprobtes Verfahrenskonzept vor. Daraufbasierend wurden die Aufschlussparameter Temperatur(100‐160°C), Zeit (45‐240 min) sowie die Konzentration derIL (1‐15% bzgl. Aufschlusslösung) für den Aufschluss vonindustriellen Fichten‐Hackschnitzeln (HS) bei einemFlottenverhältnis von 1:5,5 (HS:Aufschlusslösung) optimiert.Die mittels des IL‐Aufschlusses aus dem Rohstoff gewonnenenFaserstoff‐, Lignin‐ und Hemicellulosenproben zeigt Abb. 1.

Ein neues Verfahren zur Gewinnung von Lignin, Cellulose und Hemicellulose aus biogenem Material mit Hilfe neuartiger ionischer Flüssigkeiten

• Mittels des IL‐Aufschlusses ist eine gute Fraktionierung der Cellulose‐ undLigninanteile des Holzes möglich. Dies zeigen die FS‐Ausbeute von 55%sowie die Lignin‐Ausbeute von 26% in Kombination mit den hohenReinheitsgraden von 90% Glucose bzw. 86% Lignin der jeweiligen Fraktion(Abb. 2).

• Bei einer Polydispersität von 4,1 weisen die IL‐Lignine mit Werten unter6.000 g/mol eine relativ geringe molare Masse auf (Abb. 3).

• Nach 21 Tagen sind bei der Vergärung der Hemicellulosen‐Fraktion 277 mLMethan/goTS entstanden und der oTS‐Gehalt wurde von 5% auf unter 1%abgesenkt (Abb. 4).

• Verwertungspotentiale: Aufgrund der engen Faserlängenverteilung zeigendie FS gute Filtrationseigenschaften. Für die Lignine ist angesichts derhohen Reinheit und der niedrigen MW‐Werte der Einsatz bei PF‐Harzen undPolyurethanen denkbar. Auf Grundlage der Biogastests ist die anaerobeVergärung der Hemicellulosen‐Fraktion bzw. der Fällabwässer möglich.

• Mittels des IL‐Aufschlusses ist eine gute Fraktionierung der Cellulose‐ undLigninanteile des Holzes möglich. Dies zeigen die FS‐Ausbeute von 55%sowie die Lignin‐Ausbeute von 26% in Kombination mit den hohenReinheitsgraden von 90% Glucose bzw. 86% Lignin der jeweiligen Fraktion(Abb. 2).

• Bei einer Polydispersität von 4,1 weisen die IL‐Lignine mit Werten unter6.000 g/mol eine relativ geringe molare Masse auf (Abb. 3).

• Nach 21 Tagen sind bei der Vergärung der Hemicellulosen‐Fraktion 277 mLMethan/goTS entstanden und der oTS‐Gehalt wurde von 5% auf unter 1%abgesenkt (Abb. 4).

• Verwertungspotentiale: Aufgrund der engen Faserlängenverteilung zeigendie FS gute Filtrationseigenschaften. Für die Lignine ist angesichts derhohen Reinheit und der niedrigen MW‐Werte der Einsatz bei PF‐Harzen undPolyurethanen denkbar. Auf Grundlage der Biogastests ist die anaerobeVergärung der Hemicellulosen‐Fraktion bzw. der Fällabwässer möglich.

R. Janzon1, B. Saake1, K. Becker2 , H.G. Brendle3, S. Saur4 und W. Kantlehner41 Universität Hamburg, Leuschnerstraße 91b, D‐21031 Hamburg2 Bayer Technology Services GmbH, BTS‐TD‐DP‐DPS, Gebäude B310, D‐51368 Leverkusen 3 J. Rettenmaier & Söhne GmbH  & Co. KG, Holzmühle 1, D‐73494 Rosenberg  4 Hochschule Aalen, Institut für Angewandte Forschung, Beethovenstr. 1, D‐73430 Aalen Kontakt: willi.kantlehner@htw‐aalen.de

Abb. 1: Rohstoff (Fichte‐HS) sowie mittels des IL‐Aufschlusses gewonnene Faserstoff‐, Lignin‐und Hemicellulosen‐Fraktion

Ergebnisse

Abb.2:   Zusammensetzung (rechte Y‐Achse) und Ausbeute (linke Y‐Achse) dermittels des IL‐Aufschlusses gewonnenen  Faserstoff‐ und Ligninfraktion

Abb. 3: Molekulargewichtsverteilung der IL‐Lignine Abb. 4:Methanpotential der beim IL‐Aufschluss anfallenden Hemicellulosenfraktion

molare Masse [g/mol)

10x100 100x100 1x103 10x103 100x103 1x106

W(lo

g M

)

0,0

0,2

0,4

0,6

0,8

MW-Verteilung der Lignine MW = 5.700 g/molMW/MN = 4,1

Das BMBF‐Verbundprojekt „Ein neues Verfahren zur Gewinnung von Lignin, Cellulose und Hemicellulose aus biogenem Material mit Hilfe neuartiger ionischerFlüssigkeiten“ wurde durch den Projektträger DLR gefördert. Das vorliegende Poster wurde auf der 4. Statuskonferenz der BMBF‐Fördermaßnahme "Technologien fürNachhaltigkeit und Klimaschutz ‐ Chemische Prozesse und stoffliche Nutzung von CO2„ am 08.04.2014 in Königswinter vorgestellt.

Zusa

mm

ense

tzun

g [%

]

0

20

40

60

80

100Au

sbeu

te [%

]

20

30

40

50

60

Faserstoff-Fraktion

Lignin-Fraktion

Lignin [%] Hemicellulosen [%] Glucose [%]

FS-Ausbeute [%] Lignin-Ausbeute [%]

Rohstoff: Fichten‐HS

LigninFaserstoff Hemicellulosen(gelöst in Prozessabwässern)

101poster

Page 104: Chemical Processes and Use of CO2: 4th Status Conference

KIT – Universität des Landes Baden-Württemberg undnationales Forschungszentrum in der Helmholtz-Gemeinschaft

������ � ����������� � ����������� � �

Temperaturstabilität

TGA bei t = 160°CNETZSCH TG 209; Tiegel: AL2O3; N2-überspült

Einfluss von Anion/Kation

t = 80°C

EMIM OAc, DEMA OMs: [1]DEMA OTf: [2]

Absorptionswärmetransformation mit dem Arbeitsstoffpaar Wasser – Ionische Flüssigkeit

N. Merkel1, K. Schaber1, B. Rumpf2, J. Rüther2, T.J.S. Schubert3, S. Sauer3, V. Wagner4

Institut für Technische Thermodynamikund KältetechnikEngler-Bunte-Ring 2176131 Karlsruhe

Vorteile des neuen Arbeiststoffpaares Wasser – ionische Flüssigkeit (IL)Vollständige Mischbarkeit und niedrige SchmelztemperaturGeringe Korrosivität gegenüber EdelstählenVernachlässigbarer Dampfdruck der IL – keine Rektifikation notwendig

Kontakt: Dipl.-Ing. N. [email protected]

MotivationGroße, bisher ungenutzte Abwärmeströme im Bereich 80-120 °CTransformation auf ein nutzbares TemperaturniveauIntegration in ein Dampfnetz möglichEinsparung von Primärenergie und Absenkung der CO2-Emission

Annahmen für die SimulationStationärer ProzessVernachlässigung von Wärme- und DruckverlustenDampfdruck des Absorbents vernachlässigbarIsenthalpe DrosselungLeistungseintrag der Pumpen vernachlässigbarKondensator und Verdampfer nicht unterkühlt/überhitztAbsorber bzw. Desorber im Gleichgewichtszustand

FazitWasser – ionische Flüssigkeit ist ein mögliches Arbeitsstoffpaar für Absorptionskreisläufe

AusblickDimensionierung der Apparatekonzepte für Anlagen > 10 MWWirtschaftliche und ökologische Gesamtbewertung

WasserthermostatGleichgewichtszelleKreislaufpumpeDemisterFourier Transform-Infrarot Spektrometer

TH:GZ:CP:D:FTIR:

Nach [1]

EMIM OAc, DEMA OMs: [1]DEMA OTf: [2]

Temperaturder IL im AWT

VLE-Messungen über FTIR-Spektroskopie Relevanz der Viskosität

EMIM OMstHeiz = 95°C tKühl = 25°C

1) 2) 3) 4)

Apparatekonzepte der 4kW-TechnikumsanlageDesorption im gefluteten Shell & Plate Apparat

Neukonzipierung eines Platten-Absorbers

Kapillarnetze zur Verbesserung der Benetzung

Spacer aus Lochblech: Strömungsführung und Dampfdurchlässigkeit

Zum Patent angemeldetes Flüssigkeits-aufgabesystem

tHeiz = 90°C tKühl = 25°C

Vergleich möglicher Lösungsmittel

��� ��������������

Vergleich Simulation – Experimente

EINLEITUNG

STOFFDATEN

SIMULATION

EXPERIMENTE

FAZIT UND AUSBLICK

PROJEKTPARTNER UND FINANZIERUNG

→ Unkritisch im AWT

�� � � �� � �������� � ����

→ Anion entscheidend für Dampfdruckabsenkung

[1]: Römich et al., J. Chem. Eng. Data, 2012,7 (8), pp 2258–2264

[2]: Merkel et al., J.Chem. Eng. Data, 2014, 59 (3), pp 560–570

102 poster

Page 105: Chemical Processes and Use of CO2: 4th Status Conference

Schneider[a], Blug[a], Wasserscheid[b], König[b], Linder[c], Wörner[c]

[a] Evonik Industries AG [b] Universität Erlangen Nürnberg [c] Deutsches Zentrum für Luft- und Raumfahrt e.V.

• Mehr als 56 % der in Deutschland verbrauchten Primärenergie werden für thermische Anwendungen eingesetzt

• In der chemischen Industrie ist ein großes ungenutztes Abwärmepotential bei Temperaturen unterhalb von 150 °C verfügbar

• Durch die Nutzung von Abwärmeströme kann der Einsatz von Primärenergieträgern substituiert werden

Für die effiziente Nutzung niederkalorischer Abwärmeströme werden neue Technologien benötigt

Motivation

Projektziel ” Entwicklung eines neuartigen Verfahrenskonzeptes zur Verwertung

niederkalorischer Abwärme für die energetische Nutzung in verschiedenen Anwendungen”

• Entwicklung neuer Arbeitspaare basierend auf ionischen Flüssigkeiten (IL) mit deutlichen Vorteilen gegenüber dem Stand der Technik in Bezug auf Korrosion und Kristallisation

• Entwicklung thermochemischer Speicher mit hoher Speicherdichte und hoher Leistung

• Durchführung von Ökobilanzen zur Bewertung des neuen Verfahrenskonzeptes

Projektergebnisse

Kontakt: Dr. Matthias Blug [email protected] +492365499640

Das Projekt SIT FKZ: 01RC1002A wurde gefördert durch das BMBF

SIT: Nutzung niederkalorischer industrieller Abwärme mit Sorptionswärmepumpen- systemen mittels ionischer Flüssigkeiten und thermochemischer Speicher

Projektpartner:

Vergleich der Nutzwärmeleistung und des COP von LiBr/Wasser und neuartiger IL/Wasser-Medien in der Broad-Wärmepumpe

CO2e-Emissionen bei der Bereitstellung von 900 kW Leistung (8000 h/a) unterschiedlicher Energieträger im Vergleich in t/a

Wärmespeicherdichten unterschiedlicher Speichersysteme in kWh per m³

Prozessschema der bei der seriellen Verschaltungsvariante von Absorptionswärmepumpe und Wärmespeicher

Prozessfließbild des chemischen Wärmespeichers in offener Betriebsweise

T

Thermostat-bad

WasserdampfMessung

Taus

Reaktor

FMFC

Thermo-statbad

Druck-halter

Ausla

ss

Luft

T

T

T

Paus

Tein Pein

150

50

120

56

24

Chemisch Sorption Latent Sensible SIT 1st generation

0,0

0,5

1,0

1,5

2,0

2,5

1,4 1,2

2,2 2,0 1,8 1,6

1,0 0,8 0,6 0,4 0,2 0,0

IL 2 LiBr * IL 1

COP [-]

Wärme- leistung [kW]

Durch das Zusammenspiel von Wärmepumpe und Wärmespeicher kann bei der Bereitstellung von thermischer Energie ein erhebliches CO2e-Reduktionspotential realisiert werden

Schema des umgebauten Broad-Messstandes im Technikum der Evonik Industries AG in Hanau

W-01

112TIR

111312

P-2

P-3

P-4

P-5

P-6

V-2

V-1

I-1TIR

V-5

113TIRCS

P-7

114FIR

I-5FIR

Absorptionswärmepumpe Gesamtsystem Wärmespeicher

Primärenergieverbrauch nach Anwendungsgebieten in Deutschland (Quelle: BMWi, 2010)

Mechanische Energie 37%

Klima/Prozesskälte 2%

Prozesswärme

21% Warmwasser

4%

Raumwärme 31%

Beleuchtung

3%

Information/ Kommunikation

2%

Prozesschema zur Nutzung industrieller Abwärme mit Hilfe des neuen Verfahrenskonzepts

805

2.9002.700

1.700

Gas Steinkohle Braunkohle SIT

103poster

Page 106: Chemical Processes and Use of CO2: 4th Status Conference

Acrylate Formation from CO2 and Ethylene Mediated by Nickel-Complexes – Mechanistic Studies

Philipp N. Plessow,a,b Andrey Y. Khalimon,b S. Chantal E. Stieber,b Núria Huguet,b Ivana Jevtovikj,b Miriam Bru,b RonaldLindner,b Michael Lejkowski,b Ansgar Schäfer,a Michael Limbach,b,c* Peter Hofmannb,d*

aBASF SE, GVM/M, Ludwigshafen, Germany; bCaRLa, Heidelberg, Germany; cBASF SE, GCS/C, Ludwigshafen, Germany; dRuprecht-Karls-Universität Heidelberg, Organisch-Chemisches Institut, Heidelberg, Germany

Introduction

Theory: Coupling of CO2 and Ethylene

Conclusion and Outlook

Acrylic Esters: Alkyl and Silyl Esters

Sodium Acrylate

AcknowledgementsThe presenting authors work at CaRLa of Heidelberg University, which is co-financed by the University of Heidelberg,the State of Baden-Württemberg and BASF SE. Support from these institutions and financial support from the BMBF(Chemische Prozesse und stoffliche Nutzung von CO2 : Technologien für Nachhaltigkeit und Klimaschutz, grant01RC1015A) is gratefully acknowledged.

[1] Hoberg, H.; Peres, Y.; Krüger, C.; Tsay, Y. H. Angew. Chem. Int. Ed. Engl. 1987, 26, 771.[2] Lejkowski, M. L.; Lindner, R.; Kageyama, T.; Bódizs, G. É.; Plessow, P. N.; Müller, I. B.; Schäfer, A.; Rominger, F.;

Hofmann, P.; Futter, F.; Schunk, S. A.; Limbach, M. Chem. Eur. J. 2012, 18, 14017.[3] Graham, D. C.; Mitchell, C.; Bruce, M. I.; Metha, G. F.; Bowie, J. H.; Buntine, M. A. Organometallics 2007, 26, 6784.[4] Plessow, P. N.; Schäfer, A.; Limbach, M.; Hofmann, P. Submitted.[5] Bruckmeier, C.; Lehenmeier, M. W.; Reichardt, R.; Vagin, S.; Rieger, B.; Organometallics 2010, 29, 2199. [6] Lee, S. Y. T.; Cokoja, M.; Drees, M.; Li, Y.; Mink, J.; Herrmann, W. A.; Kuehn, F. K. ChemSusChem 2011, 4, 1275. [7] Plessow, P. N.; Weigel, L.; Lindner, R.; Schäfer, A.; Rominger, F.; Limbach, M.; Hofmann, P. Organometallics 2013,

32, 3327.Computational Details

In an effort to utilize CO2 as a carbon feedstock, considerable work hasgone towards realizing the synthesis of acrylates from the coupling ofCO2 with ethylene. Promising work by Hoberg and coworkers in 1987demonstrated the formation of nickelalactones from CO2 and ethylene,1but only in 2010 was this reaction rendered catalytic by our group.2Currently, there is considerable interest in determining the mechanismof the cycle and further optimizing the catalysis.

Three routes to acrylates[4]:1. Direct formation of acrylic acid

• Unfavorable thermodynamically and kinetically[3]

• No catalysis2. Reaction with sodium alkoxides

• Strong base, weak Lewis acid• Catalytic reaction; still technical issues[2]

3. Reaction with methyl iodide and subsequently with amine bases• Weak base, strong Lewis acid• Still stoichiometric; several problems[5,6,7]

Two possible mechanisms[4]:1. Inner sphere: C-C bond formation at Ni

• Known in the literature[2,3]

2. Outer sphere: Formation of zwitterionic intermediate•Solvent- and ligand-dependent

• Prediction of barriers requires clarification of the mechanism•Different isomers expected for substituted olefins•Problem is studied experimentally

Theory: Formation of Acrylates

CO2CO2Ni

O O

H2

H1

G‡ = 124

G = 15

G‡ = 110

G = 66

G‡ = 82

G = 15

P

PtBu2

NiP

PtBu2

H1 H2

OO

NiP

PtBu2

H1

H2

NiO O

H1

H2P

PtBu2

G: = 0

outer sphere inner sphere

tBu2tBu2

tBu2tBu2

NiO O

G: = 0

P

PtBu2

NiP

PtBu2

G = -4

CO2H

Ni

G = 1

P

PtBu2

OO

G‡ = 109

G‡ = 138

G‡ = 73

NiO

G = -19

P

PtBu2

OMe+MeI

Ni

G = -22

P

PtBu2

OOMe

G‡ = 75I

+base-Hbase+

-I-

NiP

PtBu2

CO2MeNi

P

PtBu2

G = -95

CO2Na

+NaOMe-HOMe

NiP

PtBu2

+ -CO2Na

∆G = -4+ -CO2H

∆G = 22

+ -CO2Me

∆G = 21

∆G‡ = 73

G‡ = 131

tBu2tBu2

tBu2tBu2

tBu2tBu2

tBu2

tBu2

References

All geometries were optimized at the BP86/def2-SV(P) level of theory. Gas-phase free energies were obtained based on single-point energies at the RPA@PBE/def2-QZVPP level of theory. Free energies in solution (THF) were obtained by adding solvation free energies calculated with COSMO-RS, and the parameterization for BP86/def-TZVP (reference state: T = 298.15 K; χ = 0.1). All calculations were carried out with TURBOMOLE.

CO2

ONa

O

tBuOH

PNi

P ONa

O

PNi

P

tBu2

tBu2

tBu2

tBu2

PNi

PtBu2

tBu2O O

NaOtBu

PNi

PtBu2

tBu2O ONa

OtBu

High PressureCO2

Low Pressure CO2

High PressureC2H4

TON = 10.2

NiO O

P

PtBu2

NiP

PtBu2

Ni-lactone cleavage and exchange with C2H4

OMe

O

NiP

PtBu2

OSiMe2tBu

O

NiP

PtBu2

OSiMe2tBu

O

OMe

O

ClSiMe2tBu

NR3

1. MeOTf2. NR3

∆G# ~ 104∆G = 21

tBu2

tBu2

tBu2

tBu2

The ligand exchange reaction ofeither methyl or silyl acrylate withethylene is endergonic (∆G = 21kJ/mol) and cannot be observedexperimentally.

1. Pathways to acrylate formation have been established computationally.2. Possible intermediates and deactivated metal species have been isolated.3. Experimental and computational investigations of silyl acrylates and esters revealed endergonic

ligand exchange with ethylene.4. The cycle for formation of sodium acrylate has been closed.5. Demonstrates feasibility of catalysis.

Isolated potential intermediates:Catalytic cycle

1. Computationally determined to have lower barrier for lactone formation2. May allow for higher TON

NHCP Ligands:

Isolated intermediates and catalyst deactivation:CO2

LNi

L

LNi

L

O OOxidative Coupling

L

L= N

N

PtBu2

tBuPtBu2

PtBu2

124 kJ/mol 110 (118) kJ/mol∆G‡ (inner sphere):

15 kJ/mol 5 (-7) kJ/mol∆G:

kin. (therm.) isomer

104 poster

Page 107: Chemical Processes and Use of CO2: 4th Status Conference

Ni(COD)2 PR2R2P

PNi

PR2

R2P

NiPR2

R2O O P

PR2

R2PR2

R2P

Ni

C2H4 2 bar

CO2 6 bar

THF+ + +

1b - 6b 1c - 6c

Entry ligand R n Yield 1a-6a(%)

1b-6b(%)

1c-6c(%)

1 dppm Ph 0 0 0 0

2 dppe Ph 1 0 0 65

3 dppp Ph 2 0 0 24

4 dtbpm tBu 0 60 40 0

5 dtbpe tBu 1 35 62 0

6 dtbpp tBu 2 0 97 0

1a - 6a

nn n n

Strong Brönstedt bases mediate the requiredreaction in a quick and almost quantitativefashion.

The efficiency of the reaction decreasestogether with the basicity of the base applied.

Additional experiments have demonstratedimportance of the Lewis acidic cation for thereaction.

The sodium acrylate formed can be easilyliberated from the corresponding nickelcomplex by ethylene.

The nickel ethylene complex re-starts thecatalytic cycle.

Catalytic Formation of Sodium Acrylate from Carbon Dioxide and Ethylene

Núria Huguet,1 Ivana Jevtovikj,1 Chantal Stieber,1 Andrey Khalimon,1 Alvaro Gordillo,1 Miriam Bru,1 Ronald Lindner,1 Piyal Ariyananda,1Takeharu Kageyama, 1 Philipp N. Plessow,2 Michael Limbach1,2*

1CaRLa (Catalysis Research Laboratory), Im Neuenheimer Feld 584, 69120 Heidelberg, 2BASF SE, Synthesis & Homogeneous Catalysis, GCS/C – M313, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany

?

Strong bases irreversibly form half-esters with carbon dioxide. [4]

Almost 40 years ago Hoberg observed that carbon dioxide and ethylene could undergooxidative coupling reaction to give nickelactones. [1]

The transformation of a nickelalactone into the correspondingsodium acrylate complex has been considered as the mostchallanging step in the catalytic cycle. It has never been reportedso far.

Synthesis of Nickelalactones

Catalytic Process

Transformation of Nickelalactones into Sodium Acrylate

+ Ni(COD)2 +L CO2 + C2H415 bar 30 bar

L: DBU, Py

− 78 oC to 40 oC90h, THF

NiO

O

L

L OH

O

ROM ROO

OM.

CO2

AcknowledgementNH, IJ, CS, AK, MB, AG, PA, TK, and RL work at CaRLa of Heidelberg University, being co-financed by University of Heidelberg, the state of Baden-Württemberg and BASF SE. Support from these institutions and financialsupport from the BMBF (Chemische Prozesse und stoffliche Nutzung von CO2 : Technologien für Nachhaltigkeit und Klimaschutz, grant 01RC1015A) is gratefully acknowledged.

[1] Hoberg, H.; Peres, Y.; Krüger, C.; Tsay, Y.H. Angew. Chem. Int. Ed. 1987, 26, 771-773.[2] Fischer, R.; Langer, J.; Malassa, A.; Walther, D.; Görls, H.; Vaughan, G. Chem. Commun. 2006, 23, 2510-2512.[3] Lejkowski M.; Lindner, R.; Kageyama, T.; Bódizs, G.E.; Plessow, P.N.; Schäfer, A.; Müller, I.B.; Rominger, F.; Hofmann, P.; Futter, C.; Schunk, S.A.; Limbach, M. Chem. Eur. J., 2012, 18, 14017-14025.[4] Behrend, W.; Gattow, G.; Dräger, M. Z. Anorg. Allg. Chem. 1973, 397, 237-246.

References

Introduction

Bulky residues on thephosphorous (e.g. tBu) promotethe oxidative coupling and

prevent coordinative saturationof the metal as non reactivetetrakis phosphino complexes(1c-6c).

Decomposition of dtbpmNickelalactone without CO2pressure.

We have systematically studied the influence of bidentate ligands on the Ni-catalyzed oxidativecoupling of ethylene with CO2.

P

PPh

Ph

PhPh

P

P

tButBu

tButBu

P

PPh

Ph

PhPh

P

P

tButBu

tButBu

P

P Ph

PhPh

Ph

P

P tBu

tButBu

tBu

dppp dtbpp dppe dtbpe dppm dtbpm

The dtbpe ligand is the best candidate to proceed with the rational study of the coupling ofethylene and CO2 due to Nickelactone stability. Indeed, we have been able to characterizesome reaction intermediates by X-Ray diffraction.

Dtbpe Nickel Based complexes

Ni(dtbpe)(ethylene) Ni(dtbpe)(nickelalactone)

?base (4 equiv.),

temperature, PhCl

PNi

P ONa

OtBu2

tBu2P

NiPtBu2

tBu2O O

5a 5d

YieldONa

OC2H4 (30 bar)45 oC, PhCl

Yield

Entry Base Time Additives Temperature Yield (%)

1 NaOtBu 0.25 − r.t 90

2 NaHMDS 0.25 − r.t. 87

3 NaOMe 24 − r.t. 50(70)

4 NaOH 24 − 70 oC 0 (70)

5 Na2CO3 72 − 70 oC 0

6 NBu4OMe 72 − 50 oC 0

7 NBu4OMe 72 NaBARF 50 oC 50

8 DBU 72 − 70 oC 0

9 DBU 72 NaBARF 70 oC 0

10 P1 72 − 50 oC 0

11 P1 72 NaBARF 50 oC 50

PNi

PtBu2

tBu2

+

In order to avoid this side reaction, the one-pot process was divided intotwo stages, varying the pressure of carbon dioxide.

Sodium acrylate is an important basic chemical that serves as amonomer for the synthesis of polyacrylates. Those are frequentlyutilized as superabsorber polymers in many consumer products.The current process utilized for the synthesis of acrylic acid isbased on the two-step oxidation of propylene.The direct synthesis of acrylates from CO2 and alkenes isconsidered to be a dream reaction. In spite of huge effort [1,2], thisdream has not come true until recently. [3]

Using this procedure a TON of 10.2 ! was obtained, proving the catalytic character of the reaction. [3]

105poster

Page 108: Chemical Processes and Use of CO2: 4th Status Conference

Life Cycle Assessment5) Based on process simulation with ASPEN Plus6) of new process and benchmark: Detailed analysis of CO2.saving: The new process has a reduced impact on all environmental criteria with sunlight ecological feasible

Photocatalytic Dehydrogenation Catalytic active system3: 3) Reaction conditions: 85 °C, 350-500 nm, 7 h, 30 mmol substrate, 0.004 mmol catalyst

Hydroformylation with CO2/H2

Catalytic active system: Ru3(CO)12/LiCl/Ligand L6 4) Tominaga et al. Chem. Lett. 1994

Partners:

Valeraldehyde from Butane and CO2 – VALERY

CO2-Emissions1)

Drastic increase of CO2-Emissions in the last decade

34 Gt/a CO2-Emissions in 2011 worldwide

Utilization of CO2

Energy efficient processes (e.g. photocatalytic reactions) to avoid CO2- Emissions

Motivation

Raw Materials: Price/Availability2)

CO2 as an abundant C1 building block

High price fluctuation of petrochemicals

Except for butane, increasing prices of C4

Alternative and less expensive feedstock

3,000

2,500

2,000

1,500

1,000

500

0 1/1/14 1/1/12 1/1/10 1/1/08 1/1/06

Year

€ /m

t

Butane

Isobutene Butadiene

1) Energy data - National and international development, Federal ministry of Economics and Technology, May 2013 2) IHS Chemical / CMAI

Valeraldehyde: Important Intermediate for the Synthesis of Plasticizers Based on butane and syngas (CO/H2) as raw materials High energy input for the dehydrogenation to butene

Valery

Source: CREAVIS – Science to Business (April 2014)

Jennifer Julis, Evonik Industries AG, Marl +49 2365 49-9763 [email protected]

J. Julisa, D. Krusea, H. Hahna, R. Frankea, A. Duttab, I. Fleischerb, R. Jackstellb, M. Bellerb, S. Fritschic, W. Korthc, A. Jessc [a] Evonik Industries AG; [b] Leibniz-Institut for Catalysis Rostock; [c] University of Bayreuth

Based on less expensive raw materials butane and CO2 Energy efficient photocatalytic dehydrogenation of butane to butene

1

2 3

4

5) According to ISO 14040 6) Based on sunlight driven synthesis of butene from butane

0

10

20

30

40

5040.0

9.4

C12H26

14.6

C8H18

19.7 16.5

Yiel

d [%

]

50

100

0

150

200 -21%

T [°C]

165 130

8290 87

98

0

20

40

60

80

100

total yield [%]

Oxo yield [%]

New system Literature4)

106 poster

Page 109: Chemical Processes and Use of CO2: 4th Status Conference

PhotoKat

„Entwicklung aktiver und selektiver heterogener

Photokatalysatoren für die Reduktion von CO zu C1-

Basischemikalien“

2

Jennifer Strunk

Ruhr-Universität Bochum, 44801 Bochum

- TECHNISCHE CHEMIE

e-

h+VB

Halbleitermaterialien

e-

h+

LB

Molekulare Photokatalysatoren

(am Beispiel von Titanat auf SiO 2)

Ti

SiSi

Si

OO

O

O

e-

e-

h+

e-

A/A-

D/D+

e-

e-

LUMO

HOMO

E

neg

ativ

posi

tiv

υh

υh

υh

υh

Das Forschungsprojekt hat das Ziel, CO photokatalytisch

zu C1-Basisprodukten der chemischen Industrie zu

rezyklieren. Es sollen gut verfügbare und möglichst robuste

Katalysatorsysteme auf der Basis von halbleitenden

Oxidkompositen identifiziert werden, die für die Anwendung

im großtechnischen Maßstab geeignet sind. Zu diesem

Zweck sollen Struktur-Wirkungsbeziehungen ausgehend

von den Oxidmaterialien TiO und ZnO entwickelt werden.

Strukturelle und elektronische Eigenschaften des

Katalysators und seiner Oberfläche sollen identifiziert

werden, die hohen CO -Umsatz und hohe Selektivität zu

Methanol oder Methan bewirken. Dies wird ermöglichen,

gezielt aktive Katalysatoren zu entwickeln und die

Reaktionspfade zu diesen Produkten selektiv zu steuern.

2 2

2

Ziele des Projekts

Literatur

2012

2013

2013

2014

2014

[1] B. Mei, A. Becerikli, A. Pougin, D. Heeskens, I. Sinev, W. Grünert, M. Muhler, J. Strunk, , , 14318[2] B. Mei, A. Pougin, J. Strunk, , , 184.[3] . , , 3041.[4] A. Pougin, B. Mei, M. Dilla, I. Sinev, J. Strunk, .[5] S. Chu, A.E. Becerikli, B. Bartlewski, F.E. Oropeza, J. Strunk, .

J. Phys. Chem. C 116J. Catal. 306

ACS Catal 3wird eingereicht bei J. Catal.

wird eingereicht bei Int. J. Hydrdogen Energy

(und Ref. darin).

B. Mei, Ch. Wiktor, S. Turner, A. Pougin, G. van Tendeloo, R.A. Fischer, M. Muhler, J. Strunk,

[6] F. E. Oropeza, B. Mei, I. Sinev, A.E. Becerikli, M. Muhler, J. Strunk, , , 51 (und Ref. darin).Applied Catalysis B: Environmental 140-1412013

Isolierte Titanatspezies auf SBA-15 sind aktiv in der photokatalytischenReduktion von CO zu Methan, obwohl keine Adsorption von CO am

Titanat gefunden wurde (ohne Bestrahlung).Photoabscheidung von Goldnanopartikeln erhöht die Ausbeute anphotokatalytisch gebildetem Methan.Während der Photoabscheidung von Gold sind die Titanatspeziesmobil, und sie bilden eine Schale um die Goldnanopartikel.Grafting von ZnO ermöglicht CO -Adsorption, aber nur agglomerierte

ZnO-Spezies erhöhen die Methanausbeute.

Sn Lochfangzentren auf der TiO -Oberfläche erhöhen die Aktivität des

TiO in der Methylenblauzersetzung.

2 2

2

2

2

Das Grafting von Sn verbessert die Trennung der durch Anregungerzeugten Ladungsträger, beeinflusst aber nicht die Lichtabsorption.Isolierte Sn -Spezies beschleunigen H -Entwicklung aus CH OH:H O;

synergetischer Effekt mit photoabgeschiedenem Rh wird beobachtet.

4+

4+

2 3 2

2+

Schlussfolgerungen

Verwendung des metallgedichtetenPhotoreaktors und Reinigungs-prozedur in H O/He (nicht gezeigt)

erlauben eindeutige Zuordnung deraus CO gebildeten Produkte .

2

2

[2]

Titanat/SBA-15

Photokatalytische CO -Reduktion: Einfluss von Gold2

Einfluss von ZnO auf CO -Adsorption und Reaktion2

Sn/TiO2

200 250 300 350 400 450 500 550 600 650 700 750 8000.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

a)

b)

c)

d)

CO

2[%

]

temperature [K]

x 10-3

e)

Titanreiche Schale

Metallisches Gold

CO2

Metallgedichteter Gasphasenphotoreaktor;(1) CF Flansche, (2) Vakuumfenster, (3)VCR-Anschlüsse, (4) doppelwandigerMantel, (5) Gitter als Unterlage fürProbengefäß, (6) Anschlüsse fürKühlkreislauf.

SiO2

TiO2

Au

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

0,0

0,2

0,4

0,6

0,8

1,0

(C0-C

)/C

0

Irradiation time / h

Anatase TiO2

Sn(1.5)/TiO2

Anatse TiO2

red@250

Sn(1.5)TiO2

red@250

two weeks after reduction

1day after reduction

Photoabscheidung von Gold erhöhtdie Methanausbeute .Anwesenheit von Gold vermindertAblagerungen stabiler Kohlenstoff-spezies (Formaldehyd) .

[2]

[2]

Titanat/SBA-15 adsorbiert kein CO .

Adsorption von CO wird begünstigt

durch Zusatz von ZnO .Nur größere ZnO-Cluster erhöhen dieMethanausbeute auf Titanat/SBA-15 .Die Anwesenheit isolierter ZnO-Spezies senkt dieAusbeute .

2

2

[1]

[1]

[4]

[4]

Sn über wohldefinierte Reduktion: Lochfangzentren2+

SiO2

ZnO-Spezies

Sn induziert besetzte Zuständeoberhalb des Valenzbandmaximumsvon TiO , die als Lochfangzentren

fungieren .Anwesenheit dieser Energieniveauserhöht deutlich die Aktivität in derMethylenblauzersetzung (UV+Vis) .Proben sind stabil unter Umgebungs-bedingungen (bzw. in Luft undWasser .

2+

[6]

[6]

[6]

2

Sn in der H -Entwicklung aus H O:CH OH4+

2 2 3

O O

OO

Zn2+

Znacac/T03 T03 ZnCub/T030

2

4

6

8

10

12

14

16

18

Yie

ldC

H4

[nm

ol/h]

nur Ti

TPD CO -Reduktion2

12 10 8 6 4 2 0 -2

Re

lati

ve

CP

S

Untreated

Reduced@250

Reduced@350

Sn(1.5)/TiO2XPS

Methylenblauzersetzung

Schematische Darstellung des Graftings von ZnO: IsolierteSpezies oder sehr kleine Cluster werden aus Zn(acac) erhalten,

größereAgglomerate werden über ein Zinkkuban eingebracht.2

0.0 0.5 1.0 1.50.0

0.5

1.0

1.5

2.0

H2

evo

lutio

nra

te/m

mo

lh

-1

Sn / nm-2

350 400 450 500 550

self-trapped excitons

surface states

TiO2

Sn(0.1)/TiO2

Sn(0.3)/TiO2

Sn(0.5)/TiO2

Sn(1.0)/TiO2

Sn(1.5)/TiO2

Inte

nsity

/a

.u.

Wavelength / nm

PL H -Entwicklung (H O:CH OH)2 2 3

Auf allen Proben wurden 0.01wt% Rh photoabgeschieden.

Grafting von Sn verbessert dieLadungstrennung und vermindertRekombination (PL), beeinflusstaber nicht die Lichtabsorption vonTiO (UV-Vis DRS, nicht gezeigt) .

4+

[5]

2

Isolierte Sn -Spezies erhöhenAktivität in der H -Entwicklung, aber

agglomerierte Spezies sind ungünstig.Synergetischer Effect zwischenisoliertem Sn und Rh .

4 +

4+ [5]

2

Finanzierung

Gefördert vom Bundesministerium für Bildung undForschung (BMBF) im Rahmen der Fördermaßnahme:“Technologien für Nachhaltigkeit und Klimaschutz -Chemische Prozesse und Stoffliche Nutzung von CO ”

(033RC1007A, Nachwuchsgruppe „PhotoKat“)2

Ti(OiPr)4

Toluol, Ar

Kalzinierung:300 °C; N

500 °C; O /N2

2 2 SiO2

Ti

O O O

OH

SiO2

Ti

O OiPr

OiPr

iPrO

iPrO Ti

O

OiPr

OiPr

SiO2

TiO

O

O

OH

Hor or…

SiO2

OH

OH

OH

TiO

O

O

O

SiSi

Si

Schematische Darstellungder isolierten Titanatspezies

Schematische Darstellung der Synthese des isolierten Titanats über Grafting von Ti(OPr) auf SiO .i [1]

4 2

Sn 5p

Sn 5s O 2pz

Bonding

Anti-bonding

Sn 5p

Sn 5s O 2pz

Bonding

Anti-bonding

(Sn 5s – O 2p)

(Sn 5s – O 2p)* + Sn 5p

Orbitalwechselwirkungen in SnO; vermutlich ähnlicheSituation in Sn auf TiO . Führt zur Bildung von Energie-

niveaus oberhalb des Valenzbandmaximums von TiO .

2+

2

2

evacuationevacuationEvakuierung

CH

-Au

sb

eu

te [

pp

m]

4

0h 1h 5h 7h 0h 1h 5h 7h

60

50

40

30

20

10

Ti/SBA-15

Au/Ti/SBA-15

Temperatur [K]

CH

-Ausbeute

[nm

ol/h]

4

0 20 40 60 80 1000.0

0.5

1.0

1.5

2.0

2.5

Re

l.in

ten

sit

yx

10

5

Time [min]

Au/Zn/Ti/SBA-15

Au/Ti/SBA-15

Au/Ti/Zn/SBA-15

Zeit

Zeit [min]Zeit [min]

H-K

on

zen

trati

on

[p

pm

]2

4000

3000

2000

1000

00 30 60 90 120 150 180

Ti0.3/SBA

Ti1.0/SBA

Ti2.0/SBA

Ti2.7/SBA Rela

tive In

ten

sit

ät

x 1

05

Titanat ist mobil in der Photoabscheidung und bildeteine titanreiche Schale um die Goldnanopartikel .In der Wasserstoffentwicklung aus Methanol:Wasserermöglicht die Titanatschale den Elektronentransfer .Für den Transfer der Löcher werden Ti-O-Si-Bindungenbenötigt (Terephthalsäurehydroxylierung) .

[3]

[3]

[3]

Tendenz zur TiO -Schalenbildung

Ti1.0 > Ti2.0 > Ti0.3 > Ti2.7x

Viel Ti-O-Si

Wenig Ti-O-Si

Inte

nsit

ät

/ a.u

.

Wellenlänge / nm Sn / nm-2

H-E

ntw

icklu

ng

/ m

mo

l h

2

-1

unbehandelt

reduziert@250

reduziert@350

Bindungsenergie / eV

Bestrahlungszeit / h

1 Tag nach Reduktion

2 Wochen nach Reduktion

Anatas TiO

Sn(1.5)/TiO

Anatas TiO red@250

TiO red@250

2

2

2

2Sn(1.5)/

107poster

Page 110: Chemical Processes and Use of CO2: 4th Status Conference

Evonik Industries AG, P.-Baumann-Str. 1 | 45772 Marl, Germany

Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11| 89081 Ulm, Germany

Institute of Biological Sciences, Division of Microbiology, University of Rostock, Albert-Einstein-Str. 3| 18055 Rostock, Germany

Introduction

Acetone is an important raw material in the chemical industry as a solvent and for the syntheses of variousproducts, e.g. poly(methyl methacrylate) (PMMA), also known as acrylic glass. Today, acetone still is mainlyproduced from fossil resources. However, future challenges require alternative strategies enabling thegeneration of chemicals and biofuels from renewable resources, such as the usage of a greenhouse gas,carbon dioxide (CO2), as a substrate.

CO2 is a less expensive feedstock, available in great quantities, and does not interfere with food production,as glucose and other sugars do. Thus, the aim of the project “CO2-based fermentation of acetone” (fundedby the German Federal Ministry of Education and Research (BMBF)) is the development of a fermentationprocess in which acetogenic bacteria produce acetone by using CO2 as starting material.

Results I: Vector optimization

Working with many different homoacetogenic microorganisms makes it necessary to create a vector system thatcan be adapted to a broad range of them. Therefore, we developed a novel modular vector system forhomoacetogenic and/or thermophilic microorganisms. This offers the opportunity of easy and fast analysis ofthe best combinations of origins of replication (GP), promoters upstream of the acetone operon (P) and theacetone operons (AO) themselves. Therefore, we used unique restriction sites in front of each module type, toallow a free exchange with other modules of this type.

Results II: Formation of acetone with recombinant acetogens

Constructed plasmids were transformed either into thermophilic or mesophilic acetogenic strains andsubsequently cultivated under autotrophic conditions with H2 and CO2 as substrate. Acetone productionwas determined in strains harboring a plasmid encoding either the gram positive origin GPA, GPB or GDD, theacetone operons AOA or AOC which were respectively, under the control of promoter PB or PD. Experimentswere carried out in flasks (culture/gas vol. 1 : 20) and also in 2 L stirred tank reactors with continuous gas flow(Fig. 3). The mesophilic strains A produced significant more acetone compared to the thermophilic strain (Fig.3a). Acetone productivity was much higher in 2 L tank reactors in comparison to flasks due to higher masstransfer and continuous supply of feed gas, but also differences between mesophilic and thermophilic (resultsnot shown) were observed.

Fig. 1: Wood-Ljungdahl pathway V. Müller, 2003, Appl. Environ. Microbiol.69:6345-6353

Acetogens andthe Wood-Ljungdahl pathway

Acetogenic bacteria (acetogens) areanaerobes that use the Wood–Ljungdahlpathway to (I) synthesize acetyl-CoA by thereduction of CO2 or CO + H2 (II) conserveenergy and (III) assimilate CO2 for thesynthesis of cell carbon [1].The Wood-Ljungdahl pathway (Fig. 1) isfound in a broad range of phylogeneticclasses. Until now, 22 genera are known forharboring acetogens. [2, 3].Thus, acetogens bear a great potential for theautotrophic production of bulk chemicals andthe industrial interest has risen dramatically.Although more than 100 acetogenic bacterialspecies are isolated and described so far,there is little knowledge about theirapplicability as production strains. Therefore,we screened different acetogenic strains,enabling the application of a syntheticindustrial waste gas stream simulating apotential future biotechnological application.

[1] S. W. Ragsdale, E. Pierce | 2008 | Biochim Biophys Acta. 1784:1873–1898[2] H. L. Drake, A. S. Gössner, S. L. Daniel | 2008 | Ann N Y Acad Sci. 1125:100-28[3] B. Schiel-Bengelsdorf, P. Dürre | 2012 | FEBS Lett. 586:2191-2198

Fig. 3: Growth and acetone production of recombinant thermophilic and mesophilic autotrophicrecombinant acetogens with H2 + CO2 as substrate. (a) cultivated in flask (b) cultivated in 2 Lstirred tank reactors

1. GPA2. GPB3. GPC4. GPD5. GPE

1. AOA2. AOB3. AOC4. AOD

1. PA2. PB3. PC4. PD

Fig. 2: Modular vector system for homoacetogenic and/or thermophilic microorganisms. Each arrowrepresents one exchangeable module type. The Gram-positive origin of replication is indicated in red, thepromoter for the acetone operon is indicated in dark blue and the acetone operon is indicated in light blue.

Plasmid

(a) Flask experiments (b) Reactor experiments

Dr. Marzena Gerdom (Evonik Industries AG, Marl), Dr. Jörg-Joachim Nitz (Evonik Industries AG, Marl), Dr. Stephan Kohlstruk (Evonik Industries AG, Marl), Dr. Wilfried Blümke (EvonikIndustries AG, Hanau), Katja Zimmermann (Universität Rostock), Ronny Uhlig (Universität Rostock), Dr. Antje May (Universität Rostock), Dr. Ralf-Jörg Fischer (Universität Rostock),Prof. Hubert Bahl (Universität Rostock), Sabrina Hoffmeister (Universität Ulm), Dr. Frank Bengelsdorf (Universität Ulm), Prof. Peter Dürre (Universität Ulm)

Carbon Dioxide Based Acetone Fermentation-COOBAF-

3 CO2 + 8 H2 Acetone + 5 H2O

H2CO2

CO2 fixation and acetone formation with genetically modified

acetogenic bacteria strains

Use of existing waste streams containing CO2

(CO and H2)

0,00

0,20

0,40

0,60

0,80

1,00

1,20

0,0

0,5

1,0

1,5

2,0

2,5

0 50 100 150 200 250 300

Acet

one

conc

entr

atio

n

Gro

wth

(OD

600

)

Fermentation time (h)

OD acetone

0

1

2

3

4

5

6

7

0,0

0,4

0,8

1,2

1,6

2,0

0 100 200 300 400 500 600 700 800

Acet

one

conc

entr

atio

n

Gro

wth

(OD

600

)

Fermentation time (h)

growth thermophilic strain growth mesophilic strainacetone thermophilic strain acetone thermophilic strain

Ori(Gram-positive)

Resistance gene

Acetone-operon

Promotor(acetone-operon)

Ori(Gram-negative)

Promotor(Resistance gene)

acetone mesophilic strain acetone mesophilic strain

108 poster

Page 111: Chemical Processes and Use of CO2: 4th Status Conference

Leibniz-Institut für Katalyse e.V.(LIKAT Rostock)

Albert-Einstein-Str. 29 A18059 Rostock

Aim

Leib

niz-

Inst

itut f

ür K

atal

yse

e.V.

Leibniz-Institut für Katalyse e.V.(LIKAT Rostock)

Albert-Einstein-Str. 29 a18059 Rostock

[email protected]

Novel Method towards Green Polycarbonates

M. Reckers,1 J. Diebler,1 I. Peckermann,2 C. Gürtler,2 T. Werner1*1Leibniz-Institut für Katalyse, Albert-Einstein-Str. 29a, 18059 Rostock

2Bayer Technology Services GmbH, Bayer Material Science AG, Chempark, 51368 Leverkusen

Introduction SubjectThe impact of CO2 emission on global warming and the various CO2 managementstrategies are topic of current social, political as well as scientific discussions.[1]

With carbon capture and utilization (CCU) there is a reconsideration of thefrequently discussed carbon capture and storage (CCS) strategy, consideringCO2 rather as an economical and abundant raw material than as waste.[2]

Consequently, the conversion of the CO2 into value added products is widelystudied in current research.[3] One promising approach for the utilization of CO2 asa chemical building block is the incorporation into novel polymeric materials. Inrecent years significant progress has been made in the field of epoxide basedpolymers.[4] In contrast the use of alternative comonomers such as formaldehydewas more or less neglected and only a very few examples are known.[5] Thedevelopment of novel CO2 based materials remain a challenging and up-to-dateresearch objective. We focus on the organocatalyzed copolymerization of CO2

and formaldehyde employing paraformaldehyde as the premonomer.

Results

The great advantages of this novel material are on the one hand the theoretically possible high CO2 incorporation of up to 60 wt%. On the other hand, formaldehydecan be obtained from renewable resources. As a result the new polymer is 100% based on renewable ressources and the carbon footprint is expected to beextraordinary low. Initial experiments led to novel oligomeric materials. Furthermore, the effects of the reaction parameters including reaction time, pressure andtemperature as well as the nature of the catalyst on the composition and molecular weight distribution were studied. So far the obtained copolymers werecharacterized by GPC, TGA/MS and IR methods. The properties of the new materials are not fully explored yet, but are subject of current investigations.

References[1] a) Positionspapier, Verwertung und Speicherung von CO2, Verband der Chemischen Industrie e.V. (VCI), Gesellschaft für Chemische Technik und Biotechnologiee.V. (DECHEMA), 2009. b) G. A. Olah, G. K. S. Prakash, A. Goeppert, J. Am. Chem. Soc. 2011, 133, 12881–12898. [2] a) M. Peters, B. Köhler, W. Kuckshinrichs, W.Leitner, P. Markewitz, T. E. Müller, ChemSusChem 2011, 4, 1216–1240. b) A. J. Hunt, E. H. K. Sin, R. Marriott, J. H. Clark, ChemSusChem 2010, 3, 306–322. [3] M.Aresta, A. Dibenedetto, Dalton Trans. 2007, 2975–2992. [4] D. Darensbourg, S. J. Wilson, Green Chem. 2012, 14, 2665–2671. [5] R. K. Sharma, E. S. Olson, Abstr.Pap. Am. Chem. Soc. 2000, 45, 676–680

• Oligomeric material confirmed by GPC

• Oligomeric material confirmed by MALDI-TOF

• IR-signal around 1700 cm‒1 carbonyl region• TGA-MS shows incorporation of CO2 and CH2O

Heating to 130 °C (20 K·min–1):• Number average weight

loss <5%• Relative mass loss <15%

• Number average weight around 500 g·mol–1

C=O vibration

OAc

CH2O

CO2

weight loss

109poster

Page 112: Chemical Processes and Use of CO2: 4th Status Conference

Leibniz-Institut für Katalyse e.V.(LIKAT Rostock)

Albert-Einstein-Str. 29 A18059 Rostock

Leib

niz-

Inst

itut f

ür K

atal

yse

e.V.

Leibniz-Institut für Katalyse e.V.(LIKAT Rostock)

Albert-Einstein-Str. 29 a18059 ROSTOCKwww.catalysis.de

[email protected]

In response to the increasing demand for strategies for reduction of the emission of carbon dioxide and its capture and utilization, recent yearshave witnessed an increase in organic chemistry research focussing on the use of CO2 as a synthetic building block.[1] The challenge of the directconversion of carbon dioxide is its thermodynamic stability. Thus, high energy starting materials or activation by catalysts are necessary. Oneapproach to activate CO2 is through nucleophilic attack by lewis bases. Some examples in literature show the formation of carbon dioxide adductswith phosphines,[2] amines[3] and N-heterocyclic carbenes.[4] We are interested in developing a catalytic method for the carboxylation of CH-acidicsubstrates based on carbenes. Herein, we report our efforts in achieving this goal.

In general, imidazolium carbenes are easily generated by deprotonating theacidic hydrogen of the imidazolium salts. We followed a known procedure inwhich potassium hexamethyldisilazane in toluene is used. Further filtrationof the resulting mixture and passing through CO2 leads to the resultingcarboxylate in high yields (equation 1).[5] Another approach allows togenerate the dimethylimidazolium-2-carboxylate under solvent-freeconditions in moderate yields (equation 2).[6] Thereby, in a pressure tubedimethylcarbonate reacts with methylimidazole and serves as a methylatingand carboxylating agent as well as a base. These carboxylates are mostlystable under elevated temperatures but very sensitive to water.[7]

Carboxylation of CH-acidic Molecules by Zwitterionic Imidazolium-2-carboxylates

Willi Desens, Thomas Werner*Introduction

Synthesis of the Carboxylates

Carboxylation of Acetophenone

Derivatization of the Corresponding Acid

Summary

References and Acknowlegment

Imidazolium-2-carboxylates were readily synthesized either by deprotonating the imidazolium salt and subsequent conversion with carbon dioxideor by direct conversion with dimethylcarbonate. Unfortunately, the synthesis of the 3-phenylpropionate starting from acetophenone was not yetaccomplished by stoichiometric amounts of the imidazolium-2-carboxylates. The conversion of acetophenone to the desired product wasperformed by a two-step synthesis in moderate yields. The conversion of the sodium salt to the corresponding methylester could be achieved inmoderate yields by applying Meerwein salt.

Imidazolium-2-carboxylates can be utilized as precursors forligands in metalorganic chemistry, whereas the captured carbondioxide is released. According to Tommasi et al. the sodium salt of3-phenylpropionic acid was generated by dimethylimidazolium-2-carboxylate starting from acetophenone.[8] As mentioned above weare interested in setting up a catalytic cycle to apply imidazoliumcarboxylates as catalysts for carboxylation of CH-acidiccompounds. Therefore, we carried out the reaction using dimethyl-imidazolium-2-carboxylate with acetophenone in tetrahydrofuranaccording to the literature procedure. Unfortunately the desiredproduct was not observed, thus we examined differentimidazoliumcarboxylates. Nevertheless, the conversion was stillunsuccessful, so we deployed various sodium salts and solvents.

In case of completing a catalytic cycle the relative unstable product must bederivatized to form a more stable compound. To gain access to the desiredproduct and develop an efficient route of derivatization, acetophenone isconverted according to Jessop et al. by DBU and carbon dioxide to thecorresponding 3-phenylpropionic acid.[9] The -keto acid reacts withNaHCO3 to the more stable sodium salt, which was used as a reference forthe analytical data and further derivatization. Attempts to convert thesodium salt to the methyl ester by employing iodomethane as a methylatingagent were unsuccessful. Therefore, Meerwein salt was chosen as astronger methylating reagent and the ester was obtained in moderate yield.

[1] T. Sakakura, J.-C. Choi, H. Yasuda, Chem. Rev. 2007, 107, 23652387. [2] Y. Kayaki, M. Yamamoto, T. Ikariya, J. Org. Chem. 2007, 72, 647649. [3] (a) R.Srivastava, D. Srinivas, P. Ratnasamy, Microporous Mesoporous Mater. 2006, 90, 314326; (b) A. Diaf, J. L. Garcia, E. J. Beckman, J. Appl. Polym. Sci. 1994, 53,857875. [4] H. A. Duong, T. N. Tekavec, A. M. Arif, J. Louie, Chem. Commun. 2004, 112113. [5] H. Zhou, W.-Z. Zhang, C.-H. Liu, J.-P. Qu, X.-B. Lu, J. Org. Chem.2008, 73, 80398044. [6] B. R. Van Ausdall, J. L. Glass, K. M. Wiggins, A. M. Aarif, J. Louie, J. Org. Chem. 2009, 74, 79357942. [7] J. D. Holbrey, W. M. Reichert, I.Tkatchenko, E. Bouajila, O. Walter, I. Tommasi, R. D. Rogers, Chem. Commun. 2003, 2829. [8] I. Tommasi, F. Sorrentino, Tetrahedron Lett. 2005, 46, 21412145.[9] B. J. Flowers, R. Gautreau-Service, P. G. Jessop, Adv. Synth. Catal. 2008, 350, 29472958.

Entry R NaX Solvent Yield [%]

1 Bu NaBF4 THF -

2 Bu NaBPh4 THF -

3 Bu NaI THF -

4 Bu NaBF4 CH3CN -

5 Bu NaI CH3CN -

6 Me NaBF4 THF -

7 Me NaBPh4 THF -

8 Me NaBF4 CH3CN -

9 Me NaBPh4 CH3CN -

110 poster

Page 113: Chemical Processes and Use of CO2: 4th Status Conference

Max-Planck-Institut für Eisenforschung GmbH Düsseldorf/Germany

Department of Interface Chemistry and Surface

Engineering

Prof. Dr. M. Stratmann

Electrocatalysis Group

Dr. K.J.J. Mayrhofer

High throughput screening

Stability of electrocatalysts for electrochemical conversion of carbon dioxide

Serhiy Cherevko, Aleksandar R. Zeradjanin, Jan-Philipp Grote, Angel A. Topalov, Anna K. Schuppert, Karl J. J. Mayrhofer

Motivation Wind and solar renewable electricity surplus can be applied for conversion of carbon dioxide into hydrocarbons by means of electrolysis. Generated hydrocarbons can be used as fuel or as valuable feedstock for the chemical industry. In the most general case, main

Fig. 1 Figure caption

References

Scanning Flow Cell (SFC) ft. ICP-MS

Dissolution of model noble metal catalysts

Stability analysis of industrially relevant catalysts

For all studied noble metals surface oxidation and reduction results in dissolution;

Difference in the dissolution rate between less stable Ru and Pd and more stable Au and Pt is more than an order of magnitude;

Onset of oxidation and dissolution do not always coincide. For some metals, e.g. Au, oxidation and dissolution start simultaneously, while for other metals, e.g. Pt, commencement of dissolution is ca. 200 mV more positive than the onset of oxidation;

There is a correlation between the onset of oxygen evolution on a metal and stability of the formed oxide;

More stable oxides reduce at lower potentials. Thus, position of the cathodic peak is different in each individual case;

Ir, Rh, and Pt predominantly dissolve during oxide reduction, while Ru and Pd show very high losses during the oxidation part of a cycle;

Acknowledgement

The electrochemical cell is based on the principle of a channel electrode. The electrolyte is continuously flowing over the working electrode sitting on a three-dimensional translational stage. The online multi-element analysis at the electrolyte outlet is performed by an ICP-MS connected directly to the SFC.

High throughput and combinatorial studies using predefined experimental sequences, based on in-house LabVIEW software for full automation1;

Time resolved dissolution profiles with low detection limit by ICP-MS (less than 10 ppt);

Automated synchronization of electrochemical and downstream analytics datasets;

Local micro-electrochemistry on electrode areas below mm²;

Electrolyte supply

Counter electrode

Electrolyte outlet

Reference electrode

Silicon sealing

50-500mN

2mm Working electrode

Ar Ar

a)

Schematic representation: a) ICP-MS; b) CAD-model illustrating the experimental setup of the SFC2,3, including the electrodes, force sensor, and indicating gas and electrolyte flow;

b)

We acknowledge the Bundesministerium für Bildung und Forschung (Kz:033RC1101A) for financial support.

[1] Topalov, A. A.; Katsounaros, I.; Meier, J. C.; Klemm, S. O.; Mayrhofer, K. J. J.; Rev. Sci. Instrum. 82 (2011), art. no. 114103, doi:10.1063/1.3660814 [2] Klemm, S. O.; Topalov, A. A.; Laska, C. A.; Mayrhofer, K. J. J.; Electrochem. Commun. 13 (2011), 1533–1535, doi:10.1016/j.elecom.2011.10.017 [3] Cherevko, S.; Topalov, A. A.; Katsounaros, I.; Mayrhofer, K. J. J.; Electrochem. Commun. 28 (2013), 44-46, doi: 10.1016/j.elecom.2012.11.040 [4] Schuppert, A. K.; Topalov, A. A.; Savan, A.; Ludwig, A.; Mayrhofer, K. J. J. ChemElectroChem Communications 1 (2013), 358–361, doi:10.1002/celc.201300078 [5] Zeradjanin A.R.; Topalov A.A.; Van Oveermere Q.; Cherevko S.; Chen X.; Ventosa E.; Schuhmann W.; Mayrhofer K.J.J.; RSC Adv. 4 (2014) 9579-9587, doi: 10.1039/c3ra45998e

Outlook and Conclusion The unique coupling of the mass spectrometry and electrochemistry has already proven to

be a powerful technique for the parallel investigation of stability and activity of single- and multi-component systems. Fundamental issues of electrode material dissolution, both noble and non-noble, can be addressed on a new level. The example of noble metals shows the sensitivity of detecting dissolution of sub-monolayer amounts. Furthermore, the correlation between the potential and dissolution profile for more complex systems like the gradient PtCu alloys provide a closer look for instance into dealloying phenomena. Additionally, setup was shown to be useful for the analysis of porous samples with industrial relevance.

Oxygen evolution is an additional process responsible for surface depassivation and dissolution;

For some metals, such as Ru and Au, dissolution rate significantly increases when potential is moved into the oxygen evolution region, while for other metals, such as Pt and Pd, change in the dissolution rate is insignificant;

Ir and Rh show best performance in terms of activity and stability;

Pt and Pd can be used to stabilize less stable Ir and, especially, Ru. Though, it most likely will effect activity of the active material;

ICP-MS NexION 300X

PtX+

PtX+

PtX+ PtX+

PtX+

PtX+

PtX+

electrochemical reactions will be cathodic CO2 reduction andanodic water oxidation. Overall cell efficiency, thus, will depend on the activity of electrocatalysts applied for both reactions. Moreover, economic viability will be evaluated by the original catalyst price and the cell operation time. The latter parameter can be predicted by detailed stabilityinvestigation part of which is shown in the current work.

Combinatorial screening over several locations (along the composition gradient);

Reproducibility tests and parameter screening (along x-axis);

Screening of various parameters i.e. high temperature measurements;

Parallel activity determination and monitoring of degradation rate with respect to material composition;4

Special preparation of porous high surface area samples for analysis with the SFC using nanoplotter;

When potential reaches approximately 1.45 V vs. RHE (redox transition RuO2 /RuO4(c),H+) anodic dissolution becomes severe;5

Morphological pattern has an impact on efficiency of gas evolution and stability;

111poster

Page 114: Chemical Processes and Use of CO2: 4th Status Conference

Max-Planck-Institut für Eisenforschung GmbH Düsseldorf/Germany

Department of Interface Chemistry and Surface

Engineering

Prof. Dr. M. Stratmann Electrocatalysis Group

Dr. K.J.J. Mayrhofer

Electrochemical CO2 Reduction: High-Throughput Selectivity Investigations by Mass Spectrometry

Introduction

References [1] Hori, Y., K. Kikuchi, et al. (1985). Chemistry Letters 14(11): 1695-1698. [2] Hori, Y. (2008). Modern Aspects of Electrochemistry. C. Vayenas, R. White and M. Gamboa-Aldeco, Springer New York. 42: 89-189. [3] Klemm, S. O.; Topalov, A. A.; Laska, C. A.; Mayrhofer, K. J. J.; Electrochem. Commun. 13 (2011), 1533–1535, doi:10.1016/j.elecom.2011.10.017 [4] Topalov, A. A.; Katsounaros, I.; Meier, J. C.; Klemm, S. O.; Mayrhofer, K. J. J.; Rev. Sci. Instrum. 82 (2011), art. no. 114103, doi:10.1063/1.3660814 [5] Schuppert, A. K.; Topalov, A. A.; Katsounaros, I.; Klemm, S. O.; Mayrhofer, K. J. J., J. Electrochem. Soc. (in press) (2012), doi: 10.1149/2.009211jes

Acknowledgement

Jan-Philipp Grote, Aleksandar R. Žerađanin, Serhiy Cherevko, Karl J. J. Mayrhofer

Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH,

Max-Planck-Strasse 1, 40237 Düsseldorf, Germany

Outlook and Conclusion

Electrochemical CO2 reduction Products cathode: Hydrocarbons, Alcohols, Formic acid (0.17 to -

0.11V)1

Products anode: O2 (1.23V)

Power from renewable energy sources enables us to create a

sustainable CO2 cycle for industry.

By utilizing unused wind energy, additional CO2 emission is prevented and the question about efficiency fades into the background.

High overpotential on anode and cathode

Stability of cathode materials is not reported until now Selectivity can be improved

Alloys are promising

cathode materials to overcome challenges.

The strategy for the efficient conversion of CO2 into useful products (methanol, methane…) can have multilateral significance, but still represents a serious scientific and technical challenge. The conversion of CO2 at the electrochemical interface has some distinct advantages: 1) operation at ambient conditions 2) flexible control of reaction rate by the electrode potential 3) rather straightforward separation of the products. The priority task is to design catalytic materials (electrocatalysts) which will allow high rate of electrode reaction with acceptable selectivity and sufficient stability. After coupling a scanning flow cell (SFC) to an inductively-coupled-plasma mass spectrometer (ICP-MS) for stability investigations, we now coupled a differential electrochemical mass spectrometer (DEMS) to the SFC for studying selectivity. [1][2]

The focus will be set on Cu electrodes alloyed for example with Ni, Co, Ag or Au.

Special alloy electrodes with a concentration gradient will be used5

Alloys are prepared by Prof. Ludwig, Ruhr-Universität Bochum, Institute of Materials, Faculty of Mechanical Engineering

We acknowledge the Bundesministerium für Bildung und Forschung (Kz:033RC1101A) for financial support.

The successful coupling between Scanning Flow Cell and ICP-MS enabled us to investigate the stability of some important electrode materials like ruthenium oxide. The microstructured surfaces lower overpotentials and increase stability and are therefore an interesting candidate for counter electrodes in CO2 reduction. First measurements with the SFC coupled to the DEMS show characteristic behavior during hydrogen evolution and CO2 reduction on copper electrodes. Further investigations will concern the production of hydrocarbons and alcohols on various electrodes during electrolysis in an CO2 saturated electrolyte.

Hydrogen evolution

Motivation Reproducibility

CO2 reduction - onset potentials

SFC-DEMS

pre-pump

1/16“ steel pipe

valve mass spectrometer

Differential electrochemical mass spectrometer (DEMS), with soft ionization method is coupled to the SFC, to allow direct online product analysis down to 10 ppb through a porous PTFE membrane

With SFC a high throughput material screening can be performed while the product detection is synchronized with the electrochemical experiments.

Local microelectrochemistry for high spatial resolution3

LabVIEW Software for full automation4

Operation Conditions

• Voltage/Current • Technique • Temperature • ...

Electrolyte

• pH • Ionic concentration • Impurities • ...

Electrode Material • Composition • Morphology • Roughness • ...

On the one hand competing process to CO2 reduction

On the other hand needed to provide adsorbed hydrogen

for hydrocarbon production

One key-process for efficient CO2 reduction2.

Fast response time (1-3sec), sufficient

recovery time (120s) Low noise, even at higher bubble

evolution rates

Several transient and steady state measurements were performed on different points

Non linear dependence of transferred load to measured amount

Good alignment to exponential fit curve

Non quantitative method, but qualitative comparison between different measurements is possible

Gas chromatography with optimal parameters will give quantitative results

SFC DEMS system gives many possibilities for characterizing CO2 reduction products

Two important factors for finding good catalysts are selectivity and onset potential

Sweep measurement on Cu cathode in CO2 saturated 0.1 M KHCO3 aqueous solution

Easy and fast determination of onset potentials

Big parameter space in electrochemistry gives several possibilities for optimization, but is also time consuming when standard analysis techniques are utilized

A combinatorial approach with online analysis is useful, if progress needs to be achieved in a short period of time

Our setup enables automatic electrolyte exchange, temperature control, easy gas exchange and fast screening of alloys combined with the direct product analysis by mass spectrometry4,5

112 poster

Page 115: Chemical Processes and Use of CO2: 4th Status Conference

FfPaG: „Feste und fluide Produkte aus Gas“

ProjektdatenLaufzeit: 3 JahreProjektstart: 01.07.2013Fördermittel: 9,2 Mio.€Förderkennzeichen: 033RC1301

Zielsetzung• Alternativverfahren zur H2-Herstellung bei geringem CO2-Footprint und

wettbewerbsfähigen Kosten• Alternative zu Erdöl (Chemie)• Umsetzung von CO2 mit H2 aus der Pyrolyse zu Synthesegas• Bereitstellung eines hochwertigen Kohlenstoffträgers für den Hochofenprozess /

Kokereiprozess• Erschließung einer zusätzlichen, nachhaltigen Rohstoffquelle für die Stahlindustrie

und Chemische Industrie

Stahlindustrie Chemieindustrie

AnlagenbauGaseindustrie

Branchenübergreifende Zusammenarbeit

Quelle: TKSE (http://www.de.stratus.com/Uber_Uns/Anwenderberichte/ThyssenKruppSteelAG)

Quelle: BASF (http://www.lvz-online.de/region/markkleeberg/basf-verdient-im-2-quartal-etwas-mehr/r-markkleeberg-b-120327-0.html)

Quelle: Siemens http://www.industry.siemens.com/verticals/global/de/chemical-industries/referenzen/Seiten/referenzen.aspx)Quelle: http://www.lindeus-engineering.com/en/services/construction/index.html

Technologien für Nachhaltigkeit und Klimaschutz – Chemische Prozesse und stoffliche Nutzung von CO2

Gefördert vom

Gesamtprojektleitung, Hochtemperatur Reaktortechnologie + Katalysatorentwicklunghomogene und heterogene Reaktionskinetik, Kohlenstoffbildung, Reaktorkonzept, Herstellung von Testchargenaktive Komponenten, Katalysatorträger

Kompetenzen im Konsortium

Pyrolyse• Hochtemperaturprozess• Energieeintrag• Wärmeintegration• Gasaufreinigung• Spezifikation Kohlenstoff• Feststoffhandling• Werkstoffe

CO2-Aktivierung• Aktivmassen• Stabilität• Prozessführung• Wärmeintegration• Werkstoffe• CO2-Quelle

CO2-Bilanz für die Wasserstoffherstellung(Gleiche Produktionsmengen für Wasserstoff, Koks und Wärme)

• Ziel ca. 50 % CO2-Emissionsreduktion bezogen auf H2-Herstellung

• Stoffliche Verwertung des Kohlenstoffs in der Stahlerzeugung

• Zusätzliche Nutzung von CO2 in der anschließenden Synthesegasherstellung

Konzept FfPaGBMBF Projekt

Erdgas

Energie

Wasserstoff

Kohlenstoff

Synthesegas

CO2

Pyrolyse(CH4 2 H2 + C)

CO2 – Aktivierung durchumgekehrte Wassergas-Shiftreaktion(CO2 + H2 ↔ CO + H2O)

C-Produkte

Kokskohle Blend Einblaskohle

Formulierung

Stahlindustrie

Chemische Industrie

Basischemikalien Kraftstoffe

Hochofen

100 TNm3/h *

36 t/h *

300.000 t/a *

* Ideale Werte auf Basis Stöchiometrie

Kokerei

Herausforderungen

Kontakt: Dr. Andreas Bode, BASF New Business GmbH, [email protected]

Konzept Gasaufbereitung + Konzept PilotanlageReinheit, Zusammensetzung

Formulierung + Erprobung Kohlenstoffprodukt, verfahrenstechnisches GesamtkonzeptStruktur, Partikeldesign

Prozessentwicklung und DesignApparatedesign, Feststoffreaktor

Reaktionstechnik und ModellierungReaktormodellierung, alternative Konzepte

Aufbereitung und Handling des Kohlenstoffproduktes, Beheizungskonzept Kohlenstoffspezifikation, wissenschaftlich-technische Begleitung

4. Statuskonferenz der BMBF-Fördermaßnahme "Technologien für Nachhaltigkeit und Klimaschutz - Chemische Prozesse und stoffliche Nutzung von CO2" 08. April 2014, Steigenberger Grandhotel Petersberg, Königswinter

113poster

Page 116: Chemical Processes and Use of CO2: 4th Status Conference

Zusammenfassung

Reaktionsmechanismus

Integrierte Dimethylethersynthese aus Methan und CO2

BASF SE, hte GmbH, Linde AG, Technische Universität München,Max Plank Institut für Kohlenforschung, Fraunhofer-Institut UMSICHT

Motivation

Integriertes Verfahrenskonzept

Ziel des Projektes ist die Entwicklung eines einstufigen, heterogen katalysierten Verfahrens zur Synthese von Dimethylether (DME). Das Verfahren soll stofflich und energetisch in die vorgelagerte Synthesegasstufe integriert sein und die stoffliche Nutzung von CO2 ermöglichen.

Die durchgeführten Prozesssimulationen zeigen im Vergleich zum Stand der Technik eine signifikante Verbesserung der Kaltgas effizienz und der spezifischen CO2 Emissionen. Mehrere hundert Katalysatoren für die direkte DME Synthese wurden im Hochdurchsatzverfahren analysiert. Besonders aktive und stabile Formulierungen werden zur Bestimmung kinetischer Daten für die Reaktorauslegung verwendet. Das Langzeitverhalten des Katalysators wird im Festbettreaktor als Formkörper und im Slurry Verfahren als Dispersion unter industriell relevanten Rahmenbedingungen untersucht.

c APT 2014

www.chemieundco2.dewww.apt.mw.tum.de www.apt.mw.tum.de

DMEEXCO2

1-Liter Anlagen und Slurry Reaktor

Katalysator-Screening

• Herstellung eines Cu-γ-Al2O3 Katalysators mittels selbstinduzierter regelmäßiger Anord-nung während des Verdampfungsprozesses

• Hohe Aktivität für direkte DME Synthese

• 16- und 48-fach Reaktor zur parallelen Vermes-sung von Katalysatoren

• Test mehrerer hundert Katalysatorformulierun-gen im Hochdurchsatzverfahren

• Optimierung der Katalysatorformulierung und Untersuchung der Prozessbedingungen mittels high throughput Technologie

• Untersuchung aussichtsreicher Kandidaten im Hinblick auf Langzeit-Stabilität

• Zusätzlich Aufnahme kinetischer Daten

NovelConcept

New Catalytic concepts for direct DME synthesisDr. Petar Djinović, Dr. Heqing Jiang, Dr. Wolfgang Schmidt, Daniel WendtJiang, H., et al. (2012) Microporous and Mesoporous Materials 164(0): 3-8.

Differentialkreislaufreaktor vom Typ Berty (Linde)

• Differentialkreislaufreaktor vom Typ Berty

• Starke Durchmischung des Reaktionsraums

• Verhalten nahe dem Modell des idealen Rührkessels

• Gradientenfreie Vermes-sung der Reaktionskinetik

• Kinetik dient als Grundlage für die Reaktorauslegung

Reaktor und Katalysatorkorb (Linde)

1-Liter Anlage im Technikum (Linde)

Slurry Reaktor (Fraunhofer UMSICHT)

• Untersuchung des Umsatzverhaltens in ei-nem Dreiphasenreaktor (Slurry Verfahren)

• Verbesserte Wärmeabfuhr und Vermeidung von Temperaturgradienten durch Dispergie-rung des Katalysators in einem Fluidisierungs-medium

• Analyse der Auswirkung von Stofftransport-widerstand und Hydrodynamik auf das Reak-tionssystem

• Scale-Up auf großtechnischen Slurry Reak-tor und Vergleich mit Festbettkonzepten

• Zwei Festbettreaktoren mit 1-Liter Kataly satorvolumen (Formkörper)

• Dimensionierung des Reaktions-rohrs in Anlehnung an die groß-technische Synthese in Rohrbün-delreaktoren

• Prüfung auf Temperaturspitzen und Anfahrverhalten

• Teilweise Rückführung von Pro-duktströmen möglich

• Analyse der Langzeitaktivität des Katalysators unter industriell rele-vanten Prozessbedingungen

• Bereits mehrere hundert Stunden Standzeit erreicht, wird fortgesetzt

•Stand der Technik: zweistufige DME Syn-these über die Zwischenstufe Methanol

•Problem: starke Umsatzlimitierung durch das thermodynamische Gleichgewicht

•Neues Verfahren: einstufige DME Synthe-se erhöht den Gleichgewichtsumsatz durch die unmittelbare Folgereaktion zu DME

•Benchmark: Vergleich beider Prozesse auf einheitlicher Basis mit kommerziellen und proprietären Prozesssimulatoren

•Ergebnis: signifikante Verbesserung von Kaltgaseffizienz und spezifischer CO2 Emissionen pro Tonne DME gegenüber Stand der Technik

1-Liter Anlage im Technikum (BASF)

0

25

50

75

100

200 250 300

Um

satz

in %

Temperatur in °C

MeOH

DME91 %

56 %

p = 50 bar

Thermodynamischer Gleichgewichtsumsatz von Was-serstoff für DME- und Methanolsynthese als Funktion der Temperatur bei einem Druck von p = 50 bar. Ausgangs-punkt sind jeweils stöchiometrische Gemische; für DME ist ein Synthesegas von H2/CO = 1 und für Methanol von H2/CO = 2 eingesetzt.

114 poster

Page 117: Chemical Processes and Use of CO2: 4th Status Conference
Page 118: Chemical Processes and Use of CO2: 4th Status Conference